Startup (TPS40210 Boost Converter)

The figure below shows the 26.2V output voltage startup waveform after an input voltage of 12V is applied. \(I_{\text{out}} = 0A \). (5V/DIV, 20ms/DIV)

The figure below shows the 26.2V output voltage startup waveform after an input voltage of 12V is applied. \(I_{\text{out}} = 10A \). (5V/DIV, 20ms/DIV)
The figure below shows the 26.2V output voltage startup waveform after an input voltage of 25V is applied. \(I_{\text{out}} = 6\text{A}. \) \((5\text{V/DIV, 20ms/DIV}) \)

The figure below shows the 26.2V output voltage startup waveform after an input voltage of 25V is applied. \(I_{\text{out}} = 10\text{A}. \) \((5\text{V/DIV, 20ms/DIV}) \)
The boost converter’s efficiency is shown in the figure below. $V_{out} = 26.2V$
Output Ripple Voltage (TPS40210 Boost Converter)

The 26.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 10A and the input voltage set to 26Vdc. (500mV/DIV, 2us/DIV)

The 26.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 6A and the input voltage set to 26Vdc. (500mV/DIV, 2us/DIV)
The 26.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 10A and the input voltage set to 20Vdc. (500mV/DIV, 2us/DIV)

The 26.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 6A and the input voltage set to 20Vdc. (500mV/DIV, 2us/DIV)
The 26.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 10A and the input voltage set to 12Vdc. (500mV/DIV, 2us/DIV)

![Image 1]

The 26.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 6A and the input voltage set to 12Vdc. (500mV/DIV, 2us/DIV)

![Image 2]
Load Transients (TPS40210 Boost Converter)

The photo below shows the 26.2V output voltage (AC coupled) when the load current is switched between 0A and 6A.
Vin= 20V (1V/DIV, 5A/DIV, 50ms/DIV)

The photo below shows the 26.2V output voltage (AC coupled) when the load current is switched between 0A and 10A.
Vin= 20V (1V/DIV, 5A/DIV, 50ms/DIV)
Switch Node Waveforms (TPS40210 Boost Converter)

The photo below is of the FET switch node voltage at TP7. The input voltage is 12V and the output is loaded to 10A. (5V/DIV, 2us/DIV)

The photo below is of the FET switch node voltage at TP7. The input voltage is 12V and the output is loaded to 1A. (5V/DIV, 2us/DIV)
The photo below is of the FET switch node voltage at TP7. The input voltage is 26V and the output is loaded to 10A. (5V/DIV, 2us/DIV)

The photo below is of the FET switch node voltage at TP7. The input voltage is 26V and the output is loaded to 1A. (5V/DIV, 2us/DIV)
Switch Node Waveforms (BQ24640 Charger)

The photo below is of the FET switch node voltage at TP19. The input voltage is 28V and the output cap bank voltage is at 5V while being charged at 3A. A 28.2F/29.7V cap bank was used. (5V/DIV, 1A/DIV, 1us/DIV)

The photo below is of the FET switch node voltage at TP19. The input voltage is 28V and the output cap bank voltage is at 15V while being charged at 3A. A 28.2F/29.7V cap bank was used. (5V/DIV, 1A/DIV, 1us/DIV)
The photo below is of the FET switch node voltage at TP19. The input voltage is 28V and the output cap bank voltage is at 25V while being charged at 3A. A 28.2F/29.7V cap bank was used. (5V/DIV, 1A/DIV, 1us/DIV)

The photo below is of the FET switch node voltage at TP19. The input voltage is 28V and the output cap bank voltage is being regulated at 25.2V (charge current reduced). A 28.2F/29.7V cap bank was used. (5V/DIV, 1A/DIV, 1us/DIV)
The photo below shows the supercap bank being charged. An input voltage of 28V is applied to the BQ24640 charger and the supercap voltage is shown charging at a regulated 3A. A 28.2F/29.7V cap bank was used. (5V/DIV, 2A/DIV, 50s/DIV)

The photo below shows the supercap bank being discharged by the boost converter. A charged supercap (25.2V) is supplying power to the TPS40210 boost converter and loaded to 10A (Vo = 26V) until it shuts off. A 28.2F/29.7V cap bank was used. (5V/DIV, 5A/DIV, 5s/DIV)
Control Loop Gain / Stability (TPS40210 Boost Converter)

The plot below shows the loop gain and phase margin for a 12V input voltage.

- $I_{out} = 2A$
 - Loop Gain = 914Hz
 - Phase Margin = 88 degrees

- $I_{out} = 10A$
 - Loop Gain = 693Hz
 - Phase Margin = 87 degrees

The plot below shows the loop gain and phase margin for a 25V input voltage.

- $I_{out} = 1A$
 - Loop Gain = 981Hz
 - Phase Margin = 94 degrees

- $I_{out} = 10A$
 - Loop Gain = 1.03KHz
 - Phase Margin = 94 degrees
The photo below is the PMP7327 REVB reference design.
The photos below shows the supercap assy used to test the BQ24640 charger. It uses 11 series 310F/2.7V/2.2milliohms capacitors, each with a 1K balancing resistor, and a single 20A fuse in series with the positive terminal. Capacitor PN: Maxwell BCAP0310P270T10 (150 x 130 x 80 mm, WxDxH)
The photo below shows the board temperature when operated at 20V input and 26.2V @ 5A output.
The photo below shows the board temperature when operated at 12V input and 26.2V @ 5A output.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI anticipates dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated