PMP5832 Test Report

1. PMP5832 Board Image
2. Block Diagram
3. TPS40055 – 5.0V Output
 3.1 Performance Summary
 3.2 Start-up Waveform
 3.3 Switch Node
 3.4 Output Voltage Ripple
 3.5 Loop Response
 3.6 Transient Response
 3.7 Efficiency
 3.8 Load Regulation
4. TPS40055 – 3.3V Output
 4.1 Performance Summary
 4.2 Startup Waveform
 4.3 Switch Node
 4.4 Output Voltage Ripple
 4.5 Loop Response
 4.6 Transient Response
 4.7 Efficiency
 4.8 Load Regulation
5. TPS54319 – 1.05V Output
 5.1 Performance Summary
 5.2 Startup Waveform
 5.3 Switch Node
 5.4 Output Voltage Ripple
 5.5 Loop Response
 5.6 Transient Response
 5.7 Efficiency
 5.8 Load Regulation
6. TPS54319 – 1.5V Output
 6.1 Performance Summary
 6.2 Startup Waveform
 6.3 Switch Node
 6.4 Output Voltage Ripple
 6.5 Loop Response
 6.6 Load Transient
 6.7 Efficiency
 6.8 Load Regulation
7. TPS54319 – 1.2V Output
 7.1 Performance Summary
 7.2 Startup Waveform
 7.3 Switch Node
 7.4 Output Voltage Ripple
 7.5 Loop Response
 7.6 Load Transient
 7.7 Efficiency
 7.8 Load Regulation
8. TPS54319 – 1.8V Output
 8.1 Performance Summary
 8.2 Startup Waveform
 8.3 Switch Node
 8.4 Output Voltage Ripple
 8.5 Loop Response
8.6 Load Transient ...33
8.7 Efficiency ..34
8.8 Load Regulation ...35

9 TPS54319 – 2.5V Output ..35
9.1 Performance Summary ..35
9.2 Startup Waveform ..36
9.3 Switch Node ...36
9.4 Output Voltage Ripple ..37
9.5 Loop Response ...38
9.6 Load Transient ..38
9.7 Efficiency ...39
9.8 Load Regulation ...40

10 Thermal Image ...41

Operating Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>1.05</td>
<td>5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{out}</td>
<td>2</td>
<td>3</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>F_{switching}</td>
<td>500</td>
<td>1000</td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
1 PMP5832 Board Image
2 Block Diagram

28V

TPS40055
250 kHz

5V @ 8A

TPS54319
1 MHz

1.05V @ 2A

1.5V @ 3A

TPS54319
1 MHz

1.2V @ 3A

TPS54319
1 MHz

1.8V @ 2A

TPS54319
500 kHz

3.3V @ 10A

1.05V @ 2A

1.5V @ 3A

1.2V @ 3A

1.8V @ 2A

2.5V @ 2A
3 TPS40055 – 5.0V Output

3.1 Performance Summary

Performance parameters below represent data obtained from the PMP5832 design; changes to the design, component selection or layout may result in varied performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Bandwidth</td>
<td>V\textsubscript{in}=28V, I\textsubscript{out}=8A</td>
<td>31.92</td>
<td>kHz</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Phase Margin</td>
<td>V\textsubscript{in}=28V, I\textsubscript{out}=8A</td>
<td>74.37</td>
<td>°</td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>I\textsubscript{out}=8A</td>
<td>15.5</td>
<td>mV</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Maximum Efficiency</td>
<td></td>
<td>90.6</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>V\textsubscript{in}=28V, I\textsubscript{out}=0A to 8A</td>
<td>0.5</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>264</td>
<td>kHz</td>
<td>kHz</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Start-up Waveform

\[V_{in} = 28V, V_{out} = 5V, I_{out} = 100mA \]

3.3 Switch Node

\[V_{in} = 28V, V_{out} = 5V, I_{out} = 8A \]
3.4 Output Voltage Ripple

$V_{in} = 28\text{V}$, $V_{out} = 5\text{V}$, $I_{out} = 8\text{A}$
3.5 Loop Response

\[\text{Phase margin} = 74.37 \text{ @ } 31.92 \text{ kHz} \]

3.6 Transient Response

\[\text{Phase margin} = 74.37 \text{ @ } 31.92 \text{ kHz} \]
3.7 Efficiency

$V_{\text{out}} = 5\, \text{V}$, $I_{\text{out}} = 0\, \text{A}$ to $8\, \text{A}$
3.8 Load Regulation

\[V_{\text{out}} = 5V, \quad I_{\text{out}} = 0A \text{ to } 8A \]

Output Voltage vs. Output Current

4. TPS40055 – 3.3V Output

4.1 Performance Summary

Performance parameters below represent data obtained from the PMP5832 design; changes to the design, component selection or layout may result in varied performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Bandwidth</td>
<td>(V_{\text{in}}=28V, \quad I_{\text{out}}=10A)</td>
<td>21.96</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>(V_{\text{in}}=28V, \quad I_{\text{out}}=10A)</td>
<td>62.03</td>
<td></td>
<td></td>
<td>(^\circ)</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>(I_{\text{out}}=10A)</td>
<td>11.9</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Efficiency</td>
<td></td>
<td>87.6</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(V_{\text{in}}=28V, \quad I_{\text{out}}=0A \text{ to } 10A)</td>
<td>0.8</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>268</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
4.2 **Startup Waveform**

\[V_{in} = 28V, V_{out} = 3.3V, I_{out} = 150A \]

4.3 **Switch Node**

\[V_{in} = 28V, V_{out} = 3.3V, I_{out} = 10A \]
4.4 Output Voltage Ripple

\[V_{\text{in}} = 28\, \text{V}, \quad V_{\text{out}} = 3.3\, \text{V}, \quad I_{\text{out}} = 10\, \text{A} \]
4.5 Loop Response

\[V_{in} = 28\text{V}, V_{out} = 3.3\text{V}, I_{out} = 10\text{A} \]

Phase Margin = 62.03 @ 21.96k

4.6 Transient Response

\[V_{in} = 28\text{V}, V_{out} = 3.3\text{V}, I_{out} = 5\text{A} \text{ to } 10\text{A} \]
4.7 Efficiency

\[V_{\text{in}} = 28V, \ V_{\text{out}} = 3.3V, \ I_{\text{out}} = 0A \text{ to } 10A \]

![Efficiency vs. Output Current](image)

The efficiency chart shows the efficiency (%) vs. output current (A) for different input voltages. The chart indicates that the efficiency remains high across a wide range of output currents, with slight variations depending on the input voltage level.
4.8 Load Regulation

\[V_{in} = 28V, V_{out} = 3.3V, I_{out} = 0A \text{ to } 10A \]

![Output Voltage vs. Output Current](image)

5 TPS54319 – 1.05V Output

5.1 Performance Summary

Performance parameters below represent data obtained from the PMP5832 design; changes to the design, component selection or layout may result in varied performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Bandwidth</td>
<td>(V_{in}=5V, I_{out}=2A)</td>
<td>29.65</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>(V_{in}=5V, I_{out}=2A)</td>
<td>62.05</td>
<td></td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>(I_{out}=2A)</td>
<td>4.6</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Efficiency</td>
<td></td>
<td>90.7</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(V_{in}=5V, I_{out}=0A \text{ to } 2A)</td>
<td>0.2</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>941</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
5.2 **Startup Waveform**

$V_{in} = 5\, \text{V}, V_{out} = 1.05\, \text{V}, I_{out} = 100\, \text{mA}$

5.3 **Switch Node**

$V_{in} = 5\, \text{V}, V_{out} = 1.05\, \text{V}, I_{out} = 2\, \text{A}$
5.4 Output Voltage Ripple

\(V_{in} = 5V, \ V_{out} = 1.05V, \ I_{out} = 2A \)
5.5 *Loop Response*

\[V_{in} = 5V, V_{out} = 1.05V, I_{out} = 2A \]

Phase Margin = 62.05 @ 29.65

5.6 *Transient Response*

\[V_{in} = 5V, V_{out} = 1.05V, I_{out} = 1A \text{ to } 2A \]
5.7 Efficiency

\[V_{in} = 5V, V_{out} = 1.05V \]

Efficiency vs. Output Current

![Graph showing efficiency vs. output current]
5.8 Load Regulation

\[V_{\text{in}} = 5V, V_{\text{out}} = 1.05V \]

![Output Voltage vs. Output Current](image)

6 TPS54319 – 1.5V Output

6.1 Performance Summary

Performance parameters below represent data obtained from the PMP5832 design; changes to the design, component selection or layout may result in varied performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Bandwidth</td>
<td>(V_{\text{in}}=5V, I_{\text{out}}=3A)</td>
<td>22.13</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>(V_{\text{in}}=5V, I_{\text{out}}=3A)</td>
<td>62.85</td>
<td></td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>(I_{\text{out}}=3A)</td>
<td>3.6</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Efficiency</td>
<td></td>
<td>93.2</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(V_{\text{in}}=5V, I_{\text{out}}=0) to 3A</td>
<td>0.6</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>943</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
6.2 Startup Waveform

\[V_{in} = 5V, V_{out} = 1.5V, I_{out} = 150mA \]

6.3 Switch Node

\[V_{in} = 5V, V_{out} = 1.5V, I_{out} = 3A \]
6.4 **Output Voltage Ripple**

$V_{in} = 5V$, $V_{out} = 1.5V$, $I_{out} = 3A$
6.5 Loop Response

\[V_{in} = 5V, \ V_{out} = 1.5V, \ I_{out} = 3A \]

Phase Margin = 62.85 @ 22.13 kHz

6.6 Load Transient

\[V_{in} = 5V, \ V_{out} = 1.5V, \ I_{out} = 1.5A \text{ to } 3A \]
6.7 **Efficiency**

\[V_{in} = 5V, \ V_{out} = 1.5V \]

Efficiency vs. Output Current

![Graph showing efficiency vs. output current](image-url)
6.8 Load Regulation

\[V_{in} = 5V, V_{out} = 1.5V \]

![Output Voltage vs. Output Current](image)

7 TPS54319 – 1.2V Output

7.1 Performance Summary

Performance parameters below represent data obtained from the PMP5832 design; changes to the design, component selection or layout may result in varied performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Bandwidth</td>
<td>(V_{in}=3.3V , I_{out}=3A)</td>
<td>25.69</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>(V_{in}=3.3V , I_{out}=3A)</td>
<td>56.45</td>
<td></td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>(I_{out}=3A)</td>
<td>2.7</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Efficiency</td>
<td></td>
<td>93.1</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(V_{in}=3.3V, I_{out}= 0A to 3A)</td>
<td>0.6</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>928</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
7.2 Startup Waveform

\[V_{\text{in}} = 3.3V, \quad V_{\text{out}} = 1.2V, \quad I_{\text{out}} = 150mA \]

7.3 Switch Node

\[V_{\text{in}} = 3.3V, \quad V_{\text{out}} = 1.2V, \quad I_{\text{out}} = 3A \]
7.4 Output Voltage Ripple

$V_{in} = 3.3\text{V}, V_{out} = 1.2\text{V}, I_{out} = 3\text{A}$
7.5 Loop Response

\[V_{in} = 3.3V, \ V_{out} = 1.2V, \ I_{out} = 3A \]

Phase Margin = 56.45 @ 25.69 kHz

7.6 Load Transient

\[V_{in} = 3.3V, \ V_{out} = 1.2V, \ I_{out} = 1.5A \text{ to } 3A \]
7.7 Efficiency

\[V_{in} = 3.3\text{V}, \quad V_{out} = 1.2\text{V} \]
7.8 Load Regulation

$V_{\text{in}} = 3.3\, \text{V}, \, V_{\text{out}} = 1.2\, \text{V}$

![Output Voltage vs. Output Current](image)

8 TPS54319 – 1.8V Output

8.1 Performance Summary

Performance parameters below represent data obtained from the PMP5832 design; changes to the design, component selection or layout may result in varied performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Bandwidth</td>
<td>$V_{\text{in}}=3.3, \text{V}, , I_{\text{out}}=2, \text{A}$</td>
<td>27.49</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>$V_{\text{in}}=3.3, \text{V}, , I_{\text{out}}=2, \text{A}$</td>
<td>60.1</td>
<td></td>
<td></td>
<td>$^\circ$</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>$I_{\text{out}}=2, \text{A}$</td>
<td>2.3</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Efficiency</td>
<td></td>
<td>95.5</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$V_{\text{in}}=3.3, \text{V}, , I_{\text{out}}=0, \text{A} \text{ to } 2, \text{A}$</td>
<td>0.8</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>932</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
8.2 Startup Waveform

\(V_{in} = 3.3\text{V}, V_{out} = 1.8\text{V}, I_{out} = 150\text{mA} \)

8.3 Switch Node

\(V_{in} = 3.3\text{V}, V_{out} = 1.8\text{V}, I_{out} = 2\text{A} \)
8.4 Output Voltage Ripple

\[V_{in} = 3.3\, V, \quad V_{out} = 1.8\, V, \quad I_{out} = 2\, A \]
8.5 *Loop Response*

\[V_{in} = 3.3V, \ V_{out} = 1.8V, \ I_{out} = 2A \]

Phase Margin = 60.1 @ 27.49 kHz

8.6 *Load Transient*

\[V_{in} = 3.3V, \ V_{out} = 1.8V, \ I_{out} = 1A \text{ to } 2A \]
8.7 Efficiency

\[V_{in} = 3.3V, V_{out} = 1.8V \]
8.8 Load Regulation

\[V_{in} = 3.3V, \ V_{out} = 1.8V \]

Output Voltage vs. Output Current

9 TPS54319 – 2.5V Output

9.1 Performance Summary

Performance parameters below represent data obtained from the PMP5832 design; changes to the design, component selection or layout may result in varied performance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Bandwidth</td>
<td>[V_{in}=3.3V, \ I_{out}=2A]</td>
<td>33.88</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>[V_{in}=3.3V, \ I_{out}=2A]</td>
<td>51.89</td>
<td></td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>[I_{out}=2A]</td>
<td>2.7</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Efficiency</td>
<td></td>
<td>97.4</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>[V_{in}=3.3V, \ I_{out} = 0A to 2A]</td>
<td>0.2</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>463</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>
9.2 Startup Waveform

$V_{in} = 3.3\text{V}, V_{out} = 2.5\text{V}, I_{out} = 150\text{mA}$

9.3 Switch Node

$V_{in} = 3.3\text{V}, V_{out} = 2.5\text{V}, I_{out} = 2\text{A}$
9.4 **Output Voltage Ripple**

\[V_{\text{in}} = 3.3\text{V}, \ V_{\text{out}} = 2.5\text{V}, \ I_{\text{out}} = 2\text{A} \]
9.5 Loop Response

\[V_{in} = 3.3V, \ V_{out} = 2.5V, \ I_{out} = 2A \]

Phase Margin = 51.89 @ 33.88 kHz

9.6 Load Transient

\[V_{in} = 3.3V, \ V_{out} = 2.5V, \ I_{out} = 1A \text{ to } 2A \]
9.7 Efficiency

$V_{in} = 3.3V$, $V_{out} = 2.5V$
9.8 Load Regulation

$V_{in} = 3.3V$, $V_{out} = 2.5V$

Output Voltage vs. Output Current

![Graph showing output voltage regulation](image-url)
10 Thermal Image

3.3V, 1.2V @ 3A, 1.8V @ 2A, 2.5V @ 2A after 2 hours
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td>Wireless</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated