1 Photo
The photographs below show the top and bottom views of the PMP7263 Rev A demo board.

2 Efficiency
The efficiency data is shown in the tables and graph below. The discontinuity in the graph is where the controller enters/exits burst mode.
115VAC/60Hz

<table>
<thead>
<tr>
<th>Iout</th>
<th>Vout</th>
<th>Vin</th>
<th>Iin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout</th>
<th>Losses</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>12.02</td>
<td>115.6</td>
<td>0.002</td>
<td>0.07</td>
<td>0.29</td>
<td>0.00</td>
<td>0.07</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.024</td>
<td>12.02</td>
<td>115.6</td>
<td>0.010</td>
<td>0.44</td>
<td>0.37</td>
<td>0.29</td>
<td>0.15</td>
<td>65.6%</td>
</tr>
<tr>
<td>0.049</td>
<td>12.02</td>
<td>115.6</td>
<td>0.017</td>
<td>0.85</td>
<td>0.43</td>
<td>0.59</td>
<td>0.26</td>
<td>69.3%</td>
</tr>
<tr>
<td>0.075</td>
<td>12.02</td>
<td>115.6</td>
<td>0.023</td>
<td>1.27</td>
<td>0.47</td>
<td>0.90</td>
<td>0.37</td>
<td>71.0%</td>
</tr>
<tr>
<td>0.088</td>
<td>12.02</td>
<td>115.6</td>
<td>0.026</td>
<td>1.49</td>
<td>0.49</td>
<td>1.06</td>
<td>0.43</td>
<td>71.0%</td>
</tr>
<tr>
<td>0.101</td>
<td>12.02</td>
<td>115.6</td>
<td>0.029</td>
<td>1.69</td>
<td>0.50</td>
<td>1.21</td>
<td>0.48</td>
<td>71.8%</td>
</tr>
<tr>
<td>0.125</td>
<td>12.02</td>
<td>115.6</td>
<td>0.034</td>
<td>2.05</td>
<td>0.52</td>
<td>1.50</td>
<td>0.55</td>
<td>73.3%</td>
</tr>
<tr>
<td>0.150</td>
<td>12.02</td>
<td>115.6</td>
<td>0.040</td>
<td>2.43</td>
<td>0.53</td>
<td>1.80</td>
<td>0.63</td>
<td>74.2%</td>
</tr>
<tr>
<td>0.173</td>
<td>12.02</td>
<td>115.6</td>
<td>0.044</td>
<td>2.79</td>
<td>0.54</td>
<td>2.08</td>
<td>0.71</td>
<td>74.5%</td>
</tr>
<tr>
<td>0.202</td>
<td>12.02</td>
<td>115.6</td>
<td>0.051</td>
<td>3.27</td>
<td>0.56</td>
<td>2.43</td>
<td>0.84</td>
<td>74.3%</td>
</tr>
<tr>
<td>0.225</td>
<td>12.02</td>
<td>115.6</td>
<td>0.056</td>
<td>3.65</td>
<td>0.57</td>
<td>2.70</td>
<td>0.95</td>
<td>74.1%</td>
</tr>
<tr>
<td>0.249</td>
<td>12.02</td>
<td>115.6</td>
<td>0.061</td>
<td>4.07</td>
<td>0.58</td>
<td>2.99</td>
<td>1.08</td>
<td>73.5%</td>
</tr>
</tbody>
</table>

230VAC/50Hz

<table>
<thead>
<tr>
<th>Iout</th>
<th>Vout</th>
<th>Vin</th>
<th>Iin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout</th>
<th>Losses</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>12.02</td>
<td>230.0</td>
<td>0.003</td>
<td>0.14</td>
<td>0.25</td>
<td>0.00</td>
<td>0.14</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.024</td>
<td>12.02</td>
<td>230.0</td>
<td>0.008</td>
<td>0.57</td>
<td>0.32</td>
<td>0.29</td>
<td>0.28</td>
<td>50.6%</td>
</tr>
<tr>
<td>0.051</td>
<td>12.02</td>
<td>230.0</td>
<td>0.013</td>
<td>1.05</td>
<td>0.36</td>
<td>0.61</td>
<td>0.44</td>
<td>58.4%</td>
</tr>
<tr>
<td>0.074</td>
<td>12.02</td>
<td>230.0</td>
<td>0.017</td>
<td>1.46</td>
<td>0.38</td>
<td>0.89</td>
<td>0.57</td>
<td>60.9%</td>
</tr>
<tr>
<td>0.088</td>
<td>12.02</td>
<td>230.0</td>
<td>0.021</td>
<td>1.94</td>
<td>0.40</td>
<td>1.06</td>
<td>0.88</td>
<td>54.5%</td>
</tr>
<tr>
<td>0.100</td>
<td>12.02</td>
<td>230.0</td>
<td>0.022</td>
<td>2.11</td>
<td>0.41</td>
<td>1.20</td>
<td>0.91</td>
<td>57.0%</td>
</tr>
<tr>
<td>0.125</td>
<td>12.02</td>
<td>230.0</td>
<td>0.025</td>
<td>2.45</td>
<td>0.42</td>
<td>1.50</td>
<td>0.95</td>
<td>61.3%</td>
</tr>
<tr>
<td>0.148</td>
<td>12.02</td>
<td>230.0</td>
<td>0.029</td>
<td>2.87</td>
<td>0.43</td>
<td>1.78</td>
<td>1.09</td>
<td>62.0%</td>
</tr>
<tr>
<td>0.175</td>
<td>12.02</td>
<td>230.0</td>
<td>0.033</td>
<td>3.34</td>
<td>0.44</td>
<td>2.10</td>
<td>1.24</td>
<td>63.0%</td>
</tr>
<tr>
<td>0.200</td>
<td>12.02</td>
<td>230.0</td>
<td>0.036</td>
<td>3.78</td>
<td>0.45</td>
<td>2.40</td>
<td>1.38</td>
<td>63.6%</td>
</tr>
<tr>
<td>0.224</td>
<td>12.02</td>
<td>230.0</td>
<td>0.040</td>
<td>4.21</td>
<td>0.46</td>
<td>2.69</td>
<td>1.52</td>
<td>64.0%</td>
</tr>
<tr>
<td>0.249</td>
<td>12.02</td>
<td>230.0</td>
<td>0.042</td>
<td>4.64</td>
<td>0.47</td>
<td>2.99</td>
<td>1.65</td>
<td>64.5%</td>
</tr>
</tbody>
</table>

3 Cross-Regulation

The graph below shows the output voltage of the -12V output versus the loading on the +12V output. The two plots on this graph were taken with no load on the -12V output and full load (10mA) on the -12V output. The input voltage was 115VAC/60Hz.
4 Thermal Images

The thermal images below show the top and bottom of the board with a 250mA load on the +12V output, no load on the -12V output, and no forced air flow. The ambient temperature was 25ºC.

4.1 120VAC/60Hz Input

4.2 220VAC/50Hz Input
5 Startup

The output voltage at startup is shown in the images below. The +12V output is shown on channel 1, and the -12V output is shown on channel 3.

5.1 No Load – 115VAC/60Hz Input

5.2 No Load – 230VAC/50Hz Input
5.3 +12V/250mA & -12V/10mA – 115VAC/60Hz Input

5.4 +12V/250mA & -12V/10mA – 230VAC/50Hz Input
6 +12V Output Ripple Voltage

6.1 No Load – 115VAC/60Hz Input

6.2 No Load – 230VAC/50Hz Input
6.3 +12V/250mA & -12V/10mA – 115VAC/60Hz Input

6.4 +12V/250mA & -12V/10mA – 230VAC/50Hz Input
7 -12V Output Ripple Voltage

7.1 No Load – 115VAC/60Hz Input

7.2 No Load – 230VAC/50Hz Input
7.3 +12V/250mA & -12V/10mA – 115VAC/60Hz Input

7.4 +12V/250mA & -12V/10mA – 230VAC/50Hz Input
8 Loop Response

The frequency response of the feedback loop is shown below. The outputs were loaded with +12V/250mA and -12V/10mA. For gain/phase plot 1, the input was 115VAC/60Hz. For gain/phase plot 2, the input was 230VAC/50Hz. The loop was broken and measured in series with R14.

9 Load Transients

The images below show the response to a 25mA to 250mA load transient on the +12V output. For the top image, the input was set to 115VAC/60Hz. For the bottom image, the input was set to 230VAC/50Hz. Channel 1 displays the +12V output voltage (ac coupled). Channel 3 displays the -12V output voltage (ac coupled). Channel 4 displays the +12V output current.
10 Switching Waveforms

The images below show the voltage waveforms on the switching devices within the supply. The input was 270VAC/50Hz. The output was loaded with +12V/250mA and -12V/10mA.

10.1 Primary Waveforms

The image below shows the drain-to-source voltage on Q1.
10.2 Secondary Waveforms

The image below shows the voltage on the anode of D1 (channel 1) and the anode of D14 (channel 3).
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use.

Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in their applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Audio: www.ti.com/audio
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- OMAP Mobile Processors: www.ti.com/omap
- Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications
- Automotive and Transportation: www.ti.com/automotive
- Communications and Telecom: www.ti.com/communications
- Energy and Lighting: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Video and Imaging: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated