1 TPS92314 DIM Experimental Results (230VAC)

2 Specifications

- Input Power ≈ 8W
- Output Power ≈ 7W
- Line Voltage = 200~240VAC
- Line Frequency = 50Hz
- LED Forward Voltage = 20V
- LED Current ≈ 350mA
- Efficiency > 80% @230VAC
- Power Factor ≥ 0.9
- Topology: Single-stage buck-boost
- Solution size: 56mm (L) x 22mm (W) x 14mm (H)

3 Test Equipment

- Voltage Source: 190 V_{RMS} to 265 V_{RMS} isolated AC source PCR500LA (KIKUSUI)
- Multi meters: Agilent 34401A
- Power Meter: YOKOGAWA WT210
- Output Load: 7 LEDs in series (VF = 3 V at 350mA per LED)
- Oscilloscope: TDS3045C (TEKTRONIX)
- Operating Temperature: 25°C
- Recommended Wire Gauge: 18 AWG not more than two feet long
4 Performance Date and Typical Characteristic Curves.

<table>
<thead>
<tr>
<th>Preset Voltage (V)</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>50</td>
</tr>
<tr>
<td>Input Voltage (V)</td>
<td>40.0</td>
<td>60.0</td>
<td>80.0</td>
<td>100.0</td>
<td>120.0</td>
<td>140.0</td>
<td>160.0</td>
<td>180.0</td>
<td>200.0</td>
<td>220.0</td>
<td>240.0</td>
<td>260.2</td>
</tr>
<tr>
<td>Input Current (A)</td>
<td>0.021</td>
<td>0.029</td>
<td>0.034</td>
<td>0.037</td>
<td>0.040</td>
<td>0.041</td>
<td>0.043</td>
<td>0.043</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.038</td>
</tr>
<tr>
<td>Input Power (W)</td>
<td>0.82</td>
<td>1.72</td>
<td>2.68</td>
<td>3.66</td>
<td>4.66</td>
<td>5.68</td>
<td>6.70</td>
<td>6.72</td>
<td>7.75</td>
<td>8.79</td>
<td>9.02</td>
<td>9.13</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.961</td>
<td>0.983</td>
<td>0.986</td>
<td>0.986</td>
<td>0.979</td>
<td>0.973</td>
<td>0.974</td>
<td>0.967</td>
<td>0.960</td>
<td>0.947</td>
<td>0.932</td>
<td>0.915</td>
</tr>
<tr>
<td>Output Voltage (V)</td>
<td>18.38</td>
<td>18.74</td>
<td>19.02</td>
<td>19.25</td>
<td>19.46</td>
<td>19.64</td>
<td>19.81</td>
<td>19.84</td>
<td>20.00</td>
<td>20.15</td>
<td>20.18</td>
<td>20.11</td>
</tr>
<tr>
<td>Output Current (A)</td>
<td>0.029</td>
<td>0.065</td>
<td>0.104</td>
<td>0.145</td>
<td>0.185</td>
<td>0.227</td>
<td>0.269</td>
<td>0.269</td>
<td>0.311</td>
<td>0.353</td>
<td>0.356</td>
<td>0.360</td>
</tr>
<tr>
<td>Output Power (W)</td>
<td>0.53</td>
<td>1.22</td>
<td>1.99</td>
<td>2.78</td>
<td>3.61</td>
<td>4.46</td>
<td>5.32</td>
<td>5.34</td>
<td>6.22</td>
<td>7.11</td>
<td>7.18</td>
<td>7.23</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>64.7</td>
<td>71.0</td>
<td>74.1</td>
<td>76.1</td>
<td>77.4</td>
<td>78.5</td>
<td>79.4</td>
<td>80.2</td>
<td>80.8</td>
<td>80.6</td>
<td>80.1</td>
<td>79.3</td>
</tr>
</tbody>
</table>

4.1.1 Table 1 Test Data from 60VAC to 260VAC/50Hz

1. Efficiency

![Efficiency vs AC Line Dimming Voltage](image)

4.2

4.2.1 Figure 2 Efficiency vs. Line Voltage from 40VAC to 260VAC/50Hz
2. Power Factor

4.3

4.3.1 Figure 3 Power Factor vs. Line Voltage from 40VAC to 260VAC/50Hz

3. LED Current vs Line Voltage

4.3.2

4.3.3 Figure 4 ILED vs. AC Line Dimming Voltage from 40 to 260VAC/50Hz.
1. Input and Line Voltage Waveforms vs. Dimmer Setting

4.3.4

4.3.5 Figure 5 Dimmer Full ON

4.3.6 CH2– Input Voltage; CH4– Input current

4.3.7 Figure 6 Dimmer FULL ON

4.3.8 CH1– Output Voltage; CH2– Input Voltage; CH4– Output current
4.3.9 Input and Line Voltage Waveforms vs. Dimmer Setting

4.3.11 Figure 7 Dimmer 50% ON

4.3.12 CH2– Input Voltage; CH4– Input Current

4.3.13 Figure 8 Dimmer 50% ON

4.3.14 CH1– Output Voltage; CH2– Input Voltage; CH4– Output Current
4.3.16 Input and Line Voltage Waveforms vs. Dimmer Setting

4.3.17

4.3.18 Figure 9 Dimmer minimum ON

4.3.19 CH2– Input Voltage; CH4– Input Current

4.3.20 Figure 10 Dimmer Minimum ON

4.3.21 CH1– Output Voltage; CH2 – Input Voltage; CH4 – Output Current
2. Switch Node Voltage Valley Switching

4.3.22 Figure 11 Switch Node and Output Current Waveform

4.3.23 CH1 – Output Voltage; CH2 – Switch Node LX; CH4 – Output Current
4.3.24 Total Harmonic Distortion

![Total Harmonic Current (THD)](chart)

4.3.25 Figure 12 Current Harmonic Performance vs. EN/IEC61000-3-2 Class C Limits at 230VAC/50Hz
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio: www.ti.com/audio
Amplifiers: amplifier.ti.com
Data Converters: dataconverter.ti.com
DLP® Products: www.dlp.com
DSP: dsp.ti.com
Clocks and Timers: www.ti.com/clocks
Interface: interface.ti.com
Logic: logic.ti.com
Power Mgmt: power.ti.com
Microcontrollers: microcontroller.ti.com
RFID: www.ti-rfid.com
OMAP Applications Processors: www.ti.com/omap
Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation: www.ti.com/automotive
Communications and Telecom: www.ti.com/telecom
Computers and Peripherals: www.ti.com/computers
Consumer Electronics: www.ti.com/consumer-electronics
Energy and Lighting: www.ti.com/energy
Industrial: www.ti.com/industrial
Medical: www.ti.com/medical
Space, Avionics and Defense: www.ti.com/space-avionics-defense
Video and Imaging: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated