

UCD3138A64/UCD3138128 Programmer's Manual

SLUUB54B - April 2016

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1 Introduction	
2 More Memory - Memory Map Changes for UCD3138A64	12
2.1 Memory Map Overview	13
2.2 Memory Map Details – Flash Mode	14
2.3 Memory Map Details – ROM Mode	
2.4 Register Changes for Program Flash Blocks	
3 Changes to ROM Boot Program	
3.1 ROM Version	
3.2 Flash Checksum Handling	
4 Two Enhanced I2C/PMBus Interfaces	
4.1 PMBus/I2C Register Names are Different on UCD3138064 and UCD3138A	
21	01
4.2 Automatic Acknowledgement of 2 Slave Addresses	21
4.3 Alert and Control Support on PMBus	
4.4 Improved Clock High Timeout Handling	
4.5 Improved Bit Counter Reset.	
4.6 Change in Test Mode Address	
5 External Clock Controlled Real-Time Clock	
5.1 Trimming the External Frequency5.2 RTC Calendar Data	
5.3 RTC Polling and Interrupts	
6 Four Additional General Purpose I/O Pins	
7 SPI Port Pins Move Around – JTAG_MUX_SEL Bit	
8 One Additional Timer Capture Register	
9 Support for Fixed Sampling Rates for LLC.	
10 Information on Pulse Width in Peak Current Mode	
11 Improvements to Fault Handling and Burst Mode	
11.1 Fault Counter Changes from 5 to 7 Bits	
11.2 Blanking for the Cycle-by-Cycle Fault Added	
11.3 Improved Fault and Burst Mode with Edge Generator in Use	
12 Eighty Pins Instead of 64	26
13 Disabling the <u>RESET</u> Pin	26
14 Adjusting the Clock Speed	26
15 No Write to HFO_LN_FILTER_EN	
16 Unused bits Removed from DPWM Registers	
17 Sample and Hold Buffer Available on ADC even if Sample and Hold are Not Use	
27	u
18 DAC Dither on Sample Trigger	28
19 Consolidation of PCM Control Registers	
20 Enhancements for UCD3138128	
20.1 Added Flash Memory	
· · · · · · · · · · · · · · · · · · ·	
20.2 Changes to ROM Boot Program 20.2.1 ROM Version	
20.3 Registers Added for '128	
20.4 Additional FLASH Keys	
21 UCD3138A64 Memory Map	31

Copyright © 2014, Texas Instruments Incorporated

21.1 Loo	p Mux Registers	
21.1.1	Front End Control 0 Mux Register (FECTRL0MUX)	31
21.1.2	Front End Control 1 Mux Register (FECTRL1MUX)	34
21.1.3	Front End Control 2 Mux Register (FECTRL2MUX)	36
21.1.4	Sample Trigger Control Register (SAMPTRIGCTRL)	
21.1.5	External DAC Control Register (EXTDACCTRL)	39
21.1.6	Filter Mux Register (FILTERMUX)	41
21.1.7	Filter KComp A Register (FILTERKCOMPA)	43
21.1.8	Filter KComp B Register (FILTERKCOMPB)	43
21.1.9	DPWM Mux Register (DPWMMUX) Constant Power Control Register (CPCTRL)	43
21.1.10	Constant Power Control Register (CPCTRL)	46
21.1.11	Constant Power Nominal Threshold Register (CPNOM)	47
21.1.12	Constant Power Max Threshold Register (CPMAX)	47
21.1.13	Constant Power Configuration Register (CPCONFIG)	48
21.1.14	Constant Power Max Power Register (CPMAXPWR)	48
21.1.15	Constant Power Integrator Threshold Register (CPINTTHRESH)	48
21.1.16	Constant Power Firmware Divisor Register (CPFWDIVISOR)	48
21.1.17	Constant Power Status Register (CPSTAT)	49
21.1.18	Cycle Adjustment Control Register (CYCADJCTRL)	50
21.1.19	Cycle Adjustment Limit Register (CYCADJLIM)	51
21.1.20	Cycle Adjustment Status Register (CYCADJSTAT)	51
21.1.21	Global Enable Register (GLBEN)	51
21.1.22	PWM Global Period Register (PWMGLBPRD)	52
21.1.23	Sync Control Register (SYNCCTRL)	53
21.1.24	Light Load Control Register (LLCTRL)	53
21.1.25	Light Load Enable Threshold Register (LLENTHRESH)	
21.1.26	Light Load Disable Threshold Register (LLDISTHRESH)	
21.1.27	Analog Peak Current Mode Control Register (APCMCTRL)	54
21.2 Fau	It Mux Registers	
21.2.1	Analog Comparator Control 0 Register (ACOMPCTRL0)	
21.2.2	Analog Comparator Control 1 Register (ACOMPCTRL1)	
21.2.3	Analog Comparator Control 2 Register (ACOMPCTRL2)	
21.2.4	Analog Comparator Control 3 Register (ACOMPCTRL3)	
21.2.5	External Fault Control Register (EXTFAULTCTRL)	
21.3 Fau	It Mux Interrupt Status Register (FAULTMUXINTSTAT)	
21.3.1	Fault Mux Raw Status Register (FAULTMUXRAWSTAT)	62
21.3.2	Comparator Ramp Control 0 Register (COMPRAMP0)	
21.3.3	Digital Comparator Control 0 Register (DCOMPCTRL0)	
21.3.4	Digital Comparator Control 1 Register (DCOMPCTRL1)	
21.3.5	Digital Comparator Control 2 Register (DCOMPCTRL2)	
21.3.6	Digital Comparator Control 3 Register (DCOMPCTRL3)	
21.3.7	Digital Comparator Counter Status Register (DCOMPCNTSTAT)	
21.3.8	DPWM 0 Current Limit Control Register (DPWM0CLIM)	
21.3.9	DPWM 0 Fault AB Detection Register (DPWM0FLTABDET)	
21.3.10	DPWM 0 Fault Detection Register (DPWM0FAULTDET)	
21.3.11	DPWM 0 IDE Detection Register (DPWM0IDEDET)	
21.3.12	DPWM 1 Current Limit Control Register (DPWM1CLIM)	
21.3.13	DPWM 1 Fault AB Detection Register (DPWM1FLTABDET)	
21.3.14	DPWM 1 Fault Detection Register (DPWM1FAULTDET)	
21.3.15	DPWM 1 IDE Detection Register (DPWM1IDEDET)	85

	21.3.16	DPWM 2 Current Limit Control Register (DPWM2CLIM)	.86
	21.3.17	DPWM 2 Fault AB Detection Register (DPWM2FLTABDET)	.88
	21.3.18	DPWM 2 Fault Detection Register (DPWM2FAULTDET)	
	21.3.19	DPWM 2 IDE Detection Register (DPWM2IDEDET)	
	21.3.20	DPWM 3 Current Limit Control Register (DPWM3CLIM)	
	21.3.21	DPWM 3 Fault AB Detection Register (DPWM3FLTABDET)	
	21.3.22	DPWM 3 Fault Detection Register (DPWM3FAULTDET)	
	21.3.23	DPWM 3 IDE Detection Register (DPWM3IDEDET)	
	21.3.24	HFO Fail Detect Register (HFOFAILDET)	
	21.3.25	LFO Fail Detect Register (LFOFAILDET)	104
	21.3.26	IDE Control Register (IDECTRL)	
2		- Real Time Clock Interface	
	21.4.1	RTC Control Register (RTCCTRL)	
	21.4.2	RTC Counter Register (RTCCOUNT)	
	21.4.3	RTC Preset Register (RTCPRESET)	
	21.4.4	RTC Interrupt Enable Register (RTCINTEN)	106
	21.4.5	RTC Interrupt Status Register (RTCINTSTAT)	106
	21.4.6	RTC Prescale Register (RTCPRESCALE)	
2		- Serial Peripheral Interface	
	21.5.1	SPI Control Register (SPICTRL)	
	21.5.2	SPI Status Register (SPISTAT)	108
	21.5.3	SPI Pin Function Register (SPIFUNC)	108
	21.5.4	SPI Pin Direction Register (SPIDIR)	
	21.5.5	SPI Pin GP Out Register (SPIGPOUT)	108
	21.5.6	SPI Pin GP In Register (SPIGPIN)	108
	21.5.7	SPI TX Buffer Register (SPITX0)	109
	21.5.8	SPI TX Buffer Register (SPITX1)	109
	21.5.9	SPI Read Buffer Register (SPIRX0)	109
	21.5.10	SPI Read Buffer Register (SPIRX1)	
	21.5.11	SPI Read Buffer Register (SPIRX2)	
	21.5.12	SPI Read Buffer Register (SPIRX3)	109
2		RT Registers	
	21.6.1	UART Control Register 0 (UARTCTRL0)	
	21.6.2	UART Receive Status Register (UARTRXST)	
	21.6.3	UART Transmit Status Register (UARTTXST)	
	21.6.4	UART Control Register 3 (UARTCTRL3)	111
	21.6.5	UART Interrupt Status Register (UARTINTST)	113
	21.6.6	UART Baud Divisor High Byte Register (UARTHBAUD)	
	21.6.7	UART Baud Divisor Middle Byte Register (UARTMBAUD)	
	21.6.8	UART Baud Divisor Low Byte Register (UARTLBAUD)	
	21.6.9	UART Receive Buffer (UARTRXBUF)	
	21.6.10	UART Transmit Buffer (UARTTXBUF)	
	21.6.11	UART I/O Control Register (UARTIOCTRLSCLK, UARTIOCTRLRX,	
		CTRLTX)	115
2		Registers	
_	21.7.1	ADC Control Register (ADCCTRL)	116
	21.7.2	ADC Status Register (ADCSTAT)	117
	21.7.3	ADC Test Control Register (ADCTSTCTRL)	118
	21.7.4	ADC Sequence Select Register 0 (ADCSEQSEL0)	118
	-	Copyright © 2014, Texas Instruments Incorpo	

21.7.5	ADC Sequence Select Register 1 (ADCSEQSEL1)	119
21.7.6	ADC Sequence Select Register 2 (ADCSEQSEL2)	120
21.7.7	ADC Sequence Select Register 3 (ADCSEQSEL3)	
21.7.8	ADC Result Registers 0-15 (ADCRESULTx, x=0:15)	
21.7.9	ADC Averaged Result Registers 0-5 (ADCAVGRESULTx, x=0:15)	
21.7.9	ADC Digital Compare Limits Register 0-5 (ADCCOMPLIMX, x=0.15)	
21.7.11	ADC Digital Compare Enable Register (ADCCOMPEN)	
21.7.12	ADC Digital Compare Results Register (ADCCOMPRESULT)	
21.7.13	ADC Averaging Control Register (ADCAVGCTRL)	
21.8 DPV	VM 0-3 Registers	133
21.8.1	DPWM Control Register 0 (DPWMCTRL0)	133
21.8.2	DPWM Control Register 1 (DPWMCTRL1)	136
21.8.3	DPWM Control Register 2 (DPWMCTRL2)	139
21.8.4	DPWM Period Register (DPWMPRD)	
21.8.5	DPWM Event 1 Register (DPWMEV1)	
21.8.6	DPWM Event 2 Register (DPWMEV2)	
21.8.7	DPWM Event 3 Register (DPWMEV3)	1/1
	DEVIVIE EVENIL 5 REGISTER (DEVIVIE V3)	
21.8.8	DPWM Event 4 Register (DPWMEV4)	
21.8.9	DPWM Sample Trigger 1 Register (DPWMSAMPTRIG1)	
21.8.10	DPWM Sample Trigger 2 Register (DPWMSAMPTRIG2)	
21.8.11	DPWM Phase Trigger Register (DPWMPHASETRIG)	
21.8.12	DPWM Cycle Adjust A Register (DPWMCYCADJA)	143
21.8.13	DPWM Cycle Adjust B Register (DPWMCYCADJB)	143
21.8.14	DPWM Resonant Duty Register (DPWMRESDUTY)	143
21.8.15	DPWM Fault Control Register (DPWMFLTCTRL)	
21.8.16	DPWM Overflow Register (DPWMOVERFLOW)	145
21.8.17	DPWM Interrupt Register (DPWMINT)	146
21.8.18	DPWM Counter Preset Register (DPWMCNTPRE)	
21.8.19	DPWM Blanking A Begin Register (DPWMBLKABEG)	
21.8.20	DPWM Blanking A End Register (DPWMBLKAEND)	
21.8.21	DPWM Blanking B Begin Register (DPWMBLKBBEG)	
21.8.22	DPWM Blanking B End Register (DPWMBLKBEND)	
21.8.23	DPWM Minimum Duty Cycle High Register (DPWMMINDUTYHI)	
21.8.24	DPWM Minimum Duty Cycle Low Register (DPWMMINDUTYLO)	
21.8.25	DPWM Adaptive Sample Register (DPWMADAPTIVE)	
21.8.26	DPWM Fault Status (DPWMFLTSTAT)	150
	DPWM Auto Switch High Upper Thresh Register	
	AUTOSWHIUPTHRESH)	151
	DPWM Auto Switch High Lower Thresh Register	
	AUTOSWHILOWTHRESH)	152
21 8 20	DPWM Auto Switch Low Upper Thresh Register	102
		150
	UTOSWLOUPTHRESH)	152
	DPWM Auto Switch Low Lower Thresh Register	450
		153
	DPWM Auto Config Max Register (DPWMAUTOMAX)	
	DPWM Auto Config Mid Register (DPWMAUTOMID)	
	DPWM Edge PWM Generation Control Register (DPWMEDGEGEN)	
21.8.34	DPWM Filter Duty Read Register (DPWMFILTERDUTYREAD)	
21.8.35	DPWM CBC Location (DPWMCBCLOCATION)	158
21.9 Filte	r Registers	
	-	

Copyright © 2016, Texas Instruments Incorporated

04.0.4		450
21.9.1	Filter Status Register (FILTERSTATUS)	
21.9.2	Filter Control Register (FILTERCTRL)	
21.9.3	CPU XN Register (CPUXN) Filter XN Read Register (FILTERXNREAD)	
21.9.4	Filter KI_YN Read Register (FILTERKIYNREAD)	
21.9.5 21.9.6	Filter KD_YN Read Register (FILTERKITNREAD)	
21.9.0	Filter YN Read Register (FILTERYNREAD)	
21.9.7	Coefficient Configuration Register (COEFCONFIG)	
21.9.8	Filter KP Coefficient 0 Register (FILTERKPCOEF0)	
21.9.9	Filter KP Coefficient 1 Register (FILTERKPCOEF1)	
21.9.10	Filter KI Coefficient 0 Register (FILTERKICOEF0)	
21.9.12	Filter KI Coefficient 1 Register (FILTERKICOEF1)	
21.9.12	Filter KD Coefficient 0 Register (FILTERKDCOEF0)	100
21.9.13	Filter KD Coefficient 1 Register (FILTERKDCOEF1)	167
21.9.15	Filter KD Alpha Register (FILTERKDALPHA)	
21.9.16	Filter Nonlinear Limit Register 0 (FILTERNL0)	
21.9.17	Filter Nonlinear Limit Register 1 (FILTERNL1)	
21.9.18	Filter Nonlinear Limit Register 2 (FILTERNL2)	
21.9.19	Filter KI Feedback Clamp High Register (FILTERKICLPHI)	
21.9.20	Filter KI Feedback Clamp Low Register (FILTERKICLPLO)	
21.9.21	Filter YN Clamp High Register (FILTERYNCLPHI)	
21.9.22	Filter YN Clamp Low Register (FILTERYNCLPLO)	
21.9.23	Filter Output Clamp High Register (FILTEROCLPHI)	
21.9.24	Filter Output Clamp Low Register (FILTEROCLPLO)	
21.9.25	Filter Preset Register (FILTERPRESET)	
21.10 F	ront End Control Registers	
21.10.1	Ramp Control Register (RAMPCTRL)	
21.10.2	Ramp Status Register (RAMPSTAT)	
21.10.3	Ramp Cycle Register (RAMPCYCLE)	
21.10.4	EADC DAC Value Register (EADCDAC)	175
21.10.5	Ramp DAC Ending Value Register (RAMPDACEND)	175
21.10.6	DAC Step Register (DACSTEP)	175
21.10.7	DAC Saturation Step Register (DACSATSTEP)	176
21.10.8	EADC Control Register (EADCCTRL)	176
21.10.9	Pre-Bias Control Register 0 (PREBIASCTRL0)	
21.10.10	0 (
21.10.11		
21.10.12		181
21.10.13		181
21.10.14	J	182
21.10.15	\mathbf{J}	182
	liscellaneous Analog Control	182
21.11.1	Clock Trim Register (CLKTRIM)	182
21.11.2	Package ID Register (PKGID)	
21.11.3	Brownout Register (BROWNOUT)	
21.11.4	Global I/O EN Register (GLBIOEN)	
21.11.5	Global I/O OE Register (GLBIOOE)	
21.11.6	Global I/O Open Drain Control Register (GLBIOOD)	
21.11.7	Global I/O Value Register (GLBIOVAL)	
	Copyright © 2014, Texas Instrumer	its incorporated

	400
21.11.8 Global I/O Read Register (GLBIOREAD)	
21.11.9 RTCCTRLI/O Mux Control Register (IOMUX)	
21.11.10 Current Sharing Control Register (CSCTRL)	
21.11.11 Temperature Reference Register (TEMPREF)	
21.11.12 Power Disable Control Register (PWRDISCTRL)	.191
21.12 PMBus Interface	.193
21.12.1 PMBUS Control Register 1 (PMBCTRL1)	.193
21.12.2 PMBus Transmit Data Buffer (PMBTXBUF)	.194
21.12.3 PMBus Receive Data Register (PMBRXBÚF)	.194
21.12.4 PMBus Acknowledge Register (PMBACK)	.194
21.12.5 PMBus Status Register (PMBST)	
21.12.6 PMBus Interrupt Mask Register (PMBINTM)	
21.12.7 PMBus Control Register 2 (PMBCTRL2)	
21.12.8 PMBus Hold Slave Address Register (PMBHSA)	.199
21.12.9 PMBus Control Register 3 (PMBCTRL3)	.200
21.13 GIO – General Purpose Input/Output Module	
21.13.1 Fault IO Direction Register (FAULTDIR)	
21.13.2 Fault Input Register (FAULTIN)	
21.13.3 Fault Output Register (FAULTOUT)	
21.13.4 Fault Interrupt Enable Register (FAULTINTENA)	.206
21.13.5 Fault Interrupt Polarity Register (FAULTINTPOL)	
21.13.6 Fault Interrupt Pending Register (FAULTINTPEND)	
21.13.7 External Interrupt Direction Register (EXTINTDIR)	
21.13.8 External Interrupt Input Register (EXTINTIN)	
21.13.9 External Interrupt Output Register (EXTINTOUT)	
21.13.10 External Interrupt Enable Register (EXTINTENA)	
21.13.11 External Interrupt Polarity Register (EXTINTPOL)	
21.13.12 External Interrupt Pending Register (EXTINTPEND)	
21.14 Timer Module 21.14.1 24-bit Counter Data Register (T24CNTDAT)	
21.14.1 24-bit Counter Data Register (T24CNTDAT) 21.14.2 24-bit Counter Control Register (T24CNTCTRL)	
21.14.3 24-bit Capture Channel Data Register x(T24CAPDATx) 21.14.4 24-bit Capture Channel Control Register x(T24CAPCTRLx)	
21.14.5 24-bit Capture I/O Control and Data Register (T24CAPIO) 21.14.6 24-bit Output Compare Channel 0 Data Register (T24CMPDAT0)	
······································	
21.14.8 24-bit Output Compare Channel 0 Control Register (T24CMPCTRL0)	
21.14.9 24-bit Output Compare Channel 1 Control Register (T24CMPCTRL1)	
21.14.10 PWMx Counter Data Register (T16PWMxCNTDAT)	
21.14.11 PWMx Counter Control Register (T16PWMxCNTCTRL) 21.14.12 PWMx 16-bit Compare Channel 0-1 Data Register	.215
(T16PWMxCMPyDAT)	216
21.14.13 PWM Compare Control Register (T16PWMxCMPCTRL)	.210
21.14.14 Watchdog Status (WDST) 21.14.15 Watchdog Control (WDCTRL)	210
\mathbf{U}	213
21.15 Memory Controller - MMC 21.15.1 Static Memory Control Register (SMCTRL)	.221
21.15.1 Static Memory Control Register (SMCTRL)	.221
21.15.2 Write Control Register (WCTRL) 21.15.3 Peripheral Control Register (PCTRL)	
21.15.3 Peripheral Location Register (PLOC)	

Copyright © 2016, Texas Instruments Incorporated

21.15.5 Peripheral Protection Register (PPROT)	223
21.16 DEC – Address Manager	
21.16.1 Memory Fine Base Address High Register 0 (MFBAHR0)	
21.16.2 Memory Fine Base Address Low Register 0 (MFBALR0)	
21.16.3 Memory Fine Base Address High Register 1-3,17-19 (MFBAHRx)	
21.16.4 Memory Fine Base Address Low Register 1-3,17-19 (MFBALRx)	
21.16.5 Memory Fine Base Address High Register 4 (MFBAHR4)	
21.16.6 Memory Fine Base Address Low Register 4-16 (MFBALRx)	
, , , , , , , , , ,	
21.16.8 Memory Fine Base Address High Register 6 (MFBAHR6)	
21.16.9 Memory Fine Base Address High Register 7 (MFBAHR7)	
21.16.10 Memory Fine Base Address High Register 8 (MFBAHR8)	
21.16.11 Memory Fine Base Address High Register 9 (MFBAHR9)	
21.16.12 Memory Fine Base Address High Register 10 (MFBAHR10)	
21.16.13 Memory Fine Base Address High Register 11 (MFBAHR11)	
21.16.14 Memory Fine Base Address High Register 12 (MFBAHR12)	
21.16.15 Memory Fine Base Address High Register 13 (MFBAHR13)	
21.16.16 Memory Fine Base Address High Register 14 (MFBAHR14)	230
21.16.17 Memory Fine Base Address High Register 15 (MFBAHR15)	230
21.16.18 Memory Fine Base Address High Register 16 (MFBAHR16)	
21.16.19 Program Flash Control Register 0-3 (PFLASHCTRL_x)	
21.16.20 Data Flash Control Register (DFLASHCTRL)	
21.16.21 Flash Interlock Register (FLASHILOCK)	
21.17 CIM – Central Interrupt Module	
21.17.1 IRQ Index Offset Vector Register (IRQIVEC)	232
21.17.2 FIQ Index Offset Vector Register (FIQIVEC)	232
21.17.3 FIQ/IRQ Program Control Register (FIRQPR)	
21.17.4 Pending Interrupt Read Location Register (INTREQ)	
21.17.5 Interrupt Mask Register (REQMASK)	233
21.18 SYS – System Module	
21.18.1 Clock Control Register (CLKCNTL)	
21.10.1 Clock Collicol Register (CLRCINTL)	204
21.18.2 System Exception Control Register (SYSECR)	235
21.18.3 System Exception Status Register (SYSESR)	
21.18.4 Abort Exception Status Register (ABRTESR)	
21.18.5 Global Status Register (GLBSTAT)	
21.18.6 Device Identification Register (DEV)	
21.18.7 System Software Interrupt Flag Register (SSIF)	
21.18.8 System Software Interrupt Request Register (SSIR)	
22 Converting UCD3138 programs to UCD3138A64	
22.1 Change Linker Addresses	
22.2 Change Header Files Which Define Peripherals	240
22.3 Changes to the Flash Control Registers	240
22.4 Set BLANK_PCM_EN for Peak Current Mode	
22.5 Update Parm Info/Parm Value Pointers	
22.5.1 Changes in pmbus.h	
22.5.2 Changes in Parm Info/Parm Value File	
22.6 Changes to load.asm	
22.7 Changes to system_defines.h	
22.8 Changes to Software Interrupt Addresses	
Copyright © 2014, Texas Instruments Inco	
8	rporateu

D3138A64/UCD3138128 Programmer's Manual SLUUB54B-July 2014-Revised April 2016

2	2.9	Changes to Data Flash Write in Software Interrupt	
2	2.10	Changes to Device ID	244
2	2.11	÷	
2	2.12	Change APCMCTRL to PCMCTRL	
2	2.13	Changing to Fixed Frequency Sampling on LLC	
		verting UCD3138064 Programs to UCD3138A64	
		verting UCD3138A64 Programs to UCD3138128	
25	Refe	erences	

Scope of this Document

The following topics are covered in the UCD3138A64 Enhancements Programmer's Manual

- Memory Map Changes from UCD3138064
- Enhancement to I2C and PMBus Interfaces
- Real Time Clock added for a time and date reference
- Changes to IOMUX to support 80 pins
- Four Additional general purpose I/O lines
- One Additional Timer Capture Register
- Support for Fixed Sampling Rates for LLC
- Information on Pulse Width in Peak Current Mode
- Improvements to Fault Handling and Burst Mode
- Disabling the RESET pin
- How to migrate existing programs from UCD3138 and UCD3138064 to UCD3138A64.
- Adjusting the Clock Speed
- No Write to HFO_LN_FILTER_EN required or recommended
- Unused bits removed from DPWM registers
- Sample and Hold Buffer Available on ADC even if Sample and Hold are Not Used
- DAC Dither on Sample Trigger
- Consolidation of PCM control registers
- UCD3138128 enhancements over UCD3138A64
- UCD3138A64/UCD3138128 Peripheral Memory Map

Other topics related to UCD3138A64 are covered in the additional documents listed below:

UCD3138 ARM and Digital System Programmer's Manual

- Boot ROM & Boot Flash
 - BootROM Function
 - o Memory Read/Write Functions
 - o Checksum Functions
 - o Flash Functions
 - Avoiding Program Flash Lock-Up
- ARM7 Architecture
 - Modes of Operation
 - Hardware/Software Interrupts
 - o Instruction Set
 - Dual State Inter-working (Thumb 16-bit Mode/ARM 32-bit Mode)
- Memory & System Module
 - o Address Decoder, DEC (Memory Mapping)
 - Memory Controller (MMC)
 - Central Interrupt Module
- Register Map for all of the above peripherals in UCD3138

UCD3138 Monitoring and Communications Programmer's Manual

- 1. ADC12
 - Control, Conversion, Sequencing & Averaging
 - Digital Comparators
 - Temperature Sensor
 - PMBUS Addressing
 - Dual Sample & Hold
- 2. Miscellaneous Analog Controls (Current Sharing, Brown-Out, Clock-Gating)
- 3. PMBUS Interface

- 4. General Purpose Input Output (GPIO)
- 5. Timer Modules
- 6. Register Map for all of the above peripherals in UCD3138

UCD3138 Digital Power Peripheral Programmer's Manual

- 7. Digital Pulse Width Modulator (DPWM)
 - Modes of Operation (Normal/Multi/Phase-shift/Resonant etc)
 - Automatic Mode Switching
 - DPWMC, Edge Generation & Intra-Mux
- 8. Front End
 - Analog Front End
 - Error ADC or EADC
 - Front End DAC
 - Ramp Module
 - Successive Approximation Register Module
- 9. Filter
 - Filter Math
- 10. Loop Mux
 - Analog Peak Current Mode
 - Constant Current/Constant Power (CCCP)
 - Automatic Cycle Adjustment
- 11. Fault Mux
 - Analog Comparators
 - Digital Comparators
 - Fault Pin functions
 - DPWM Fault Action
 - Ideal Diode Emulation (IDE), DCM Detection
 - Oscillator Failure Detection
- 12. Register Map for all of the above peripherals in UCD3138

UCD3138064 Enhancements Programmer's Manual

- Memory Map Changes in UCD3138064 compared to UCD3138
 - Added FLASH BLOCK
 - Relocation of Fast Peripherals
 - Relocation of ROM
- Added Interfaces for External EEPROM
 - I2C Interface for External EEPROM
 - SPI Interface for External EEPROM
- Other Changes in UCD3138064 compared to UCD3138
 - Changes to IOMUX to support SPI and I2C pin multiplexing
 - BLANK_PCM_ENABLE bit to optimize Peak Current Mode response time
- How to migrate firmware programs from UCD3138 to UCD3138064

For the most up to date product specifications please consult the UCD3138A64 Device datasheet (Lit # <u>SLUSBZ8</u>) available at www.ti.com.

_

-

1 Introduction

The UCD3138A64 device is an 80-pin, 64kB product offering in TI's UCD3138 family of digital controllers for isolated power. It offers more RAM, higher pin count, a real-time clock, and enhancements to several peripherals, compared to the UCD3138064 devices which are available in 64-pin and 48-pin package options. The UCD3138128 is the same as the 'A64, except it offers twice the program flash – 128K bytes arranged in 4 independent 32K blocks.

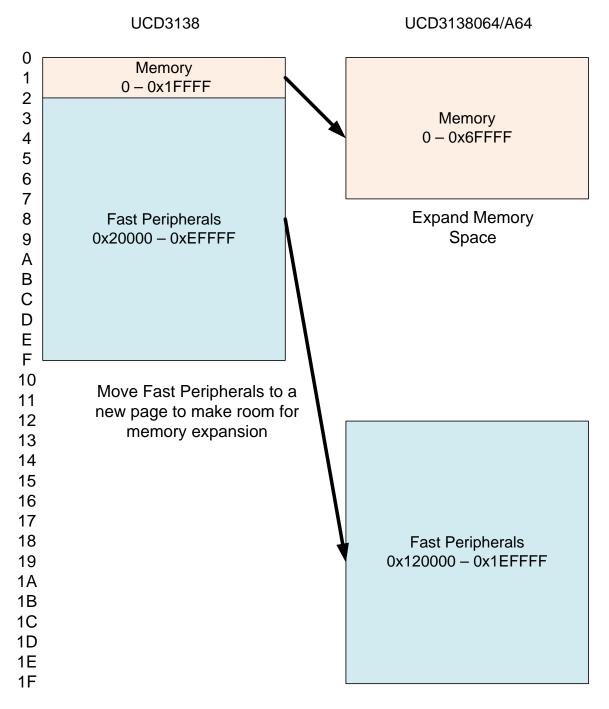
This manual highlights the differences between the UCD3138064 and the UCD3138A64 devices. It describes the added features and changes to existing features. It also gives guidance on converting programs from the UCD3138 and the UCD3138064 to the UCD3138A64. The UCD3138 Programmer's Manuals (<u>SLUU994</u>, <u>SLUU995</u>, and <u>SLUU996</u>) and the UCD3138064 Enhancements Programmer's Manual (<u>SLUUAD8</u>) should be used for information on all elements that are common to these devices.

There are also sections on the describing the UCD3138128 enhancements, and how to convert programs to the '128.

Compared to the UCD3138064, the UCD3138A64 device is differentiated based on the following considerations:

- Faster checksum calculations in ROM for quick firmware startup
- 4K additional RAM for a total of 8K RAM
- Boot Flash based Dual Memory Image support for 'on-the-fly' firmware updates (vs ROM based support in UCD3138064)
 - Instead of a PMBus and an I2C interface there are 2 enhanced PMBus/I2C interfaces
 - Each interface now supports master and slave, I2C and PMBus
 - o Each interface has enhanced recovery from bus faults
 - Each interface supports automatic address acknowledge of a second address
 - Real Time Clock for accurate time/date information.
- 4 additional General Purpose I/O lines
- 1 additional timer capture register
- Support for fixed sampling rates for LLC**
- Information on PCM (Peak Current Mode) pulse width for each cycle
 - This makes it much easier to measure average current on every cycle
- Enhanced Burst Mode and Fault Handling for PCM.
 - Increased fault count from 32 to 128 consecutive faults before shut down.
- QFP-80 package for UCD3138A64, instead of QFN-64 & QFN-48 in UCD3138064
- Capability to disable the RESET pin under firmware control
- Clock Trim registers that make it possible to adjust the clock speed more easily
- Unused bits removed from DPWM registers

****NOTE**: Adding the fixed sample rate to LLC has lengthened the DPWM calculation time at the beginning of the period. It has increased from 72 nsec to 120 nsec. Moving DPWM edges in and out of this window could cause pulse extension and shoot through in some power supply topologies.

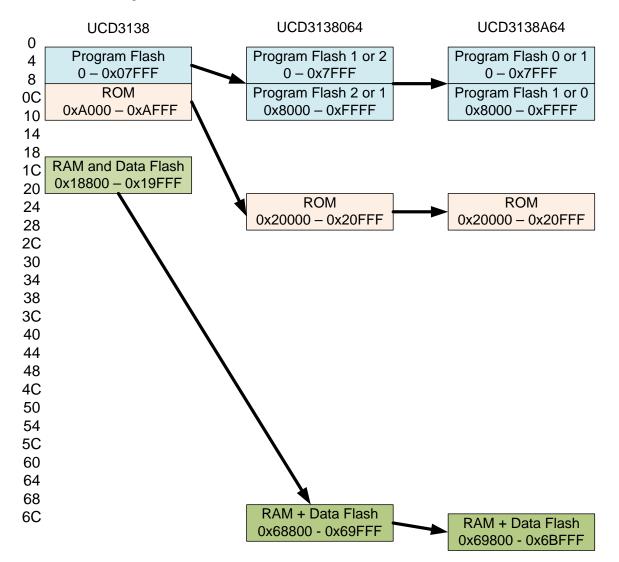

2 More Memory - Memory Map Changes for UCD3138A64

The larger 8K RAM requires changes to the addressing for the RAM and data FLASH.

2.1 Memory Map Overview

The memory map overview for the UCD3138A64 is the same as the overview of the UCD3138064. Compared with the UCD3138, the fast peripherals are moved up to make room for the larger FLASH.

Overall Memory Map Changes



The fast peripherals are moved up by 0x100000 bytes. This makes it very simple to calculate their new addresses. The slow peripherals, those mapped to 0xFFF7EC00 and above, are not moved at all, so they are not shown on the figure. The RTC is added at 0xFFF7E400. The SPI interface was added in the UCD3138064 at 0xFFF7E600, and is still the same on the UCD3138A64.

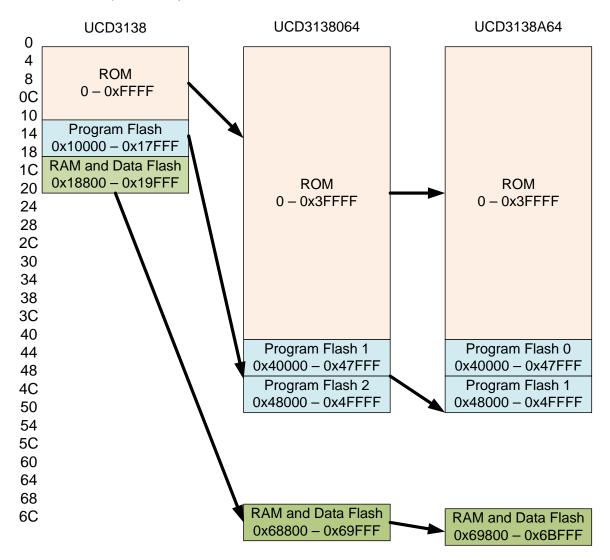
Fast peripherals use the same address decode scheme as memories. They have address mapping registers and run at the processor clock speed. Slow peripherals are on a separate I/O bus with no address mapping registers. The I/O bus and the slow peripherals run at half the processor clock speed.

2.2 *Memory Map Details – Flash Mode*

There are some changes, however, in the details between the UCD3138064 and UCD3138A64. Here is a block diagram:

Detailed Memory Map Changes in FLASH Mode

Copyright © 2014, Texas Instruments Incorporated


The numbering system for the flash blocks is changed. For the UCD3138064, the blocks are referred to as 1 and 2. On the UCD3138A64, they are numbered from 0 to 1.

The RAM is now 8K. The memory addressing logic requires that an 8K block be on an 8K boundary. This means that the RAM is moved from 0x69000 to 0x6A000. The data FLASH is moved from 0x68800 to 0x69800. It is kept next to the data FLASH so that a single CPU register can be used with an offset to access both memory blocks at the same time.

2.3 *Memory Map Details – ROM Mode*

The changes between the UCD3138064 and UCD3138A64 in ROM mode are similar to the changes in flash mode – the flash block names are changed, and the data FLASH and RAM are moved further up in memory.

Memory Map changes to ROM, RAM, and FLASH in ROM mode

In the ARM core, the reset and interrupt vectors start at location 0 in memory. At power up reset, the ROM must be at location 0 to provide the vectors. In flash mode, the flash must be at location 0 to control the interrupt vectors. This is accomplished by changing the addresses of the ROM and FLASH. In ROM mode, the ROM must extend from location 0 to the location where it will be in FLASH mode. In the UCD3138064 and UCD3138A64, this address is 0x20000. The ROM reset vectors jump to this area. This way, when flash mode is entered, the ROM simply remaps itself to the higher address. The program is already executing there. Then it remaps the flash to location 0 and jumps the vector at 0. The ROM on the UCD3138064 is 8K. That same 8K image is repeated throughout the entire memory space from 0 to 0x3FFFF in ROM mode. The ROM in

the UCD3138A64 is also 8K, but 4K is reserved for built in self test. Because of this, the sine and exponent tables in the UCD3138 and UCD3138064 ROM are not provided in the ROM. The UCD3138A64 has plenty of flash for any sine or exponent tables desired.

2.4 Register Changes for Program Flash Blocks

Each Flash block has 3 registers associated with it:

- DecRegs.PFLASHCTRLx page and mass erase and block busy status
- DecRegs.MFBAHRx sets high bits of address for flash block used for moving blocks
- DecRegs.MFBALRx sets lower bits of address and block size used for moving blocks

See the UCD3138 ARM and System manual for more information on these types of registers. The PFLASHCTRLx registers have different numbers depending on which device is being used. Here is a table of PFLASHCTRLx names across the 3 devices:

Block Number on A64	UCD3138	UCD3138064	UCD3138A64
0	PFLASHCTRL	PFLASHCTRL1	PFLASHCTRL0
1		PFLASHCTRL2	PFLASHCTRL1

Note that there is no block number for the single block in the UCD3138. On the UCD3138064, blocks are numbered 1 and 2, and on the UCD3138A64, blocks are numbered from 0 to 1.

The MFBAHR and MFBALR registers (Memory Fine Base Address High and Low) are numbered sequentially. Some of them are used for addressing the faster peripherals. This explains the numbers between the first flash block and subsequent flash blocks. Here is a table:

Block	MFBAHR	MFBALR
0	MFBAHR1	MFBALR1
1	MFBAHR17	MFBALR17

There is only one DecRegs.FLASHILOCK register. It must have a key written to it before each write or erase to a flash block. Different values must be written to it depending on which flash block is being modified.

#define PROGRAM_FLASH0_INTERLOCK_KEY 0x42DC157E #define PROGRAM_FLASH1_INTERLOCK_KEY 0x6C97D0C5 #define DATA_FLASH_INTERLOCK_KEY 0x42DC157E

These codes are the same as the ones on the UCD3138064.

See Section 20.16, DEC – Address Manager of this document for information on the detailed memory and bit maps for these registers.

3 Changes to ROM Boot Program

The ROM changes the response to the version command and it also changes the handling of flash checksums when it powers up.

3.1 ROM Version

The UCD3138A64 will return a 0006 as the first half of the version, indicating the device. The first version of the ROM will return a 0001 as the second half of the version, indicating version 1 of the ROM. If other versions of the ROM are produced, the number will increment.

3.2 Flash Checksum Handling

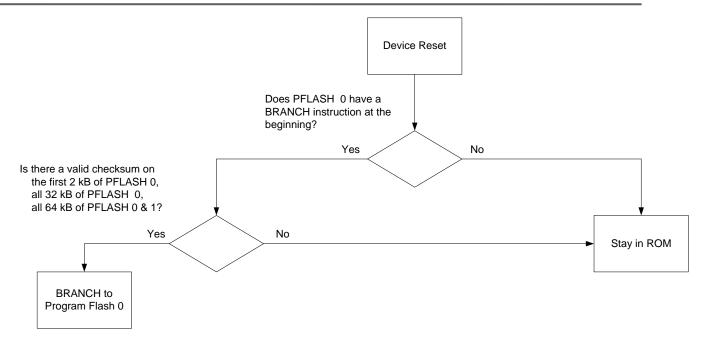
The ROM program changes how it handles program startup. Instead of 2 possible checksum locations on the UCD3138, there are 4 on the UCD3138064, and 3 on the UCD3138A64. To speed up calculations on the UCD3138A64, the checksum changes from 4 to 8 bytes. Now it is a sum of the memory read as 32 bit words, rather than as 8 bit bytes. This makes the checksum calculation about 4 times faster. This means that the ROM can verify the checksum for 64 kbytes in about 5 msec while the UCD3138 takes 10 msec for 32 kbytes.

Here is the code for calculating the checksum:

```
void calculate_checksum(register Uint32 *start_address, register Uint32 *end_address)
{
```

register unsigned long long lcs = long_checksum; //use local register variable for speed.

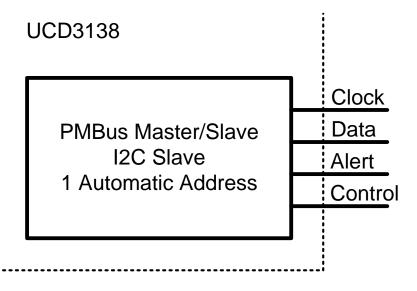
Two words are added each time through the loop to improve the speed by reducing the loop overhead.


The checksums and their locations are:

0x7f8 – Boot block for Block 0 0x7ff8 – Overall checksum for Block 0 0xfff8 – Overall checksum for a 64K program combining Blocks 0 and 1

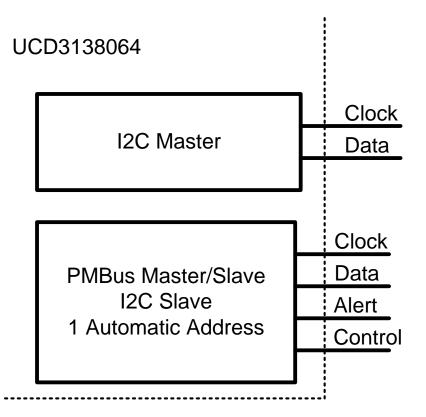
Here is a flowchart showing the order in which the ROM verifies the checksums:

}



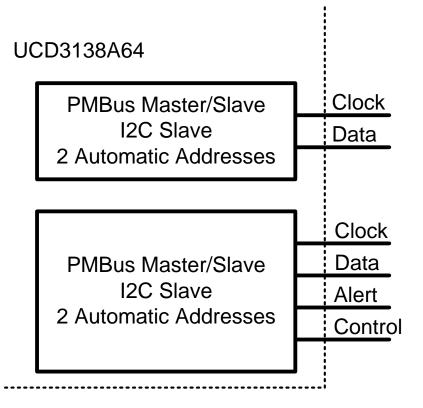
The branch instruction check prevents the checksum program from looking at an empty block of memory. Otherwise a block filled with zeroes would pass the checksum test.

The UCD3138A64 doesn't have ROM support for putting 2 separate programs into flash, one in each flash block. This can still be done, however, using boot flash. Or the program in block 0 can be a fixed program, which checks the program in block 1 and jumps to it if appropriate.


4 Two Enhanced I2C/PMBus Interfaces

The UCD3138 has a single PMBus interface which supports master and slave modes for PMBus. It can also be used as an I2C slave.

The UCD3138064 adds an I2C interface which can be used as a master for both I2C and PMBus. It does not support slave mode for either I2C or PMBus.



The UCD3138A64 has 2 essentially identical I2C/PMBus interfaces which support both master and slave modes. They also both support automatic acknowledgment of 2 addresses, making a total of 4 addresses in all. The previous devices only provided automatic acknowledgement of 1 address. The UCD3138A64 also provides enhanced fault handling for PMBus and I2C bus faults.

Only one of the interfaces supports the PMBus Alert and Control lines and IBIAS bits, but otherwise they are identical.

See the UCD3138 documentation for using the interfaces as PMBus slaves. The UCD3138064 manual describes how to use the I2C interface master mode with EEPROMS. Note that the I2C master mode is designed for use with EEPROMS. If other devices have unusual requirements for the placement of repeated start, they may not work.

4.1 PMBus/I2C Register Names are Different on UCD3138064 and UCD3138A64

On the UCD3138064, the I2C port registers are called I2CRegs, and the individual register names have I2C in the first 3 letters, like "I2CCTRL1". The PMBus registers are very similar, except they are called PMBusRegs, and have PMB in the first 3 letters, like PMBCTRL1. The fields within the registers are very similar.

In the UCD3138A64, the registers are called PMBusRegs and PMBus1Regs, and all the register names start with PMB. To convert an I2C code from the UCD3138064 to the UCD3138A64, change all the "I2C"s to "PMB"s, and select either PMBus or PMBus1 regs. The bits related to Alert, Control, and IBIAS are duplicated in both register sets, but they are only implemented fully in PMBus. In PMBus1, they will not provide correct results, because they are not connected to pins.

4.2 Automatic Acknowledgement of 2 Slave Addresses

The UCD3138A64 adds two additional bitfields to the PMBCTRL2 register, called SLAVE_ADDR_2_EN and SLAVE_ADDR_2. If SLAVE_ADDR_2_EN is set, the PMBus/I2C slave interface will acknowledge the address in SLAVE_ADDR_2 as well as the one in

SLAVE_ADDR. To determine which address was acknowledged, read from the PMBHSA (PMBus Hold Slave Address) Register.

4.3 Alert and Control Support on PMBus

Both PMBus ports use the same register definitions for convenience, but on PMBus1 the bits relating to Alert and Control pins should be left in their default states. There is only one set of Alert and Control pins, and they are connected to PMBus 0.

4.4 Improved Clock High Timeout Handling

Reading the CLK_HIGH_TIMEOUT bit was not recommended in the earlier devices. On the UCD3138A64, this bit in the PMBST register will go high if the clock stays high for more than 55 milliseconds in the middle of a message. There is an added bit in the PMBINTM register as well to enable an interrupt for clock high timeout. There is also a CLK_HI_DIS bit in PMBCTRL3 which disables clock high timeout.

4.5 Improved Bit Counter Reset

On the UCD3138A64, messages can be stopped in the middle of a byte and the PMBus will recover. Anything which resets the PMBus state machine now resets the bit counter as well. Events which reset the state machine include: Start, Stop, Clock High Timeout, Clock Low Timeout, and setting the RESET bit in PMBCTRL3.

4.6 Change in Test Mode Address

On the UCD3138A64, there is still a PMBus/I2C address which will start to put the chip into test mode. On the earlier devices, the address is 0x7f. On the UCD3138A64, the address has been changed to 0x7e. This way if the clock line is active but the data line is released, the device will not go into test mode.

5 External Clock Controlled Real-Time Clock

The UCD3138064 adds a Real-Time clock controlled by an external 10 MHz clock source. This provides a precise reference for time measurement. It can also be used to adjust UART and DPWM frequencies for better frequency control. Here are the major features of the real time clock:

- Counts seconds, minutes, hours and days
- Digital trim of external frequency from -500 to +250 ppm in 0.8 ppm steps.
- Provides interrupts at 1 second, 10 seconds, 30 seconds and 60 seconds.

5.1 *Trimming the External Frequency*

The RTC is configured to count seconds based on a 10 MHz clock input. Changing the value in the RTCPRESCALE register can compensate for small variations in the clock frequency. The RTCPRESCALE register has a default value of 0x2CF. It can be varied from 0 to 0x3ff. Each step in the register value will compensate for a 0.8 ppm variation in the clock frequency.

Inside the RTC, the 10 MHz clock is first divided by 8, giving a nominal 1.25 MHz. This number is divided by 1,250,000 to give the 1 second interval. The number in the prescale register is actually 1,250,000 – 1. In hex, this is 0x1312CF. The PRESCALE register permits modification of the least significant 10 bits of this number. The higher bits are fixed. This permits digital compensation for crystal manufacturing variations.

The range goes from 0x131000 (9,994,240 Hz) to 0x1313FF (10,002,424 Hz). This provides +240, -570 ppm coverage for crystal variation.

5.2 RTC Calendar Data

The RTC provides simplified calendar data (seconds, minutes, hours, days) in the RTCCOUNT register. There are 11 bits for days, so up to 5.5 years of on-time can be recorded. If date, month and year are required, this is simple to determine in firmware.

The calendar data can be written to using the RTCPRESET register and the PRESET_EN bit in the RTCCTRL register. Simply write the desired value to the RTCPRESET register and toggle the PRESET_EN register high and then low. This will copy the value from the RTCPRESET to the RTCCOUNT register.

5.3 RTC Polling and Interrupts

The RTC has two registers for polling and interrupts:

RTCINTEN – enables interrupts

RTCINTSTAT - Shows which interrupts are active

The RTC sets bits in the RTCINTSTAT registers every 1, 10, 30, and 60 seconds. These bits are set even if the corresponding bits in the RTCINTEN register are not set. The RTCINTSTAT bits are clear on read.

There is a bit in the RTCINTEN register for every bit in the RTCINTSTAT register. If the bit in RTCINTEN is set, it enables an interrupt for the corresponding bit in RTCINTSTAT.

6 Four Additional General Purpose I/O Pins

The UCD3138A64 adds 4 General Purpose I/O pins, GPIOA through GPIOD. They are configured in the FAULTDIR, FAULTIN, and similar registers. They can be inputs or outputs, and can trigger interrupts just like fault pins. However, they cannot be used as fault inputs to the DPWMs. There are no bits associated with the GIO pins in the various FAULTDET registers. So they are best used as simple general purpose I/O registers.

7 SPI Port Pins Move Around – JTAG_MUX_SEL Bit

The TAG_MUX_SEL bit in the MiscAnalogRegs.IOMUX register provides a way to disable JTAG to preserve code security. It has a side effect of moving the SPI bits to different pins. There is a way to provide both code security and keep the SPI on the same pins.

If JTAG is disabled, the SPI bits are moved to the JTAG pins. Depending on the state of the flash at chip reset, this bit can be either a zero or a one.

1. If flash memory has a valid checksum and ROM jumps directly to flash, the bit will be a 1, JTAG will be disabled, and the SPI function will appear on the JTAG pins

TCK -> SPI_CLK TMS -> SPI_CS TDI -> SPI_MISO TDO -> SPI_MOSI

2. If flash memory does not have a valid checksum, the ROM will stay in ROM, and the bit will be a 0. JTAG will be enabled and the SPI function will appear on the SPI pins.

There is a way to keep the pinout the same for both cases and still preserve code security.

- 1. In the debug code, simply enable JTAG and use it for debugging
- 2. In the production code, use the GLBIO registers to map the JTAG pins as outputs before enabling JTAG. This way the SPI will stay on the SPI pins and the JTAG will be disabled.

8 One Additional Timer Capture Register

The UCD3138A64 adds a second timer capture register with its associated hardware This added register makes it much easier to measure pulse width (by setting one register to capture the rising edge and one to capture the falling edge). It makes it easier to measure the relationship of any edge to any other edge, or to measure two independent edges. This requires several changes to the timer registers:

- T24CAPDAT and T24CAPCTRL are duplicated and numbered 0 and 1.
- T24CAPIO gets additional bits to control TCAP1

9 Support for Fixed Sampling Rates for LLC

The UCD3138A64 has modified DPWM logic. With the earlier UCD31XX parts, LLC programs had to sample at the LLC switching frequency to avoid pulse extension. The UCD3138A64 permits sampling at a fixed rate, as high as 2 MHz, which permits consistent filter bandwidth across the load range. As a result of this change, however, the DPWM takes longer to calculate its edges for the current switching cycle. Moving edges into or out of this calculation window may result in pulse extension. This window is enlarged to 120 ns on the UCD3138A64.

For implementation details on fixed sample rates for LLC, please see the TI LLC Reference Program.

10 Information on Pulse Width in Peak Current Mode

The UCD3138A64 adds the DPWMCBCLOCATION register to the DPWM registers. In Peak Current mode, and in any other mode where the cycle-by-cycle (CBC) signal is used, this register will contain the DPWM period counter value at which the last CBC occurred. In Peak

Current mode, this will give the pulse width for the previous switching cycle. This counter value is in low resolution, meaning that each count represents 4 nsec.

This value can be used to place the sample trigger near the center of the FET on-time, making it possible to measure average current. See the EVM firmware for specific topologies for more information.

11 Improvements to Fault Handling and Burst Mode

The UCD3138A64 adds 3 enhancements to the UCD31xx fault handling:

- Fault counter goes from 5 bits to 7 bits
- Blanking can be extended to the CBC Fault by setting a bit.
- All DPWM lines are turned off by a fault, even if the Edge Generator is being used (PSFB topology, for example)
 - This also helps with hardware burst mode for PSFB because it uses the same shut-down mechanism as the fault does.

11.1 Fault Counter Changes from 5 to 7 Bits

The UCD31XX family has sophisticated fault handling logic. For a detailed description of this logic, see the UCD3138 Digital Power Peripherals Programmer's Manual.

There are several fault signals which latch off the DPWM when a fault occurs. To restart the DPWM, the DPWM must be disabled and reenabled. All of these fault signals have a count value in a register. For the fault to be triggered, x consecutive switching cycles have to have the fault signal occur, where x is the value in the count register plus 1. On the UCD3138 and UCD3138064, the maximum count value is 32. On the UCD3138A64, the maximum value is 128. See Section 20.8.15 DPWM Fault Control Register (DPWMFLTCTRL) for the specific bitfields involved.

11.2 Blanking for the Cycle-by-Cycle Fault Added

In addition to the faults described above, there is also one signal called CBC (Cycle By Cycle), which turns the DPWM off for the remainder of the switching cycle, but permits it to turn on again at the beginning of the next cycle. Unlike the faults, the CBC does not latch the DPWM off permanently. This signal is typically used for current limiting, but is also used for peak current mode.

The CBC signal can be blanked with 2 blanking periods set by the blank a and blank b registers in the DPWM.

There is also something called the CBC fault. The CBC fault uses the same CBC signal which is used for the CBC non-latching DPWM shutdown. The CBC fault, however, has a count register and will latch the DPWM off when the count is exceeded. This is useful for two stage current limiting. The non-latching CBC can be used for a short time, but if it happens for (for example) for 100 consecutive switching cycles, the CBC fault can be used to latch the DPWM off.

On the UCD3138 and UCD3138064, the blanking only works on the non-latching CBC logic. The latching CBC fault has no blanking. With the UCD3138A64, setting the new CBC_FAULT_MODE bit in the DPWMFLTCTRL register enables blanking for the CBC fault too. Leaving CBC_FAULT_MODE as the default zero value makes the UCD3138A64 function just like the other UCD31xx parts, with no blanking for the latched CBC fault.

11.3 Improved Fault and Burst Mode with Edge Generator in Use

On previous devices, the fault logic worked on the DPWM outputs before the edge generator logic. This meant that sometimes one of the 4 FET control lines for PSFB (Phase Switching Full Bridge) would not be turned off right away, and firmware would be required to turn it off. The same was true of the hardware burst or light load mode. When the burst was over, sometimes one of the lines would not be turned off automatically.

Now the fault logic has been extended past the edge generation logic, so that all 4 lines are turned off immediately by a fault or by burst mode. There are no register changes associated with this enhancement.

12 Eighty Pins Instead of 64

The UCD3138A64 is available in an 80 pin package instead of a 64 pin one. This makes it possible to have 4 more general purpose I/O pins. In addition, the second PMBus/I2C bus and the SPI bus are no longer multiplexed, but now have dedicated pins. This has caused significant changes to the IOMUX register. Consult the IOMUX register reference below and the pinout in the data sheet for more information.

Pins have been added so that the output of Timers 2 and 3 are available for PWM and general purpose I/O. There is also a second capture pin to go with the second capture register

All of this has caused changes in the global I/O registers. The Timer 2 and 3 pins have been added to global I/O, as has the capture 1 pin. What was the capture pin has been renamed to be capture 0.

To make room for capture 1, the PMBus clock pin has been removed from global I/O. The PMBus data pin has been replaced by the I2C data pin in all the global I/O registers.

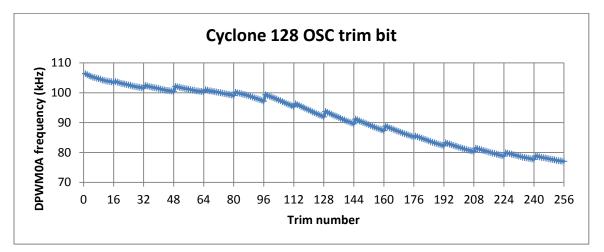
13 Disabling the RESET Pin

On the UCD3138A64, it is possible to disable the RESET pin. This may be useful in very noisy

systems. If the RESET pin is disabled, the only way to reset the UCD3138A64 with hardware is

to remove power from the device. Of course software reset, or reenabling the reset pin is possible in firmware. Here is the code to disable the reset:

MiscAnalogRegs.CLKTRIM.bit.RESET_DISABLE = 1;


14 Adjusting the Clock Speed

The UCD3138A64 is designed to make it possible to change the clock speed for the processor and the peripherals. The main clock is called the HFO (High Frequency Oscillator), and all other clocks except for the RTC are derived from the HFO.

There are two clock speed control bitfields, HFO_FINE_TRIM and HFO_COARSE_TRIM. Here is how to write to them:

MiscAnalogRegs.CLKTRIM.bit.HFO_COARSE_TRIM = x; MiscAnalogRegs.CLKTRIM.bit.HFO_FINE_TRIM = y; When each device is tested, the correct values for these registers are determined. The device will power up with the optimal values. By adjusting the trim registers and comparing the HFO clock to the RTC clock or some other precise reference, it is possible to make the clock more accurate over the temperature range.

The coarse and fine trim registers are monotonic as individual registers, but the same does not apply if the coarse and fine trim registers are used together. The range of the fine trim register is bigger than the size of a coarse trim register step. And the two registers will not necessarily align the same way on different devices. Any firmware which modifies the clock trim fields will have to take this into account. The graph below shows an example of clock speed variation. The vertical axis is DPWM frequency with a nominal value of 100 KHz. The horizontal axis is a number which combines fine and coarse trim into one. Every 16 steps, the fine trim goes from its minimum to its maximum value, and the coarse trim is incremented by 1. Since the fine trim overlaps more than 1 coarse trim step, there is a non-monotonicity in the combined numbers. Clock adjustment firmware needs to account for this variation.

15 No Write to HFO_LN_FILTER_EN

The clock filter logic has also been changed, so it is no longer necessary to put this statement into the program:

MiscAnalogRegs.CLKTRIM.bit.HFO_LN_FILTER_EN = 0;

The clock filter is handled as part of the trim process, and should not be modified by the customer.

16 Unused bits Removed from DPWM Registers

There are several bits and mode settings which were removed from the DPWM registers. These bits were removed because they were always set to the same values in all applications. All writes to them in initialization codes from older devices can be removed.

17 Sample and Hold Buffer Available on ADC even if Sample and Hold are Not Used

The ADC12 has a small capacitor which is charged at the beginning of every sample. This means that the output impedance of anything driving the ADC has to be relatively low to ensure ADC accuracy. The sample and hold feature requires a larger sample and hold capacitor to be

charged to retain the voltage until the next sampling cycle. This is done to provide simultaneous sampling for functions like power measurement.

This function works exactly the same on the UCD3138A64 as it does on the earlier models of the UCD31xx.

On the new devices, it is possible to use the buffer even if the sample and hold function is not being used. This makes it possible to use 1 of 3 ADC inputs for a voltage source with a higher impedance. To use this, there are several steps:

- 3. Select the ADC channel which will be buffered by writing to the BYPASS_EN bits in ADCCTRL.
 - 011 = Channel 2
 - 101 = Channel 1
 - 110 = Channel 0

.

- 4. Make sure that there are no SEQx_SH bits set
- 5. Set the ADC_SH_BUFFER_EN bit in ADCTSTCTRL

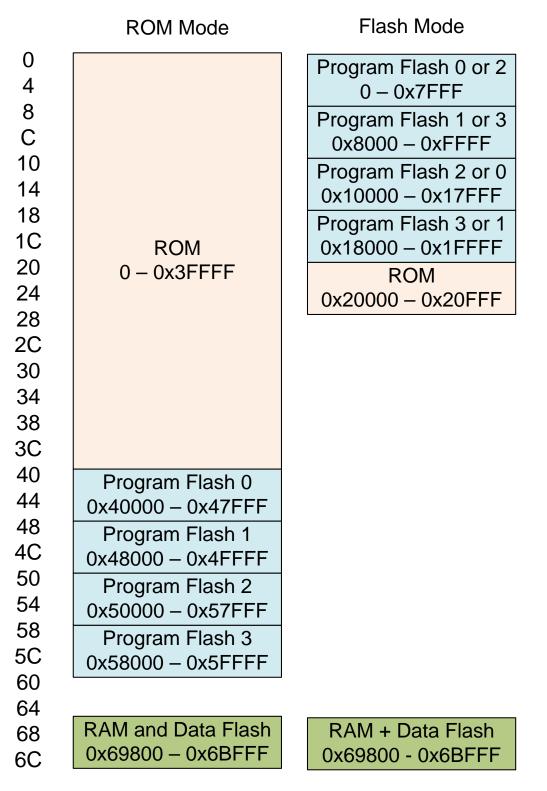
This should provide a buffer on the selected channel, but no sample and hold functionality.

18 DAC Dither on Sample Trigger

The UCD3138A64 devices add a new bit in the EADCDAC register called DAC_DITHER_ON_SAMPLE. This bit causes the EADC DAC to dither on the sample trigger. Normally the DAC dithers on the frame sync, so dither takes place only once every switching cycle. This means that the dither frequency will be 1/16th the switching frequency. If the sample trigger is set to oversample, the dither could move to 8, 4, or 2 times the switching frequency, providing faster dither.

19 Consolidation of PCM Control Registers

Earlier devices had a PCMCTRL register with only one bitfield in it – FILTER_SEL. The other peak current mode bitfields were in APCMCTRL. Now all the relevant bits are in APCMCTRL, and PCMCTRL has been removed.


20 Enhancements for UCD3138128

The UCD3138128 is very similar to the UCD3138A64. The only difference is the addition of 2 more 32K byte Flash blocks along with the extra registers and boot ROM support for the 2 more blocks. The additional blocks of boot flash are called Block 2 and Block 3.

20.1 Added Flash Memory

Blocks 2 and 3 are added after Blocks 0 and 1 in ROM mode. In Flash mode, either blocks 0 and 1 or blocks 2 and 3 can be placed starting at zero. The RAM and peripherals are all at the same addresses as they are on the A64. The Flash mapping options are shown below:

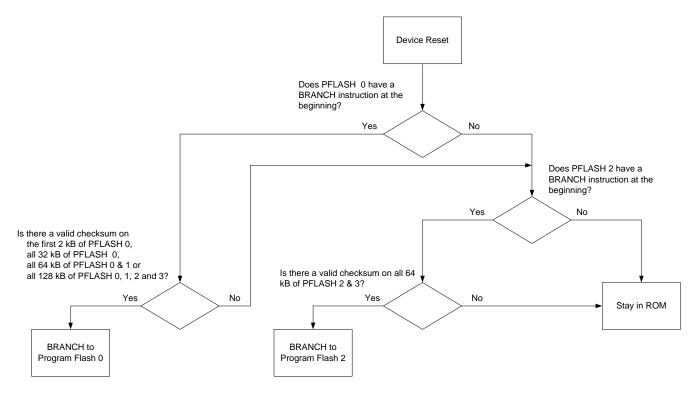
20.2 Changes to ROM Boot Program

The ROM changes the response to the version command, and it also changes the handling of flash checksums when it powers up.

20.2.1 ROM Version

The UCD3138128 will return a 0005 as the first half of the version, indicating the device. The first version of the ROM will return a 0001 as the second half of the version, indicating version 1 of the ROM. If other versions of the ROM are produced, the number will increment.

20.2.2 Flash Checksum Handling


The UCD3138128 does checksums for the first 2K, 32K and 64K of program flash just like the 'A64. It adds checksums for the second 64K and for the full 128K. This provides Boot ROM support for 2 independent versions of the firmware in a single device.

The checksums and their locations are:

0x7f8 – Boot block for Block 0 0x7ff8 – Overall checksum for Block 1 0xfff8 – Overall checksum for a 64K program combining Blocks 1 and 2 0x1fff8 – Overall checksum for a 128K program. This is also used for a 64K program using blocks 2 and 3.

The locations above assume that Block 0 is mapped to location 0, Block 1 is at 0x8000, Block 2 is at 0x10000, and Block 3 is mapped to 0x18000.

Here is a flowchart showing the order in which the ROM verifies the checksums:

The branch instruction check prevents the checksum program from looking at an empty block of memory. Otherwise a block filled with zeroes would pass the checksum test.

Copyright © 2014, Texas Instruments Incorporated

When the flowchart says "Branch to Program Flash 0", this means that it puts block 0 at location 0, block 1 at 0x8000, block 2 at 0x10000, and block 3 at 0x18000 and branches to location 0. For ""Branch to Program Flash 2", it puts Block 2 at 0, block 3 at 0x8000, block 0 at 0x10000, and block 1 at 0x18000. It always branches to zero.

The UCD3138 has a PMBus command code 0xF0 which causes the program to execute. On the UCD3138128, the same command causes Blocks 0 and 1 to be placed starting at address 0 and starts execution. A 0xF7 command has been added which puts Blocks 2 and 3 starting at location 0 and starts executing there.

20.3 Registers Added for '128

The addition of Blocks 2 and 3 also requires the addition of more registers to control those blocks. Here is a list of the registers:

Register Name	Function	Flash Block Controlled
PFLASHCTRL_2	Program Flash Control Register 2	2
PFLASHCTRL_3	Program Flash Control Register 3	3
MFBAHR18	Memory Fine Base Address High Register 18	2
MFBALR18	Memory Fine Base Address Low Register 18	2
MFBAHR19	Memory Fine Base Address High Register 19	3
MFBALR19	Memory Fine Base Address Low Register 19	3

20.4 Additional FLASH Keys

There are additional flash keys for the two new blocks:

#define PROGRAM_FLASH2_INTERLOCK_KEY 0x184219b3 #define PROGRAM_FLASH3_INTERLOCK_KEY 0x5973ef21

These keys need to be written to the DecRegs.FLASHILOCK register before writing or erasing the respective flash blocks.

21 UCD3138A64 Memory Map

This section describes all the registers in the UCD3138A64 peripherals. Changes from the UCD3138064 are marked in green.

21.1 Loop Mux Registers

21.1.1 Front End Control 0 Mux Register (FECTRL0MUX)

Address 00120000		
Bit Number	13:12	11
Bit Name	NL_SEL	DPWM3_FRAME_SYNC_EN
Access	R/W	R/W
Default	00	0

Bit Number	10	9
Bit Name	DPWM2_FRAME_SYNC_EN	DPWM1_FRAME_SYNC_EN

Copyright © 2016, Texas Instruments Incorporated

Default

0

0

Access	R/W			R/W
Default	0		0	
Bit Number	8		7	6
Bit Name	DPWM0_FRAME_SYNC_EN	DPWN	3_B_TRIG_EN	DPWM2_B_TRIG_EN
Access	R/W		R/W	R/W

Bit Number	5	4	3
Bit Name	DPWM1_B_TRIG_EN	DPWM0_B_TRIG_EN	DPWM3_A_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	DPWM2_A_TRIG_EN	DPWM1_A_TRIG_EN	DPWM0_A_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bits 13-12: NL_SEL – Configures source of Non-Linear (NL) comparison results used in Automatic Gain Shifting

0 = Filter 0 NL Results used

0

1 = Filter 1 NL Results used

2 = Filter 2 NL Results used (Default)

Bit 11: DPWM3_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 3 Frame Sync to Front End Control

0 = DPWM 3 Frame Sync not routed to Front End Control (Default)

1 = DPWM 3 Frame Sync routed to Front End Control

Bit 10: DPWM2_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 2 Frame Sync to Front End Control

0 = DPWM 2 Frame Sync not routed to Front End Control (Default)

1 = DPWM 2 Frame Sync routed to Front End Control

Bit 9: DPWM1_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 1 Frame Sync to Front End Control

0 = DPWM 1 Frame Sync not routed to Front End Control (Default)

1 = DPWM 1 Frame Sync routed to Front End Control

Bit 8: DPWM0_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 0 Frame Sync to Front End Control

0 = DPWM 0 Frame Sync not routed to Front End Control (Default)

1 = DPWM 0 Frame Sync routed to Front End Control

Bit 7: DPWM3_B_TRIG_EN – Enables DPWM Trigger from DPWM 3 PWM-B to Front End Control

0 = DPWM 3 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 3 PWM-B trigger routed to Front End Control

Bit 6: DPWM2_B_TRIG_EN – Enables DPWM Trigger from DPWM 2 PWM-B to Front End Control

0 = DPWM 2 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 2 PWM-B trigger routed to Front End Control

Bit 5: DPWM1_B_TRIG_EN – Enables DPWM Trigger from DPWM 1 PWM-B to Front End Control

0 = DPWM 1 PWM-B trigger not routed to Front End Control (Default)

Copyright © 2014, Texas Instruments Incorporated

1 = DPWM 1 PWM-B trigger routed to Front End Control

Bit 4: DPWM0_B_TRIG_EN – Enables DPWM Trigger from DPWM 0 PWM-B to Front End Control

0 = DPWM 0 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 0 PWM-B trigger routed to Front End Control

Bit 3: DPWM3_A_TRIG_EN – Enables DPWM Trigger from DPWM 3 PWM-A to Front End Control

0 = DPWM 3 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 3 PWM-A trigger routed to Front End Control

Bit 2: DPWM2_A_TRIG_EN – Enables DPWM Trigger from DPWM 2 PWM-B to Front End Control

0 = DPWM 2 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 2 PWM-A trigger routed to Front End Control

Bit 1: DPWM1_A_TRIG_EN – Enables DPWM Trigger from DPWM 1 PWM-B to Front End Control

0 = DPWM 1 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 1 PWM-A trigger routed to Front End Control

Bit 0: DPWM0_A_TRIG_EN – Enables DPWM Trigger from DPWM 0 PWM-B to Front End Control

0 = DPWM 0 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 0 PWM-A trigger routed to Front End Control

Address 001200	004	
Bit Number	13:12	11
Bit Name	NL_SEL	DPWM3_FRAME_SYNC_EN
Access	R/W	R/W
Default	01	0

21.1.2	Front End Control 1 Mux Register	(FECTRL1MUX)
--------	----------------------------------	--------------

Bit Number	10	9
Bit Name	DPWM2_FRAME_SYNC_EN	DPWM1_FRAME_SYNC_EN
Access	R/W	R/W
Default	0	0

Bit Number	8	7	6
Bit Name	DPWM0_FRAME_SYNC_EN	DPWM3_B_TRIG_EN	DPWM2_B_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	5	4	3
Bit Name	DPWM1_B_TRIG_EN	DPWM0_B_TRIG_EN	DPWM3_A_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	DPWM2_A_TRIG_EN	DPWM1_A_TRIG_EN	DPWM0_A_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bits 13-12: NL_SEL – Configures source of Non-Linear (NL) comparison results used in Automatic Gain Shifting

0 = Filter 0 NL Results used

1 = Filter 1 NL Results used

2 = Filter 2 NL Results used (Default)

Bit 11: DPWM3_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 3 Frame Sync to Front End Control

0 = DPWM 3 Frame Sync not routed to Front End Control (Default)

1 = DPWM 3 Frame Sync routed to Front End Control

Bit 10: DPWM2_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 2 Frame Sync to Front End Control

0 = DPWM 2 Frame Sync not routed to Front End Control (Default)

1 = DPWM 2 Frame Sync routed to Front End Control

Bit 9: DPWM1_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 1 Frame Sync to Front End Control

0 = DPWM 1 Frame Sync not routed to Front End Control (Default)

1 = DPWM 1 Frame Sync routed to Front End Control

Bit 8: DPWM0_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 0 Frame Sync to Front End Control

0 = DPWM 0 Frame Sync not routed to Front End Control (Default)

Copyright © 2014, Texas Instruments Incorporated

1 = DPWM 0 Frame Sync routed to Front End Control

Bit 7: DPWM3_B_TRIG_EN – Enables DPWM Trigger from DPWM 3 PWM-B to Front End Control

0 = DPWM 3 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 3 PWM-B trigger routed to Front End Control

Bit 6: DPWM2_B_TRIG_EN – Enables DPWM Trigger from DPWM 2 PWM-B to Front End Control

0 = DPWM 2 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 2 PWM-B trigger routed to Front End Control

Bit 5: DPWM1_B_TRIG_EN – Enables DPWM Trigger from DPWM 1 PWM-B to Front End Control

0 = DPWM 1 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 1 PWM-B trigger routed to Front End Control

Bit 4: DPWM0_B_TRIG_EN – Enables DPWM Trigger from DPWM 0 PWM-B to Front End Control

0 = DPWM 0 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 0 PWM-B trigger routed to Front End Control

Bit 3: DPWM3_A_TRIG_EN – Enables DPWM Trigger from DPWM 3 PWM-A to Front End Control

0 = DPWM 3 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 3 PWM-A trigger routed to Front End Control

Bit 2: DPWM2_A_TRIG_EN – Enables DPWM Trigger from DPWM 2 PWM-B to Front End Control

0 = DPWM 2 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 2 PWM-A trigger routed to Front End Control

Bit 1: DPWM1_A_TRIG_EN – Enables DPWM Trigger from DPWM 1 PWM-B to Front End Control

0 = DPWM 1 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 1 PWM-A trigger routed to Front End Control

Bit 0: DPWM0_A_TRIG_EN – Enables DPWM Trigger from DPWM 0 PWM-B to Front End Control

0 = DPWM 0 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 0 PWM-A trigger routed to Front End Control

Address 00120008		
Bit Number	13:12	11
Bit Name	NL_SEL	DPWM3_FRAME_SYNC_EN
Access	R/W	R/W
Default	10	0

21.1.3 Front End Control 2 Mux Register (FECTRL2MUX)

Bit Number	10	9
Bit Name	DPWM2_FRAME_SYNC_EN	DPWM1_FRAME_SYNC_EN
Access	R/W	R/W
Default	0	0

Bit Number	8	7	6
Bit Name	DPWM0_FRAME_SYNC_EN	DPWM3_B_TRIG_EN	DPWM2_B_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	5	4	3
Bit Name	DPWM1_B_TRIG_EN	DPWM0_B_TRIG_EN	DPWM3_A_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	DPWM2_A_TRIG_EN	DPWM1_A_TRIG_EN	DPWM0_A_TRIG_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bits 13-12: NL_SEL – Configures source of Non-Linear (NL) comparison results used in Automatic Gain Shifting

0 = Filter 0 NL Results used

1 = Filter 1 NL Results used

2 = Filter 2 NL Results used (Default)

Bit 11: DPWM3_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 3 Frame Sync to Front End Control

0 = DPWM 3 Frame Sync not routed to Front End Control (Default)

1 = DPWM 3 Frame Sync routed to Front End Control

Bit 10: DPWM2_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 2 Frame Sync to Front End Control

0 = DPWM 2 Frame Sync not routed to Front End Control (Default)

1 = DPWM 2 Frame Sync routed to Front End Control

Bit 9: DPWM1_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 1 Frame Sync to Front End Control

0 = DPWM 1 Frame Sync not routed to Front End Control (Default)

1 = DPWM 1 Frame Sync routed to Front End Control

Bit 8: DPWM0_FRAME_SYNC_EN – Enables DPWM Trigger from DPWM 0 Frame Sync to Front End Control

0 = DPWM 0 Frame Sync not routed to Front End Control (Default)

Copyright © 2014, Texas Instruments Incorporated

1 = DPWM 0 Frame Sync routed to Front End Control

Bit 7: DPWM3_B_TRIG_EN – Enables DPWM Trigger from DPWM 3 PWM-B to Front End Control

0 = DPWM 3 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 3 PWM-B trigger routed to Front End Control

Bit 6: DPWM2_B_TRIG_EN – Enables DPWM Trigger from DPWM 2 PWM-B to Front End Control

0 = DPWM 2 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 2 PWM-B trigger routed to Front End Control

Bit 5: DPWM1_B_TRIG_EN – Enables DPWM Trigger from DPWM 1 PWM-B to Front End Control

0 = DPWM 1 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 1 PWM-B trigger routed to Front End Control

Bit 4: DPWM0_B_TRIG_EN – Enables DPWM Trigger from DPWM 0 PWM-B to Front End Control

0 = DPWM 0 PWM-B trigger not routed to Front End Control (Default)

1 = DPWM 0 PWM-B trigger routed to Front End Control

Bit 3: DPWM3_A_TRIG_EN – Enables DPWM Trigger from DPWM 3 PWM-A to Front End Control

0 = DPWM 3 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 3 PWM-A trigger routed to Front End Control

Bit 2: DPWM2_A_TRIG_EN – Enables DPWM Trigger from DPWM 2 PWM-B to Front End Control

0 = DPWM 2 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 2 PWM-A trigger routed to Front End Control

Bit 1: DPWM1_A_TRIG_EN – Enables DPWM Trigger from DPWM 1 PWM-B to Front End Control

0 = DPWM 1 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 1 PWM-A trigger routed to Front End Control

Bit 0: DPWM0_A_TRIG_EN – Enables DPWM Trigger from DPWM 0 PWM-B to Front End Control

0 = DPWM 0 PWM-A trigger not routed to Front End Control (Default)

1 = DPWM 0 PWM-A trigger routed to Front End Control

Bit Number	11	10	9
Bit Name	FE2_TRIG_DPWM3_EN	FE2_TRIG_DPWM2_EN	FE2_TRIG_DPWM1_EN
Access	R/W	R/W	R/W
Default	0	0	0
	•	-	

21.1.4 Sample Trigger Control Register (SAMPTRIGCTRL)

Bit Number	8	7	6
Bit Name	FE2_TRIG_DPWM0_EN	FE1_TRIG_DPWM3_EN	FE1_TRIG_DPWM2_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	5	4	3
Bit Name	FE1_TRIG_DPWM1_EN	FE1_TRIG_DPWM0_EN	FE0_TRIG_DPWM3_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	FE0_TRIG_DPWM2_EN	FE0_TRIG_DPWM1_EN	FE0_TRIG_DPWM0_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 11: FE2_TRIG_DPWM3_EN – Enables Sample Trigger from DPWM 3 to Front End Control 2

0 = DPWM 3 Sample Trigger not routed to Front End Control 2 (Default)

1 = DPWM 3 Sample Trigger routed to Front End Control 2

Bit 10: FE2_TRIG_DPWM2_EN – Enables Sample Trigger from DPWM 2 to Front End Control 2

0 = DPWM 2 Sample Trigger not routed to Front End Control 2 (Default)

1 = DPWM 2 Sample Trigger routed to Front End Control 2

Bit 9: FE2_TRIG_DPWM1_EN – Enables Sample Trigger from DPWM 1 to Front End Control 2

0 = DPWM 1 Sample Trigger not routed to Front End Control 2 (Default)

1 = DPWM 1 Sample Trigger routed to Front End Control 2

Bit 8: FE2_TRIG_DPWM0_EN – Enables Sample Trigger from DPWM 0 to Front End Control 2

0 = DPWM 0 Sample Trigger not routed to Front End Control 2 (Default)

1 = DPWM 0 Sample Trigger routed to Front End Control 2

Bit 7: FE1_TRIG_DPWM3_EN – Enables Sample Trigger from DPWM 3 to Front End Control 1

0 = DPWM 3 Sample Trigger not routed to Front End Control 1 (Default)

1 = DPWM 3 Sample Trigger routed to Front End Control 1

Bit 6: FE1_TRIG_DPWM2_EN – Enables Sample Trigger from DPWM 2 to Front End Control 1

0 = DPWM 2 Sample Trigger not routed to Front End Control 1 (Default)

1 = DPWM 2 Sample Trigger routed to Front End Control 1

Bit 5: FE1_TRIG_DPWM1_EN – Enables Sample Trigger from DPWM 1 to Front End Control 1 0 = DPWM 1 Sample Trigger not routed to Front End Control 1 (Default)

1 = DPWM 1 Sample Trigger routed to Front End Control 1

Bit 4: FE1_TRIG_DPWM0_EN – Enables Sample Trigger from DPWM 0 to Front End Control 1

0 = DPWM 0 Sample Trigger not routed to Front End Control 1 (Default)

1 = DPWM 0 Sample Trigger routed to Front End Control 1

Bit 3: FE0_TRIG_DPWM3_EN – Enables Sample Trigger from DPWM 3 to Front End Control 0

0 = DPWM 3 Sample Trigger not routed to Front End Control 0 (Default)

1 = DPWM 3 Sample Trigger routed to Front End Control 0

Bit 2: FE0_TRIG_DPWM2_EN – Enables Sample Trigger from DPWM 2 to Front End Control 0

0 = DPWM 2 Sample Trigger not routed to Front End Control 0 (Default)

1 = DPWM 2 Sample Trigger routed to Front End Control 0

Bit 1: FE0_TRIG_DPWM1_EN – Enables Sample Trigger from DPWM 1 to Front End Control 0

0 = DPWM 1 Sample Trigger not routed to Front End Control 0 (Default)

1 = DPWM 1 Sample Trigger routed to Front End Control 0

Bit 0: FE0_TRIG_DPWM0_EN – Enables Sample Trigger from DPWM 0 to Front End Control 0

0 = DPWM 0 Sample Trigger not routed to Front End Control 0 (Default)

1 = DPWM 0 Sample Trigger routed to Front End Control 0

21.1.5 External DAC Control Register (EXTDACCTRL)

Address 00120010

Bit Number	26:24	23:19	18:16	15:11	10:8
Bit Name	DAC2_SEL	RESERVED	DAC1_SEL	RESERVED	DAC0_SEL
Access	R/W	-	R/W	-	R/W
Default	000	0_000	000	0_000	000

Bit Number	7:3	2	1	0
Bit Name	RESERVED	EXT_DAC2_EN	EXT_DAC1_EN	EXT_DAC0_EN
Access	-	R/W	R/W	R/W
Default	0_000	0	0	0

Bits 26-24: DAC2_SEL - Configures DAC 2 setpoint in External DAC Mode

- 0 = DAC 0 Setpoint Selected (Default)
- 1 = DAC 1 Setpoint Selected
- 3 = Output of Constant Power Module Selected
- 4 = Filter 0 Output Selected
- 5 = Filter 1 Output Selected
- 6 = Filter 2 Output Selected

Bits 23-19: RESERVED – Unused bits

- Bits 18-16: DAC1_SEL Configures DAC 1 setpoint in External DAC Mode
 - 0 = DAC 0 Setpoint Selected (Default)
 - 2 = DAC 2 Setpoint Selected
 - 3 = Output of Constant Power Module Selected
 - 4 = Filter 0 Output Selected
 - 5 = Filter 1 Output Selected
 - 6 = Filter 2 Output Selected

Bits 15-11: RESERVED – Unused bits

Bits 10-8: DAC0_SEL - Configures DAC 0 setpoint in External DAC Mode

1 = DAC 1 Setpoint Selected

- 2 = DAC 2 Setpoint Selected
- 3 = Output of Constant Power Module Selected
- 4 = Filter 0 Output Selected
- 5 = Filter 1 Output Selected
- 6 = Filter 2 Output Selected
- Bits 7-3: RESERVED Unused bits
- Bit 2: EXT_DAC2_EN External DAC 2 Mode Enable

0 = External DAC Mode disabled. DAC 2 setpoint driven from Front End Control Module (Default)

1 = External DAC Mode enabled, DAC 2 setpoint driven by DAC2_SEL

configuration

Bit 1: EXT_DAC1_EN – External DAC 1 Mode Enable

0 = External DAC Mode disabled. DAC 1 setpoint driven from Front End Control Module (Default)

1 = External DAC Mode enabled, DAC 1 setpoint driven by DAC1_SEL configuration

Bit 0: EXT_DAC0_EN – External DAC 0 Mode Enable

0 = External DAC Mode disabled. DAC 0 setpoint driven from Front End Control Module (Default)

1 = External DAC Mode enabled, DAC 0 setpoint driven by DAC0_SEL configuration

Address 00120014					
Bit Number	29:28	27:26	25:24		
Bit Name	FILTER2_KCOMP_SEL	FILTER1_KCOMP_SEL	FILTER0_KCOMP_SEL		
Access	R/W	R/W	R/W		
Default	00	00	00		

21.1.6 Filter Mux Register (FILTERMUX)

Bit Number	23:19	18	17	16
Bit Name	RESERVED	FILTER2_FFWD_SEL	FILTER1_FFWD_SEL	FILTER0_FFWD_SEL
Access	R/W	R/W	R/W	R/W
Default	0_000	0	0	0

Bit Number	15:14	13:12	11:10	9:8
Bit Name	RESERVED	FILTER2_PER_SEL	FILTER1_PER_SEL	FILTER0_PER_SEL
Access	R/W	R/W	R/W	R/W
Default	00	00	00	00

Bit Number	7:6	5:4	3:2	1:0
Bit Name	RESERVED	FILTER2_FE_SEL	FILTER1_FE_SEL	FILTER0_FE_SEL
Access	-	R/W	R/W	R/W
Default	00	10	01	00

Bits 29-28: FILTER2_KCOMP_SEL - Selects KComp value routed to Filter 2 Module

- 0 = KComp 0 Value Selected (Default)
- 1 = KComp 1 Value Selected
- 2 = KComp 2 Value Selected

Bits 27-26: FILTER1_KCOMP_SEL – Selects KComp value routed to Filter 1 Module

- 0 = KComp 0 Value Selected (Default)
 - 1 = KComp 1 Value Selected
 - 2 = KComp 2 Value Selected

Bits 25-24: FILTER0_KCOMP_SEL - Selects KComp value routed to Filter 0 Module

- 0 = KComp 0 Value Selected (Default)
- 1 = KComp 1 Value Selected
- 2 = KComp 2 Value Selected
- Bits 23-19: RESERVED Unused bits
- **Bit 18: FILTER2_FFWD_SEL** Configures Feedforward value routed to Filter 2 Module 0 = Filter 0 Output Selected (Default)
 - 1 = Filter 1 Output Selected
- Bit 17: FILTER1_FFWD_SEL Configures Feedforward value routed to Filter 1 Module 0 = Filter 0 Output Selected (Default)
 - 1 = Filter 2 Output Selected
- Bit 16: FILTER0_FFWD_SEL Configures Feedforward value routed to Filter 0 Module 0 = Filter 1 Output Selected (Default)
 - 1 = Filter 2 Output Selected
- Bits 15-14: RESERVED Unused bits
- Bits 13-12: FILTER2_PER_SEL Selects source of switching cycle period for Filter 2 Module
 - 0 = DPWM 0 Switching Period (Default)
 - 1 = DPWM 1 Switching Period
 - 2 = DPWM 2 Switching Period

3 = DPWM 3 Switching Period

Bits 11-10: FILTER1_PER_SEL – Selects source of switching cycle period for Filter 1 Module

- 0 = DPWM 0 Switching Period (Default)
- 1 = DPWM 1 Switching Period
- 2 = DPWM 2 Switching Period
- 3 = DPWM 3 Switching Period

Bits 9-8: FILTER0_PER_SEL – Selects source of switching cycle period for Filter 0 Module

- 0 = DPWM 0 Switching Period (Default)
- 1 = DPWM 1 Switching Period
- 2 = DPWM 2 Switching Period
- 3 = DPWM 3 Switching Period
- Bits 7-6: RESERVED Unused bits

Bits 5-4: FILTER2_FE_SEL – Selects which Front End Module provides data for Filter 2 Module

0 = Front End Module 0 provides data to Filter

1 = Front End Module 1 provides data to Filter

2 = Front End Module 2 provides data to Filter (Default)

Bits 3-2: FILTER1_FE_SEL – Selects which Front End Module provides data for Filter 1 Module

0 = Front End Module 0 provides data to Filter

- 1 = Front End Module 1 provides data to Filter (Default)
- 2 = Front End Module 2 provides data to Filter

Bits 1-0: FILTER0_FE_SEL – Selects which Front End Module provides data for Filter 0 Module

- 0 = Front End Module 0 provides data to Filter (Default)
- 1 = Front End Module 1 provides data to Filter
- 2 = Front End Module 2 provides data to Filter

21.1.7 Filter KComp A Register (FILTERKCOMPA)

Address 00120018

Bit Number	29:16	15:14	13:0
Bit Name	KCOMP1	RESERVED	KCOMP0
Access	R/W	-	R/W
Default	00_0000_0000_0000	00	00_0000_0111_1101

Bits 29-16: KCOMP1 – 14-bit value used in filter output calculations replacing the DPWM switching period value

Bits 15-14: RESERVED – Unused bits

Bits 13-0: KCOMP0 – 14-bit value used in filter output calculations replacing the DPWM switching period value

21.1.8 Filter KComp B Register (FILTERKCOMPB)

Address 0012001C

Bit Number	13:0
Bit Name	KCOMP2
Access	R/W
Default	00_0000_0000_0000

Bits 13-0: KCOMP2 – 14-bit value used in filter output calculations replacing the DPWM switching period value

21.1.9 DPWM Mux Register (DPWMMUX)

Address 00120020

Bit Number	31:30	29:28
Bit Name	DPWM3_SYNC_FET_SEL	DPWM2_SYNC_FET_SEL
Access	R/W	R/W
Default	00	00

Bit Number	27:26	25:24
Bit Name	DPWM1_SYNC_FET_SEL	DPWM0_SYNC_FET_SEL
Access	R/W	R/W
Default	00	00

Bit Number	23:20	19:18	17:16
Bit Name	RESERVED	DPWM3_SYNC_SEL	DPWM2_SYNC_SEL
Access	-	R/W	R/W
Default	0000	00	00

Bit Number	15:14	13:12	11:9
Bit Name	DPWM1_SYNC_SEL	DPWM0_SYNC_SEL	DPWM3_FILTER_SEL
Access	R/W	R/W	R/W
Default	00	00	010

Bit Number	8:6	5:3	2:0
Bit Name	DPWM2_FILTER_SEL	DPWM1_FILTER_SEL	DPWM0_FILTER_SEL
Access	R/W	R/W	R/W
Default	010	001	000

Bits 31-30: DPWM3 SYNC FET SEL – Selects Ramp source for DPWM3 PWM-B SyncFET soft on/off

0 = Front End 0 Ramp output selected (Default)

1 = Front End 1 Ramp output selected

2 = Front End 2 Ramp output selected

Bits 29-28: DPWM2_SYNC_FET_SEL - Selects Ramp source for DPWM2 PWM-B SyncFET soft on/off

0 = Front End 0 Ramp output selected (Default)

1 = Front End 1 Ramp output selected

2 = Front End 2 Ramp output selected

Bits 27-26: DPWM1 SYNC FET SEL – Selects Ramp source for DPWM1 PWM-B SyncFET soft on/off

0 = Front End 0 Ramp output selected (Default)

1 = Front End 1 Ramp output selected

2 = Front End 2 Ramp output selected

Bits 25-24: DPWM0_SYNC_FET_SEL – Selects Ramp source for DPWM0 PWM-B

SyncFET soft on/off

0 = Front End 0 Ramp output selected (Default)

1 = Front End 1 Ramp output selected

2 = Front End 2 Ramp output selected

Bits 23-20: RESERVED - Unused bits

Bits 19-18: DPWM3_SYNC_SEL – Selects Master Sync for DPWM 3 when DPWM 3 configured in slave mode

0 = DPWM 0 Sync (Default)

- 1 = DPWM 1 Sync
- 2 = DPWM 2 Sync
- 3 = DPWM 3 Sync

Bits 17-16: DPWM2_SYNC_SEL – Selects Master Sync for DPWM 2 when DPWM 2 configured in slave mode

- 0 = DPWM 0 Sync (Default)
- 1 = DPWM 1 Sync
- 2 = DPWM 2 Sync
- 3 = DPWM 3 Sync

Bits 15-14: DPWM1 SYNC SEL – Selects Master Sync for DPWM 1 when DPWM 1 configured in slave mode

- 0 = DPWM 0 Sync (Default)
- 1 = DPWM 1 Svnc
- 2 = DPWM 2 Sync
- 3 = DPWM 3 Sync

Bits 13-12: DPWM0 SYNC SEL - Selects Master Sync for DPWM 0 when DPWM 0 configured in slave mode

0 = DPWM 0 Sync (Default)

- 1 = DPWM 1 Sync
- 2 = DPWM 2 Sync
- 3 = DPWM 3 Sync

Bits 11-9: DPWM3 FILTER SEL – Selects source of duty cycle/resonant period for **DPWM Module 3**

0 = Filter 0 Output Selected (Default)

Copyright © 2014, Texas Instruments Incorporated

- 1 = Filter 1 Output Selected
- 2 = Filter 2 Output Selected
- 3 = Constant Power Module Selected
- 4 = DPWM_ON_TIME value from Light Load Control Register

Bits 8-6: DPWM2_FILTER_SEL – Selects source of duty cycle/resonant period for DPWM Module 2

- 0 = Filter 0 Output Selected (Default)
- 1 = Filter 1 Output Selected
- 2 = Filter 2 Output Selected
- 3 = Constant Power Module Selected
- 4 = DPWM_ON_TIME value from Light Load Control Register

Bits 5-3: DPWM1_FILTER_SEL – Selects source of duty cycle/resonant period for DPWM Module 1

- 0 = Filter 0 Output Selected (Default)
- 1 = Filter 1 Output Selected
- 2 = Filter 2 Output Selected
- 3 = Constant Power Module Selected
- 4 = DPWM_ON_TIME value from Light Load Control Register

Bits 2-0: DPWM0_FILTER_SEL – Selects source of duty cycle/resonant period for DPWM Module 0

- 0 = Filter 0 Output Selected (Default)
- 1 = Filter 1 Output Selected
- 2 = Filter 2 Output Selected
- 3 = Constant Power Module Selected
- 4 = DPWM_ON_TIME value from Light Load Control Register

Address 00120024				
Bit Number	16	15	14	13
Bit Name	CPCC_INT_EN	DAC_COMP_EN	FW_DIVISOR_EN	LOWER_COMP_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

21.1.10 Constant Power Control Register (CPCTRL)

Bit Number	12	11:10	9:8	7:5
Bit Name	VLOOP_FREEZE_EN	VLOOP_SEL	CLOOP_SEL	THRESH_SEL
Access	R/W	R/W	R/W	R/W
Default	0	00	00	000

Bit Number	4:3	2:1	0
Bit Name	DIVISOR_SEL	CPCC_CONFIG	CPCC_EN
Access	R/W	R/W	R/W
Default	00	0	0

Bit 16: CPCC_INT_EN – Constant Power/Constant Current Interrupt Enable

0 = Interrupt disabled on mode switches (Default)

1 = Interrupt enabled on mode switches

Bit 15: DAC_COMP_EN – Enables comparison of DAC Setpoint and quotient of Max Power/Sense Current in Loop Switching Mode. Minimum of DAC setpoint and calculated quotient sets voltage loop setpoint in Constant Voltage and Constant Power modes

0 = Operating Mode controls Voltage Loop DAC Setpoint (Default)

1 = Minimum of DAC setpoint and calculated quotient used as Voltage Loop DAC Setpoint

Bit 14: FW_DIVISOR_EN – Enables Firmware value for divisor in Constant Power calculations

0 = Divisor selected by **DIVISOR_SEL** (Bits 7:6) (Default)

1 = Divisor driven by Firmware Current Register

Bit 13: LOWER_COMP_EN – Enables output of lowest duty from current or voltage loop when Constant Power/Constant Current module controls loop output

0 = Loop output controlled by mode selection, voltage loop selected in constant voltage and constant power mode, current loop selected in constant current mode (Default)

1 = Loop output controlled by lowest duty from voltage or current loops

Bit 12: VLOOP_FREEZE_EN – Enables freezing of Voltage Loop Integrator when

current loop selected in Loop Switching configuration

0 = Freezing of Voltage Loop Integrator disabled (Default)

1 = Freezing of Voltage Loop Integrator enabled

Bits 11-10: VLOOP_SEL – Configures voltage loop for loop switching mode

0 = Filter 0 Output Selected (Default)

1 = Filter 1 Output Selected

2 = Filter 2 Output Selected

Bits 9-8: CLOOP_SEL – Configures current loop for loop switching mode

0 = Filter 0 Output Selected (Default)

1 = Filter 1 Output Selected

2 = Filter 2 Output Selected

Bits 7-5: THRESH_SEL – Configures input threshold selected for use in Constant Power comparison

- 0 = Filter 0 Output Selected (Default)
- 1 = Filter 1 Output Selected
- 2 = Filter 2 Output Selected
- 3 = Front End 0 Absolute Value Data Selected
- 4 = Front End 1 Absolute Value Data Selected
- 5 = Front End 2 Absolute Value Data Selected

Bits 4-3: DIVISOR_SEL – Configures value used for divisor in Constant Power calculations

0 = Front End 0 Absolute Value Data Selected (Default)

1 = Front End 1 Absolute Value Data Selected

2 = Front End 2 Absolute Value Data Selected

Bit 2-1: CPCC_CONFIG – Controls Constant Power/Constant Current module configuration

0 = Average Current Mode (Default)

1 = Constant Power Module controls selection of voltage/current loop

2 = Constant Power Module error switching mode

- Bit 0: CPCC_EN Constant Power Constant/Current Module Enable
 - 0 = Constant Power/Constant Current Module disabled (Default)

1 = Constant Power/Constant Current Module enabled

21.1.11 Constant Power Nominal Threshold Register (CPNOM)

Address 00120028

Bit Number	25:16	15:10	9:0
Bit Name	NOM_CURRENT_UPPER	RESERVED	NOM_CURRENT_LOWER
Access	R/W	-	R/W
Default	00_0000_0000	00_0000	00_0000_0000

Bits 25-16: NOM_CURRENT_UPPER – Configures I_{NOM} value used in Constant Power/Constant Current Calculations, when sensed value exceeds

NOM_CURRENT_UPPER in Constant Voltage mode, setpoint will switch to Constant Power mode

Bits 15-10: RESERVED – Unused Bits

Bits 9-0: NOM_CURRENT_LOWER – Configures I_{NOM} value used in Constant Power/Constant Current Calculations, when sensed value falls below NOM_CURRENT_LOWER in Constant Power mode, setpoint will switch to Constant Voltage mode

21.1.12 Constant Power Max Threshold Register (CPMAX)

Address 0012002C

Bit Number	25:16	15:10	9:0
Bit Name	MAX_CURRENT_UPPER	RESERVED	MAX_CURRENT_LOWER
Access	R/W	-	R/W
Default	00_0000_0000	00_0000	00_0000_0000

Bits 25-16: MAX_CURRENT_UPPER – Configures I_{MAX} value used in Constant Power/Constant Current Calculations, when sensed value exceeds

MAX_CURRENT_UPPER in Constant Power mode, setpoint will switch to Max Current mode

Bits 15-10: RESERVED – Unused Bits

Bits 9-0: MAX_CURRENT_LOWER – Configures I_{MAX} value used in Constant Power/Constant Current Calculations, when sensed value falls below

MAX_CURRENT_LOWER in Max Current mode, setpoint will switch to Constant Power mode

21.1.13 Constant Power Configuration Register (CPCONFIG)

Address	00120030
Auuress	00120030

Bit Number	25:16	15:10	9:0
Bit Name	MAX_CURRENT	RESERVED	NOM_VOLTAGE
Access	R/W	-	R/W
Default	00_0000_0000	00_0000	00_0000_0000

Bits 25-16: MAX_CURRENT – Configures I_{MAX} setpoint used in Constant Power/Constant Current Calculations in Max Current mode **Bits 15-10: RESERVED** – Unused Bits

Bits 9-0: NOM_VOLTAGE – Configures V_{NOM} setpoint used in Constant Power/Constant Current Calculations in Constant Voltage mode (Loop Oring configuration selected)

21.1.14 Constant Power Max Power Register (CPMAXPWR)

Address 00120034

Bit Number	19:0	
Bit Name	MAX_POWER	
Access	R/W	
Default	0000_0000_0000_0000_0000	

Bits 19-0: MAX_POWER – Configures P_{MAX} value used in Constant Power/Constant Current calculations in Constant Power mode

21.1.15 Constant Power Integrator Threshold Register (CPINTTHRESH)

Address 00120038

Bit Number	23:0
Bit Name	INT_THRESH
Access	R/W
Default	0000_0000_0000_0000_0000

Bits 23-0: INT_THRESH – 24-bit signed value added to Current Loop Duty value to determine when to freeze Current Loop Integrator

21.1.16 Constant Power Firmware Divisor Register (CPFWDIVISOR)

Address 0012003C

Bit Number	9:0
Bit Name	FW_DIVISOR
Access	R/W
Default	00_0000_0000

Bits 9-0: FW_DIVISOR– 10-bit value used in Constant Power calculation when firmware value is selected in Bit 17 of Constant Power Control Register

Address 00120040				
Bit Number	8	7	6	
Bit Name	CONSTANT_CUR	CONSTANT_PWR	CONSTANT_VOLT	
Access	R	R	R	
Default	-	-	-	

21.1.17 Constant Power Status Register (CPSTAT)

Bit Number	5	4	3
Bit Name	CC_TO_CV_INT	CV_TO_CC_INT	CC_TO_CP_INT
Access	R	R	R
Default	-	-	-

Bit Number	2	1	0
Bit Name	CP_TO_CC_INT	CP_TO_CV_INT	CV_TO_CP_INT
Access	R	R	R
Default	-	-	-

Bit 8: CONSTANT_CUR – Constant Current Mode Indication

0 = Constant Current Mode not enabled

1 = Constant Current Mode enabled

Bit 7: CONSTANT_PWR – Constant Power Mode Indication

0 = Constant Power Mode not enabled

1 = Constant Power Mode enabled

Bit 6: CONSTANT_VOLT – Constant Voltage Mode Indication

0 = Constant Voltage Mode not enabled

1 = Constant Voltage Mode enabled

Bit 5: CC_TO_CV_INT – Constant Current Mode to Constant Voltage Mode latched status, cleared on read

0 = No transition from Constant Current to Constant Voltage detected

1 = Transition from Constant Current to Constant Voltage detected

Bit 4: CV_TO_CC_INT – Constant Voltage Mode to Constant Current Mode latched status, cleared on read

0 = No transition from Constant Voltage to Constant Current detected

1 = Transition from Constant Voltage to Constant Current detected

Bit 3: CC_TO_CP_INT – Constant Current Mode to Constant Power Mode latched status, cleared on read

0 = No transition from Constant Current to Constant Power detected

1 = Transition from Constant Current to Constant Power detected

Bit 2: CP_TO_CC_INT – Constant Power Mode to Constant Current Mode latched status, cleared on read

0 = No transition from Constant Power to Constant Current detected

1 = Transition from Constant Power to Constant Current detected

Bit 1: CP_TO_CV_INT – Constant Power Mode to Constant Voltage Mode latched status, cleared on read

0 = No transition from Constant Power to Constant Voltage detected

1 = Transition from Constant Power to Constant Voltage detected

Bit 0: CV_TO_CP_INT – Constant Voltage Mode to Constant Power Mode latched status, cleared on read

0 = No transition from Constant Voltage to Constant Power detected

1 = Transition from Constant Voltage to Constant Power detected

21.1.18 Cycle Adjustment	Control Register	CYCADJCTRL)
--------------------------	------------------	-------------

Address 00120044				
Bit Number	9:7	6:5		
Bit Name	CYC_ADJ_GAIN	CYC_ADJ_SYNC		
Access	R/W	R/W		
Default	000	00		

Bit Number	4:3	2:1	0
Bit Name	SECOND_SAMPLE_SEL	FIRST_SAMPLE_SEL	CYC_ADJ_EN
Access	R/W	R/W	R/W
Default	00	00	0

Bits 9-7: CYC_ADJ_GAIN - Configures gain of Cycle Adjustment calculation

- 0 = 1x gain (Default)
- 1 = 2x gain
- 2 = 4x gain
- 3 = 8x gain
- 4 = 16x gain
- 5 = 32x gain
- 6 = 64x gain
- 7 = 128x gain

Bits 6-5: CYC_ADJ_SYNC – Selects which DPWM trigger synchronizes cycle adjustment calculation, first 2 samples after receipt of DPWM trigger will be used for Cycle Adjustment Calculation.

- 0 = DPWM-0 frame sync trigger selected (Default)
- 1 = DPWM-1 frame sync trigger selected
- 2 = DPWM-2 frame sync trigger selected
- 3 = DPWM-3 frame sync trigger selected

Bits 4-3: SECOND_SAMPLE_SEL – Configures Front End Module Data used for Second Sample of Cycle Adjustment Calculation

- 0 = Front End Module 0 Error Data selected (Default)
- 1 = Front End Module 1 Error Data selected
- 2 = Front End Module 2 Error Data selected

Bits 2-1: FIRST_SAMPLE_SEL – Configures Front End Module Data used for First

- Sample of Cycle Adjustment Calculation
 - 0 = Front End Module 0 Error Data selected (Default)
 - 1 = Front End Module 1 Error Data selected
 - 2 = Front End Module 2 Error Data selected

Bit 0: CYC_ADJ_EN – Cycle Adjustment Calculation Enable

- 0 = Cycle Adjustment Calculation disabled (Default)
- 1 = Cycle Adjustment Calculation enabled

21.1.19	Cycle Adjustment Limit Register (CYCADJLIM)

Address 00120048				
Bit Number	28:16	15:13	12:0	
Bit Name	CYC_ADJ_UPPER_LIMIT	RESERVED	CYC_ADJ_LOWER_LIM	
Access	R/W	-	R/W	
Default	0_0000_0000_0000	000	0_0000_0000_0000	

Bits 28-16: CYC_ADJ_UPPER_LIMT – Cycle Adjustment Calculation signed upper limit value, output of Cycle Adjustment Calculation is clamped at the upper limit, if calculated result exceeds the upper limit. LSB resolution equals High Frequency Oscillator period/16.

Bits 15-13: RESERVED – Unused Bits

Bits 12-0: CYC_ADJ_LOWER_LIMT – Cycle Adjustment Calculation signed lower limit value, output of Cycle Adjustment Calculation is clamped at the lower limit, if calculated result falls below the lower limit. LSB resolution equals High Frequency Oscillator period/16.

21.1.20 Cycle Adjustment Status Register (CYCADJSTAT)

Address 0012004C

Bit Number	28:16	15:10	9:0
Bit Name	CYC_ADJ_CALC	RESERVED	CYC_ADJ_ERROR
Access	R	-	R
Default	-	00_000	-

Bits 28-16: CYC_ADJ_CALC – 13-bit signed value representing calculated Cycle Adjustment provided to DPWM module based on first 2 error samples **Bits 15-10: RESERVED** – Unused Bits

Bits 9-0: CYC_ADJ_ERROR – 10-bit signed value representing calculated error of the first 2 error samples received

21.1.21 Global Enable Register (GLBEN)

Address 00120050

Bit Number	10	9	8	7:4
Bit Name	FE_CTRL2_EN	FE_CTRL1_EN	FE_CTRL0_EN	RESERVED
Access	R/W	R/W	R/W	-
Default	0	0	0	0000

Bit Number	3	2	1	0
Bit Name	DPWM3_EN	DPWM2_EN	DPWM1_EN	DPWM0_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 10: FE_CTRL2_EN – Global Firmware Enable for Front End Control 2 Module

0 = Front End Control 2 Module Disabled (Default)

1 = Front End Control 2 Module Enabled

Bit 9: FE_CTRL1_EN - Global Firmware Enable for Front End Control 1 Module

0 = Front End Control 1 Module Disabled (Default)

1 = Front End Control 1 Module Enabled

Bit 8: FE_CTRL0_EN – Global Firmware Enable for Front End Control 0 Module

- 0 = Front End Control 0 Module Disabled (Default)
- 1 = Front End Control 0 Module Enabled
- Bits 7-4: RESERVED Unused Bits
- Bit 3: DPWM3_EN Global Firmware Enable for DPWM 3 Module
 - 0 = DPWM 3 Module Disabled (Default)
 - 1 = DPWM 3 Module Enabled
- Bit 2: DPWM2_EN Global Firmware Enable for DPWM 2 Module
 - 0 = DPWM 2 Module Disabled (Default)
 - 1 = DPWM 2 Module Enabled
- **Bit 1: DPWM1_EN** Global Firmware Enable for DPWM 1 Module
 - 0 = DPWM 1 Module Disabled (Default)
 - 1 = DPWM 1 Module Enabled
- Bit 0: DPWM0_EN Global Firmware Enable for DPWM 0 Module
 - 0 = DPWM 0 Module Disabled (Default)
 - 1 = DPWM 0 Module Enabled

21.1.22 PWM Global Period Register (PWMGLBPRD)

Address 00120054

Bit Number	17:4	3:0
Bit Name	PRD	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bits 17-4: PRD – Global PWM Period value, overriding DPWM Period settings when global PWM period is selected within each DPWM module **Bits 3-0: RESERVED** – Unused Bits

21.1.23 Sync Control Register (SYNCCTRL)

Address 00120058

Bit Number	5	4:2	1	0
Bit Name	SYNC_IN	SYNC_MUX_SEL	SYNC_OUT	SYNC_DIR
Access	R	R/W	R/W	R/W
Default	-	000	1	1

Bit 5: SYNC_IN – Value of Sync pin

0 = Logic level low present on Sync pin

1 = Logic level high present on Sync pin

Bits 4-2: SYNC_MUX_SEL - Selects which module controls Sync pin output

000 = DPWM 0 Sync Output (Default)

- 001 = DPWM 1 Sync Output
- 010 = DPWM 2 Sync Output
- 011 = DPWM 3 Sync Output
- 100 = Value from SYNC_OUT (Bit 1)
- 101 = Value from CLKOUT signal in TSAR Module (See Section 15.1)
- 110 = Low-Frequency Oscillator Clock Output
- 111 = Driven low
- Bit 1: SYNC_OUT Configure output value for Sync pin, if used as an output
 - 0 = Sync pin driven low in output mode
 - 1 = Sync pin driven high in output mode (Default)

Bit 0: SYNC_DIR – Configure direction of Sync pin

- 0 = Sync pin configured as an output pin
- 1 = Sync pin configured as an input pin (Default)

21.1.24 Light Load Control Register (LLCTRL)

Address 0012005C

Bit Number	25:8	7:4	3	2:1	0
Bit Name	DPWM_ON_TIME	RESERVED	CYCLE_CNT_EN	LL_FILTER_SEL	LL_EN
Access	R/W	-	R/W	R/W	R/W
Default	00_0000_0000_0000_0000	0000	0	00	0

Bits 25-8: DPWM_ON_TIME – DPWM pulse width used for EADC-based light load mode operation, when selected Filter data exceeds TURN_ON_THRESH value **Bits 7-3: RESERVED** – Unused Bits

Bit 3: CYCLE_CNT_EN – Enables Switching Cycle Counter for enabling constant pulse widths when configured in Light Load operation

- 0 = Switching Cycle Counter disabled (Default)
- 1 = Switching Cycle Counter enabled

Bits 2-1: LL_FILTER_SEL – Configures source of filter data for Light Load comparisons

- 0 = Filter 0 data selected (Default)
- 1 = Filter 1 data selected
- 2 = Filter 2 data selected

Bit 0: LL_EN - Light Load Mode Enable

- 0 = Mode disabled (Default)
- 1 = Mode enabled

21.1.25 Light Load Enable Threshold Register (LLENTHRESH)

Address	00120060
/ 1000	00120000

Address 00120000							
Bit Number	31:24	23:18	17:0				
Bit Name	CYCLE_CNT_THRESH	RESERVED	TURN_ON_THRESH				
Access	R/W	-	R/W				
Default	0000_0000	0000_00	00_0000_0000_0000_0000				

Bits 31-24: CYCLE_CNT_THRESH – Switching Cycle threshold where constant width DPWM pulses are enabled when number of switching cycles without pulses exceeds threshold

Bits 23-18: RESERVED – Unused Bits

Bits 17-0: TURN_ON_THRESH – Filter data threshold where constant width DPWM pulses are enabled when filter data exceeds threshold

21.1.26 Light Load Disable Threshold Register (LLDISTHRESH)

Address 00120064

Bit Number	17:0
Bit Name	TURN_OFF_THRESH
Access	R/W
Default	00_0000_0000_0000_0000

Bits 17-0: TURN_OFF_THRESH – Filter data threshold where constant width DPWM pulses are disabled when filter data falls below threshold

21.1.27 Analog Peak Current Mode Control Register (APCMCTRL)

Address 00120068						
Bit Number	5:4	3	2:1	0		
Bit Name	PCM_FILTER_SEL	PCM_LATCH_EN	PCM_FE_SEL	PCM_EN		
Access	R/W	R/W	R/W	R/W		
Default	00	0	00	0		

Bits 5-4: PCM_FILTER_SEL – Selects source of Peak Current Slope Compensation Ramp Start

0 = Filter 0 data selected (Default)

- 1 = Filter 1 data selected
- 2 = Filter 2 data selected
- 3 = Constant Power/Constant Current data selected

Bit 3: PCM_LATCH_EN – Enables latching of Peak Current Flag to end of frame

- 0 = PCM Flag is not latched to end of PCM Frame (Default)
- 1 = PCM Flag is latched to end of PCM Frame

Bits 2-1: PCM_FE_SEL – Selects source of Front End Comparator output for Analog Peak Current Mode Control

- 0 = Front End Control 0 Comparator output selected (Default)
- 1 = Front End Control 1 Comparator output selected
- 2 = Front End Control 2 Comparator output selected

Bit 0: PCM_EN – Analog Peak Current Mode Control Module Enable

- 0 = Analog Peak Current Mode Control Module disabled (Default)
 - 1 = Analog Peak Current Mode Control Module enabled

Copyright © 2014, Texas Instruments Incorporated

21.2 Fault Mux Registers

21.2.1 Analog Comparator Control 0 Register (ACOMPCTRL0)

Address 00130000

Bit Number	30:24	23:22	21:19	18
Bit Name	ACOMP_B_THRESH	RESERVED	ACOMP_B_SEL	ACOMP_B_POL
Access	R/W	-	R/W	R/W
Default	000_0000	00	000	1

Bit Number	17	16:15	14:8	7:6
Bit Name	ACOMP_B_INT_EN	RESERVED	ACOMP_A_THRESH	RESERVED
Access	R/W	-	R/W	-
Default	0	00	000_0000	00

Bit Number	5:3	2	1	0
Bit Name	ACOMP_A_SEL	ACOMP_A_POL	ACOMP_A_INT_EN	ACOMP_EN
Access	R/W	R/W	R/W	R/W
Default	000	1	0	0

Bits 30-24: ACOMP_B_THRESH - Configures Analog Comparator B Threshold value

- 0 = Comparator Reference of 19.53125 mV (Default)
- 1 = Comparator Reference of 39.0625 mV

.....

127 = Comparator Reference of 2.5 V

Bits 23-22: RESERVED – Unused bits

Bits 21-19: ACOMP_B_SEL - Configures Analog Comparator B Threshold

0 = Analog Comparator B Threshold set by ACOMP_B_THRESH (Default)

- 1 = Analog Comparator B Threshold set by Comparator Ramp 0
- 2 = Analog Comparator B Threshold set by Filter 0 Output
- 3 = Analog Comparator B Threshold set by Filter 1 Output

4 = Analog Comparator B Threshold set by Filter 2 Output

Bit 18: ACOMP_B_POL – Analog Comparator B Polarity

0 = Comparator result enabled when input falls below threshold

- 1 = Comparator result enabled when input exceeds threshold (Default)
- Bit 17: ACOMP_B_INT_EN Analog Comparator B Interrupt Enable
 - 0 = Disables Analog Comparator B Interrupt generation (Default)
 - 1 = Enables Analog Comparator B Interrupt generation
- Bits 16-15: RESERVED Unused bits
- Bits 14-8: ACOMP_A_THRESH Configures Analog Comparator A Threshold
 - 0 = Comparator Reference of 19.53125 mV (Default)
 - 1 = Comparator Reference of 39.0625 mV
 -
 - 127 = Comparator Reference of 2.5 V
- Bits 7-6: RESERVED Unused bits
- Bits 5-3: ACOMP_A_SEL Configures Analog Comparator A Threshold
 - 0 = Analog Comparator A Threshold set by ACOMP_A_THRESH (Default)
 - 1 = Analog Comparator A Threshold set by Comparator Ramp 0
 - 2 = Analog Comparator A Threshold set by Filter 0 Output
 - 3 = Analog Comparator A Threshold set by Filter 1 Output
 - 4 = Analog Comparator A Threshold set by Filter 2 Output
- Bit 2: ACOMP_A_POL Analog Comparator A Polarity

- 0 = Comparator result enabled when input falls below threshold
- 1 = Comparator result enabled when input exceeds threshold (Default)
- Bit 1: ACOMP_A_INT_EN Analog Comparator A Interrupt Enable
 - 0 = Disables Analog Comparator A Interrupt generation (Default)
 - 1 = Enables Analog Comparator A Interrupt generation
- Bit 0: ACOMP_EN Analog Comparators Enable
 - 0 = Analog Comparators Disabled (Default)
 - 1 = Analog Comparators Enabled

21.2.2 Analog Comparator Control 1 Register (ACOMPCTRL1)

Address 00130004

Bit Number	30:24	23:22	21:19	18
Bit Name	ACOMP_D_THRESH	RESERVED	ACOMP_D_SEL	ACOMP_D_POL
Access	R/W	-	R/W	R/W
Default	000_0000	00	000	1

Bit Number	17	16	15	14:8
Bit Name	ACOMP_D_INT_EN	ACOMP_D_OUT_EN	RESERVED	ACOMP_C_THRESH
Access	R/W	R/W	-	R/W
Default	0	0	0	000_0000

Bit Number	7:6	5:3	2	1	0
Bit Name	RESERVED	ACOMP_C_SEL	ACOMP_C_POL	ACOMP_C_INT_EN	RESERVED
Access	-	R/W	R/W	R/W	-
Default	00	000	1	0	0

Bits 30-24: ACOMP_D_THRESH – Configures Analog Comparator D Threshold

- 0 = Comparator Reference of 19.53125 mV (Default)
- 1 = Comparator Reference of 39.0625 mV
-
- 127 = Comparator Reference of 2.5 V
- Bits 23-22: RESERVED Unused bits
- Bits 21-19: ACOMP_D_SEL Configures Analog Comparator D Threshold
 - 0 = Analog Comparator D Threshold set by ACOMP_D_THRESH (Default)
 - 1 = Analog Comparator D Threshold set by Comparator Ramp 0
 - 2 = Analog Comparator D Threshold set by Filter 0 Output
 - 3 = Analog Comparator D Threshold set by Filter 1 Output
 - 4 = Analog Comparator D Threshold set by Filter 2 Output
- Bit 18: ACOMP_D_POL Analog Comparator D Polarity
 - 0 = Comparator result enabled when input falls below threshold 1 = Comparator result enabled when input exceeds threshold (Default)
- Bit 17: ACOMP_D_INT_EN Analog Comparator D Interrupt Enable
 - 0 = Disables Analog Comparator D Interrupt generation (Default) 1 = Enables Analog Comparator D Interrupt generation
- Bit 16: ACOMP_D_OUT_EN Analog Comparator D DAC Output Enable
 - 0 = Disables output of Comparator DAC D onto AD pin (Default)
 - 1 = Enables output of Comparator DAC D onto AD pin
- Bit 15: RESERVED Unused bit

Bits 14-8: ACOMP_C_THRESH – Configures Analog Comparator C Threshold

- 0 = Comparator Reference of 19.53125 mV (Default)
- 1 = Comparator Reference of 39.0625 mV

.....

- 127 = Comparator Reference of 2.5 V
- Bits 7-6: RESERVED Unused bits

Bits 5-3: ACOMP_C_SEL – Configures Analog Comparator C Threshold

- 0 = Analog Comparator C Threshold set by ACOMP_C_THRESH (Default)
 - 1 = Analog Comparator C Threshold set by Comparator Ramp 0
 - 2 = Analog Comparator C Threshold set by Filter 0 Output
 - 3 = Analog Comparator C Threshold set by Filter 1 Output
 - 4 = Analog Comparator C Threshold set by Filter 2 Output
- Bit 2: ACOMP_C_POL Analog Comparator C Polarity
 - 0 = Comparator result enabled when input falls below threshold
 - 1 = Comparator result enabled when input exceeds threshold (Default)
- Bit 1: ACOMP_C_INT_EN Analog Comparator C Interrupt Enable
 - 0 = Disables Analog Comparator C Interrupt generation (Default)
 - 1 = Enables Analog Comparator C Interrupt generation
- Bit 0: RESERVED Unused bit

21.2.3 Analog Comparator Control 2 Register (ACOMPCTRL2)

Bit Number	30:24	23	22	21:19
Bit Name	ACOMP_F_THRESH	RESERVED	ACOMP_F_REF_SEL	ACOMP_F_SEL
Access	R/W	-	R/W	R/W
Default	000_0000	0	0	000

Bit Number	18	17	16	15
Bit Name	ACOMP_F_POL	ACOMP_F_INT_EN	ACOMP_F_OUT_EN	RESERVED
Access	R/W	R/W	R/W	-
Default	1	0	0	0

Bit Number	14:8	7:6	5:3
Bit Name	ACOMP_E_THRESH	RESERVED	ACOMP_E_SEL
Access	R/W	-	R/W
Default	000_0000	00	000

Bit Number	2	1	0
Bit Name	ACOMP_E_POL	ACOMP_E_INT_EN	ACOMP_E_OUT_EN
Access	R/W	R/W	R/W
Default	1	0	0

Bits 30-24: ACOMP_F_THRESH - Configures Analog Comparator F Threshold

0 = Comparator Reference of 19.53125 mV (Default)

1 = Comparator Reference of 39.0625 mV

.....

- 127 = Comparator Reference of 2.5 V
- Bit 23: RESERVED Unused bit
- Bit 22: ACOMP_F_REF_SEL Analog Comparator F Reference Select
 - 0 = Selects internal DAC reference (Default)
 - 1 = Selects reference driven from AD-07 pin
- Bits 21-19: ACOMP_F_SEL Configures Analog Comparator F Threshold
 - 0 = Analog Comparator F Threshold set by ACOMP_F_THRESH (Default)
 - 1 = Analog Comparator F Threshold set by Comparator Ramp 0
 - 2 = Analog Comparator F Threshold set by Filter 0 Output
 - 3 = Analog Comparator F Threshold set by Filter 1 Output
 - 4 = Analog Comparator F Threshold set by Filter 2 Output
- **Bit 18: ACOMP_F_POL** Analog Comparator F Polarity
 - 0 = Comparator result enabled when input falls below threshold
 - 1 = Comparator result enabled when input exceeds threshold (Default)
- Bit 17: ACOMP_F_INT_EN Analog Comparator F Interrupt Enable
 - 0 = Disables Analog Comparator F Interrupt generation (Default)
 - 1 = Enables Analog Comparator F Interrupt generation
- Bit 16: ACOMP_F_OUT_EN Analog Comparator F DAC Output Enable
 - 0 = Disables output of Comparator DAC F onto AD pin (Default)
 - 1 = Enables output of Comparator DAC F onto AD pin
- Bit 15: RESERVED Unused bit

Bits 14-8: ACOMP_E_THRESH – Configures Analog Comparator E Threshold

- 0 = Comparator Reference of 19.53125 mV (Default)
- 1 = Comparator Reference of 39.0625 mV

- 127 = Comparator Reference of 2.5 V
- Bits 7-6: RESERVED Unused bits
- Bits 5-3: ACOMP_E_SEL Configures Analog Comparator E Threshold
 - 0 = Analog Comparator E Threshold set by ACOMP_E_THRESH (Default)
 - 1 = Analog Comparator E Threshold set by Comparator Ramp 0
 - 2 = Analog Comparator E Threshold set by Filter 0 Output
 - 3 = Analog Comparator E Threshold set by Filter 1 Output
 - 4 = Analog Comparator E Threshold set by Filter 2 Output
- Bit 2: ACOMP_E_POL Analog Comparator E Polarity
 - 0 = Comparator result enabled when input falls below threshold
 - 1 = Comparator result enabled when input exceeds threshold (Default)
- Bit 1: ACOMP_E_INT_EN Analog Comparator E Interrupt Enable
 - 0 = Disables Analog Comparator E Interrupt generation (Default)
 - 1 = Enables Analog Comparator E Interrupt generation
- Bit 0: ACOMP_E_OUT_EN Analog Comparator E DAC Output Enable
 - 0 = Disables output of Comparator DAC E onto AD pin (Default)
 - 1 = Enables output of Comparator DAC E onto AD pin

21.2.4 Analog Comparator Control 3 Register (ACOMPCTRL3)

Address 0013000C

Bit Number	14:8	7:6	5:3
Bit Name	ACOMP_G_THRESH	RESERVED	ACOMP_G_SEL
Access	R/W	-	R/W
Default	000_0000	00	000

Bit Number	2	1	0
Bit Name	ACOMP_G_POL	ACOMP_G_INT_EN	ACOMP_G_OUT_EN
Access	R/W	R/W	R/W
Default	1	0	0

Bits 14-8: ACOMP_G_THRESH – Configures Analog Comparator G Threshold

- 0 = Comparator Reference of 19.53125 mV (Default)
- 1 = Comparator Reference of 39.0625 mV
 -
- 127 = Comparator Reference of 2.5 V
- Bits 7-6: RESERVED Unused bits
- Bits 5-3: ACOMP_G_SEL Configures Analog Comparator G Threshold
 - 0 = Analog Comparator G Threshold set by ACOMP_G_THRESH (Default)
 - 1 = Analog Comparator G Threshold set by Comparator Ramp 0
 - 2 = Analog Comparator G Threshold set by Filter 0 Output
 - 3 = Analog Comparator G Threshold set by Filter 1 Output
 - 4 = Analog Comparator G Threshold set by Filter 2 Output
- Bit 2: ACOMP_G_POL Analog Comparator G Polarity
 - 0 = Comparator result enabled when input falls below threshold
 - 1 = Comparator result enabled when input exceeds threshold (Default)
- Bit 1: ACOMP_G_INT_EN Analog Comparator G Interrupt Enable
 - 0 = Disables Analog Comparator G Interrupt generation (Default)
 - 1 = Enables Analog Comparator G Interrupt generation
- Bit 0: ACOMP_G_OUT_EN Analog Comparator G DAC Output Enable
 - 0 = Disables output of Comparator DAC G onto AD pin (Default)
 - 1 = Enables output of Comparator DAC G onto AD pin

Address 00130	010			
Bit Number	11	10	9	8
Bit Name	FAULT3_POL	FAULT2_POL	FAULT1_POL	FAULT0_POL
Access	R/W	R/W	R/W	R/W
Default	1	1	1	1
Bit Number	7	6	5	4
Bit Name	FAULT3_INT_EN	FAULT2_INT_EN	FAULT1_INT_EN	FAULT0_INT_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0
Bit Number	3	2	1	0
Bit Name	FAULT3_DET_EN	FAULT2_DET_EN	FAULT1_DET_EN	FAULT0_DET_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 11: FAULT3 POL – Polarity configuration for FAULT[3] pin 0 = Fault detection enabled on falling edge 1 = Fault detection enabled on rising edge (Default)Bit 10: FAULT2_POL – Polarity configuration for FAULT[2] pin 0 = Fault detection enabled on falling edge 1 = Fault detection enabled on rising edge (Default) Bit 9: FAULT1_POL - Polarity configuration for FAULT[1] pin 0 = Fault detection enabled on falling edge 1 = Fault detection enabled on rising edge (Default) **Bit 8: FAULT0 POL** – Polarity configuration for FAULT[0] pin 0 = Fault detection enabled on falling edge 1 = Fault detection enabled on rising edge (Default) Bit 7: FAULT3 INT EN – FAULT[3] Pin Interrupt Enable 0 = Disables Fault Detection Interrupt generation (Default) 1 = Enables Fault Detection Interrupt generation Bit 6: FAULT2 INT EN – FAULT[2] Pin Interrupt Enable 0 = Disables Fault Detection Interrupt generation (Default) 1 = Enables Fault Detection Interrupt generation Bit 5: FAULT1 INT EN – FAULT[1] Pin Interrupt Enable 0 = Disables Fault Detection Interrupt generation (Default) 1 = Enables Fault Detection Interrupt generation **Bit 4: FAULTO INT EN** – FAULT[0] Pin Interrupt Enable 0 = Disables Fault Detection Interrupt generation (Default) 1 = Enables Fault Detection Interrupt generation Bit 3: FAULT3_DET_EN - FAULT[3] Pin Detection Enable 0 = Fault Detection Disabled (Default) 1 = Fault Detection Enabled Bit 2: FAULT2_DET_EN – FAULT[2] Pin Detection Enable 0 = Fault Detection Disabled (Default) 1 = Fault Detection Enabled Bit 1: FAULT1_DET_EN – FAULT[1] Pin Detection Enable 0 = Fault Detection Disabled (Default) 1 = Fault Detection Enabled Bit 0: FAULTO DET EN - FAULT[0] Pin Detection Enable 0 = Fault Detection Disabled (Default)

1 = Fault Detection Enabled

21.3 Fault Mux Interrupt Status Register (FAULTMUXINTSTAT)

Address 00150014							
Bit Number	16	15	14	13	12		
Bit Name	DCOMP3	DCOMP2	DCOMP1	DCOMP0	LFO_FAIL		
Access	R	R	R	R	R		
Default	-	-	-	-	-		

Bit Number	11	10	9	8	7	6
Bit Name	FAULT3	FAULT2	FAULT1	FAULT0	DCM_DETECT	ACOMP_G
Access	R	R	R	R	R	R
Default	-	-	-	-	-	-

Bit Number	5	4	3	2	1	0
Bit Name	ACOMP_F	ACOMP_E	ACOMP_D	ACOMP_C	ACOMP_B	ACOMP_A
Access	R	R	R	R	R	R
Default	-	-	-	-	-	-

Bit 16: DCOMP3 – Digital Comparator 3 Interrupt Stat15us, cleared by read of status register 0 = Comparator threshold interrupt disabled

- 1 = Comparator threshold interrupt enabled
- Bit 15: DCOMP2 Digital Comparator 2 Interrupt Status, cleared by read of status register 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt enabled
- Bit 14: DCOMP1 Digital Comparator 1 Interrupt Status, cleared by read of status register 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt enabled

Bit 13: DCOMP0 – Digital Comparator 0 Interrupt Status, cleared by read of status register 0 = Comparator threshold interrupt disabled

1 = Comparator threshold interrupt enabled

Bit 12: LFO_FAIL– Low Frequency Oscillator Failure Interrupt Status, cleared by read of status register

- 0 = Low Frequency Oscillator operational
- 1 = Low Frequency Oscillator failure detected
- Bit 11: FAULT3 External FAULT[2] Interrupt Detection
 - 0 = No External GPIO detection found
 - 1 = External GPIO detection found

Bit 10: FAULT2 – External FAULT[2] Interrupt Detection

- 0 = No External GPIO detection found
- 1 = External GPIO detection found
- Bit 9: FAULT1 External FAULT[1] Interrupt Detection
 - 0 = No External GPIO detection found
 - 1 = External GPIO detection found
- Bit 8: FAULT0 External FAULT[0] Interrupt Detection
 - 0 = No External GPIO detection found
 - 1 = External GPIO detection found
- **Bit 7: DCM_DETECT** Discontinuous Conduction Mode Interrupt Status, cleared by read of status register
 - 0 = Discontinuous Conduction Mode detected
 - 1 = Discontinuous Conduction Mode not detected
- Bit 6: ACOMP_G Analog Comparator G Interrupt Status, cleared by read of status register

- 0 = Comparator threshold interrupt disabled
- 1 = Comparator threshold interrupt enabled
- Bit 5: ACOMP_F Analog Comparator F Interrupt Status, cleared by read of status register
 - 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt enabled
- **Bit 4: ACOMP_E** Analog Comparator E Interrupt Status, cleared by read of status register 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt disabled
- Bit 3: ACOMP_D Analog Comparator D Interrupt Status, cleared by read of status register 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt enabled
- Bit 2: ACOMP_C Analog Comparator C Interrupt Status, cleared by read of status register 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt enabled
- Bit 1: ACOMP_B Analog Comparator B Interrupt Status, cleared by read of status register 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt disabled
- Bit 0: ACOMP_A Analog Comparator A Interrupt Status, cleared by read of status register
 - 0 = Comparator threshold interrupt disabled
 - 1 = Comparator threshold interrupt enabled

21.3.1 Fault Mux Raw Status Register (FAULTMUXRAWSTAT)

Address 00130018

Bit Number	16	15	14	13	12
Bit Name	DCOMP3	DCOMP2	DCOMP1	DCOMP0	LFO_FAIL
Access	R	R	R	R	R
Default	-	-	-	-	-

Bit Number	11	10	9	8	7	6
Bit Name	FAULT3	FAULT2	FAULT1	FAULT0	DCM_DETECT	ACOMP_G
Access	R	R	R	R	R	R
Default	-	-	-	-	-	_

Bit Number	5	4	3	2	1	0
Bit Name	ACOMP_F	ACOMP_E	ACOMP_D	ACOMP_C	ACOMP_B	ACOMP_A
Access	R	R	R	R	R	R
Default	-	-	-	-	-	-

Bit 16: DCOMP3 – Digital Comparator 3 Raw Status

0 = Comparator threshold not exceeded

1 = Comparator threshold exceeded

- Bit 15: DCOMP2 Digital Comparator 2 Raw Status
 - 0 = Comparator threshold not exceeded
 - 1 = Comparator threshold exceeded

Bit 14: DCOMP1 – Digital Comparator 1 Raw Status

- 0 = Comparator threshold not exceeded
- 1 = Comparator threshold exceeded

Bit 13: DCOMP0 – Digital Comparator 0 Raw Status

- 0 = Comparator threshold not exceeded
- 1 = Comparator threshold exceeded

Bit 12: LFO_FAIL - Low Frequency Oscillator Failure Raw Status

0 = Low Frequency Oscillator operational

1 = Low Frequency Oscillator failure detected Bit 11: FAULT3 - External Fault Detection on FAULT[3] pin 0 = No External FAULT[2] detection found 1 = External GPIO detection found Bit 10: FAULT2 – External Fault Detection on FAULT[2] pin 0 = No External FAULT[2] detection found 1 = External GPIO detection found Bit 9: FAULT1 – External Fault Detection on FAULT[1] pin 0 = No External FAULT[1] detection found 1 = External GPIO detection found Bit 8: FAULT0 - External Fault Detection on FAULT[0] pin 0 = No External FAULT[0] detection found 1 = External GPIO detection found Bit 7: DCM_DETECT - Discontinuous Conduction Mode Raw Status 0 = Discontinuous Conduction Mode detected 1 = Discontinuous Conduction Mode not detected Bit 6: ACOMP_G - Analog Comparator G Raw Result 0 = Comparator threshold not exceeded 1 = Comparator threshold exceeded Bit 5: ACOMP_F – Analog Comparator F Raw Result 0 = Comparator threshold not exceeded 1 = Comparator threshold exceeded Bit 4: ACOMP_E - Analog Comparator E Raw Result 0 = Comparator threshold not exceeded 1 = Comparator threshold exceeded Bit 3: ACOMP_D – Analog Comparator D Raw Result 0 = Comparator threshold not exceeded 1 = Comparator threshold exceeded Bit 2: ACOMP_C – Analog Comparator C Raw Result 0 = Comparator threshold not exceeded 1 = Comparator threshold exceeded Bit 1: ACOMP_B - Analog Comparator B Raw Result 0 = Comparator threshold not exceeded 1 = Comparator threshold exceeded Bit 0: ACOMP A – Analog Comparator A Raw Result

- 0 = Comparator threshold not exceeded
 - 1 = Comparator threshold exceeded

21.3.2	Comparator Ramp Control 0 Register (COMPRAMP0)
--------	--

Address	0013001C
/ 144/ 000	00100010

Bit Number 31:28		27:10
Bit Name	START_VALUE_SEL	STEP_SIZE
Access	R/W	R/W
Default 0000		00_0000_0000_0000

Bit Number 9:5		4	3	
Bit Name	CLKS_PER_STEP	DPWM3_TRIG_EN	DPWM2_TRIG_EN	
Access	R/W	R/W	R/W	
Default	0_000	0	00	

Bit Number	2	1	0
Bit Name	DPWM1_TRIG_EN	DPWM0_TRIG_EN	RAMP_EN
Access	R/W	R/W	R/W
Default	00	00	0

Bits 31-28: START_VALUE_SEL - Configures comparator ramp starting value

- 0 = Filter 0 Output (Bits 17-11) (Default)
- 1 = Filter 1 Output (Bits 17-11)
- 2 = Filter 2 Output (Bits 17-11)
- 3 = Analog Comparator Threshold A Value
- 4 = Analog Comparator Threshold B Value
- 5 = Analog Comparator Threshold C Value
- 6 = Analog Comparator Threshold D Value
- 7 = Analog Comparator Threshold E Value
- 8 = Analog Comparator Threshold F Value
- 9 = Analog Comparator Threshold G Value

Bits 27-10: STEP_SIZE - Programmable 18-bit unsigned comparator step with Bits 27:24 representing the integer portion of the comparator step (0-15 Comparator steps of 19.5mV each) and Bits 23:10 representing the fractional portion of the comparator step **Bits 9-5: CLKS PER STEP** – Selects number of MCLK (HFO OSC/8) clock cycles per

comparator step where number of subcycles can vary from 1 to 32

- 0 = 1 MCLK clock cycles per step (Default)
- 1 = 2 MCLK clock cycles per step
- 2 = 3 MCLK clock cycles per step

.....

31 = 32 MCLK clock cycles per step

Bit 4: DPWM3_TRIG_EN – Enables DPWM Trigger from DPWM 3 to Analog Comparator Ramp 0

- 0 = DPWM 3 trigger not routed to Analog Comparator Ramp 0 (Default)
- 1 = DPWM 3 trigger routed to Analog Comparator Ramp 0

Bit 3: DPWM2_TRIG_EN – Enables DPWM Trigger from DPWM 2 to Analog Comparator Ramp 0

- 0 = DPWM 2 trigger not routed to Analog Comparator Ramp 0 (Default)
- 1 = DPWM 2 trigger routed to Analog Comparator Ramp 0

Bit 2: DPWM1_TRIG_EN – Enables DPWM Trigger from DPWM 1 to Analog Comparator Ramp 0

- 0 = DPWM 1 trigger not routed to Analog Comparator Ramp 0 (Default)
- 1 = DPWM 1 trigger routed to Analog Comparator Ramp 0

Bit 1: DPWM0_TRIG_EN – Enables DPWM Trigger from DPWM 0 to Analog Comparator Ramp 0

- 0 = DPWM 0 trigger not routed to Analog Comparator Ramp 0 (Default)
- 1 = DPWM 0 trigger routed to Analog Comparator Ramp 0
- Bit 0: RAMP_EN Enable for Analog Comparator Ramp 0
 - 0 = Analog Comparator Ramp disabled (Default)
 - 1 = Analog Comparator Ramp enabled

21.3.3 Digital Comparator Control 0 Register (DCOMPCTRL0)

Address 0x00130020

Bit Number	31:24	23:19	18	17:15	14
Bit Name	CNT_THRESH	RESERVED	COMP_POL	FE_SEL	CNT_CLR
Access	R/W	-	R/W	R/W	R/W
Default	0000_0000	0000_0	0	000	0

Bit Number	13	12	11	10:0
Bit Name	CNT_CONFIG	INT_EN	COMP_EN	THRESH
Access	R/W	R/W	R/W	R/W
Default	0	0	0	000_0000_0000

Bits 31-24: CNT_THRESH – Sets the number of received comparator events before declaring a fault

Bits 23-19: RESERVED – Unused bits

Bit 18: COMP_POL – Digital Comparator 0 Polarity

0 = Digital Comparator result asserted if value below threshold (Default)

1 = Digital Comparator result asserted if value above threshold

Bits 17-15: FE_SEL – Selects which Front End absolute data is used for Digital Comparison with threshold

- 0 = Front End 0 absolute data selected (Default)
- 1 = Front End 1 absolute data selected
- 2 = Front End 2 absolute data selected
- 3 = Front End 0 error data selected
- 4 = Front End 1 error data selected
- 5 = Front End 2 error data selected

Bit 14: CNT_CLR – Comparator Detection Counter clear

0 = No clear of Comparator Detection Counter (Default)

1 = Clear Comparator Detection counter and associated fault

Bit 13: CNT_CONFIG – Comparator Detection Counter configuration

0 = Counter clears upon receipt of sample which does not exceed comparator threshold (Default)

1 = Counter decrements by 1 upon receipt of sample which does not exceed comparator threshold

Bit 12: INT_EN – Comparator Interrupt Enable

0 = Disables Comparator Interrupt generation (Default)

1 = Enables Comparator Interrupt generation

- Bit 11: COMP_EN Digital Comparator 0 Enable
 - 0 = Disables Digital Comparator 0 (Default)
 - 1 = Enables Digital Comparator 0

Bits 10-0: THRESH – Sets the digital comparator threshold, 11-bit signed value with resolution of 1.5625mV/bit

21.3.4 Digital Comparator Control 1 Register (DCOMPCTRL1)

Address 0x00130024

Bit Number	31:24	23:19	18	17:15	14
Bit Name	CNT_THRESH	RESERVED	COMP_POL	FE_SEL	CNT_CLR
Access	R/W	-	R/W	R/W	R/W
Default	0000_0000	0000_0	0	000	0

Bit Number	13	12	11	10:0
Bit Name	CNT_CONFIG	INT_EN	COMP_EN	THRESH
Access	R/W	R/W	R/W	R/W
Default	0	0	0	000_0000_0000

Bits 31-24: CNT_THRESH – Sets the number of received comparator events before declaring a fault

Bits 23-19: RESERVED – Unused bits

Bit 18: COMP_POL – Digital Comparator 1 Polarity

0 = Digital Comparator result asserted if value below threshold (Default)

1 = Digital Comparator result asserted if value above threshold

Bits 17-15: FE_SEL – Selects which Front End absolute data is used for Digital Comparison with threshold

- 0 = Front End 0 absolute data selected (Default)
- 1 = Front End 1 absolute data selected
- 2 = Front End 2 absolute data selected
- 3 = Front End 0 error data selected
- 4 = Front End 1 error data selected
- 5 = Front End 2 error data selected

Bit 14: CNT_CLR – Comparator Detection Counter clear

0 = No clear of Comparator Detection Counter (Default)

- 1 = Clear Comparator Detection counter and associated fault
- Bit 13: CNT_CONFIG Comparator Detection Counter configuration
 - 0 = Counter clears upon receipt of sample which does not exceed comparator threshold (Default)

1 = Counter decrements by 1 upon receipt of sample which does not exceed comparator threshold

- Bit 12: INT_EN Comparator Interrupt Enable
 - 0 = Disables Comparator Interrupt generation (Default)
 - 1 = Enables Comparator Interrupt generation
- Bit 11: COMP_EN Digital Comparator 1 Enable

0 = Disables Digital Comparator 1 (Default)

1 = Enables Digital Comparator 1

Bits 10-0: THRESH – Sets the digital comparator threshold, 11-bit signed value with resolution of 1.5625mV/bit

21.3.5 Digital Comparator Control 2 Register (DCOMPCTRL2)

Bit Number	31:24	23:19	18	17:15	14
Bit Name	CNT_THRESH	RESERVED	COMP_POL	FE_SEL	CNT_CLR
Access	R/W	-	R/W	R/W	R/W
Default	0000_0000	0000_0	0	000	0
Bit Number	13	12	11	10	:0

Bit Name	CNT_CONFIG	INT_EN	COMP_EN	THRESH
Access	R/W	R/W	R/W	R/W
Default	0	0	0	000_0000_0000

Bits 31-24: CNT_THRESH – Sets the number of received comparator events before declaring a fault

Bits 23-19: RESERVED - Unused bits

Bit 18: COMP_POL - Digital Comparator 1 Polarity

0 = Digital Comparator result asserted if value below threshold (Default)

1 = Digital Comparator result asserted if value above threshold

Bits 17-15: FE_SEL – Selects which Front End absolute data is used for Digital Comparison with threshold

- 0 = Front End 0 absolute data selected (Default)
- 1 = Front End 1 absolute data selected
- 2 = Front End 2 absolute data selected
- 3 = Front End 0 error data selected
- 4 = Front End 1 error data selected
- 5 = Front End 2 error data selected
- Bit 14: CNT_CLR Comparator Detection Counter clear
 - 0 = No clear of Comparator Detection Counter (Default)
 - 1 = Clear Comparator Detection counter and associated fault
- Bit 13: CNT_CONFIG Comparator Detection Counter configuration

0 = Counter clears upon receipt of sample which does not exceed comparator threshold (Default)

1 = Counter decrements by 1 upon receipt of sample which does not exceed comparator threshold

- Bit 12: INT_EN Comparator Interrupt Enable
 - 0 = Disables Comparator Interrupt generation (Default)
 - 1 = Enables Comparator Interrupt generation
- Bit 11: COMP_EN Digital Comparator 2 Enable
 - 0 = Disables Digital Comparator 2 (Default)
 - 1 = Enables Digital Comparator 2

Bits 10-0: THRESH – Sets the digital comparator threshold, 11-bit signed value with resolution of 1.5625mV/bit

21.3.6 Digital Comparator Control 3 Register (DCOMPCTRL3)

Address 0x0013002C

Bit Number	31:24	23:19	18	17:15	14
Bit Name	CNT_THRESH	RESERVED	COMP_POL	FE_SEL	CNT_CLR
Access	R/W	-	R/W	R/W	R/W
Default	0000_0000	0000_0	0	000	0

Bit Number	13	12	11	10:0
Bit Name	CNT_CONFIG	INT_EN	COMP_EN	THRESH
Access	R/W	R/W	R/W	R/W
Default	0	0	0	000_0000_0000

Bits 31-24: CNT_THRESH – Sets the number of received comparator events before declaring a fault

Bits 23-19: RESERVED – Unused bits

Bit 18: COMP_POL – Digital Comparator 1 Polarity

0 = Digital Comparator result asserted if value below threshold (Default)

1 = Digital Comparator result asserted if value above threshold

Bits 17-15: FE_SEL – Selects which Front End absolute data is used for Digital Comparison with threshold

- 0 = Front End 0 absolute data selected (Default)
- 1 = Front End 1 absolute data selected
- 2 = Front End 2 absolute data selected
- 3 = Front End 0 error data selected
- 4 = Front End 1 error data selected
- 5 = Front End 2 error data selected
- Bit 14: CNT_CLR Comparator Detection Counter clear
 - 0 = No clear of Comparator Detection Counter (Default)
 - 1 = Clear Comparator Detection counter and associated fault
- Bit 13: CNT_CONFIG Comparator Detection Counter configuration
 - 0 = Counter clears upon receipt of sample which does not exceed comparator threshold (Default)

1 = Counter decrements by 1 upon receipt of sample which does not exceed comparator threshold

- Bit 12: INT_EN Comparator Interrupt Enable
 - 0 = Disables Comparator Interrupt generation (Default)
 - 1 = Enables Comparator Interrupt generation
- Bit 11: COMP_EN Digital Comparator 3 Enable
 - 0 = Disables Digital Comparator 3 (Default)
 - 1 = Enables Digital Comparator 3

Bits 10-0: THRESH – Sets the digital comparator threshold, 11-bit signed value with resolution of 1.5625mV/bit

21.3.7 Digital Comparator Counter Status Register (DCOMPCNTSTAT)

Address 0x00130030

Bit Number	31:24	31:24	31:24	31:24
Bit Name	DCOMP3_CNT	DCOMP2_CNT	DCOMP1_CNT	DCOMP0_CNT
Access	R	R	R	R
Default	-	-	-	-

Bits 31-24: DCOMP3_CNT – Current value of Digital Comparator 3 detection counter Bits 23-16: DCOMP2_CNT – Current value of Digital Comparator 2 detection counter Bits 15-8: DCOMP1_CNT – Current value of Digital Comparator 1 detection counter Bits 7-0: DCOMP0_CNT – Current value of Digital Comparator 0 detection counter

21.3.8 DPWM 0 Current Limit Control Register (DPWM0CLIM)

Address 0x00130034

Bit Number	15	14	13
Bit Name	ANALOG_PCM_EN	DCOMP3_EN	DCOMP2_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	12	11	10	9
Bit Name	DCOMP1_EN	DCOMP0_EN	FAULT3_EN	FAULT2_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	8	7	6	5	4

Bit Name	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	3	2	1	0
Bit Name	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 15: ANALOG_PCM_EN – Enables Analog Peak Current detection result for DPWM 0 Current Limit

- 0 = Analog Peak Current detection disabled for current limit (Default)
- 1 = Analog Peak Current detection enabled for current limit
- Bit 14: DCOMP3_EN Enables Digital Comparator 3 result for DPWM 0 Current Limit
 - 0 = Digital Comparator 3 result disabled for current limit (Default)
 - 1 = Digital Comparator 3 result enabled for current limit
- Bit 13: DCOMP2_EN Enables Digital Comparator 2 result for DPWM 0 Current Limit
 - 0 = Digital Comparator 2 result disabled for current limit (Default)
 - 1 = Digital Comparator 2 result enabled for current limit
- **Bit 12: DCOMP1_EN** Enables Digital Comparator 1 result for DPWM 0 Current Limit 0 = Digital Comparator 1 result disabled for current limit (Default)
 - 1 = Digital Comparator 1 result enabled for current limit
- Bit 11: DCOMP0_EN Enables Digital Comparator 0 result for DPWM 0 Current Limit
 - 0 = Digital Comparator 0 result disabled for current limit (Default)
 - 1 = Digital Comparator 0 result enabled for current limit
- Bit 10: FAULT3_EN Enables FAULT[3] pin for DPWM 0 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 9: FAULT2_EN Enables FAULT[2] pin for DPWM 0 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 8: FAULT1_EN Enables FAULT[1] pin for DPWM 0 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 0 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- **Bit 6: ACOMP_G_EN** Enables Analog Comparator G result for DPWM 0 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 5: ACOMP_F_EN Enables Analog Comparator F result for DPWM 0 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- **Bit 4: ACOMP_E_EN** Enables Analog Comparator E result for DPWM 0 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 3: ACOMP_D_EN Enables Analog Comparator D result for DPWM 0 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 2: ACOMP_C_EN Enables Analog Comparator C result for DPWM 0 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- **Bit 1: ACOMP_B_EN** Enables Analog Comparator B result for DPWM 0 Current Limit 0 = Analog Comparator result disabled for current limit (Default)

1 = Analog Comparator result enabled for current limit

Bit 0: ACOMP_A_EN – Enables Analog Comparator A result for DPWM 0 Current Limit

- 0 = Analog Comparator result disabled for current limit (Default)
- 1 = Analog Comparator result enabled for current limit

21.3.9 DPWM 0 Fault AB Detection Register (DPWM0FLTABDET)

Address 0x00130038

Bit Number	14	13	12	11	10
Bit Name	DCOMP3_EN	DCOMP2_EN	DCOMP1_EN	DCOMP0_EN	FAULT3_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	9	8	7	6	5
Bit Name	FAULT2_EN	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	4	3	2	1	0
Bit Name	ACOMP_E_EN	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit 14: DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 0 Fault AB Detection 0 = Digital Comparator 3 disabled for Fault AB detection (Default)

1 = Digital Comparator 3 enabled for Fault AB detection

Bit 13: DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 0 Fault AB Detection

- 0 = Digital Comparator 2 disabled for Fault AB detection (Default)
 - 1 = Digital Comparator 2 enabled for Fault AB detection

Bit 12: DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 0 Fault AB Detection

- 0 = Digital Comparator 1 disabled for Fault AB detection (Default)
 - 1 = Digital Comparator 1 enabled for Fault AB detection

Bit 11: DCOMP0_EN - Enables Digital Comparator 0 result for DPWM 0 Fault AB Detection

0 = Digital Comparator 0 disabled for Fault AB detection (Default)

1 = Digital Comparator 0 enabled for Fault AB detection

Bit 10: FAULT3_EN - Enables FAULT[3] pin for DPWM 0 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

1 = External Fault pin enabled for Fault AB detection

Bit 9: FAULT2_EN - Enables FAULT[2] pin for DPWM 0 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- Bit 8: FAULT1_EN Enables FAULT[1] pin for DPWM 0 Fault AB detection
 - 0 = External Fault pin disabled for Fault AB detection (Default)
 - 1 = External Fault pin enabled for Fault AB detection
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 0 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- Bit 6: ACOMP_A_EN Enables Analog Comparator G result for DPWM 0 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 5: ACOMP_F_EN Enables Analog Comparator F result for DPWM 0 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection

- **Bit 4: ACOMP_E_EN** Enables Analog Comparator E result for DPWM 0 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- **Bit 3: ACOMP_D_EN** Enables Analog Comparator D result for DPWM 0 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- **Bit 2:** ACOMP_C_EN Enables Analog Comparator C result for DPWM 0 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- **Bit 1: ACOMP_B_EN** Enables Analog Comparator B result for DPWM 0 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 0: ACOMP_A_EN Enables Analog Comparator A result for DPWM 0 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection

21.3.10 DPWM 0 Fault Detection Register (DPWM0FAULTDET)

Address 0x001					
Bit Number	30		29	28	
Bit Name	PWMB DCOMP3 EN			PWMB DCOMP1 EN	
Access	R/W		B_DCOMP2_EN R/W	R/W	
Default	0		0	0	
Delault	0		0	0	
Bit Number	27		26	25	
Bit Name	PWMB_DCOMP0_EN	PW	MB_FAULT3_EN	PWMB FAULT2 EN	
Access	R/W		R/W	R/W	
Default	0		0	0	
Donuun	Ŭ		0		
Bit Number	24		23	22	
Bit Name	PWMB FAULT1 EN	PWM	B FAULTO EN	PWMB ACOMP G EN	
Access	 R/W		 R/W		
Default	0		0	0	
	-		-		
Bit Number	21		20	19	
Bit Name	PWMB_ACOMP_F_EN PWMB		_ACOMP_E_EN	PWMB_ACOMP_D_EN	
Access	R/W		R/W	R/W	
Default	0		0	0	
Bit Number	18		17	16	
Bit Name	PWMB_ACOMP_C_EN	PWMB	_ACOMP_B_EN	PWMB_ACOMP_A_EN	
Access	R/W	R/W		R/W	
Default	0		0	0	
Bit Number	15		14		
Bit Name	RESERVED		PWMA_DCOMP3_EN		
Access	-		R/W		
Default	0		0		
Bit Number	13		12	11	
Bit Name	PWMA_DCOMP2_EN	PWM/	A_DCOMP1_EN	PWMA_DCOMP0_EN	
Access	R/W		R/W	R/W	
Default	0		0	0	
Bit Number	10		9		
Bit Name	PWMA_FAULT3_E	N	PWMA_FAULT2_EN		
Access	R/W		R/W		
Default	0			0	

Bit Number	8	7	6
Bit Name	PWMA_FAULT1_EN	PWMA_FAULT0_EN	PWMA_ACOMP_G_EN

Copyright © 2016, Texas Instruments Incorporated

Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	5	4	3
Bit Name	PWMA_ACOMP_F_EN	PWMA_ACOMP_E_EN	PWMA_ACOMP_D_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	PWMA_ACOMP_C_EN	PWMA_ACOMP_B_EN	PWMA_ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 30: PWMB_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 0 PWM-B Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 29: PWMB_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 0 PWM-B Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 28: PWMB_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 0 PWM-B Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 27: PWMB_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 0 PWM-B Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 26: PWMB_FAULT3_EN – Enables FAULT[3] pin for DPWM 0 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 25: PWMB_FAULT2_EN – Enables FAULT[2] pin for DPWM 0 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 24: PWMB_FAULT1_EN – Enables FAULT[1] pin for DPWM 0 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 23: PWMB_FAULT0_EN – Enables FAULT[0] pin for DPWM 0 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 22: PWMB_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 0 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 21: PWMB_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 0 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 20: PWMB_ACOMP_E_EN – Enables Analog Comparator E result for DPWM 0 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

Bit 19: PWMB_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 0 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 18: PWMB_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 0 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 17: PWMB_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 0 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 16: PWMB_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 0 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 15: RESERVED – Unused bit

Bit 14: PWMA_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 0 PWM-A Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 13: PWMA_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 0 PWM-A Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 12: PWMA_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 0 PWM-A Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 11: PWMA_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 0 PWM-A Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 10: PWMA_FAULT3_EN – Enables FAULT[3] pin for DPWM 0 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 9: PWMA_FAULT2_EN – Enables FAULT[2] pin for DPWM 0 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default) 1 = External Fault pin enabled for fault detection

Bit 8: PWMA_FAULT1_EN – Enables FAULT[1] pin for DPWM 0 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 7: PWMA_FAULT0_EN – Enables FAULT[0] pin for DPWM 0 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 6: PWMA_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 0 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 5: PWMA_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 0 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 4: PWMA_ACOMP_E_EN – Enables Analog Comparator E result for DPWM 0 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 3: PWMA_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 0 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 2: PWMA_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 0 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 1: PWMA_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 0 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 0: PWMA_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 0 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

21.3.11 DPWM 0 IDE Detection Register (DPWM0IDEDET)

Address 0x00130040

Bit Number	6	5	4	3
Bit Name	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN	ACOMP_D_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	2	1	0
Bit Name	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 6: ACOMP_6_EN – Enables Analog Comparator G result for DPWM 0 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default) 1 = Analog Comparator result enabled for IDE detection

Bit 5: ACOMP_5_EN – Enables Analog Comparator F result for DPWM 0 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result enabled for IDE detection

Bit 4: ACOMP_4_EN – Enables Analog Comparator E result for DPWM 0 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result enabled for IDE detection

Bit 3: ACOMP_3_EN – Enables Analog Comparator D result for DPWM 0 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result enabled for IDE detection

Bit 2: ACOMP_2_EN – Enables Analog Comparator C result for DPWM 0 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

- 1 = Analog Comparator result enabled for IDE detection
- Bit 1: ACOMP_1_EN Enables Analog Comparator B result for DPWM 0 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result disabled for IDE detection (Defa 1 = Analog Comparator result enabled for IDE detection

- Bit 0: ACOMP 0 EN Enables Analog Comparator A result for DPWM 0 IDE detection
 - 0 = Analog Comparator result disabled for IDE detection (Default)
 - 1 = Analog Comparator result enabled for IDE detection

Address 0x00130044

Bit Number	15	14			13
Bit Name	ANALOG_PCM_EN	DCOMP3_E	Ν	D	COMP2_EN
Access	R/W	R/W R		R/W	
Default	0	0	0 0		0
Bit Number	12	11		10	9
Bit Name	DCOMP1_EN	DCOMP0_EN	FAUI	_T3_EN	FAULT2_EN
Access	R/W	R/W	F	R/W	R/W
Default	0	0		0	0

21.3.12 DPWM 1 Current Limit Control Register (DPWM1CLIM)

Bit Number	8	7	6	5	4
Bit Name	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	3	2	1	0
Bit Name	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 15: ANALOG_PCM_EN – Enables Analog Peak Current detection result for DPWM 1 Current Limit

0 = Analog Peak Current detection disabled for current limit (Default)

1 = Analog Peak Current detection enabled for current limit

Bit 14: DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 1 Current Limit

- 0 = Digital Comparator 3 result disabled for current limit (Default)
- 1 = Digital Comparator 3 result enabled for current limit

Bit 13: DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 1 Current Limit

- 0 = Digital Comparator 2 result disabled for current limit (Default)
- 1 = Digital Comparator 2 result enabled for current limit

Bit 12: DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 1 Current Limit

- 0 = Digital Comparator 1 result disabled for current limit (Default)
- 1 = Digital Comparator 1 result enabled for current limit

Bit 11: DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 1 Current Limit

0 = Digital Comparator 0 result disabled for current limit (Default)

- 1 = Digital Comparator 0 result enabled for current limit
- Bit 10: FAULT3_EN Enables FAULT[3] pin for DPWM 1 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 9: FAULT2_EN Enables FAULT[2] pin for DPWM 1 Current Limit

0 = External Fault pin disabled for current limit (Default)

- 1 = External Fault pin enabled for current limit
- Bit 8: FAULT1_EN Enables FAULT[1] pin for DPWM 1 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 1 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit

- Bit 6: ACOMP_G_EN Enables Analog Comparator G result for DPWM 1 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 5: ACOMP_F_EN Enables Analog Comparator F result for DPWM 1 Current Limit 0 = Analog Comparator result disabled for current limit (Default) 1 = Analog Comparator result enabled for current limit
- **Bit 4: ACOMP_E_EN** Enables Analog Comparator E result for DPWM 1 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- **Bit 3: ACOMP_D_EN** Enables Analog Comparator D result for DPWM 1 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- **Bit 2:** ACOMP_C_EN Enables Analog Comparator C result for DPWM 1 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 1: ACOMP_B_EN Enables Analog Comparator B result for DPWM 1 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 0: ACOMP_A_EN Enables Analog Comparator A result for DPWM 1 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit

Address 0x00130048

Bit Number	14	13	12	11	10
Bit Name	DCOMP3_EN	DCOMP2_EN	DCOMP1_EN	DCOMP0_EN	FAULT3_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0
Bit Number	9	8	7	6	5
Bit Name	FAULT2_EN	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

21.3.13 DPWM 1 Fault AB Detection Register (DPWM1FLTABDET)

Bit Number	4	3	2	1	0
Bit Name	ACOMP_E_EN	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit 14: DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 1 Fault AB Detection 0 = Digital Comparator 3 disabled for Fault AB detection (Default)

1 = Digital Comparator 3 enabled for Fault AB detection

Bit 13: DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 1 Fault AB Detection

- 0 = Digital Comparator 2 disabled for Fault AB detection (Default)
- 1 = Digital Comparator 2 enabled for Fault AB detection
- Bit 12: DCOMP1_EN Enables Digital Comparator 1 result for DPWM 1 Fault AB Detection

0 = Digital Comparator 1 disabled for Fault AB detection (Default)

- 1 = Digital Comparator 1 enabled for Fault AB detection
- Bit 11: DCOMP0_EN Enables Digital Comparator 0 result for DPWM 1 Fault AB Detection

0 = Digital Comparator 0 disabled for Fault AB detection (Default)

- 1 = Digital Comparator 0 enabled for Fault AB detection
- Bit 10: FAULT3_EN Enables FAULT[3] pin for DPWM 1 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- **Bit 9: FAULT2_EN** Enables FAULT[2] pin for DPWM 1 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- **Bit 8: FAULT1_EN** Enables FAULT[1] pin for DPWM 1 Fault AB detection
 - 0 = External Fault pin disabled for Fault AB detection (Default)
 - 1 = External Fault pin enabled for Fault AB detection
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 1 Fault AB detection
 - 0 = External Fault pin disabled for Fault AB detection (Default)
 - 1 = External Fault pin enabled for Fault AB detection
- **Bit 6: ACOMP_G_EN** Enables Analog Comparator G result for DPWM 1 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 5: ACOMP F EN Enables Analog Comparator F result for DPWM 1 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- **Bit 4: ACOMP_E_EN** Enables Analog Comparator E result for DPWM 1 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result disabled for Fault AB detection (1
- **Bit 3: ACOMP_D_EN** Enables Analog Comparator D result for DPWM 1 Fault AB detection

- 0 = Analog Comparator result disabled for Fault AB detection (Default)
- 1 = Analog Comparator result enabled for Fault AB detection
- Bit 2: ACOMP_C_EN Enables Analog Comparator C result for DPWM 1 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 1: ACOMP_B_EN Enables Analog Comparator B result for DPWM 1 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 0: ACOMP_A_EN Enables Analog Comparator A result for DPWM 1 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection

21.3.14	DPWM 1 Fault Detection Register (DPWM1FAULTDET)
---------	---

Address 0x001	13004C		
Bit Number	30	29	28
Bit Name	PWMB_DCOMP3_EN	PWMB_DCOMP2_EN	PWMB_DCOMP1_EN
Access	R/W	R/W	R/W
Default	0	0	0
Bit Number	27	26	25
Bit Name	PWMB_DCOMP0_EN	PWMB_FAULT3_EN	PWMB_FAULT2_EN
Access	R/W	R/W	R/W
Default	0	0	0
Bit Number	24	23	22
Bit Name	PWMB_FAULT1_EN	PWMB_FAULT0_EN	PWMB_ACOMP_G_EN
Access	R/W	R/W	R/W
Default	0	0	0
Bit Number	21	20	19
Bit Name	PWMB_ACOMP_F_EN	PWMB_ACOMP_E_EN	PWMB_ACOMP_D_EN
Access	R/W	R/W	R/W
Default	0	0	0
		I	-
Default Bit Number	0 18	17	0 16
		I	-
Bit Number	18	17 PWMB_ACOMP_B_E	16
Bit Number Bit Name	18 PWMB_ACOMP_C_EN	17 PWMB_ACOMP_B_E N	16 PWMB_ACOMP_A_EN
Bit Number Bit Name Access	18 PWMB_ACOMP_C_EN R/W	17 PWMB_ACOMP_B_E N R/W	16 PWMB_ACOMP_A_EN R/W
Bit Number Bit Name Access	18 PWMB_ACOMP_C_EN R/W	17 PWMB_ACOMP_B_E N R/W	16 PWMB_ACOMP_A_EN R/W
Bit Number Bit Name Access Default	18 PWMB_ACOMP_C_EN R/W 0	17 PWMB_ACOMP_B_E N R/W 0	16 PWMB_ACOMP_A_EN R/W 0
Bit Number Bit Name Access Default Bit Number	18 PWMB_ACOMP_C_EN R/W 0	17 PWMB_ACOMP_B_E N R/W 0	16 PWMB_ACOMP_A_EN R/W 0
Bit Number Bit Name Access Default Bit Number Bit Name	18 PWMB_ACOMP_C_EN R/W 0	17 PWMB_ACOMP_B_E N R/W 0	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN
Bit Number Bit Name Access Default Bit Number Bit Name Access Default	18 PWMB_ACOMP_C_EN R/W 0 15 RESERVED - 0	17 PWMB_ACOMP_B_E N R/W 0 PWMA_	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN R/W 0
Bit Number Bit Name Access Default Bit Number Bit Name Access Default Bit Number	18 PWMB_ACOMP_C_EN R/W 0 15 RESERVED - 0	17 PWMB_ACOMP_B_E N R/W 0 0	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN R/W 0
Bit Number Bit Name Access Default Bit Number Bit Name Access Default Bit Number Bit Name	18 PWMB_ACOMP_C_EN R/W 0 15 RESERVED - 0 13 PWMA_DCOMP2_EN	17 PWMB_ACOMP_B_E N R/W 0 PWMA_ PWMA_ PWMA_DCOMP1_EN	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN R/W 0 11 PWMA_DCOMP0_EN
Bit Number Bit Name Access Default Bit Number Bit Name Access Default Bit Number Bit Name Access	18 PWMB_ACOMP_C_EN R/W 0 15 RESERVED - 0 13 PWMA_DCOMP2_EN R/W	17 PWMB_ACOMP_B_E N R/W 0 PWMA_ PWMA_ PWMA_ R/W	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN R/W 0 11 PWMA_DCOMP0_EN R/W
Bit Number Bit Name Access Default Bit Number Bit Name Access Default Bit Number Bit Name	18 PWMB_ACOMP_C_EN R/W 0 15 RESERVED - 0 13 PWMA_DCOMP2_EN	17 PWMB_ACOMP_B_E N R/W 0 PWMA_ PWMA_ PWMA_DCOMP1_EN	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN R/W 0 11 PWMA_DCOMP0_EN
Bit Number Bit Name Access Default Bit Number Bit Name Access Default Bit Number Bit Name Access Default	18 PWMB_ACOMP_C_EN R/W 0 15 RESERVED - 0 13 PWMA_DCOMP2_EN R/W 0	17 PWMB_ACOMP_B_E N R/W 0 PWMA_ PWMA_ PWMA_ R/W	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN R/W 0 11 PWMA_DCOMP0_EN R/W 0
Bit Number Bit Name Access Default Bit Number Bit Name Access Default Bit Number Bit Name Access	18 PWMB_ACOMP_C_EN R/W 0 15 RESERVED - 0 13 PWMA_DCOMP2_EN R/W	17 PWMB_ACOMP_B_E N R/W 0 PWMA_ PWMA_ PWMA_DCOMP1_EN R/W 0	16 PWMB_ACOMP_A_EN R/W 0 14 _DCOMP3_EN R/W 0 11 PWMA_DCOMP0_EN R/W

Access	R/W	R/W
Default	0	0

	Bit Number	8	7	6
--	------------	---	---	---

Bit Name	PWMA_FAULT1_EN	PWMA_FAULT0_EN	PWMA_ACOMP_G_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	5	4	3
Bit Name	PWMA_ACOMP_F_EN	PWMA_ACOMP_E_EN	PWMA_ACOMP_D_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	PWMA_ACOMP_C_EN	PWMA_ACOMP_B_EN	PWMA_ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 30: PWMB_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 1 PWM-B Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 29: PWMB_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 1 PWM-B Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 28: PWMB_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 1 PWM-B Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 27: PWMB_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 1 PWM-B Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 26: PWMB_FAULT3_EN – Enables FAULT[3] pin for DPWM 1 PWM-B Fault Detection 0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin disabled for fault detection (E

Bit 25: PWMB_FAULT2_EN – Enables FAULT[2] pin for DPWM 1 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 24: PWMB_FAULT1_EN – Enables FAULT[1] pin for DPWM 1 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 23: PWMB_FAULT0_EN – Enables FAULT[0] pin for DPWM 1 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 22: PWMB_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 1 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 21: PWMB_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 1 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 20: PWMB_ACOMP_E_EN – Enables Analog Comparator E result for DPWM 1 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 19: PWMB_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 1 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 18: PWMB_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 1 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 17: PWMB_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 1 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 16: PWMB_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 1 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 15: RESERVED – Unused bit

Bit 14: PWMA_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 1 PWM-A Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 13: PWMA_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 1 PWM-A Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 12: PWMA_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 1 PWM-A Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 11: PWMA_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 1 PWM-A Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 10: PWMA_FAULT2_EN – Enables FAULT[2] pin for DPWM 1 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 9: PWMA_FAULT2_EN – Enables FAULT[2] pin for DPWM 1 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 8: PWMA_FAULT1_EN – Enables FAULT[1] pin for DPWM 1 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 7: PWMA_FAULT0_EN – Enables FAULT[0] pin for DPWM 1 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 6: PWMA_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 1 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 5: PWMA_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 1 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 4: PWMA_ACOMP_E_EN – Enables Analog Comparator E result for DPWM 1 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 3: PWMA_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 1 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 2: PWMA_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 1 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 1: PWMA_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 1 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 0: PWMA_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 1 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

21.3.15 DPWM 1 IDE Detection Register (DPWM1IDEDET)

Address 0x00130050

Bit Number	6	5	4	3
Bit Name	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN	ACOMP_D_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	2	1	0
Bit Name	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 6: ACOMP_6_EN – Enables Analog Comparator G result for DPWM 1 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default) 1 = Analog Comparator result enabled for IDE detection

Bit 5: ACOMP_5_EN – Enables Analog Comparator F result for DPWM 1 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default) 1 = Analog Comparator result enabled for IDE detection

- Bit 4: ACOMP_4_EN Enables Analog Comparator E result for DPWM 1 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)
 - 1 = Analog Comparator result enabled for IDE detection

Bit 3: ACOMP_3_EN – Enables Analog Comparator D result for DPWM 1 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result enabled for IDE detection

Bit 2: ACOMP_2_EN – Enables Analog Comparator C result for DPWM 1 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

- 1 = Analog Comparator result enabled for IDE detection
- Bit 1: ACOMP_1_EN Enables Analog Comparator B result for DPWM 1 IDE detection

0 = Analog Comparator result disabled for IDE detection (Default)

- 1 = Analog Comparator result enabled for IDE detection
- Bit 0: ACOMP_0_EN Enables Analog Comparator A result for DPWM 1 IDE detection
 - 0 = Analog Comparator result disabled for IDE detection (Default)
 - 1 = Analog Comparator result enabled for IDE detection

21.3.16	DPWM 2 Current Limit Control Register (DPWM2CLIM)
---------	---

Bit Number	15	14	14		13	
Bit Name	ANALOG_PCM_EN	DCOMP3_E	DCOMP3_EN D		COMP2_EN	
Access	R/W	R/W	R/W		R/W	
Default	0	0	0		0	
Bit Number	12	11	10)	9	
Bit Name	DCOMP1_EN	DCOMP0_EN	FAULT	3_EN	FAULT2_EN	
Access	R/W	R/W	R٨	N	R/W	
Default	0	0	0		0	

Bit Number	8	7	6	5	4
Bit Name	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	3	2	1	0
Bit Name	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 15: ANALOG PCM EN - Enables Analog Peak Current detection result for DPWM 2 Current Limit

0 = Analog Peak Current detection disabled for current limit (Default)

1 = Analog Peak Current detection enabled for current limit

Bit 14: DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 2 Current Limit

- 0 = Digital Comparator 3 result disabled for current limit (Default)
- 1 = Digital Comparator 3 result enabled for current limit

Bit 13: DCOMP2 EN – Enables Digital Comparator 2 result for DPWM 2 Current Limit

- 0 = Digital Comparator 2 result disabled for current limit (Default)
- 1 = Digital Comparator 2 result enabled for current limit

Bit 12: DCOMP1 EN – Enables Digital Comparator 1 result for DPWM 2 Current Limit

- 0 = Digital Comparator 1 result disabled for current limit (Default)
- 1 = Digital Comparator 1 result enabled for current limit

Bit 11: DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 2 Current Limit

0 = Digital Comparator 0 result disabled for current limit (Default)

- 1 = Digital Comparator 0 result enabled for current limit
- Bit 10: FAULT3_EN Enables FAULT[3] pin for DPWM 2 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 9: FAULT2_EN Enables FAULT[2] pin for DPWM 2 Current Limit

0 = External Fault pin disabled for current limit (Default)

- 1 = External Fault pin enabled for current limit
- Bit 8: FAULT1_EN Enables FAULT[1] pin for DPWM 2 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 2 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit

- Bit 6: ACOMP_G_EN Enables Analog Comparator G result for DPWM 2 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 5: ACOMP_F_EN Enables Analog Comparator F result for DPWM 2 Current Limit 0 = Analog Comparator result disabled for current limit (Default) 1 = Analog Comparator result enabled for current limit
- Bit 4: ACOMP_E_EN Enables Analog Comparator E result for DPWM 2 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- **Bit 3: ACOMP_D_EN** Enables Analog Comparator D result for DPWM 2 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 2: ACOMP_C_EN Enables Analog Comparator C result for DPWM 2 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 1: ACOMP_B_EN Enables Analog Comparator B result for DPWM 2 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 0: ACOMP_A_EN Enables Analog Comparator A result for DPWM 2 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit

Address 0x00130058

Bit Number	14	13	12	11	10
Bit Name	DCOMP3_EN	DCOMP2_EN	DCOMP1_EN	DCOMP0_EN	FAULT3_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0
Bit Number	9	8	7	6	5
Bit Name	FAULT2_EN	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN
Access	R/W	R/W	R/W	R/W	R/W

21.3.17 DPWM 2 Fault AB Detection Register (DPWM2FLTABDET)

Bit Number	4	3	2	1	0
Bit Name	ACOMP_E_EN	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit 14: DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 2 Fault AB Detection 0 = Digital Comparator 3 disabled for Fault AB detection (Default)

1 = Digital Comparator 3 enabled for Fault AB detection

Bit 13: DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 2 Fault AB Detection

- 0 = Digital Comparator 2 disabled for Fault AB detection (Default)
- 1 = Digital Comparator 2 enabled for Fault AB detection
- Bit 12: DCOMP1_EN Enables Digital Comparator 1 result for DPWM 2 Fault AB Detection

0 = Digital Comparator 1 disabled for Fault AB detection (Default)

- 1 = Digital Comparator 1 enabled for Fault AB detection
- Bit 11: DCOMP0_EN Enables Digital Comparator 0 result for DPWM 2 Fault AB Detection

0 = Digital Comparator 0 disabled for Fault AB detection (Default)

- 1 = Digital Comparator 0 enabled for Fault AB detection
- Bit 10: FAULT3_EN Enables FAULT[3] pin for DPWM 2 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- **Bit 9: FAULT2_EN** Enables FAULT[2] pin for DPWM 2 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- Bit 8: FAULT1_EN Enables FAULT[1] pin for DPWM 2 Fault AB detection
 - 0 = External Fault pin disabled for Fault AB detection (Default)
 - 1 = External Fault pin enabled for Fault AB detection
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 2 Fault AB detection
 - 0 = External Fault pin disabled for Fault AB detection (Default)
 - 1 = External Fault pin enabled for Fault AB detection
- **Bit 6: ACOMP_G_EN** Enables Analog Comparator G result for DPWM 2 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection (Deta
- Bit 5: ACOMP F EN Enables Analog Comparator F result for DPWM 2 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection

Bit 4: ACOMP_E_EN – Enables Analog Comparator E result for DPWM 2 Fault AB detection

- 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 3: ACOMP_D_EN Enables Analog Comparator D result for DPWM 2 Fault AB detection

- 0 = Analog Comparator result disabled for Fault AB detection (Default)
- 1 = Analog Comparator result enabled for Fault AB detection
- Bit 2: ACOMP_C_EN Enables Analog Comparator C result for DPWM 2 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 1: ACOMP_B_EN Enables Analog Comparator B result for DPWM 2 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 0: ACOMP_A_EN Enables Analog Comparator A result for DPWM 2 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection

28

PWMB_DCOMP1_EN

R/W

0

21.3.18 DPWM 2 Fault Detection Register (DPWM2FAULTDET)

Address 0x0013005C			
Bit Number	30	29	
Bit Name	PWMB_DCOMP3_EN	PWMB_DCOMP2_EN	
Access	R/W	R/W	
Default	0	0	
D'I Manuel au	07	00	

Bit Number	27	26	25
Bit Name	PWMB_DCOMP0_EN	PWMB_FAULT3_EN	PWMB_FAULT2_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	24	23	22
Bit Name	PWMB_FAULT1_EN	PWMB_FAULT0_EN	PWMB_ACOMP_G_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	21	20	19
Bit Name	PWMB_ACOMP_F_EN	PWMB_ACOMP_E_EN	PWMB_ACOMP_D_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	18	17	16
Bit Name	PWMB_ACOMP_C_EN	PWMB_ACOMP_B_EN	PWMB_ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	15	14
Bit Name	RESERVED	PWMA_DCOMP3_EN
Access	-	R/W
Default	0	0

Bit Number	13	12	11
Bit Name	PWMA_DCOMP2_EN	PWMA_DCOMP1_EN	PWMA_DCOMP0_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	10	9
Bit Name	PWMA_FAULT3_EN	PWMA_FAULT2_EN
Access	R/W	R/W
Default	0	0

Bit Number	8	7	6
Bit Name	PWMA_FAULT1_EN	PWMA_FAULT0_EN	PWMA_ACOMP_G_EN

Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	5	4	3
Bit Name	PWMA_ACOMP_F_EN	PWMA_ACOMP_E_EN	PWMA_ACOMP_D_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	PWMA_ACOMP_C_EN	PWMA_ACOMP_B_EN	PWMA_ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 30: PWMB_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 2 PWM-B Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 29: PWMB_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 2 PWM-B Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 28: PWMB_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 2 PWM-B Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 27: PWMB_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 2 PWM-B Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 26: PWMB_FAULT3_EN – Enables FAULT[3] pin for DPWM 2 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 25: PWMB_FAULT2_EN – Enables FAULT[2] pin for DPWM 2 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 24: PWMB_FAULT1_EN – Enables FAULT[1] pin for DPWM 2 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 23: PWMB_FAULT0_EN – Enables FAULT[0] pin for DPWM 2 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 22: PWMB_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 2 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 21: PWMB_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 2 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 20: PWMB_ACOMP_**E_EN** – Enables Analog Comparator E result for DPWM 2 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

Bit 19: PWMB_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 2 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 18: PWMB_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 2 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 17: PWMB_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 2 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 16: PWMB_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 2 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 15: RESERVED – Unused bit

Bit 14: PWMA_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 2 PWM-A Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 13: PWMA_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 2 PWM-A Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 12: PWMA_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 2 PWM-A Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 11: PWMA_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 2 PWM-A Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 10: PWMA_FAULT3_EN – Enables FAULT[3] pin for DPWM 2 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 9: PWMA_FAULT2_EN – Enables FAULT[2] pin for DPWM 2 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default) 1 = External Fault pin enabled for fault detection

Bit 8: PWMA_FAULT1_EN – Enables FAULT[1] pin for DPWM 2 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 7: PWMA_FAULT0_EN – Enables FAULT[0] pin for DPWM 2 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 6: PWMA_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 2 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 5: PWMA_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 2 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 4: PWMA_ACOMP_E_EN – Enables Analog Comparator E result for DPWM 2 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 3: PWMA_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 2 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 2: PWMA_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 2 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 1: PWMA_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 2 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 0: PWMA_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 2 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

21.3.19 DPWM 2 IDE Detection Register (DPWM2IDEDET)

Address 0x00130060

Bit Number	6	5	4	3
Bit Name	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN	ACOMP_D_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	2	1	0
Bit Name	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 6: ACOMP_6_EN – Enables Analog Comparator G result for DPWM 2 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default) 1 = Analog Comparator result enabled for IDE detection

Bit 5: ACOMP_5_EN – Enables Analog Comparator F result for DPWM 2 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

- 1 = Analog Comparator result enabled for IDE detection **Bit 4: ACOMP_4_EN** – Enables Analog Comparator E result for DPWM 2 IDE detection
 - 0 = Analog Comparator result disabled for IDE detection (Default)
 - 1 = Analog Comparator result enabled for IDE detection

Bit 3: ACOMP_3_EN – Enables Analog Comparator D result for DPWM 2 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result enabled for IDE detection

Bit 2: ACOMP_2_EN – Enables Analog Comparator C result for DPWM 2 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

- 1 = Analog Comparator result enabled for IDE detection
- Bit 1: ACOMP_1_EN Enables Analog Comparator B result for DPWM 2 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result disabled for IDE detection (Defail 1 = Analog Comparator result enabled for IDE detection

- Bit 0: ACOMP_0_EN Enables Analog Comparator A result for DPWM 2 IDE detection
 - 0 = Analog Comparator result disabled for IDE detection (Default)
 - 1 = Analog Comparator result enabled for IDE detection

21.3.20	DPWM 3 Current Limit Control Register (DPWM3CLIM)
---------	---

Address 0x00130064

Bit Number	15	14
Bit Name	ANALOG_PCM_EN	DCOMP3_EN
Access	R/W	R/W
Default	0	0

Bit Number	13	12	11	10	9
Bit Name	DCOMP2_EN	DCOMP1_EN	DCOMP0_EN	FAULT3_EN	FAULT2_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	8	7	6	5	4
Bit Name	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	3	2	1	0
Bit Name	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 15: ANALOG_PCM_EN – Enables Analog Peak Current detection result for DPWM 2 Current Limit

0 = Analog Peak Current detection disabled for current limit (Default)

1 = Analog Peak Current detection enabled for current limit

- Bit 14: DCOMP3_EN Enables Digital Comparator 3 result for DPWM 3 Current Limit
 - 0 = Digital Comparator 3 result disabled for current limit (Default)
 - 1 = Digital Comparator 3 result enabled for current limit
- Bit 13: DCOMP2_EN Enables Digital Comparator 2 result for DPWM 3 Current Limit
 - 0 = Digital Comparator 2 result disabled for current limit (Default)
 - 1 = Digital Comparator 2 result enabled for current limit
- Bit 12: DCOMP1_EN Enables Digital Comparator 1 result for DPWM 3 Current Limit
 - 0 = Digital Comparator 1 result disabled for current limit (Default)
 - 1 = Digital Comparator 1 result enabled for current limit
- Bit 11: DCOMP0_EN Enables Digital Comparator 0 result for DPWM 3 Current Limit
 - 0 = Digital Comparator 0 result disabled for current limit (Default)
 - 1 = Digital Comparator 0 result enabled for current limit
- Bit 10: FAULT3_EN Enables FAULT[3] pin for DPWM 3 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 9: FAULT2_EN Enables FAULT[2] pin for DPWM 3 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 8: FAULT1_EN Enables FAULT[1] pin for DPWM 3 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 3 Current Limit
 - 0 = External Fault pin disabled for current limit (Default)
 - 1 = External Fault pin enabled for current limit

- Bit 6: ACOMP_G_EN Enables Analog Comparator G result for DPWM 3 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 5: ACOMP_F_EN Enables Analog Comparator F result for DPWM 3 Current Limit 0 = Analog Comparator result disabled for current limit (Default) 1 = Analog Comparator result enabled for current limit
- Bit 4: ACOMP_E_EN Enables Analog Comparator E result for DPWM 3 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- **Bit 3: ACOMP_D_EN** Enables Analog Comparator D result for DPWM 3 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 2: ACOMP_C_EN Enables Analog Comparator C result for DPWM 3 Current Limit 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 1: ACOMP_B_EN Enables Analog Comparator B result for DPWM 3 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit
- Bit 0: ACOMP_A_EN Enables Analog Comparator A result for DPWM 3 Current Limit
 - 0 = Analog Comparator result disabled for current limit (Default)
 - 1 = Analog Comparator result enabled for current limit

Address 0x00130068

Bit Number	14	13	12	11	10
Bit Name	DCOMP3_EN	DCOMP2_EN	DCOMP1_EN	DCOMP0_EN	FAULT3_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0
Bit Number	9	8	7	6	5
Bit Name	FAULT2_EN	FAULT1_EN	FAULT0_EN	ACOMP_G_EN	ACOMP_F_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

21.3.21 DPWM 3 Fault AB Detection Register (DPWM3FLTABDET)

Bit Number	4	3	2	1	0
Bit Name	ACOMP_E_EN	ACOMP_D_EN	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit 14: DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 3 Fault AB Detection 0 = Digital Comparator 3 disabled for Fault AB detection (Default)

1 = Digital Comparator 3 enabled for Fault AB detection

Bit 13: DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 3 Fault AB Detection

- 0 = Digital Comparator 2 disabled for Fault AB detection (Default)
- 1 = Digital Comparator 2 enabled for Fault AB detection
- Bit 12: DCOMP1_EN Enables Digital Comparator 1 result for DPWM 3 Fault AB Detection

0 = Digital Comparator 1 disabled for Fault AB detection (Default)

- 1 = Digital Comparator 1 enabled for Fault AB detection
- Bit 11: DCOMP0_EN Enables Digital Comparator 0 result for DPWM 3 Fault AB Detection

0 = Digital Comparator 0 disabled for Fault AB detection (Default)

- 1 = Digital Comparator 0 enabled for Fault AB detection
- Bit 10: FAULT3_EN Enables FAULT[3] pin for DPWM 3 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- **Bit 9: FAULT2_EN** Enables FAULT[2] pin for DPWM 3 Fault AB detection

0 = External Fault pin disabled for Fault AB detection (Default)

- 1 = External Fault pin enabled for Fault AB detection
- Bit 8: FAULT1_EN Enables FAULT[1] pin for DPWM 3 Fault AB detection
 - 0 = External Fault pin disabled for Fault AB detection (Default)
 - 1 = External Fault pin enabled for Fault AB detection
- Bit 7: FAULT0_EN Enables FAULT[0] pin for DPWM 3 Fault AB detection
 - 0 = External Fault pin disabled for Fault AB detection (Default)
 - 1 = External Fault pin enabled for Fault AB detection
- **Bit 6: ACOMP_G_EN** Enables Analog Comparator G result for DPWM 3 Fault AB detection 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection (Detail 1 = Analog Comparator result enabled for Fault AB detection
- Bit 5: ACOMP F EN Enables Analog Comparator F result for DPWM 3 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 4: ACOMP_E_EN Enables Analog Comparator E result for DPWM 3 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 3: ACOMP_D_EN Enables Analog Comparator D result for DPWM 3 Fault AB detection

- 0 = Analog Comparator result disabled for Fault AB detection (Default)
- 1 = Analog Comparator result enabled for Fault AB detection
- Bit 2: ACOMP_C_EN Enables Analog Comparator C result for DPWM 3 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 1: ACOMP_B_EN Enables Analog Comparator B result for DPWM 3 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection
- Bit 0: ACOMP_A_EN Enables Analog Comparator A result for DPWM 3 Fault AB detection
 - 0 = Analog Comparator result disabled for Fault AB detection (Default)
 - 1 = Analog Comparator result enabled for Fault AB detection

21.3.22 DPWM 3 Fault Detection Register (DPWM3FAULTDET)

Address 0x0013006C					
Bit Number	30000		29	28	
Bit Name	PWMB_DCOMP3_EN R/W	PVV	MB_DCOMP2_EN	PWMB_DCOMP1_EN	
Access			R/W	R/W	
Default	0		0	0	
Bit Number	27	26		25	
Bit Name			MB FAULT3 EN	PWMB FAULT2 EN	
	PWMB_DCOMP0_EN R/W	FVV	R/W		
Access				R/W	
Default	0		0	0	
Bit Number	24		23	22	
Bit Name					
	PWMB_FAULT1_EN	PVV	MB_FAULTO_EN	PWMB_ACOMP_G_EN	
Access	R/W		R/W	R/W	
Default	0	0		0	
Bit Number	21		20	19	
Bit Name	PWMB_ACOMP_F_EN	PVVI	AB_ACOMP_E_EN	PWMB_ACOMP_D_EN	
Access	R/W		R/W	R/W	
Default	0	0		0	
Bit Number	18	17		16	
Bit Name	PWMB_ACOMP_C_EN		B_ACOMP_B_EN	PWMB_ACOMP_A_EN	
Access	R/W		R/W	R/W	
Default	0		0	0	
Delault	0	0		0	
Bit Number	15	14		14	
Bit Name	RESERVED		PW/MA	DCOMP3 EN	
Access	-			R/W	
Default	0			0	
Donual	5			0	
Bit Number	13		12	11	
Bit Name	PWMA DCOMP2 EN	PWI	MA DCOMP1 EN	PWMA_DCOMP0_EN	
Access	R/W		R/W	R/W	
Default	0		0	0	
		1	<u> </u>	~	
Bit Number	10			9	
Bit Name	PWMA FAULT3 EN		PWMA	_FAULT2_EN	
	R/W			R/W	
Access					
Default	0			0	

Bit Number	8	7	6	
Bit Name	PWMA_FAULT1_EN	PWMA_FAULT0_EN	PWMA_ACOMP_G_EN	

Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	5	4	3
Bit Name	PWMA_ACOMP_F_EN	PWMA_ACOMP_E_EN	PWMA_ACOMP_D_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	2	1	0
Bit Name	PWMA_ACOMP_C_EN	PWMA_ACOMP_B_EN	PWMA_ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 30: PWMB_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 3 PWM-B Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 29: PWMB_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 3 PWM-B Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 28: PWMB_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 3 PWM-B Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 27: PWMB_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 3 PWM-B Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 26: PWMB_FAULT3_EN – Enables FAULT[3] pin for DPWM 3 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 25: PWMB_FAULT2_EN – Enables FAULT[2] pin for DPWM 3 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 24: PWMB_FAULT1_EN – Enables FAULT[1] pin for DPWM 3 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 23: PWMB_FAULT0_EN – Enables FAULT[0] pin for DPWM 3 PWM-B Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 22: PWMB_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 3 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 21: PWMB_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 3 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 20: PWMB_ACOMP_E_EN – Enables Analog Comparator E result for DPWM 3 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

Bit 19: PWMB_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 3 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 18: PWMB_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 3 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 17: PWMB_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 3 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 16: PWMB_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 3 PWM-B Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 15: RESERVED – Unused bit

Bit 14: PWMA_DCOMP3_EN – Enables Digital Comparator 3 result for DPWM 3 PWM-A Fault Detection

0 = Digital Comparator 3 disabled for fault detection (Default)

1 = Digital Comparator 3 enabled for fault detection

Bit 13: PWMA_DCOMP2_EN – Enables Digital Comparator 2 result for DPWM 3 PWM-A Fault Detection

0 = Digital Comparator 2 disabled for fault detection (Default)

1 = Digital Comparator 2 enabled for fault detection

Bit 12: PWMA_DCOMP1_EN – Enables Digital Comparator 1 result for DPWM 3 PWM-A Fault Detection

0 = Digital Comparator 1 disabled for fault detection (Default)

1 = Digital Comparator 1 enabled for fault detection

Bit 11: PWMA_DCOMP0_EN – Enables Digital Comparator 0 result for DPWM 3 PWM-A Fault Detection

0 = Digital Comparator 0 disabled for fault detection (Default)

1 = Digital Comparator 0 enabled for fault detection

Bit 10: PWMA_FAULT3_EN – Enables FAULT[3] pin for DPWM 3 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 9: PWMA_FAULT2_EN – Enables FAULT[2] pin for DPWM 3 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default) 1 = External Fault pin enabled for fault detection

Bit 8: PWMA_FAULT1_EN – Enables FAULT[1] pin for DPWM 3 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 7: PWMA_FAULT0_EN - Enables FAULT[0] pin for DPWM 3 PWM-A Fault Detection

0 = External Fault pin disabled for fault detection (Default)

1 = External Fault pin enabled for fault detection

Bit 6: PWMA_ACOMP_G_EN – Enables Analog Comparator G result for DPWM 3 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 5: PWMA_ACOMP_F_EN – Enables Analog Comparator F result for DPWM 3 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 4: PWMA_ACOMP_E_EN – Enables Analog Comparator E result for DPWM 3 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 3: PWMA_ACOMP_D_EN – Enables Analog Comparator D result for DPWM 3 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 2: PWMA_ACOMP_C_EN – Enables Analog Comparator C result for DPWM 3 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 1: PWMA_ACOMP_B_EN – Enables Analog Comparator B result for DPWM 3 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

1 = Analog Comparator result enabled for fault detection

Bit 0: PWMA_ACOMP_A_EN – Enables Analog Comparator A result for DPWM 3 PWM-A Fault detection

0 = Analog Comparator result disabled for fault detection (Default)

21.3.23 DPWM 3 IDE Detection Register (DPWM3IDEDET)

Address 0x00130070

Bit Number	6	5	4	3
Bit Name	ACOMP_G_EN	ACOMP_F_EN	ACOMP_E_EN	ACOMP_D_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	2	1	0
Bit Name	ACOMP_C_EN	ACOMP_B_EN	ACOMP_A_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit 6: ACOMP_6_EN – Enables Analog Comparator G result for DPWM 3 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default) 1 = Analog Comparator result enabled for IDE detection

Bit 5: ACOMP_5_EN – Enables Analog Comparator F result for DPWM 3 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default) 1 = Analog Comparator result enabled for IDE detection

Bit 4: ACOMP_4_EN – Enables Analog Comparator E result for DPWM 3 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result enabled for IDE detection

Bit 3: ACOMP_3_EN – Enables Analog Comparator D result for DPWM 3 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

1 = Analog Comparator result enabled for IDE detection

Bit 2: ACOMP_2_EN – Enables Analog Comparator C result for DPWM 3 IDE detection 0 = Analog Comparator result disabled for IDE detection (Default)

- 1 = Analog Comparator result enabled for IDE detection
- Bit 1: ACOMP_1_EN Enables Analog Comparator B result for DPWM 3 IDE detection

0 = Analog Comparator result disabled for IDE detection (Default)

- 1 = Analog Comparator result enabled for IDE detection
- Bit 0: ACOMP_0_EN Enables Analog Comparator A result for DPWM 3 IDE detection
 - 0 = Analog Comparator result disabled for IDE detection (Default)
 - 1 = Analog Comparator result enabled for IDE detection

21.3.24 HFO Fail Detect Register (HFOFAILDET)

Address 0x00130074

Bit Number	17:1	0
Bit Name	HFO_FAIL_THRESH	HFO_DETECT_EN
Access	R/W	R/W
Default	0_0000_0000_1111_1111	0

Bits 17-1: HFO_FAIL_THRESH – Configures threshold where a clear flag is used to clear a counter in the Low Frequency Oscillator domain (if LFO counter overflows, a reset will be generated), resolution of threshold equals High Frequency Oscillator period **Bit 0:** HFO_DETECT_EN – Enables High Frequency Oscillator Failure Detection logic, device will be reset upon detection of an oscillator failure

0 = Disables High Frequency Oscillator Failure Detection (Default)

1 = Enables High Frequency Oscillator Failure Detection

21.3.25 LFO Fail Detect Register (LFOFAILDET)

Address	0x00130078

Bit Number	6:2	1	0
Bit Name	LFO_FAIL_THRESH	LFO_FAIL_INT_EN	LFO_DETECT_EN
Access	R/W	R/W	R/W
Default	0_0011	0	0

Bits 6-2: LFO_FAIL_THRESH – Configures threshold where a clear flag is used to clear a counter in the High Frequency Oscillator domain (if HFO counter overflows, a reset will be generated), resolution of threshold equals Low Frequency Oscillator period **Bit 1: LFO FAIL INT EN** – Low Frequency Oscillator Fail Interrupt Enable

0 = Disables Interrupt Generation upon LFO Failure Detection (Default)

1 = Enables Interrupt Generation upon LFO Failure Detection

Bit 0: LFO_DETECT_EN – Enables Low Frequency Oscillator Failure Detection logic, interrupt will be generated upon detection of an oscillator failure

0 = Disables Low Frequency Oscillator Failure Detection (Default)

1 = Enables Low Frequency Oscillator Failure Detection

21.3.26 IDE Control Register (IDECTRL)

Address 0013007C

Bit Number	31:24	23:16
Bit Name	DCM_LIMIT_H	DCM_LIMIT_L
Access	R/W	R/W
Default	0000_0000	0000_0000

Bit Number	15:14	13	12:0
Bit Name	RESERVED	DCM_INT_EN	IDE_KD
Access	-	R/W	R/W
Default	00	0	0_0000_0000_0000

Bits 31-24: DCM_LIMIT_H – Value added to 1-Da value to provide hysteresis for exiting DCM mode

Bits 23-16: DCM_LIMIT_L – Value subtracted from 1-Da value to provide hysteresis for entering DCM mode

Bit 15-14: RESERVED – Unused Bits

Bit 13: DCM_INT_EN – Enables Discontinuous Conduction Mode (DCM) interrupt generation based on selected Filter outputs

0 = Disables DCM Detection Interrupt (Default)

1 = Enables DCM Detection Interrupt

Bits 12-0: IDE_KD – 13-bit unsigned value used to calculate the DPWM B Pulse width when configured in IDE Mode. IDE_KD is configured in 4.9 format, with the integer portion of the KD value ranging from 0 to 15 and 9 fractional bits available for the pulse width calculation.

21.4 RTC – Real Time Clock Interface

21.4.1 RTC Control Register (RTCCTRL)

Address FFF7E400

Bit Number	3:2	1	0
Bit Name	CONFIG_INCL	RESERVED	PRESET_EN
Access	R/W	R	R/W
Default	11	0	0

Bit 3-2: CONFIG_INCL – For analog configuration only

- 00 = invalid value
- 01 = invalid value
- 10 = enables external 1.8V clock input on XTAL_IN pin or 3.3V clock input on TCK, depending on value in RTC_CLK_IN_SEL bit in IOMUX register
 - 11 = disable

Bit 1: Reserved

Bit 0: PRESET_EN – Counter preset enable

- 0 = RTC Preset Disabled (Default)
- 1 = RTC Preset Enabled

21.4.2 RTC Counter Register (RTCCOUNT)

Address FFF7E404

Bit Number	27:17	16:12	11:6	5:0
Bit Name	DAYS	HOURS	MINS	SECS
Access	R	R	R	R
Default	0	0	0	0

- Bit 27:17: DAYS
- Current count of days
 Current count of hours

Bit 16:12: HOURS – Current count of hour

Bit 11:6: MINS – Current count of minutes

Bit 5:0: SECS - Current count of seconds

21.4.3 RTC Preset Register (RTCPRESET)

Address FFF7E408

Bit Number	27:17	16:12	11:6	5:0
Bit Name	DAYS	HOURS	MINS	SECS
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 27:17: DAYS – Preset value of days Bit 16:12: HOURS – Preset value of hours Bit 11:6: MINS – Preset value of minutes Bit 5:0: SECS – Preset value of seconds

Address FFF7E40C

Bit Number	3	2	1	0
Bit Name	SEC60	SEC30	SEC10	SEC
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 3: 60SEC – Enable interrupts every 60 seconds

Bit 2: 30SEC – Enable interrupts every 30 seconds Bit 1: 10SEC – Enable interrupts every 10 seconds

- Enable interrupts every 1 second Bit 0: 1SEC

RTC Interrupt Status Register (RTCINTSTAT) 21.4.5

Address FFF7E410

Bit Number	3	2	1	0
Bit Name	SEC60	SEC30	SEC10	SEC
Access	R	R	R	R
Default	0	0	0	0

Bit 3: 60SEC	- Interrupt flag for 60 seconds
Bit 2: 30SEC	- Interrupt flag for 30 seconds
Bit 1: 10SEC	 Interrupt flag for 10 seconds
Bit 0: 1SEC	 Interrupt flag for 1 second

21.4.6 **RTC Prescale Register (RTCPRESCALE)**

Address FFF7E414

Bit Number	9:0
Bit Name	PRESCALE
Access	R/W
Default	0

Bit 9:0: PRESCALE – Prescaler value

Optimal value for 10Mhz XTAL is 0x2CF. Minor adjustments can be made between 0x1CF and 0x3CF.

21.5 SPI – Serial Peripheral Interface

21.5.1 SPI Control Register (SPICTRL)

Address FFF7E800

Bit Number	23:21
Bit Name	CLKRATE
Access	R/W
Default	000

Bit Number	20:16	15:11	10:7	6	5
Bit Name	FRMLEN	RXCNT	TXCNT	WRSTORE	WRSTART
Access	R/W	R/W	R/W	R/W	R/W
Default	00000	00000	0000	0	0

Bit Number	4	3	2	1	0
Bit Name	POL	PHA	INTEN	MODE	SPIEN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit 23:21: CLKRATE – Master clock rate relative to ICLK

- 0 = SCK is ICLK/2 (Default)
- 1 = SCK is ICLK/4 (Default)
- 2 = SCK is ICLK/8 (Default)
- 3 = SCK is ICLK/16 (Default)

Bit 20:16: FRMLEN – Sets the number of messages (TXCNT + RXCNT) to hold CS low.

Bit 15:11: RXCNT – Sets the number bytes to receive after TXCNT bytes have been transmitted

Bit 10:7: TXCNT - Sets the bytes to transmit from the SPITX registers

Bit 6: WRSTORE - Places or discards data received during TXCNT

- 0 = Data received during TXCNT discarded (Default)
- 1 = Data received during TXCNT placed in RXBUF
- Bit 5: WRSTART- Sets which WRREG initiates transfer
 - 0 = Write to SPITX-0 starts message transfer (Default)
 - 1 = Write to SPITX-1 starts message transfer
- Bit 4: POL The polarity bit, together with the phase bit, determines the transfer-mode.
- Bit 3: PHA The phase bit, together with the polarity bit, determines the transfer-mode.
- Bit 2: INTEN Enable interrupt generation to the CPU
 - 0 = Disabled (Default)
 - 1 = Enabled
- Bit 1: MODE Configures SPI mode
 - 0 = Master Mode (Default)
 - 1 = Slave mode
- Bit 0: SPIEN Enable for SPI Module
 - 0 = Disabled (Default)
 - 1 = Enabled

21.5.2 SPI Status Register (SPISTAT)

Address FFF7E804

Bit Number	7:3	2	1	0
Bit Name	FRMCNT	WRCOL	BUSY	SPIF
Access	R	R	R	R
jDefault	0	0	0	0

Bit 12:4: FRMCNT – Indicates the number of messages remaining in the FRMLEN before SCS will go inactive.

Bit 2: WCOL - SPI interface is busy

Bit 1: BUSY – SPI interface is busy

Bit 0: SPIF - SPI Flag, write to clear

21.5.3 SPI Pin Function Register (SPIFUNC)

Address FFF7E808

Bit Number	3	2	1	0
Bit Name	MISO	MOSI	SCS	SCK
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

21.5.4 SPI Pin Direction Register (SPIDIR)

Addross	FFF7E80C
Address	FFF/EOUC

Bit Number	3	2	1	0
Bit Name	MISO	MOSI	SCS	SCK
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

21.5.5 SPI Pin GP Out Register (SPIGPOUT)

Address FFF7E810

Bit Number	3	2	1	0
Bit Name	MISO	MOSI	SCS	SCK
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

21.5.6 SPI Pin GP In Register (SPIGPIN)

Address FFF7E814

Bit Number	3	2	1	0
Bit Name	MISO	MOSI	SCS	SCK
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

21.5.7 SPI TX Buffer Register (SPITX0)

Address FFF7E818

Bit Number	31:0
Bit Name	DATA
Access	R/W
Default	0

21.5.8 SPI TX Buffer Register (SPITX1)

Address FFF7E81C

///////////////////////////////////////	
Bit Number	31:0
Bit Name	DATA
Access	R/W
Default	0

21.5.9 SPI Read Buffer Register (SPIRX0)

Address FFF7E820

Bit Number	31:0
Bit Name	DATA
Access	R
Default	0

21.5.10 SPI Read Buffer Register (SPIRX1)

Address FFF7E824

Bit Number	31:0
Bit Name	DATA
Access	R
Default	0

21.5.11 SPI Read Buffer Register (SPIRX2)

Address FFF7E828

Bit Number	31:0
Bit Name	DATA
Access	R
Default	0

21.5.12 SPI Read Buffer Register (SPIRX3)

Address FFF7E82C

Bit Number	31:0
Bit Name	DATA
Access	R
Default	0

21.6 UART Registers

21.6.1 UART Control Register 0 (UARTCTRL0)

Address FFF7EC00 – UART 0 Control Register 0 Address FFF7ED00 – UART 1 Control Register 0

Bit Number	7	6	5
Bit Name	STOP	PARITY	PARITY_ENA
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	4	3	2:0
Bit Name	SYNC_MODE	ADDR_MODE	DATA_SIZE
Access	R/W	R/W	R/W
Default	0	0	000

Bit 7: STOP – Configures stop bits for each frame

- 0 = One STOP bit included in each frame (Default)
- 1 = Two STOP bits included in each frame
- Bit 6: PARITY Sets odd or even parity
 - 0 = Odd parity (Default)
 - 1 = Even parity
- Bit 5: PARITY_ENA Enables parity transmission
 - 0 = No parity bit included in each frame (Default)
 - 1 = One parity bit included in each frame
- Bit 4: SYNC_MODE Selects between Synchronous mode and Asynchronous mode
 - 0 = Asynchronous (Default)
 - 1 = Synchronous
- Bit 3: ADDR_MODE Selects between Idle and Address Bit Mode
 - 0 = IDLE Line mode with no Address bit (Default)
 - 1 = Address Bit mode with one Address bit

Bits 2-0: DATA_SIZE – Determines the TX and RX byte size

- 000 = No Data (Default)
- 001 = 1 bit of data
- 010 = 2 bits of data
- 011 = 3 bits of data
- 100 = 4 bits of data
- 101 = 5 bits of data
- 110 = 6 bits of data
- 111 = 7 bits of data

21.6.2 UART Receive Status Register (UARTRXST)

Address FFF7EC04 – UART 0 Receive Status Register Address FFF7ED04 – UART 1 Receive Status Register

Bit Number	4	3	2	1	0
Bit Name	RX_IDLE	SLEEP	RX_RDY	RX_WAKE	RX_ENA
Access	R	R/W	R	R	R/W
Default	-	0	-	-	0

Bit 4: RX_IDLE –RX Idle status bit

- 0 = Not in Rx Idle State
- 1 = Rx Idle detected
- Bit 3: SLEEP Sleep Mode Configuration
 - 0 = Sleep Mode disabled (Default)
 - 1 = Sleep Mode enabled
- Bit 2: RX_RDY UART Receiver ready status bit
 - 0 = UART Receiver not ready
 - 1 = UART Receiver ready
- Bit 1: RX_WAKE UART Receiver wake status bit
 - 0 = UART Receiver has not entered wakeup state
 - 1 = UART Receiver has entered wakeup state
- Bit 0: RX_ENA Turns on UART Receiver
 - 0 = UART Receiver disabled (Default)
 - 1 = UART Receiver enabled

21.6.3 UART Transmit Status Register (UARTTXST)

Address FFF7EC08 – UART 0 Transmit Status Register Address FFF7ED08 – UART 1 Transmit Status Register

Bit Number	7	6	5:4
Bit Name	CONTINUE	LOOPBACK	RESERVED
Access	R/W	R/W	-
Default	0	0	00

Bit Number	3	2	1	0
Bit Name	TX_EMPTY	TX_RDY	TX_WAKE	TX_ENA
Access	R	R	R/W	R/W
Default	-	-	0	0

Bit 7: CONTINUE – Configure operation in suspend mode

0 = Stop transmitting on suspend (Default)

1 = Continue transmitting after initiation of suspend

- Bit 6: LOOPBACK Loopback Mode Configuration
 - 0 = Normal mode (Default)
 - 1 = Loopback Mode
- Bit 5-4: RESERVED Unused bits Default to 00
- Bit 3: TX_EMPTY Transmit buffer status
 - $\overline{0}$ = Transmit buffer is not empty
 - 1 = Transmit buffer is empty
- Bit 2: TX_RDY Transmitter Ready
 - 0 = UART Transmitter is not ready
 - 1 = UART Transmitter is ready to transmit data
- Bit 1: TX_WAKE TX wake control bit
 - 0 = UART Transmitter Wakeup disabled (Default)
 - 1 = UART Transmitter Wakeup enabled
- Bit 0: TX_ENA Turns on TX module
 - 0 = UART Transmitter Disabled (Default)
 - 1 = UART Transmitter Enabled

21.6.4 UART Control Register 3 (UARTCTRL3)

Address FFF7EC0C – UART 0 Control Register 3

Address FFF7ED0C – UART 1 Control Register 3

Bit Number 7 6 5 4
--

Bit Name	SW_RESET	POWERDOWN	CLOCK	RX_INT_ENA
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	3	2	1	0
Bit Name	TX_INT_ENA	WAKEUP_INT_ENA	BRKDT_INT_ENA	ERR_INT_ENA
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 7: SW_RESET – Software reset for UART Transmitter/Receiver

0 = Disables Software Reset (Default)

1 = Enables Software Reset

Bit 6: POWERDOWN – Power-down Transmitter/Receiver Control

0 = Disables Power-down mode (Default)

1 = Enables Power-down mode

Bit 5: CLOCK_ENA – UART Clock Select

0 = Selects external clock (Default)

1 = Selects internal clock

Bit 4: RX_INT_ENA – Enables the interrupts from UART Receiver

0 = Disables interrupts from UART Receiver (Default)

1 = Enables interrupts from UART Receiver

Bit 3: TX_INT_ENA – Enables the interrupts from UART Transmitter

- 0 = Disables interrupts from UART Transmitter (Default) 1 = Enables interrupts from UART Transmitter
- Bit 2: WAKEUP_INT_ENA Enables the wakeup interrupt from UART
 - 0 = Disables Wakeup Interrupt (Default)
 - 1 = Enables Wakeup Interrupt

Bit 1: BRKDT_INT_ENA – Enables the Broken Circuit interrupt from UART Receiver

0 = Disables Broken Circuit Interrupt (Default)

1 = Enables Broken Circuit Interrupt

Bit 0: ERR_INT_ENA – Enables UART Receiver Error Interrupt

0 = Disables UART Receiver Error Interrupt (Default)

1 = Enables UART Receiver Error Interrupt

21.6.5 UART Interrupt Status Register (UARTINTST)

Address FFF7EC10 – UART 0 Interrupt Status Register Address FFF7ED10 – UART 1 Interrupt Status Register

Bit Number	7	6	5	4
Bit Name	BUS_BUSY	RESERVED	FRAME_ERR	OVERRUN_ERR
Access	R	-	R	R
Default	-	0	-	-

Bit Number	3	2	1	0
Bit Name	PARITY_ERR	WAKEUP_INT	BRKDT_INT	RX_ERR
Access	R	R	R	R
Default	-	-	-	-

Bit 7: BUS_BUSY – UART Receiver Busy Indicator

0 = UART Receiver ready to accept new frame

1 = UART Receiver currently processing message

Bit 6: RESERVED - Unused bit - Default to 0

Bit 5: FRAME_ERR – UART Receiver Framing Error

- 0 = No framing error found within incoming data message
- 1 = Indicates the incoming data message had a framing error
- Bit 4: OVERRUN_ERR UART Receiver Buffer Overflow
 - 0 = No overflow condition found in receive buffer
 - 1 = Indicates the receive buffer has overflowed
- **Bit 3: PARITY_ERR** UART Receiver Parity Error
 - 0 = No parity error found on the incoming data message

1 = Indicates a parity error found on the incoming data message

- **Bit 2: WAKEUP_INT** UART Receiver Wakeup Interrupt
 - 0 = No Wakeup Interrupt received from UART Receiver
 - 1 = Wakeup Interrupt received from UART Receiver
- **Bit 1: BRKDT_INT** UART Receiver Broken Circuit Interrupt
 - 0 = No Broken Circuit interrupt received from UART Receiver
 - 1 = Indicates a Broken Circuit interrupt received from UART Receiver
- Bit 0: RX_ERR UART Receiver Error
 - 0 = No UART Receiver Errors detected

1 = Frame Error or Overrun error or Parity Error or Broken Circuit error received from UART Receiver

21.6.6 UART Baud Divisor High Byte Register (UARTHBAUD)

Address FFF7EC14 – UART 0 Baud Divisor High Byte Register Address FFF7ED14 – UART 1 Baud Divisor High Byte Register

Bit Number	7:0
Bit Name	BAUD_DIV_H
Access	R/W
Default	0000_0000

Bits 7-0: BAUD_DIV_H - Sets the high byte of the 24 bit baud rate selector

21.6.7 UART Baud Divisor Middle Byte Register (UARTMBAUD)

Address FFF7EC18 – UART 0 Baud Divisor Middle Byte Register Address FFF7ED18 – UART 1 Baud Divisor Middle Byte Register

Bit Number	7:0
Bit Name	BAUD_DIV_M
Access	R/W
Default	0000_0000

Bits 7-0: BAUD_DIV_M - Sets the middle byte of the 24 bit baud rate selector

21.6.8 UART Baud Divisor Low Byte Register (UARTLBAUD)

Address FFF7EC1C – UART 0 Baud Divisor Low Byte Register Address FFF7ED1C – UART 1 Baud Divisor Low Byte Register

Bit Number	7:0	
Bit Name	BAUD_DIV_L	
Access	R/W	
Default	0000_0000	

Bits 7-0: BAUD_DIV_L - Sets the low byte of the 24 bit baud rate selector

21.6.9 UART Receive Buffer (UARTRXBUF)

Address FFF7EC24 – UART 0 Receive Buffer Address FFF7ED24 – UART 1 Receive Buffer

Bit Number	7:0
Bit Name	RXDAT
Access	R
Default	-

Bits 7-0: RXDAT - Contains the last data byte received from the UART Receiver

21.6.10 UART Transmit Buffer (UARTTXBUF)

Address FFF7EC28 – UART 0 Transmit Buffer Address FFF7ED28 – UART 1 Transmit Buffer

Bit Number	7:0
Bit Name	TXDAT
Access	R/W
Default	0000_0000

Bits 7-0: TXDAT – Contains the data byte to be transmitted by the UART Transmitter

21.6.11 UART I/O Control Register (UARTIOCTRLSCLK, UARTIOCTRLRX, UARTIOCTRLTX)

Address FFF7EC2C – UART 0 I/O (SCLK) Control Register Address FFF7ED2C – UART 1 I/O (SCLK) Control Register Address FFF7EC30 – UART 0 I/O (RX) Control Register Address FFF7ED30 – UART 1 I/O (RX) Control Register Address FFF7EC34 – UART 0 I/O (TX) Control Register Address FFF7ED34 – UART 1 I/O (TX) Control Register

Bit Number	3	2	1	0
Bit Name	DATA_IN	DATA_OUT	IO_FUNC	IO_DIR
Access	R	R/W	R/W	R/W
Default	-	0	0	0

Bit 3: DATA_IN – Data received from pin when configured as GPIO

Bit 2: DATA_OUT - Data transmitted to pin when configured as GPIO

Bit 1: IO_FUNC - Selects the function for UART pins

0 = GPIO mode (Default)

1 = Baud Clock for SCLK, Normal operation for SCI_RX/SCI_TX

Bit 0: IO_DIR – Pin direction when configured as GPIO

0 = Input (Default)

1 = Output

21.7 ADC Registers

21.7.1 ADC Control Register (ADCCTRL)

Address 00140000

Bit Number	31:24	23	22
Bit Name	EXT_TRIG_DLY	EXT_TRIG_GPIO_VAL	EXT_TRIG_GPIO_DIR
Access	R/W	R/W	R/W
Default	0000_0000	0	0

Bit Number	21	20	19:16	15:13
Bit Name	EXT_TRIG_GPIO_EN	EXT_TRIG_EN	EXT_TRIG_SEL	SAMPLING_SEL
Access	R/W	R/W	R/W	R/W
Default	0	0	0000	000

Bit Number	12	11	10:8	7:4
Bit Name	ADC_SEL_REF	ADC_ROUND	BYPASS_EN	MAX_CONV
Access	R/W	R/W	R/W	R/W
Default	0	0	111	0000

Bit Number	3	2	1	0
Bit Name	SINGLE_SWEEP	SW_START	ADC_INT_EN	ADC_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bits 31-24: EXT_TRIG_DLY – 8-bit External ADC Trigger Delay configuration, LSB bit resolution equals period of ADC Clock (High Frequency Oscillator Frequency divided by 4) **Bit 23: EXT_TRIG_GPIO_VAL** – Output value of ADC_EXT_TRIG pin when configured in GPIO mode

0 = ADC_EXT_TRIG pin driven low (Default)

 $1 = ADC_EXT_TRIG pin driven high$

Bit 22: EXT_TRIG_GPIO_DIR – Direction of ADC_EXT_TRIG pin when configured in GPIO mode

0 = ADC_EXT_TRIG pin configured as input (Default)

1 = ADC_EXT_TRIG pin configured as output

Bit 21: EXT_TRIG_GPIO_EN - Configuration of ADC_EXT_TRIG pin

0 = ADC_EXT_TRIG pin configured in functional mode (Default)

1 = ADC_EXT_TRIG pin configured in GPIO mode

Bit 20: EXT_TRIG_EN – External Trigger Enable, conversions are started using the external trigger as selectable by the **EXT_TRIG_SEL** bits.

0 = Disable External Trigger capability (Default)

1 = Enable External Trigger capability

Bits 19-16: EXT_TRIG_SEL – Selects which external trigger can start a conversion loop.

0 = HS Loop1 Event 1 (DPWMA Low Resolution Edge) (Default)

1 = HS Loop1 Event 3 (DPWMB Low Resolution Edge)

2 = HS Loop2 Event 1 (DPWMA Low Resolution Edge)

3 = HS Loop2 Event 3 (DPWMB Low Resolution Edge)

4 = HS Loop3 Event 1 (DPWMA Low Resolution Edge)

5 = HS Loop3 Event 3 (DPWMB Low Resolution Edge)

- 6 = HS Loop4 Event 1 (DPWMA Low Resolution Edge)
- 7 = HS Loop4 Event 3 (DPWMB Low Resolution Edge)
- 8 = ADC_EXT_TRIG pin
- 9 = Analog Comparator A Output
- A = Analog Comparator B Output
- B = Analog Comparator C Output
- C = Analog Comparator D Output
- D = Analog Comparator E Output
- E = Analog Comparator F Output
- F = Analog Comparator G Output

Bits 15-13: SAMPLING_SEL - Defines ADC sampling and hold timing setup, refer to ADC Specification for details on timing options

- 111 = 1008KS/s
- 110 = 268KS/s (Default)
- 101 = 1008KS/s
- 100 = 538KS/s
- 011 = 504KS/s
- 010 = 744KS/s
- 001 = 744KS/s
- 000 = 268 KS/s
- Bit 12: ADC_SEL_REF ADC Voltage Reference Select
 - 0 = Selects Internal ADC voltage reference (Default)
 - 1 = Selects AVDD as ADC voltage reference

Bit 11: ADC_ROUND - Enables rounding of ADC Result to 10 bits

- 0 = ADC Results are not rounded (Default)
- 1 = ADC Results are rounded to 10 most significant bits

Bits 10-8: BYPASS_EN – Enables dual sample/hold for specific channels. There are only four valid settings:

- 011 = Dual Sample/Hold enabling on Channel 2
- 101 = Dual Sample/Hold enabling on Channel 1
- 110 = Dual Sample/Hold enabling on Channel 0
- 111 = Dual Sample/Hold Disabled (Default)
- Bits 7-4: MAX_CONV Maximum number of conversion done in one conversion loop
 - 0x0 = 1 conversion selection converted in the loop (Default)
 - 0xF = All 16 conversion selections converted in the loop
- Bit 3: SINGLE_SWEEP ADC Conversion Mode
 - 0 = Continuous conversion loop runs (Default)
 - 1 = Single conversion loop run

Bit 2: SW_START - Firmware ADC Conversion Start, bit will be cleared automatically by hardware at end of ADC conversion

- 0 = Conversions not initiated by firmware (Default)
 - 1 = Initiate an ADC conversion loop
- Bit 1: ADC_INT_EN End-of-conversion Interrupt Enable
 - 0 = Disable End-of-Conversion Interrupt (Default)
 - 1 = Enable End-of-Conversion Interrupt
 - r = Enable End-of-Conversion Interrup
- Bit 0: ADC_EN ADC12 Enable Control
 - 0 = Disables ADC Immediately (Default)
 - 1 = Enables ADC

21.7.2 ADC Status Register (ADCSTAT)

Address 00140004

Bit Number	6:3	2	1	0
Bit Name	CURRENT_CH	ADC_EXT_TRIG_VAL	ADC_INT_RAW	ADC_INT
Access	R	R	R	R

í.						
	Default	-	-	-	-	

Bits 6-3: CURRENT_CH – Register shows the currently converting channel **Bit 2: ADC_EXT_TRIG_VAL** – ADC_EXT_TRIG pin value

- 0 = ADC_EXT_TRIG pin driven low
 - 1 = ADC = XT TRIG pin driven how1 = ADC EXT TRIG pin driven high
- Bit 1: ADC_INT_RAW End-of-conversion interrupt flag, raw version
 - 0 = No End-of-conversion interrupt detected
 - 1 = End-of-conversion interrupt found
- Bit 0: ADC_INT End-of-conversion interrupt flag, latched version
 - 0 = No End-of-conversion interrupt detected
 - 1 = End-of-conversion interrupt found

21.7.3 ADC Test Control Register (ADCTSTCTRL)

Address 00140008

Bit Number	1	0
Bit Name	ADC_SH_BUFF ER_EN	Reserved
Access	R/W	
Default	0	0

Bit 1: ADC_SH_BUFFER_EN - ADC Sample and Hold Buffer Enable

0 = Disables ADC Sample and Hold Buffer for use without Sample and Hold(Default)

1 = Enables ADC Sample and Hold Buffer

Bit 0: RESERVED

Note: Other bits in this register are used for device test. All the other bits should be kept at a zero value during normal operation

21.7.4 ADC Sequence Select Register 0 (ADCSEQSEL0)

Address 0014000C

Bit Number	28	27:24	23:21	20	19:16
Bit Name	SEQ3_SH	SEQ3	RESERVED	SEQ2_SH	SEQ2
Access	R/W	R/W	-	R/W	R/W
Default	0	0000	000	0	0000

Bit Number	15:13	12	11:8	7:5	4	3:0
Bit Name	RESERVED	SEQ1_SH	SEQ1	RESERVED	SEQ0_SH	SEQ0
Access	-	R/W	R/W	-	R/W	R/W
Default	000	0	0000	000	0	0000

Bit 28: SEQ3_SH – Dual channel sequence select

- 0 = Not selected for Dual Sampling (Default)
- 1 = Selected for Dual Sampling
- Bits 27-24: SEQ3 Channel to be converted fourth
 - 0000 = Channel 0 selected (Default)
 - 0001 = Channel 1 selected

1111 = Temp Sensor selected

Bits 23-21: RESERVED – Unused bits Bit 20: SEQ2 SH – Dual channel sequence select

- 0 = Not selected for Dual Sampling (Default) 1 = Selected for Dual Sampling Bits 19-16: SEQ2 - Channel to be converted third 0000 = Channel 0 selected (Default) 0001 = Channel 1 selected 1111 = Temp Sensor selected Bits 15-13: RESERVED - Unused bits Bit 12: SEQ1_SH - Dual channel sequence select 0 = Not selected for Dual Sampling (Default) 1 = Selected for Dual Sampling Bits 11-8: SEQ1 - Channel to be converted second 0000 = Channel 0 selected (Default) 0001 = Channel 1 selected 1111 = Temp Sensor selected Bits 7-5: RESERVED – Unused bits Bit 4: SEQ0 SH – Dual channel sequence select 0 = Not selected for Dual Sampling (Default) 1 = Selected for Dual Sampling
- Bits 3-0: SEQ0 Channel to be converted first 0000 = Channel 0 selected (Default
 - 0001 = Channel 1 selected

1111 = Temp Sensor selected

21.7.5 ADC Sequence Select Register 1 (ADCSEQSEL1)

Address	00140	010

Bit Number	28	27:24	23:21	20	19:16
Bit Name	SEQ7_SH	SEQ7	RESERVED	SEQ6_SH	SEQ6
Access	R/W	R/W	-	R/W	R/W
Default	0	0000	000	0	0000

Bit Number	15:13	12	11:8	7:5	4	3:0
Bit Name	RESERVED	SEQ5_SH	SEQ5	RESERVED	SEQ4_SH	SEQ4
Access	-	R/W	R/W	-	R/W	R/W
Default	000	0	0000	000	0	0000

Bit 28 SEQ7_SH – Dual channel sequence select

- 0 = Not selected for Dual Sampling (Default)
- 1 = Selected for Dual Sampling
- Bits 27-24: SEQ7- Channel to be converted eighth
 - 0000 = Channel 0 selected (Default)
 - 0001 = Channel 1 selected

1111 = Temp Sensor selected

Bits 23-21: RESERVED - Unused bits

- Bit 20: SEQ6_SH Dual channel sequence select
 - 0 = Not selected for Dual Sampling (Default)
 - 1 = Selected for Dual Sampling
- Bits 19-16: SEQ6 Channel to be converted seventh
 - 0000 = Channel 0 selected (Default)
 - 0001 = Channel 1 selected

1111 = Temp Sensor selected

Bits 15-13: RESERVED – Unused bits

.

- **Bit 12: SEQ5_SH** Dual channel sequence select 0 = Not selected for Dual Sampling (Default)
 - 1 = Selected for Dual Sampling (Deta
- Bits 11-8: SEQ5 Channel to be converted sixth
 - 0000 = Channel 0 selected (Default)
 - 0000 = Channel 1 selected
 -

1111 = Temp Sensor selected

Bits 7-5: RESERVED - Unused bits

Bit 4: SEQ4_SH – Dual channel sequence select

0 = Not selected for Dual Sampling (Default)

1 = Selected for Dual Sampling

Bits 3-0: SEQ4 - Channel to be converted fifth

0000 = Channel 0 selected (Default)

0001 = Channel 1 selected

1111 = Temp Sensor selected

21.7.6 ADC Sequence Select Register 2 (ADCSEQSEL2)

Bit Number	28	27:24	23:21	20	19:16
Bit Name	SEQ11_SH	SEQ11	RESERVED	SEQ10_SH	SEQ10
Access	R/W	R/W	-	R/W	R/W
Default	0	0000	000	0	0000

Bit Number	15:13	12	11:8	7:5	4	3:0
Bit Name	RESERVED	SEQ9_SH	SEQ9	RESERVED	SEQ8_SH	SEQ8
Access	-	R/W	R/W	-	R/W	R/W
Default	000	0	0000	000	0	00000

Bit 28: SEQ11_SH – Dual channel sequence select

0 = Not selected for Dual Sampling (Default)

1 = Selected for Dual Sampling

Bits 27-24: SEQ11 - Channel to be converted twelth

- 0000 = Channel 0 selected (Default)
- 0001 = Channel 1 selected

1111 = Temp Sensor selected

Bits 23-21: RESERVED - Unused bits

- Bit 20: SEQ10_SH Dual channel sequence select
 - 0 = Not selected for Dual Sampling (Default)
 - 1 = Selected for Dual Sampling

Bits 19-16: SEQ10 - Channel to be converted eleventh

- 0000 = Channel 0 selected (Default)
 - 0001 = Channel 1 selected

..... 1111 = Temp Sensor selected

Bits 15-13: RESERVED – Unused bits

Bit 12: SEQ9_SH – Dual channel sequence select

0 = Not selected for Dual Sampling (Default)

- 1 = Selected for Dual Sampling
- Bits 11-8: SEQ9 Channel to be converted tenth
 - 0000 = Channel 0 selected (Default)
 - 0001 = Channel 1 selected
 -
 - 1111 = Temp Sensor selected
- Bits 7-5: RESERVED Unused bits
- Bit 4: SEQ8_SH Dual channel sequence select
 - 0 = Not selected for Dual Sampling (Default)
 - 1 = Selected for Dual Sampling
- Bits 3-0: SEQ8 Channel to be converted ninth
 - 0000 = Channel 0 selected (Default)
 - 0001 = Channel 1 selected

1111 = Temp Sensor selected

21.7.7 ADC Sequence Select Register 3 (ADCSEQSEL3)

Address 00140018

Bit Number	28	27:24	23:21	20	19:16
Bit Name	SEQ15_SH	SEQ15	RESERVED	SEQ14_SH	SEQ14
Access	R/W	R/W	-	R/W	R/W
Default	0	0000	000	0	0000

Bit Number	15:13	12	11:8	7:5	4	3:0
Bit Name	RESERVED	SEQ13_SH	SEQ13	RESERVED	SEQ12_SH	SEQ12
Access	-	R/W	R/W	-	R/W	R/W
Default	000	0	0000	000	0	0000

Bit 28: SEQ15_SH – Dual channel sequence select

0 = Not selected for Dual Sampling (Default)

1 = Selected for Dual Sampling

Bits 27-24: SEQ15 - Channel to be converted sixteenth

0000 = Channel 0 selected (Default)

0001 = Channel 1 selected

...... 1111 = Temp Sensor selected

Bits 23-21: RESERVED - Unused bits

- Bit 20: SEQ14_SH Dual channel sequence select
 - 0 = Not selected for Dual Sampling (Default)
 - 1 = Selected for Dual Sampling
- Bits 19-16: SEQ14 Channel to be converted fifteenth
 - 0000 = Channel 0 selected (Default)
 - 0001 = Channel 1 selected
 -

1111 = Temp Sensor selected

Bits 15-13: RESERVED – Unused bits

- Bit 12: SEQ13_SH Dual channel sequence select
 - 0 = Not selected for Dual Sampling (Default)
 - 1 = Selected for Dual Sampling
- Bits 11-8: SEQ13 Channel to be converted fourteenth
 - 0000 = Channel 0 selected (Default)

0001 = Channel 1 selected

.....

1111 = Temp Sensor selected Bits 7-5: RESERVED – Unused bits Bit 4: SEQ12_SH – Dual channel sequence select 0 = Not selected for Dual Sampling (Default) 1 = Selected for Dual Sampling Bits 3-0: SEQ12 - Channel to be converted thirteenth 0000 = Channel 0 selected (Default) 0001 = Channel 1 selected

1111 = Temp Sensor selected

.

21.7.8 ADC Result Registers 0-15 (ADCRESULTx, x=0:15)

Address 0014001C – ADC Result Register 0 Address 00140020 – ADC Result Register 1 Address 00140024 – ADC Result Register 2 Address 00140028 – ADC Result Register 3 Address 0014002C – ADC Result Register 4 Address 00140030 – ADC Result Register 5 Address 00140034 – ADC Result Register 6 Address 00140038 – ADC Result Register 7 Address 0014003C – ADC Result Register 8 Address 00140040 – ADC Result Register 9 Address 00140044 – ADC Result Register 10 Address 00140048 – ADC Result Register 11 Address 0014004C – ADC Result Register 12 Address 00140050 – ADC Result Register 13 Address 00140054 – ADC Result Register 14 Address 00140058 – ADC Result Register 15 **Bit Number** 11:0

Bit Name	RESULT
Access	R
Default	-

Bits 11-0: RESULT – Each sequence has a dedicated result register.

21.7.9 ADC Averaged Result Registers 0-5 (ADCAVGRESULTx, x=0:15)

Address 0014005C – ADC Averaged Result Register 0 Address 00140060 – ADC Averaged Result Register 1 Address 00140064 – ADC Averaged Result Register 2 Address 00140068 – ADC Averaged Result Register 3 Address 0014006C – ADC Averaged Result Register 4 Address 00140070 – ADC Averaged Result Register 5

Bit Number	11:0
Bit Name	RESULT
Access	R
Default	-

Bits 11-0: RESULT – First 6 ADC Results have an averaged result

21.7.10 ADC Digital Compare Limits Register 0-5 (ADCCOMPLIMx, x=0:5)

Address 00140074 – ADC Digital Compare Limits Register 0 Address 00140078 – ADC Digital Compare Limits Register 1 Address 0014007C – ADC Digital Compare Limits Register 2 Address 00140080 – ADC Digital Compare Limits Register 3 Address 00140084 – ADC Digital Compare Limits Register 4 Address 00140088 – ADC Digital Compare Limits Register 5

Bit Number	27:16	15:12	11:0
Bit Name	UPPER_LIMIT	RESERVED	LOWER_LIMIT
Access	R/W	-	R/W
Default	1111_1111_1111	0000	0000_0000_0000

Bits 27-16: UPPER_LIMIT – Configures the upper limit value. If the ADC conversion selected is equal or greater than the limit, the Digital Compare Interrupt Flag is set (bit 22 of ADC Control Register 1). Results of comparison can be read from the ADC Digital Compare Results Register (see Section 4.12).

Bits 15-12: RESERVED – Unused bits – Default to 0000

Bits 11-0: LOWER_LIMIT – Configures the lower limit value. If the ADC conversion selected is equal or less than the limit, the Digital Compare Interrupt Flag is set (bit 22 of ADC Control Register 1). Results of comparison can be read from the ADC Digital Compare Results Register (see Section 4.12).

21.7.11	ADC Digital Compare Enable Register (A	DCCOMPEN)
---------	--	-----------

Address 00140	008C							
Bit Number	27			26	25			24
Bit Name	COMP5_UP_IN	IT_EN	COMP	5_LO_INT_EN	COMP4_UP_INT_EN		COMP4_LO_INT_EN	
Access	R/W			R/W	R/W			R/W
Default	0			0	0			0
							-	
Bit Number	23			22	21			20
Bit Name	COMP3_UP_IN	IT_EN	COMP	3_LO_INT_EN	COMP2_UP_II	NT_EN	COMP	2_LO_INT_EN
Access	R/W			R/W	R/W			R/W
Default	0			0	0			0
Bit Number	19			18	17			16
Bit Name	COMP1_UP_IN	IT_EN	COMP1_LO_INT_EN		COMP0_UP_INT_EN		COMP0_LO_INT_EN	
Access	R/W		R/W		R/W		R/W	
Default	0		0		0		0	
Bit Number	15:14			13	12	12 11		11
Bit Name	RESERVE	D	COMF	95_DATA_SEL	COMP4_DAT/	A_SEL	COMF	P3_DATA_SEL
Access	-			R/W	R/W			R/W
Default	00		0		0		0	
Bit Number	10			9	8		7:6	
Bit Name	COMP2_DATA	SEL	COMP1_DATA_SEL COMP0_DATA_SEL		R	ESERVED		
Access	R/W			R/W	R/W		-	
Default	0			0	0			00
Bit Number	5	4	1	3	2		1	0
Bit Name	COMP5_EN	COMF	P4_EN	COMP3_EN	COMP2_EN	COMF	P1_EN	COMP0_EN

R/W

0

R/W

0

Bit 27: COMP5_UP_INT_EN – Digital Comparator 5 Upper Limit Interrupt Enable 0 = Interrupt generation disabled on result above upper limit (Default)

1 = Interrupt generation enabled on result above upper limit

R/W

0

Bit 26: COMP5_LO_INT_EN – Digital Comparator 5 Lower Limit Interrupt Enable 0 = Interrupt generation disabled on result below lower limit (Default)

- 1 = Interrupt generation enabled on result below lower limit
- Bit 25: COMP4_UP_INT_EN Digital Comparator 4 Upper Limit Interrupt Enable
 - 0 = Interrupt generation disabled on result above upper limit (Default) 1 = Interrupt generation enabled on result above upper limit
 - COMPA LO INT EN Digital Comparator 4 Lower Limit Interrupt
- Bit 24: COMP4_LO_INT_EN Digital Comparator 4 Lower Limit Interrupt Enable
 - 0 = Interrupt generation disabled on result below lower limit (Default)
 - 1 = Interrupt generation enabled on result below lower limit
- Bit 23: COMP3_UP_INT_EN Digital Comparator 3 Upper Limit Interrupt Enable
 - 0 = Interrupt generation disabled on result above upper limit (Default)
 - 1 = Interrupt generation enabled on result above upper limit

R/W

0

R/W

0

Access

Default

R/W

0

Bit 22: COMP3_LO_INT_EN – Digital Comparator 3 Lower Limit Interrupt Enable 0 = Interrupt generation disabled on result below lower limit (Default) 1 = Interrupt generation enabled on result below lower limit Bit 21: COMP2 UP INT EN – Digital Comparator 2 Upper Limit Interrupt Enable 0 = Interrupt generation disabled on result above upper limit (Default) 1 = Interrupt generation enabled on result above upper limit Bit 20: COMP2 LO INT EN – Digital Comparator 2 Lower Limit Interrupt Enable 0 = Interrupt generation disabled on result below lower limit (Default) 1 = Interrupt generation enabled on result below lower limit Bit 19: COMP1_UP_INT_EN – Digital Comparator 1 Upper Limit Interrupt Enable 0 = Interrupt generation disabled on result above upper limit (Default) 1 = Interrupt generation enabled on result above upper limit Bit 18: COMP1 LO INT EN – Digital Comparator 1 Lower Limit Interrupt Enable 0 = Interrupt generation disabled on result below lower limit (Default) 1 = Interrupt generation enabled on result below lower limit Bit 17: COMP0 UP INT EN – Digital Comparator 0 Upper Limit Interrupt Enable 0 = Interrupt generation disabled on result above upper limit (Default) 1 = Interrupt generation enabled on result above upper limit Bit 16: COMP0 LO INT EN – Digital Comparator 0 Lower Limit Interrupt Enable 0 = Interrupt generation disabled on result below lower limit (Default) 1 = Interrupt generation enabled on result below lower limit Bits 15-14: RESERVED - Unused bits Bit 13: COMP5_DATA_SEL - Digital Comparator 5 Data Select 0 = Raw ADC Result 5 used for comparison (Default) 1 = Averaged ADC Result 5 used for comparison Bit 12: COMP4_DATA_SEL - Digital Comparator 4 Data Select 0 = Raw ADC Result 4 used for comparison (Default) 1 = Averaged ADC Result 4 used for comparison Bit 11: COMP3_DATA_SEL – Digital Comparator 3 Data Select 0 = Raw ADC Result 3 used for comparison (Default) 1 = Averaged ADC Result 3 used for comparison Bit 10: COMP2_DATA_SEL - Digital Comparator 2 Data Select 0 = Raw ADC Result 2 used for comparison (Default) 1 = Averaged ADC Result 2 used for comparison Bit 9: COMP1 DATA SEL – Digital Comparator 1 Data Select 0 = Raw ADC Result 1 used for comparison (Default) 1 = Averaged ADC Result 1 used for comparison Bit 8: COMP0 DATA SEL – Digital Comparator 0 Data Select 0 = Raw ADC Result 0 used for comparison (Default) 1 = Averaged ADC Result 0 used for comparison Bits 7-6: RESERVED - Unused bits Bit 5: COMP5 EN – Digital Comparator 5 Enable 0 = Comparator Disabled (Default) 1 = Comparator Enabled Bit 4: COMP4 EN – Digital Comparator 4 Enable 0 = Comparator Disabled (Default) 1 = Comparator Enabled Bit 3: COMP3 EN – Digital Comparator 3 Enable 0 = Comparator Disabled (Default) 1 = Comparator Enabled Bit 2: COMP2 EN – Digital Comparator 2 Enable 0 = Comparator Disabled (Default) 1 = Comparator Enabled Bit 1: COMP1_EN – Digital Comparator 1 Enable 0 = Comparator Disabled (Default)

1 = Digital Comparator 1 Enabled

Bit 0: COMP0_EN – Digital Comparator 0 Enable 0 = Comparator Disabled (Default) 1 = Comparator Enabled

21.7.12 ADC Digital Compare Results Register (ADCCOMPRESULT)

Bit Number	27	26	25	24
Bit Name	DCOMP5_UP_RAW	DCOMP5_LO_RAW	DCOMP4_UP_RAW	DCOMP4_LO_RAW
Access	R	R	R	R
Default	-	-	-	-
Bit Number	23	22	21	20
Bit Name	DCOMP3_UP_RAW	DCOMP3_LO_RAW	DCOMP2_UP_RAW	DCOMP2_LO_RAW
Access	R	R	R	R
Default	-	-	-	-
Bit Number	19	18	17	16
Bit Name	DCOMP1_UP_RAW	DCOMP1_LO_RAW	DCOMP0_UP_RAW	DCOMP0_LO_RAW
Access	R	R	R	R
Default	-	-	-	-
Bit Number	15:12	11	10	9
Bit Name	RESERVED	DCOMP5_UP_INT	DCOMP5_LO_INT	DCOMP4_UP_INT
Access	-	R	R	R
Default	0000	-	-	-
Bit Number	8	7	6	5
Bit Name	DCOMP4_LO_INT	DCOMP3_UP_INT	DCOMP3_LO_INT	DCOMP2_UP_INT
Access	R	R	R	R
Default	-	-	-	-
Bit Number	4	3	2	1

Dit Number	7	3	2	
Bit Name	DCOMP2_LO_INT	DCOMP1_UP_INT	DCOMP1_LO_INT	DCOMP0_UP_INT
Access	R	R	R	R
Default	-	-	-	-

Bit Number	0
Bit Name	DCOMP0_LO_INT
Access	R
Default	-

Bit 27: DCOMP5_UP_RAW – Digital Comparator 5 Upper Limit Raw Result

- 0 =Limit not exceeded
- 1 = Limit exceeded
- Bit 26: DCOMP5_LO_RAW Digital Comparator 5 Lower Limit Raw Result 0 = Limit not exceeded
 - 1 = Limit exceeded

Bit 25: DCOMP4_UP_RAW – Digital Comparator 4 Upper Limit Raw Result

- 0 = Limit not exceeded
- 1 = Limit exceeded

Bit 24: DCOMP4_LO_RAW – Digital Comparator 4 Lower Limit Raw Result 0 = Limit not exceeded
1 = Limit exceeded
Bit 23: DCOMP3_UP_RAW – Digital Comparator 3 Upper Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bit 22: DCOMP3_LO_RAW – Digital Comparator 3 Lower Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bit 21: DCOMP2_UP_RAW – Digital Comparator 2 Upper Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bit 20: DCOMP2_LO_RAW – Digital Comparator 2 Lower Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bit 19: DCOMP1_UP_RAW – Digital Comparator 1 Upper Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bit 18: DCOMP1_LO_RAW – Digital Comparator 1 Lower Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bit 17: DCOMP0_UP_RAW – Digital Comparator 0 Upper Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bit 16: DCOMP0_LO_RAW – Digital Comparator 0 Lower Limit Raw Result
0 = Limit not exceeded
1 = Limit exceeded
Bits 15-12: RESERVED – Unused bits
Bit 11: DCOMP5_UP_INT - Digital Comparator 5 Upper Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 10: DCOMP5_LO_INT - Digital Comparator 5 Lower Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 9: DCOMP4_UP_INT – Digital Comparator 4 Upper Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 8: DCOMP4_LO_INT – Digital Comparator 4 Lower Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 7: DCOMP3_UP_INT – Digital Comparator 3 Upper Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 6: DCOMP3_LO_INT – Digital Comparator 3 Lower Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 5: DCOMP2_UP_INT – Digital Comparator 2 Upper Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 4: DCOMP2_LO_INT – Digital Comparator 2 Lower Limit Interrupt Result, cleared on read
0 = Limit not exceeded
1 = Limit exceeded
Bit 3: DCOMP1_UP_INT – Digital Comparator 1 Upper Limit Interrupt Result, cleared on read
0 = Limit not exceeded

1 = Limit exceeded

Bit 2: DCOMP1_LO_INT - Digital Comparator 1 Lower Limit Interrupt Result, cleared on read

- 0 = Limit not exceeded
- 1 = Limit exceeded
- Bit 1: DCOMP0_UP_INT Digital Comparator 0 Upper Limit Interrupt Result, cleared on read 0 = Limit not exceeded
 - 1 = Limit exceeded
- Bit 0: DCOMP0_LO_INT Digital Comparator 0 Lower Limit Interrupt Result, cleared on read
 - 0 = Limit not exceeded
 - 1 = Limit exceeded

0

00

Default

		0	0	,		
Address 00140094						
Bit Number	22:21	20	19	18:17	16	
Bit Name	AVG5_CONFIG	AVG5_EN	RESERVED	AVG4_CONFIG	AVG4_EN	
Access	R/W	R/W	_	R/W	RW	

21.7.13 ADC Averaging Control Register (ADCAVGCTRL)

0

Bit Number	15	14:13	12	11
Bit Name	RESERVED	AVG3_CONFIG	AVG3_EN	RESERVED
Access	-	R/W	R/W	-
Default	0	00	0	0

0

Bit Number	10:9	8	7	6:5
Bit Name	AVG2_CONFIG	AVG2_EN	RESERVED	AVG1_CONFIG
Access	R/W	R/W	-	R/W
Default	00	0	0	00

Bit Number	4	3	2:1	0
Bit Name	AVG1_EN	RESERVED	AVG0_CONFIG	AVG0_EN
Access	R/W	-	R/W	R/W
Default	0	0	00	0

Bits 22-21: AVG5_CONFIG - ADC Averaging Module 5 Configuration

- 0 = Moving average of 4 samples (Default)
- 1 = Moving average of 8 samples
- 2 = Moving average of 16 samples
- 3 = Moving average of 32 samples
- Bit 20: AVG5_EN ADC Averaging Module 5 Enable
 - 0 = ADC Averaging Disabled (Default)
 - 1 = ADC Averaging Enabled

Bit 19: RESERVED - Unused bit

00

Bits 18-17: AVG4_CONFIG – ADC Averaging Module 4 Configuration

- 0 = Moving average of 4 samples (Default)
- 1 = Moving average of 8 samples
- 2 = Moving average of 16 samples
- 3 = Moving average of 32 samples

Bit 16: AVG4_EN – ADC Averaging Module 4 Enable

- 0 = ADC Averaging Disabled (Default)
- 1 = ADC Averaging Enabled
- Bit 15: RESERVED Unused bit
- Bits 14-13: AVG3_CONFIG ADC Averaging Module 3 Configuration
 - 0 = Moving average of 4 samples (Default)
 - 1 = Moving average of 8 samples
 - 2 = Moving average of 16 samples
 - 3 = Moving average of 32 samples
- Bit 12: AVG3_EN ADC Averaging Module 3 Enable
 - 0 = ADC Averaging Disabled (Default)
 - 1 = ADC Averaging Enabled
- Bit 11: RESERVED Unused bit
- Bits 10-9: AVG2_CONFIG ADC Averaging Module 2 Configuration

- 0 = Moving average of 4 samples (Default)
- 1 = Moving average of 8 samples
- 2 = Moving average of 16 samples
- 3 = Moving average of 32 samples
- Bit 8: AVG2_EN ADC Averaging Module 4 Enable
 - 0 = ADC Averaging Disabled (Default)
 - 1 = ADC Averaging Enabled
- Bit 7: RESERVED Unused bit
- Bits 6-5: AVG1_CONFIG ADC Averaging Module 1 Configuration
 - 0 = Moving average of 4 samples (Default)
 - 1 = Moving average of 8 samples
 - 2 = Moving average of 16 samples
 - 3 = Moving average of 32 samples
- Bit 4: AVG1_EN ADC Averaging Module 1 Enable
 - 0 = ADC Averaging Disabled (Default)
 - 1 = ADC Averaging Enabled
- Bit 3: RESERVED Unused bit
- Bits 2-1: AVG0_CONFIG ADC Averaging Module 0 Configuration
 - 0 = Moving average of 4 samples (Default)
 - 1 = Moving average of 8 samples
 - 2 = Moving average of 16 samples
 - 3 = Moving average of 32 samples
- Bit 0: AVG0_EN ADC Averaging Module 0 Enable
 - 0 = ADC Averaging Disabled (Default)
 - 1 = ADC Averaging Enabled

21.8 DPWM 0-3 Registers

21.8.1 DPWM Control Register 0 (DPWMCTRL0)

Address 00150000 – DPWM 3 Control Register 0 Address 00170000 – DPWM 2 Control Register 0 Address 001A0000 – DPWM 1 Control Register 0 Address 001D0000 – DPWM 0 Control Register 0

Bit Number	31:28	27:24	23
Bit Name	PWM_B_INTRA_MUX	PWM_A_INTRA_MUX	CBC_PWM_C_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	22:21	20	19
Bit Name	RESERVED	CBC_PWM_AB_EN	CBC_ADV_CNT_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	18:17	16	15
Bit Name	MIN_DUTY_MODE	RESERVED	MSYNC_SLAVE_EN
Access	R/W	R/W	R/W
Default	00	0	0

Bit Number 14		13
Bit Name D_ENABLE		RESERVED
Access R/W		R/W
Default	0	0

Bit Number	12	11	10
Bit Name	RESON_MODE_FIXED_DUTY_EN	PWM_B_FLT_POL	PWM_A_FLT_POL
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	9	8	7:4
Bit Name	BLANK_B_EN	BLANK_A_EN	PWM_MODE
Access	R/W	R/W	R/W
Default	0	0	0010

Bit Number	3	2	1	0
Bit Name	PWM_B_INV	PWM_A_INV	CLA_EN	PWM_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	1	0

Bits 31-28: PWM_B_INTRA_MUX – Interchanges DPWM signals post edge generation

0 = Pass-through (Default)

1 = Edge-gen output, this module

- 2 = PWM-C, this module
- 3 = Crossover, this module
- 4 = Pass-through below A
- 5 = Pass-through below B
- 6 = Pass-through below C
- 7 = Pass-through below level-2 C
- 8 = Pass-through below level-3 C

Bits 27-24: PWM_A_INTRA_MUX – Combines DPWM signals are prior to HR module

- 0 =Pass-through (Default)
- 1 = Edge-gen output, this module
- 2 = PWM-C, this module
- 3 = Crossover, this module
- 4 = Pass-through below A
- 5 = Pass-through below B
- 6 = Pass-through below C
- 7 = Pass-through below level-2 C
- 8 = Pass-through below level-3 C

Bit 23: CBC_PWM_C_EN - Sets if Fault CBC changes output waveform for PWM-C

- 0 = PWM-C unaffected by Fault CBC (Default)
- 1 = PWM-C affected by Fault CBC

Bit 21:22: RESERVED

Bit 20: CBC_PWM_AB_EN – Sets if Fault CBC changes output waveform for PWM-A and PWM-B

0 = PWM-A and PWM-B unaffected by Fault CBC (Default)

1 = PWM-A and PWM-B affected by Fault CBC

Bit 19: CBC_ADV_CNT_EN – Selects cycle-by-cycle of operation

Normal Mode

- 0 = CBC disabled (Default)
- 1 = CBC enabled

Multi and Resonant Modes

0 = PWM-A and PWM-B operate independently (Default)

- 1 = PWM-A and PWM-B pulse matching enabled
- Bits 18-17: MIN_DUTY_MODE Minimum Duty Cycle Mode

00 = Suppression of minimum duty cycles is disabled (Default)

01 = CLA value is clamped to zero when below input value is less than MIN_DUTY_LOW 10 = CLA value is clamped to MIN_DUTY_LOW register value when input value is less than MIN_DUTY_LOW

Bit 16: RESERVED

Bit 15: MSYNC_SLAVE_EN - Multi-Sync Slave Mode Control

0 = PWM not synchronized to another PWM channel (Default)

1 = Enable Multi-Sync Slave Mode, current channel will be slaved from corresponding channel

Bit 14: D_ENABLE – Converts CLA duty value to DPWM as period-CLA duty value

0 = Value used for event calculations if CLA Duty (Default)

1 = Value used for event calculations is period minus CLA duty value

Bit 13: RESERVED

Bit 12: RESON_MODE_FIXED_DUTY_EN – Configures how duty cycle is controlled in Resonance Mode

- 0 = Resonant mode duty cycle set by Filter duty (Default)
- 1 = Resonant mode duty cycle set by Auto Switch High Register

Bit 11: PWM_B_FLT_POL – Sets the fault output polarity during a disable condition (that is, fault or module disabled)

- 0 = PWM B fault output polarity is set to low (Default)
- 1 = PWM B fault output polarity is set to high

Bit 10: PWM_A_FLT_POL – Sets the fault output polarity during a disable condition (that is, fault or module disabled)

- 0 = PWM A fault output polarity is set to low (Default)
- 1 = PWM A fault output polarity is set to high
- Bit 9: BLANK_B_EN Comparator Blanking Window B Enable
 - 0 = Comparator Blanking Window for PWM-B Disabled (Default)
 - 1 = Comparator Blanking Window for PWM-B Enabled
- Bit 8: BLANK_A_EN Comparator Blanking Window A Enable
 - 0 = Comparator Blanking Window for PWM-A Disabled (Default)
 - 1 = Comparator Blanking Window for PWM-B Enabled
- Bits 7-4: PWM_MODE DPWM Mode
 - 0 = Normal Mode
 - 1 = Resonant Mode
 - 2 = Multi-Output Mode
 - 3 = Triangular Mode
 - 4 = Leading Mode
- **Bit 3: PWM_B_INV** PWM B Output Polarity Control
 - 0 = Non-inverted PWM B output (Default)
 - 1 = Inverts PWM B output
- Bit 2: PWM_A_INV PWM A Output Polarity Control
 - 0 = Non-inverted PWM A output (Default)
 - 1 = Inverted PWM A output
- Bit 1: CLA_EN- CLA Processing Enable
 - 0 = Generate PWM waveforms from PWM Register values (Default)
 - 1 = Enable CLA input
- Bit 0: PWM_EN PWM Processing Enable
 - 0 = Disable PWM module, outputs zero (Default)
 - 1 = Enable PWM operation

21.8.2 DPWM Control Register 1 (DPWMCTRL1)

Address 00150004 – DPWM 3 Control Register 1 Address 00170004 – DPWM 2 Control Register 1 Address 001A0004 – DPWM 1 Control Register 1 Address 001D0004 – DPWM 0 Control Register 1

Bit Number	31	30	29
Bit Name	PRESET_EN	SYNC_FET_EN	BURST_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	28	27:24	23:21
Bit Name	CLA_DUTY_ADJ_EN	SYNC_OUT_DIV_SEL	CLA_SCALE
Access	R/W	R/W	R/W
Default	0	000	000

Bit Number	20	19	18
Bit Name	EXT_SYNC_EN	CBC_BSIDE_ACTIVE EN	AUTO_MODE_SEL
Access	R/W	R/W	R/W
Default	1	1	0

Bit Number	17	16	15	14
Bit Name	RESERVED	EVENT_UP_SEL	CHECK_OVERRIDE	GLOBAL_PERIOD_EN
Access	R/W	R/W	R/W	R/W
Default	0	1	1	0

Bit Number	13	12	11	10	9
Bit Name	PWM_B_OE	PWM_A_OE	GPIO_B_VAL	GPIO_B_EN	GPIO_A_VAL
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	8	7	6	5
Bit Name	GPIO_A_EN	PWM_HR_MULTI_OUT_EN	SFRAME_EN	PWM_B_PROT_DIS
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	4	3:2	1	0
Bit Name	PWM_A_PROT_DIS	HIRES_SCALE	RESERVED	HIRES_DIS
Access	R/W	R/W	R/W	R/W
Default	0	00	1	0

Bit 31: PRESET_EN – Counter Preset Enable

- 0 = Counter reset to 0 upon detection of sync (Default)
- 1 = Counter preset to Preset Count Value upon detection of sync

Bit 30: SYNC_FET_EN - SyncFET Mode Enabled

- 0 = SyncFET Mode Disabled (Default)
- 1 = SyncFET Mode Enabled (Default)

Bit 29:	BURST_EN – Burst (Light Load) Mode Detection Enable
	0 = Burst Mode (Light Load) Detection disabled (Default)
	1 = Burst Mode (Light Load) Detection enabled
Bit 28:	CLA_DUTY_ADJ_EN – Enables CLA Duty Adjust from Current/Flux Balancing
	0 = CLA Duty Adjust not enabled (Default)
	1 = CLA Duty Adjust enabled
Rits 27	'-24: SYNC_OUT_DIV_SEL – Sets the divider for generating the Sync Out pulse.
Bito 21	0000 = Sync Out generated on every switching cycle (Default)
	0001 = Sync Out generated once every 2 switching cycles
	0010 = Sync Out generated once every 3 switching cycles
	1111 = Sync Out generated once every 16 switching cycles
Bits 23	-21: CLA_SCALE – Scaling for CLA Input Data
	000 = CLA Value (Default)
	001 = CLA Value multiplied by 2
	010 = CLA Value divided by 2
	011 = CLA Value multiplied by 4
	100 = CLA Value divided by 4
	101 = CLA Value multiplied by 8
	110 = CLA Value divided by 8
	111 = CLA Value
Bit 20:	EXT SYNC_EN – Slave DPWM to external sync
	0 = DPWM not synchronized to external sync (Default)
	1 = Slave DPWM to external sync
D:4 40.	CRC DEIDE ACTIVE EN Coto if CRC reasonable to Fault CRC when RM/M R is active
	CBC_BSIDE_ACTIVE_EN – Sets if CBC responds to Fault CBC when PWM-B is active
only av	ailable in Multi and Reson modes
	0 = Response to Fault CBC when PWM-A active (Default)
	1 = Response to Fault CBC when PWM-A or PWM-B active
Bit 18:	AUTO_MODE_SEL – Auto Switching Mode Select
	0 = Auto Switching Mode disabled (Default)
	1 = Auto Switching Mode enabled
Bits 17	: RESERVED
Bits 16	: EVENT_UP_SEL – Update End Period Mode
	0 = Events updated anytime (Default)
	1 = Events updated at End of Period
Bit 15:	CHECK_OVERRIDE – PWM Check Override
	0 = DPWM checks mathematical settings within module, correct placement of Event
	$\sigma = D_1 + m$ oncorrection and the setting within module, concerpted in the VEIL
	settings/period settings. Invalid configurations are not allowed. (Default)
	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical
Rit 14·	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions
Bit 14:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN
Bit 14:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default)
	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register
	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin
	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin 0 = PWM B configured as output (Default)
Bit 13:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input
Bit 13:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input PWM_A_OE – Direction for PWM A pin
Bit 13:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input PWM_A_OE – Direction for PWM A pin 0 = PWM A configured as output (Default)
Bit 13: Bit 12:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input PWM_A_OE – Direction for PWM A pin 0 = PWM A configured as output (Default) 1 = PWM A configured as input
Bit 13: Bit 12:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input PWM_A_OE – Direction for PWM A pin 0 = PWM A configured as output (Default) 1 = PWM A configured as input GPIO_B_VAL – Sets value of PWM B output in GPIO mode
Bit 13: Bit 12:	<pre>settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE - Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input PWM_A_OE - Direction for PWM A pin 0 = PWM A configured as output (Default) 1 = PWM A configured as input GPIO_B_VAL - Sets value of PWM B output in GPIO mode 0 = PWM B driven low in GPIO mode (Default)</pre>
Bit 13: Bit 12: Bit 11:	settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE – Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input PWM_A_OE – Direction for PWM A pin 0 = PWM A configured as output (Default) 1 = PWM A configured as input GPIO_B_VAL – Sets value of PWM B output in GPIO mode 0 = PWM B driven low in GPIO mode (Default) 1 = PWM B driven high in GPIO mode
Bit 13: Bit 12: Bit 11:	<pre>settings/period settings. Invalid configurations are not allowed. (Default) 1 = Overrides checking for invalid configurations and turns off PWM mathematical checking functions GLOBAL_PERIOD_EN 0 = Event calculations use DPWM Period register (Default) 1 = Event calculations use Global Period register PWM_B_OE - Direction for PWM B pin 0 = PWM B configured as output (Default) 1 = PWM B configured as input PWM_A_OE - Direction for PWM A pin 0 = PWM A configured as output (Default) 1 = PWM A configured as input GPIO_B_VAL - Sets value of PWM B output in GPIO mode 0 = PWM B driven low in GPIO mode (Default)</pre>

- 1 = PWM B in GPIO mode
- Bit 9: GPIO_A_VAL Sets value of PWM A output in GPIO mode
 - 0 = PWM A driven low in GPIO mode (Default)
 - 1 = PWM A driven high in GPIO mode
- Bit 8: GPIO_A_EN Enables GPIO mode for PWM A output
 - 0 = PWM A in DPWM mode (Default)
 - 1 = PWM A in GPIO mode
- Bit 7: PWM_HR_MULT_OUT_EN Control bit for Hi-Res Block
 - 0 = Disabled (Default)
 - 1 = Enabled
- Bit 6: SFRAME_EN PWM Single Step Frame Mode Enable
 - 0 = Disable Single Frame Mode (Default)
 - 1 = Enable Single Step Frame Mode. One EADC sample is requested, CLA then Filters, then one PWM duty cycle performed, then wait on Single Frame Trigger toggle before advancing to next frame.
- Bit 5: PWM_B_PROT_DIS PWM B Asynchronous Protection Disable
 - 0 = Allows asynchronous protection to turn off PWM B Output (Default)
 - 1 = Disables asynchronous protection from turning off PWM B Output
- Bit 4: PWM_A_PROT_DIS PWM A Asynchronous Protection Disable
 - 0 = Allows asynchronous protection to turn off PWM A Output (Default)
 - 1 = Disables asynchronous protection from turning off PWM A Output
- Bits 3-2: HIRES_SCALE Determines resolution of high resolution steps
 - 00 = Resolution of 16 phases. Full resolution enabled. Resolution step = PCLK/16 (Default)
 - 01 = Resolution of 8 phases. Resolution step = PCLK/8
 - 10 = Resolution of 4 phases. Resolution step = PCLK/4
 - 11 = Resolution of 2 phases. Resolution step = PCLK/2
- Bit 1: RESERVED
- **Bit 0: HIRES_DIS –** PWM High Resolution Disable
 - 0 = Enable High Resolution logic (Default)
 - 1 = Disable High Resolution logic

21.8.3 DPWM Control Register 2 (DPWMCTRL2)

Address 00150008 – DPWM 3 Control Register 2 Address 00170008 – DPWM 2 Control Register 2 Address 001A0008 – DPWM 1 Control Register 2 Address 001D0008 – DPWM 0 Control Register 2

Bit Number	16	15:12	11:10
Bit Name	BLANK_PCM_EN	SYNC_IN_DIV_RATIO	RESERVED
Access	R/W	R/W	R/W
Default	0	0000	0

Bit Number	9:8	7	6
Bit Name	FILTER_DUTY_SEL	IDE_DUTY_B_EN	IDE_DETECT_EN
Access	R/W	R/W	R/W
Default	00	0	0

Bit Number	5:4	3:2
Bit Name	SAMPLE_TRIG1_OVERSAMPLE	SAMPLE_TRIG1_MODE
Access	R/W	R/W
Default	00	000

Bit Number	1	0
Bit Name	SAMPLE_TRIG_2_EN	SAMPLE_TRIG_1_EN
Access	R/W	R/W
Default	0	1

Bit 16: BLANK_PCM_EN - Comparator Blanking Window B Enable for PCM

0 = Comparator Blanking A Window Disabled (Default)

1 = Comparator Blanking A Window for PWM-B Enabled

Bits 15-12: SLAVE_SYNC_IN_DIV_RATIO – Sets the number of syncs to be masked before a resync

Bit 11-10: Reserved

Bits 9-8: FILTER_DUTY_SEL – Sets which register is used for the max duty calculation at the Filter in RESON and MESH modes.

- 0 = PWM Period Register (Default)
- 1 = Event 2
- 2 = PWM Period Adjust Register (Bits 13:0)

Bit 7: IDE_DUTY_B_EN - IDE Duty Cycle Side B Enable

- 0 = Disabled (Default)
- 1 = Enabled
- Bit 6: IDE_DETECT_EN IDE Detect Enable
 - 0 = Disabled (Default)
 - 1 = Enabled
- Bits 5-4: SAMPLE_TRIG1_OVERSAMPLE Oversample Select for Sample Trigger 1

00 = Trigger an EADC sample at DPWMSAMPTRIG1 (PWM Sample Trig Register value) (Default)

01 = Trigger EADC samples at (1* DPWMSAMPTRIG1) and at

((1/2)*DPWMSAMPTRIG1)

10 = Trigger EADC samples at (1* DPWMSAMPTRIG1), ((3/4)*DPWMSAMPTRIG1),

((1/2)*DPWMSAMPTRIG1) and at ((1/4)*DPWMSAMPTRIG1)

11 = Trigger EADC samples at (1* DPWMSAMPTRIG1), ((7/8)*DPWMSAMPTRIG1), ((3/4)*DPWMSAMPTRIG1), ((5/8)*DPWMSAMPTRIG1), ((1/2)* DPWMSAMPTRIG1), ((3/8)*DPWMSAMPTRIG1), ((1/4)*DPWMSAMPTRIG1) and at ((1/8)*DPWMSAMPTRIG1)

- Bits 3-2: SAMPLE_TRIG1_MODE Mode select for Sample Trigger 1
 - 0 = Trigger value is set using PWM Sample Trig Register value (Default)
 - 1 = Trigger value is adaptive midpoint (EV1+CLA_DUTY/2 + Adaptive
 - Offset) and uses current CLA value at update event

2 = Trigger value is adaptive midpoint (EV1+CLA_DUTY + Adaptive Offset) and uses current CLA value at update event

3 = Trigger value is adaptive based on previous CBC location + Adaptive Offset

- Bit 1: SAMPLE_TRIG_2_EN Sample Trigger 2 Enable
 - 0 = Disable Sample Trigger 2 (Default)
 - 1 = Enable Sample Trigger 2
- Bit 0: SAMPLE_TRIG_1_EN Sample Trigger 1 Enable
 - 0 = Disable Sample Trigger 1 (Default)
 - 1 = Enable Sample Trigger 1

21.8.4 DPWM Period Register (DPWMPRD)

Address 0015000C – DPWM 3 Period Register Address 0017000C – DPWM 2 Period Register Address 001A000C – DPWM 1 Period Register Address 001D000C – DPWM 0 Period Register

Bit Number	17:4	3:0
Bit Name	PRD	RESERVED
Access	R/W	-
Default	00_0011_0100_0001	0000

Bits 17-4: PRD – PWM Period. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.5 DPWM Event 1 Register (DPWMEV1)

Address 00150010 – DPWM 3 Event 1 Register Address 00170010 – DPWM 2 Event 1 Register Address 001A0010 – DPWM 1 Event 1 Register Address 001D0010 – DPWM 0 Event 1 Register

Bit Number 17:4		3:0	
Bit Name EVENT1		RESERVED	
Access R/W		-	
Default	00_0000_0001_0100	0000	

Bits 17-4: EVENT1 – Configures the location of Event 1. Low resolution register, last 4 bits are unused. Refer to DPWM app note for additional information. **Bits 3-0: RESERVED** – Unused bits

21.8.6 DPWM Event 2 Register (DPWMEV2)

Address 00150014 – DPWM 3 Event 2 Register Address 00170014 – DPWM 2 Event 2 Register Address 001A0014 – DPWM 1 Event 2 Register Address 001D0014 – DPWM 0 Event 2 Register

Bit Number	17:0	
Bit Name	EVENT2	
Access	R/W	
Default	0_0000_0011_0000_0000	

Bits 17-0: EVENT2 – Configures the location of Event 2. Value equals number of PCLK clock periods in Bits 17:4 and number of high resolution clock phases of PCL in Bits 3:0 (dependent on Bits 3:2 of DPWM Control Register 2). Refer to DPWM app note for additional information.

21.8.7 DPWM Event 3 Register (DPWMEV3)

Address 00150018 – Loop 4 DPWM Event 3 Register Address 00170018 – Loop 3 DPWM Event 3 Register Address 001A0018 – Loop 2 DPWM Event 3 Register Address 001D0018 – Loop 1 DPWM Event 3 Register

Bit Number	17:0	
Bit Name	EVENT3	
Access	R/W	
Default	00_0000_0011_1110_0000	

Bits 17-0: EVENT3 – Configures the location of Event 3. Value equals number of PCLK clock periods in Bits 17:4 and number of high resolution clock phases of PCL in Bits 3:0. Refer to DPWM app note for additional information.

21.8.8 DPWM Event 4 Register (DPWMEV4)

Address 0015001C – Loop 4 DPWM Event 4 Register Address 0017001C – Loop 3 DPWM Event 4 Register Address 001A001C – Loop 2 DPWM Event 4 Register Address 001D001C – Loop 1 DPWM Event 4 Register

Bit Number	17:0	
Bit Name	EVENT4	
Access	R/W	
Default	00_0000_0111_0000_0000	

Bits 17-0: EVENT4 – Configures the location of Event 4. Value equals number of PCLK clock periods in Bits 17:4 and number of high resolution clock phases of PCL in Bits 3:0. Refer to DPWM app note for additional information.

21.8.9 DPWM Sample Trigger 1 Register (DPWMSAMPTRIG1)

Address 00150020 – DPWM 3 Sample Trigger 1 Register Address 00170020 – DPWM 2 Sample Trigger 1 Register Address 001A0020 – DPWM 1 Sample Trigger 1 Register Address 001D0020 – DPWM 0 Sample Trigger 1 Register

Bit Number 17:6		5:0	
Bit Name	SAMPLE_TRIGGER	RESERVED	
Access R/W		-	
Default	0000_0000_0100	00_0000	

Bits 17-6: SAMPLE_TRIGGER – Configures the location of the sample trigger within a PWM period. Value equals the number of PCLK clock periods. Enables start of conversion for EADC. Refer to DPWM app note for additional information. Low resolution register, last 6 bits are read-only.

Bits 5-0: RESERVED – Unused bits

21.8.10 DPWM Sample Trigger 2 Register (DPWMSAMPTRIG2)

Address 00150024 – DPWM 3 Sample Trigger 1 Register Address 00170024 – DPWM 2 Sample Trigger 1 Register Address 001A0024 – DPWM 1 Sample Trigger 1 Register Address 001D0024 – DPWM 0 Sample Trigger 1 Register

Bit Number 17:6		5:0	
Bit Name	SAMPLE_TRIGGER	RESERVED	
Access R/W		-	
Default 0000_0000_0100		00_000	

Bits 17-6: SAMPLE_TRIGGER – Configures the location of the sample trigger within a PWM period. Value equals the number of PCLK clock periods. Enables start of conversion for EADC. Refer to DPWM app note for additional information. Low resolution register, last 6 bits are read-only.

Bits 5-0: RESERVED – Unused bits

21.8.11 DPWM Phase Trigger Register (DPWMPHASETRIG)

Address 00150028 – DPWM 3 Phase Trigger Register Address 00170028 – DPWM 2 Phase Trigger Register Address 001A0028 – DPWM 1 Phase Trigger Register Address 001D0028 – DPWM 0 Phase Trigger Register

Bit Number	17:4	3:0	
Bit Name	PHASE_TRIGGER	RESERVED	
Access	R/W -		
Default	0	0	

Bits 17-4: PHASE_TRIGGER – Configures the phase trigger delay within multi-output mode. Value equals the number of PCLK clock periods. Refer to DPWM app note for additional information. Low resolution register, last 4 bits are read-only **Bits 3-0: RESERVED** – Unused bits

21.8.12 DPWM Cycle Adjust A Register (DPWMCYCADJA)

Address 0015002C – DPWM 3 Cycle Adjust A Register Address 0017002C – DPWM 2 Cycle Adjust A Register Address 001A002C – DPWM 1 Cycle Adjust A Register Address 001D002C – DPWM 0 Cycle Adjust A Register

Bit Number	er 15:0	
Bit Name	CYCLE_ADJUST_A	
Access	R/W	
Default	0	

Bits 15-0: CYCLE_ADJUST_A – Adjusts PWM A output signal. 16-bit signed number allows output signal to be delayed or sped up. Refer to DPWM app note for additional information.

21.8.13 DPWM Cycle Adjust B Register (DPWMCYCADJB)

Address 00150030 – DPWM 3 Cycle Adjust B Register Address 00170030 – DPWM 2 Cycle Adjust B Register Address 001A0030 – DPWM 1 Cycle Adjust B Register Address 001D0030 – DPWM 0 Cycle Adjust B Register

Bit Number	15:0
Bit Name	CYCLE_ADJUST_B
Access	R/W
Default	0

Bits 15-0: CYCLE_ADJUST_B – Adjusts the PWM B output signal. 16-bit signed number allows output signal to be delayed or sped up. Refer to DPWM app note for additional information.

21.8.14 DPWM Resonant Duty Register (DPWMRESDUTY)

Address 00150034 – DPWM 3 Resonant Duty Register Address 00170034 – DPWM 2 Resonant Duty Register Address 001A0034 – DPWM 1 Resonant Duty Register Address 001D0034 – DPWM 0 Resonant Duty Register

Bit Number	13:0
Bit Name	RESONANT_DUTY
Access	R/W
Default	0

Bits 15-0: FILTER_REF – Sets the filter reference value sent to the filter.

21.8.15 DPWM Fault Control Register (DPWMFLTCTRL)

Address 00150038 – DPWM 3 Fault Control Register Address 00170038 – DPWM 2 Fault Control Register Address 001A0038 – DPWM 1 Fault Control Register Address 001D0038 – DPWM 0 Fault Control Register

Bit Number	31	30	29	28
Bit Name	RESERVED	ALL_FAULT_EN	CBC_FAULT_EN	CBC_FAULT_MODE
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	27:21	20:14	13:7	6:0
Bit Name	CBC_MAX_COUNT	AB_MAX_COUNT	B_MAX_COUNT	A_MAX_COUNT
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bits 31: RESERVED - Unused bits

Bit 30: ALL_FAULT_EN – DPWM Fault Module enable

0 = All DPWM Fault Modules disabled (Default)

1 = All DPWM Fault Modules enabled

Bit 29: CBC_FAULT_EN – CBC Fault Module enable

0 = CBC Fault Modules disabled (Default)

1 = CBC Fault Modules enabled

Bit 28: CBC_FAULT_MODE – CBC Fault Mode 0 = CBC Fault input set to raw CBC fault

1 = CBC Fault input set to output of CBC module

Bits 27-21: CBC_MAX_COUNT – Cycle-by-Cycle Fault Count, sets the number of received sequential faults on Cycle-by-Cycle Fault input before asserting the fault

Bits 20-14: AB_MAX_COUNT – Fault AB Count, sets the number of received sequential faults on Fault AB input before asserting the fault

Bits 13-7: B_MAX_COUNT – Fault B Count, sets the number of received sequential faults on Fault B input before asserting the fault

Bits 6-0: A_MAX_COUNT – Fault A Count, sets the number of received sequential faults on Fault A input before asserting the fault

21.8.16 DPWM Overflow Register (DPWMOVERFLOW)

Address 0015003C – DPWM 3 Overflow Register Address 0017003C – DPWM 2 Overflow Register Address 001A003C – DPWM 1 Overflow Register Address 001D003C – DPWM 0 Overflow Register

Bit Number	7	6	5	4	3:0
Bit Name	PWM_B_CHECK	PWM_A_CHECK	GPIO_B_IN	GPIO_A_IN	OVERFLOW
Access	R	R	R	R	R
Default	-	-	-	-	-

Bit 7: PWM_B_CHECK – Value of PWM B internal check

0 = Passed checks

1 = Failed checks (override required to enable output)

Bit 6: PWM_A_CHECK – Value of PWM B input

0 = Passed check

- 1 = Failed check (override required to enable output)
- Bit 5: GPIO_B_INO Value of PWM B input
 - 0 = Low signal on PWM B
 - 1 = High signal on PWM B
- Bit 4: GPIO_A_IN Value of PWM A input
 - 0 = Low signal on PWM A
 - 1 = High value on PWM A

Bit 3: OVERFLOW – PWM Event 4 Overflow Status

- 0 = CLA Event 4 has not overflowed
 - 1 = Overflow condition found on CLA Event 4
- Bit 2: OVERFLOW[2] CLA Event 4 Overflow Status
 - 0 = PWM Event 4 has not overflowed
 - 1 = Overflow condition found on PWM Event 4
- Bit 1: OVERFLOW[1] CLA Event 3 Overflow Status
 - 0 = CLA Event 3 has not overflowed
 - 1 = Overflow condition found on CLA Event 3
- Bit 0: OVERFLOW[0] CLA Event 2 Overflow Status

0 = CLA Event 2 has not overflowed

1 = Overflow condition found on CLA Event 2

21.8.17 DPWM Interrupt Register (DPWMINT)

Address 00150040 – DPWM 3 Interrupt Register Address 00170040 – DPWM 2 Interrupt Register Address 001A0040 – DPWM 1 Interrupt Register Address 001D0040 – DPWM 0 Interrupt Register

Bit Number	22	21	20	19	18	17	16
Bit Name	MODE_SWITCH	FLT_A	FLT_B	FLT_AB	FLT_CBC	PRD	INT
Access	R	R	R	R	R	R	R
Default	-	-	-	-	-	-	-

Bit Number	15:12	11	10
Bit Name	RESERVED	MODE_SWITCH_FLAG_CLR	MODE_SWITCH_FLAG_EN
Access	-	R/W	R/W
Default	0000	0	0

Bit Number	9	8	7
Bit Name	MODE_SWITCH_INT_EN	FLT_A_INT_EN	FLT_B_INT_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	6	5	4	3:0
Bit Name	FLT_AB_INT_EN	FLT_CBC_INT_EN	PRD_INT_EN	PRD_INT_SCALE
Access	R/W	R/W	R/W	R/W
Default	0	0	0	1111

Bit 22: MODE_SWITCH – Mode Switching Flag

- 0 = Flag is not asserted
- 1 = Flag is set
- Bit 21: FLT_A Fault A Flag
 - 0 = Flag is not asserted
 - 1 = Flag is set
- Bit 20: FLT_B Fault B Flag
 - 0 = Flag is not asserted
 - 1 = Flag is set
- Bit 19: FLT_AB Fault AB Flag
 - 0 = Flag is not asserted
 - 1 = Flag is set
- Bit 18: FLT_CBC Fault Cycle-by-Cycle Flag
 - 0 = Flag is not asserted
 - 1 = Flag is set
- Bit 17: PRD PWM Period Interrupt Flag
 - 0 = PWM Period Interrupt Flag is not asserted
 - 1 = PWM Period Interrupt Flag is set
- Bit 16: INT Interrupt Out
 - 0 = INT is not asserted
 - 1 = INT is set
- Bits 15-12: RESERVED Unused bits
- Bit 11: MODE_SWITCH_FLAG_CLR- Mode Switching Flag Clear
 - 0 = (Default)
 - 1 = Risedge 0-1 clears flag generated.

Bit 10: MODE_SWITCH_FLAG_EN- Mode Switching Flag Enable
0 = Disables generation of flag for Mode Switching (Default)
1 = Enables generation of flag for Mode Switching.
Bit 9: MODE_SWITCH_INT_EN – Mode Switching Interrupt Enable
0 = Interrupt is not enabled (Default)
1 = Interrupt is enabled
Bit 8: FLT_A_INT_EN – Fault A Flag Interrupt Enable
0 = Interrupt is not enabled (Default)
1 = Interrupt is enabled
Bit 7: FLT_B_INT_EN – Fault B Flag Interrupt Enable
0 = Interrupt is not enabled (Default)
1 = Interrupt is enabled
Bit 6: FLT_AB_INT_EN – Fault AB Flag Interrupt Enable 0 = Interrupt is not enabled (Default)
1 = Interrupt is enabled
Bit 5: FLT_CBC_INT_EN – Fault Cycle-by-Cycle Flag Interrupt Enable
0 = Interrupt is not enabled (Default)
1 = Interrupt is enabled
Bit 4: PRD_INT_EN – PWM Period Interrupt Enable
0 = Disables generation of periodic PWM interrupt (Default)
1 = Enables generation of periodic PWM interrupt
Bits 3-0: PRD_INT_SCALE – This value scales the period interrupt signal from an interrupt every
switching cycle to 16 switching cycles
0000 = Period Interrupt generated every switching cycle (Default)
0001 = Period Interrupt generated once every 2 switching cycles
0010 = Period Interrupt generated once every 4 switching cycles
0011 = Period Interrupt generated once every 6 switching cycles
0100 = Period Interrupt generated once every 8 switching cycles
0101 = Period Interrupt generated once every 16 switching cycles
0110 = Period Interrupt generated once every 32 switching cycles
0111 = Period Interrupt generated once every 48 switching cycles
1000 = Period Interrupt generated once every 64 switching cycles
1001 = Period Interrupt generated once every 80 switching cycles
1010 = Period Interrupt generated once every 96 switching cycles
1011 = Period Interrupt generated once every 128 switching cycles
1100 = Period Interrupt generated once every 160 switching cycles
1101 = Period Interrupt generated once every 192 switching cycles
1110 = Period Interrupt generated once every 224 switching cycles
1111 = Period Interrupt generated once every 256 switching cycles

21.8.18 DPWM Counter Preset Register (DPWMCNTPRE)

Address 00150044 – DPWM 3 Counter Preset Register Address 00170044 – DPWM 2 Counter Preset Register Address 001A0044 – DPWM 1 Counter Preset Register Address 001D0044 – DPWM 0 Counter Preset Register

Bit Number	17:4	3:0
Bit Name	PRESET	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: PRESET – Counter preset value, counter reset to this value upon detection of sync when PRESET_EN bit in DPWMCTRL1 is enabled. Low resolution register, last 4 bits are read-only

Bits 3-0: RESERVED – Unused bits

21.8.19 DPWM Blanking A Begin Register (DPWMBLKABEG)

Address 00150048 – DPWM 3 Blanking A Begin Register Address 00170048 – DPWM 2 Blanking A Begin Register Address 001A0048 – DPWM 1 Blanking A Begin Register Address 001D0048 – DPWM 0 Blanking A Begin Register

Bit Number	17:4	3:0
Bit Name	BLANK_A_BEGIN	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: BLANK_A_BEGIN – Configures start of Comparator Blanking Window for PWM A. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.20 DPWM Blanking A End Register (DPWMBLKAEND)

Address 0015004C – DPWM 3 Blanking A End Register Address 0017004C – DPWM 2 Blanking A End Register Address 001A004C – DPWM 1 Blanking A End Register Address 001D004C – DPWM 0 Blanking A End Register

Bit Number	17:4	3:0
Bit Name	BLANK_A_END	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: BLANK_A_END – Configures end of Comparator Blanking Window for PWM A. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.21 DPWM Blanking B Begin Register (DPWMBLKBBEG)

Address 00150050 – DPWM 3 Blanking B Begin Register Address 00170050 – DPWM 2 Blanking B Begin Register Address 001A0050 – DPWM 1 Blanking B Begin Register Address 001D0050 – DPWM 0 Blanking B Begin Register

Bit Number	17:4	3:0
Bit Name	BLANK_B_BEGIN	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: BLANK_B_BEGIN – Configures start of Comparator Blanking Window for PWM B. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.22 DPWM Blanking B End Register (DPWMBLKBEND)

Address 00150054 – DPWM 3 Blanking B End Register Address 00170054 – DPWM 2 Blanking B End Register Address 001A0054 – DPWM 1 Blanking B End Register Address 001D0054 – DPWM 0 Blanking B End Register

Bit Number	17:4	3:0
Bit Name	BLANK_B_END	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: BLANK_B_END – Configures end of Comparator Blanking Window for PWM B. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.23 DPWM Minimum Duty Cycle High Register (DPWMMINDUTYHI)

Address 00150058 – DPWM 3 Minimum Duty Cycle High Register Address 00170058 – DPWM 2 Minimum Duty Cycle High Register Address 001A0058 – DPWM 1 Minimum Duty Cycle High Register Address 001D0058 – DPWM 0 Minimum Duty Cycle High Register

Bit Number	17:4	3: 0
Bit Name	MIN_DUTY_HIGH	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: MIN_DUTY_HIGH– Configures upper threshold for minimum duty cycle logic. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.24 DPWM Minimum Duty Cycle Low Register (DPWMMINDUTYLO)

Address 0015005C – DPWM 3 Minimum Duty Cycle Low Register Address 0017005C – DPWM 2 Minimum Duty Cycle Low Register Address 001A005C – DPWM 1 Minimum Duty Cycle Low Register Address 001D005C – DPWM 0 Minimum Duty Cycle Low Register

Bit Number	17:4	3: 0
Bit Name	MIN_DUTY_LOW	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: MIN_DUTY_LOW– Configures lower threshold for minimum duty cycle logic. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.25 DPWM Adaptive Sample Register (DPWMADAPTIVE)

Address 00150060 – DPWM 3 Adaptive Sample Register Address 00170060 – DPWM 2 Adaptive Sample Register Address 001A0060 – DPWM 1 Adaptive Sample Register Address 001D0060 – DPWM 0 Adaptive Sample Register

Bit Number	11:0
Bit Name	ADAPT_SAMP
Access	R/W
Default	0000_0000_0000

Bit 13-0: ADAPT_SAMP – Configures Adaptive Sample Adjust

21.8.26 DPWM Fault Status (DPWMFLTSTAT)

Address 00150064 – DPWM 3 Fault Input Status Register Address 00170064 – DPWM 2 Fault Input Status Register Address 001A0064 – DPWM 1 Fault Input Status Register Address 001D0064 – DPWM 0 Fault Input Status Register

Bit Number	5	4	3	2	1	0
Bit Name	BURST	IDE_DETECT	FLT_A	FLT_B	FLT_AB	FLT_CBC
Access	R	R	R	R	R	R
Default	-	-	-	-	-	-

Bit 5: BURST – Burst Mode Detection Status

0 = Burst Mode Detection is not asserted

1 = Burst Mode Detection is set

Bit 4: IDE_DETECT – IDE Detection Status (from Analog Comparators)

0 = IDE Detection is not asserted

- 1 = IDE Detection is set
- **Bit 3: FLT_A** Fault A Detection Status
 - 0 = Fault A Detection is not asserted
 - 1 = Fault A Detection is set
- **Bit 2: FLT_B** Fault B Detection Status
 - 0 = Fault B Detection is not asserted
 - 1 = Fault B Detection is set
- Bit 1: FLT_AB Fault AB Detection Status
 - 0 = Fault AB Detection is not asserted

1 = Fault AB Detection is set

- Bit 0: FLT_CBC Current Limit Detection Status
 - 0 = Current Limit Detection is not asserted
 - 1 = Current Limit Detection is set

21.8.27 DPWM Auto Switch High Upper Thresh Register (DPWMAUTOSWHIUPTHRESH)

Address 00150068 – DPWM 3 Auto Switch High Upper Thresh Register Address 00170068 – DPWM 2 Auto Switch High Upper Thresh Register Address 001A0068 – DPWM 1 Auto Switch High Upper Thresh Register Address 001D0068 – DPWM 0 Auto Switch High Upper Thresh Register

Bit Number	17:4	3:0
Bit Name AUTO_SWITCH_HIGH_UPPER		RESERVED
Access	ccess R/W	
Default 00_0000_0000		0000

Bit 17-4: AUTO_SWITCH_HIGH_UPPER– Configures upper threshold for Auto Switch Mode High operation. Mode switching does not occur between Auto Switch High Upper and Auto Switch High Lower thresholds. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED** – Unused bits

21.8.28 DPWM Auto Switch High Lower Thresh Register (DPWMAUTOSWHILOWTHRESH)

Address 0015006C – DPWM 3 Auto Switch High Lower Thresh Register Address 0017006C – DPWM 2 Auto Switch High Lower Thresh Register Address 001A006C – DPWM 1 Auto Switch High Lower Thresh Register Address 001D006C – DPWM 0 Auto Switch High Lower Thresh Register

Bit Number	17:4	3:0
Bit Name	me AUTO_SWITCH_HIGH_LOWER	
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 17-4: AUTO_SWITCH_HIGH_LOWER– Configures lower threshold for Auto Switch Mode High operation. Mode switching does not occur between Auto Switch High Upper and Auto Switch High Lower thresholds. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED –** Unused bits

21.8.29 DPWM Auto Switch Low Upper Thresh Register (DPWMAUTOSWLOUPTHRESH)

Address 00150070 – DPWM 3 Auto Switch Low Upper Thresh Register Address 00170070 – DPWM 2 Auto Switch Low Upper Thresh Register Address 001A0070 – DPWM 1 Auto Switch Low Upper Thresh Register Address 001D0070 – DPWM 0 Auto Switch Low Upper Thresh Register

Bit Number	17:4	3:0
Bit Name	AUTO_SWITCH_LOW_UPPER	RESERVED
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 29-16: AUTO_SWITCH_LOW_UPPER– Configures upper threshold for Auto Switch Mode Low operation. Mode switching does not occur between Auto Switch Low Upper and Auto Switch Low Lower thresholds. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED –** Unused bits

21.8.30 DPWM Auto Switch Low Lower Thresh Register (DPWMAUTOSWLOLOWTHRESH)

Address 00150074 – DPWM 3 Auto Switch Low Lower Thresh Register Address 00170074 – DPWM 2 Auto Switch Low Lower Thresh Register Address 001A0074 – DPWM 1 Auto Switch Low Lower Thresh Register Address 001D0074 – DPWM 0 Auto Switch Low Lower Thresh Register

Bit Number	17:4	3:0
Bit Name	Bit Name AUTO_SWITCH_LOW_LOWER	
Access	R/W	-
Default	00_0000_0000_0000	0000

Bit 29-16: AUTO_SWITCH_LOW_LOWER– Configures lower threshold for Auto Switch Mode Low operation. Mode switching does not occur between Auto Switch Low Upper and Auto Switch Low Lower thresholds. Low resolution register, last 4 bits are read-only. **Bits 3-0: RESERVED –** Unused bits

21.8.31 DPWM Auto Config Max Register (DPWMAUTOMAX)

Address 00150078 – DPWM 3 Auto Config Max Register Address 00170078 – DPWM 2 Auto Config Max Register Address 001A0078 – DPWM 1 Auto Config Max Register Address 001D0078 – DPWM 0 Auto Config Max Register

Bit Number	31:28	27:24
Bit Name PWM_B_INTRA_MUX		PWM_A_INTRA_MUX
Access R/W		R/W
Default 0		0

Bit Number	23	22:21	20
Bit Name	CBC_PWM_C_EN	RESERVED	CBC_PWM_AB_EN
Access	R/W	-	R/W
Default	0	0	0

Bit Number	19	18:13	12
Bit Name	CBC_ADV_CNT_EN	RESERVED	RESON_MODE_FIXED_DUTY_EN
Access	R/W	R	R/W
Default	0	0	0

Bit Number	11:8	7:4	3:2	1	0
Bit Name	RESERVED	PWM_MODE	RESERVED	CLA_EN	RESERVED
Access	-	R/W	-	R/W	-
Default	0	0	0	0	0

Bits 31-28: PWM_B_INTRA_MUX – Interchanges DPWM signals post edge generation

- 0 =Pass-through (Default)
- 1 = Edge-gen output, this module
- 2 = PWM-C, this module
- 3 = Crossover, this module
- 4 = Pass-through below A
- 5 = Pass-through below B
- 6 = Pass-through below C
- 7 = Pass-through below level-2 C
- 8 =Pass-through below level-3 C

Bits 27-24: PWM_A_INTRA_MUX – Combines DPWM signals are prior to HR module

- 0 = Pass-through (Default)
- 1 = Edge-gen output, this module
- 2 = PWM-C, this module
- 3 = Crossover, this module
- 4 = Pass-through below A
- 5 = Pass-through below B
- 6 = Pass-through below C
- 7 = Pass-through below level-2 C
- 8 = Pass-through below level-3 C

Bit 23: CBC_PWM_C_EN – Sets if Fault CBC changes output waveform for PWM-C

- 0 = PWM-C unaffected by Fault CBC (Default)
 1 = PWM-C affected by Fault CBC
 Bit 22:21: RESERVED Unused Bit
 Bit 20: CBC_PWM_AB_EN Sets if Fault CBC changes output waveform for PWM-A and PWM-B
 0 = PWM-A and PWM-B unaffected by Fault CBC (Default)
 1 = PWM-A and PWM-B affected by Fault CBC
 Bit 19: CBC_ADV_CNT_EN Selects cycle-by-cycle of operation
 Normal Mode
 0 = CBC disabled (Default)
 1 = CBC enabled
 Multi and Resonant Modes
 0 = PWM-A and PWM-B operate independently (Default)
 1 = PWM-A and PWM-B pulse matching enabled
 Bits 18-13: RESERVED Unused Bits
- Bit 12: RESON_MODE_FIXED_DUTY_EN Configures how duty cycle is controlled in Resonance Mode
- Resonance Mode
 - 0 = Resonant mode duty cycle set by Filter duty (Default)
 - 1 = Resonant mode duty cycle set by Auto Switch High Register
- Bits 11-8: RESERVED Unused Bits

Bits 7-4: PWM_MODE - DPWM Mode

- 0 = Normal Mode
- 1 = Resonant Mode
- 2 = Multi-Output Mode
- 3 = Triangular Mode
- 4 = Leading Mode
- Bits 3-2: RESERVED Unused Bits
- Bit 1: CLA_EN- CLA Processing Enable
 - 0 = Generate PWM waveforms from PWM Register values (Default)
 - 1 = Enable CLA input
- Bit 0: RESERVED Unused bit

21.8.32 DPWM Auto Config Mid Register (DPWMAUTOMID)

Address 0015007C – DPWM 3 Auto Config Mid Register Address 0017007C – DPWM 2 Auto Config Mid Register Address 001A007C – DPWM 1 Auto Config Mid Register Address 001D007C – DPWM 0 Auto Config Mid Register

Bit Number	31:28	27:24	
Bit Name PWM_B_INTRA_MUX		PWM_A_INTRA_MUX	
Access	R/W	R/W	
Default 0		0	

Bit Number	23	22:21	20
Bit Name	CBC_PWM_C_EN	RESERVED	CBC_PWM_AB_EN
Access	R/W	-	R/W
Default	0	0	0

Bit Number	19	18:13	12
Bit Name	CBC_ADV_CNT_EN	RESERVED	RESON_MODE_FIXED_DUTY_EN
Access	R/W	R	R/W
Default	0	0	0

Bit Number	11:8	7:4	3:2	1	0
Bit Name	RESERVED	PWM_MODE	RESERVED	CLA_EN	RESERVED
Access	-	R/W	-	R/W	-
Default	0	0	0	0	0

Bits 31-28: PWM_B_INTRA_MUX – Interchanges DPWM signals post edge generation

0 =Pass-through (Default)

- 1 = Edge-gen output, this module
- 2 = PWM-C, this module
- 3 = Crossover, this module
- 4 = Pass-through below A
- 5 = Pass-through below B
- 6 = Pass-through below C
- 7 = Pass-through below level-2 C
- 8 = Pass-through below level-3 C

Bits 27-24: PWM_A_INTRA_MUX - Combines DPWM signals are prior to HR module

- 0 = Pass-through (Default)
- 1 = Edge-gen output, this module
- 2 = PWM-C, this module
- 3 = Crossover, this module
- 4 = Pass-through below A
- 5 = Pass-through below B
- 6 = Pass-through below C
- 7 = Pass-through below level-2 C
- 8 = Pass-through below level-3 C

Bit 23: CBC_PWM_C_EN – Sets if Fault CBC changes output waveform for PWM-C

- 0 = PWM-C unaffected by Fault CBC (Default)
- 1 = PWM-C affected by Fault CBC
- Bit 22:21: RESERVED Unused Bit
- **Bit 20: CBC_PWM_AB_EN** Sets if Fault CBC changes output waveform for PWM-A and PWM-B
 - 0 = PWM-A and PWM-B unaffected by Fault CBC (Default)
 - 1 = PWM-A and PWM-B affected by Fault CBC
- Bit 19: CBC_ADV_CNT_EN Selects cycle-by-cycle of operation
 - Normal Mode
 - 0 = CBC disabled (Default)
 - 1 = CBC enabled

Multi and Resonant Modes

- 0 = PWM-A and PWM-B operate independently (Default)
- 1 = PWM-A and PWM-B pulse matching enabled

Bits 18-13: RESERVED - Unused Bits

Bit 12: RESON_MODE_FIXED_DUTY_EN – Configures how duty cycle is controlled in Resonance Mode

- 0 = Resonant mode duty cycle set by Filter duty (Default)
- 1 = Resonant mode duty cycle set by Auto Switch High Register

Bits 11-8: RESERVED - Unused Bits

- Bits 7-4: PWM_MODE DPWM Mode
 - 0 = Normal Mode
 - 1 = Resonant Mode
 - 2 = Multi-Output Mode
 - 3 = Triangular Mode

4 = Leading Mode

Bits 3-2: RESERVED – Unused Bits

Bit 1: CLA_EN- CLA Processing Enable

0 = Generate PWM waveforms from PWM Register values (Default)

1 = Enable CLA input

Bit 0: RESERVED – Unused bit

21.8.33 DPWM Edge PWM Generation Control Register (DPWMEDGEGEN)

Address 00150080 – DPWM 3 Edge PWM Generation Control Register Address 00170080 – DPWM 2 Edge PWM Generation Control Register Address 001A0080 – DPWM 1 Edge PWM Generation Control Register Address 001D0080 – DPWM 0 Edge PWM Generation Control Register

Bit Number	16	15	14:12	11
Bit Name	EDGE_EN	RESERVED	A_ON_EDGE	RESERVED
Access	R/W	-	R/W	-
Default	0	0	000	0

Bit Number	10:8	7	6:4	3	2:0
Bit Name	A_OFF_EDGE	RESERVED	B_ON_EDGE	RESERVED	B_OFF_EDGE
Access	R/W	-	R/W	-	R/W
Default	01	0	10	0	11

Bit 16: EDGE_EN – Enables edge generate module. When combining dpwm's, all modules must have this bit enabled.

Bits 14-12: A_ON_EDGE - Select input edge to trigger A ON output edge

- 0 = Current DPWM posedge A
- 1 = Current DPWM negedge A
- 2 = Current DPWM posedge B
- 3 = Current DPWM negedge B
- 4 = Below (n+1) DPWM posedge A
- 5 = Below (n+1) DPWM negedge A
- 6 = Below (n+1) DPWM posedge B
- 7 = Below (n+1) DPWM negedge B
- Bit 15: RESERVED Unused bit

Bits 10-8: A_OFF_EDGE - Select input edge to trigger A OFF output edge

- 0 = Current DPWM posedge A
- 1 = Current DPWM negedge A
- 2 = Current DPWM posedge B
- 3 = Current DPWM negedge B
- 4 = Below (n+1) DPWM posedge A
- 5 = Below (n+1) DPWM negedge A
- 6 = Below (n+1) DPWM posedge B
- 7 = Below (n+1) DPWM negedge B

Bit 7: RESERVED – Unused bit

Bits 6-4: **B_ON_EDGE** – Select input edge to trigger B ON output edge

- 0 = Current DPWM posedge A
- 1 = Current DPWM negedge A
- 2 = Current DPWM posedge B
- 3 = Current DPWM negedge B
- 4 = Below (n+1) DPWM posedge A
- 5 = Below (n+1) DPWM negedge A
- 6 = Below(n+1) DPWM posedge B
- 7 = Below(n+1) DPWM negedge B

Bit 3: RESERVED - Unused bit

- **Bit 2-0: B_OFF_EDGE** Select input edge to trigger B OFF output edge
 - 0 = Current DPWM posedge A
 - 1 = Current DPWM negedge A
 - 2 = Current DPWM posedge B
 - 3 = Current DPWM negedge B
 - 4 = Below (n+1) DPWM posedge A
 - 5 = Below (n+1) DPWM negedge A
 - 6 = Below (n+1) DPWM posedge B
 - 7 = Below (n+1) DPWM negedge B

21.8.34 DPWM Filter Duty Read Register (DPWMFILTERDUTYREAD)

Address 00150084 – DPWM 3 Filter Duty Read Register Address 00170084 – DPWM 2 Filter Duty Read Register Address 001A0084 – DPWM 1 Filter Duty Read Register Address 001D0084 – DPWM 0 Filter Duty Read Register

Bit Number	17:0
Bit Name	FILTER_DUTY
Access	R
Default	-

Bits 17-0: FILTER_DUTY - Filter Duty value received by DPWM Module

21.8.35 DPWM CBC Location (DPWMCBCLOCATION)

Address 00150088 – DPWM 3 CBC Location Register Address 00170088 – DPWM 2 CBC Location Register Address 001A0088 – DPWM 1 CBC Location Register Address 001D0088 – DPWM 0 CBC Location Register

Bit Number	13:0
Bit Name	CBC_LOCATION
Access	R
Default	-

Bits 14-0: CBC_LOCATION - Holds counter value of last CBC event.

21.9 Filter Registers

Registers for Filter Modules 0-2 are identical in their bit definitions.

21.9.1 Filter Status Register (FILTERSTATUS)

Address 00160000 – Filter 2 Status Register Address 00190000 – Filter 1 Status Register Address 001C0000 – Filter 0 Status Register

Bit Number	4	3	2
Bit Name	FILTER_BUSY	YN_LOW_CLAMP	YN_HIGH_CLAMP
Access	R	R	R
Default	-	-	-

Bit Number	1	0
Bit Name	KI_YN_LOW_CLAMP	KI_YN_HIGH_CLAMP
Access	R	R
Default	-	-

Bit 4: FILTER_BUSY – Filter Busy Indicator

- 0 = Filter is waiting for new data
- 1 = Filter busy calculating
- Bit 3: YN_LOW_CLAMP PID Output Low Rail Indicator
 - 0 = PID Output not equal to low rail 1 = PID Output equal to low rail
- Bit 2: YN_HIGH_CLAMP PID Output High Rail Indicator
 - 0 = PID Output not equal to high rail
 - 1 = PID Output rot equal to high rail
- Bit 1: KI_YN_LOW_CLAMP KI Feedback Low Rail Indicator
 - 0 = KI Feedback not equal to low rail
 - 1 = KI Feedback equal to low rail
- Bit 0: KI_YN_HIGH_CLAMP KI Feedback High Rail Indicator
 - 0 = KI Feedback not equal to high rail
 - 1 = KI Feedback equal to high rail

21.9.2 Filter Control Register (FILTERCTRL)

Address 00160004 – Filter 2 Control Register Address 00190004 – Filter 1 Control Register

Address 001C0004 – Filter 0 Control Register

Bit Number	15 14		13:12
Bit Name	KI_ADDER_MODE	PERIOD_MULT_SEL	OUTPUT_MULT_SEL
Access	R/W	R/W	R/W
Default	1	0	00

Bit Number	11:9	8	7	6	5
Bit Name	YN_SCALE	NL_MODE	KD_STALL	KI_STALL	KP_OFF
Access	R/W	R/W	R/W	R/W	R/W
Default	000	0	0	0	0

Bit Number	4	3	2	1	0
Bit Name	KD_OFF	KI_OFF	FORCE_START	USE_CPU_SAMPLE	FILTER_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	1

Bit 15: KI_ADDER_MODE – Configures addition of Xn and Xn-1 in Integral branch

0 = Only Xn used for addition (Xn + 0)

1 = Xn + Xn-1 used for addition (Default)

Bit 14: PERIOD_MULT_SEL – Selects output multiplicand used for multiplying with filter output to calculate DPWM Period value in Resonant Mode

0 = Switching period received from Loop Mux module (Default)

1 = KComp received from Loop Mux module

Bits 13-12: OUTPUT_MULT_SEL – Selects output multiplicand used for multiplying with filter output to calculate DPWM Duty value

- 0 = KComp received from Loop Mux module (Default)
- 1 = Switching period received from Loop Mux module

2 = Feed-Forward value received from Loop Mux module

3 = Resonant Duty value received from DPWM Module

Bit 11-9: YN_SCALE – Controls scaling of Yn value to compensate for filter coefficient scaling

0 = Filter output (Yn) not scaled (Default)

1 = Filter output (Yn) right shifted by 1

2 = Filter output (Yn) right shifted by 2

3 = Filter output (Yn) right shifted by 3

4 = Filter output (Yn) left shifted by 4

5 = Filter output (Yn) left shifted by 3

6 = Filter output (Yn) left shifted by 2

7 = Filter output (Yn) left shifted by 1

Bit 8: NL_MODE – Sets non-linear gain table configuration. Coefficient Bin mapping is controlled by Coefficient Configuration Register. Limit configuration is controlled by the Filter Nonlinear Limit Registers (See Sections 8.16-8.18)

0 = Non-symmetric mode (Default)

1 = Symmetric mode

Bit 7: KD_STALL – Freezes KD Branch, KD_YN remains at current value

0 = KD_YN recalculated on each filter update (Default)

1 = KD_YN stalled at present value

Bit 6: KI_STALL - Freezes KI Branch, KI_YN remains at current value

0 = KI_YN recalculated on each filter update (Default)

- 1 = KI_YN stalled at present value
- Bit 5: KP_OFF Turns off the KP branch
 - 0 = KP branch calculating new outputs (Default)
 - 1 = KP branch turned off
- Bit 4: KD_OFF Turns off the KD branch, KD_YN cleared to zero
 - 0 = KD branch calculating new outputs (Default)
 - 1 = KD branch turned off
- Bit 3: KI_OFF Turns off the KI branch, KI_YN cleared to zero
 - 0 = KI branch calculating new outputs (Default)

1 = KI branch halted

- Bit 2: FORCE_START Initiates a filter calculation under firmware control
 - 0 = No calculation started (Default)
 - 1 = Calculation started

Bit 1: USE_CPU_SAMPLE – Forces filter to use error sample from CPU XN register (Section 8.3)

0 = Filter Mode, input data received from EADC (Default)

- 1 = CPU Mode, input data based on CPU XN register
- Bit 0: FILTER_EN Filter Enable
 - 0 = Disables Filter operation
 - 1 = Enables Filter operation (Default)

21.9.3 CPU XN Register (CPUXN)

Address 00160008 – Filter 2 CPU XN Register Address 00190008 – Filter 1 CPU XN Register

Address 001C0008 – Fliter 0 CPU XN Registe		
Bit Number	8:0	
Bit Name	CPU_SAMPLE	
Access	R/W	
Default	0_0000_0000	

Bits 8-0: CPU_SAMPLE – Forced X_n value, allows processor to use filter as ALU. Set Bit 2 of Filter Control Register to '1' to force CPU_SAMPLE as input to Filter.

21.9.4 Filter XN Read Register (FILTERXNREAD)

Address 0016000C – Filter 2 XN Read Register Address 0019000C – Filter 1 XN Read Register Address 001C000C – Filter 0 XN Read Register

Bit Number	24:16	15:9	8:0
Bit Name	XN_M1	RESERVED	XN
Access	R	-	R
Default	-	000_0000	-

Bits 24-16: XN_M1 – 9-bit signed XN_M1 register value, read-only Bits 15-9: RESERVED

Bits 8-0: XN – 9-bit signed XN register value, read-only

21.9.5 Filter KI_YN Read Register (FILTERKIYNREAD)

Address 00160010 – Filter 2 KI_YN Read Register Address 00190010 – Filter 1 KI_YN Read Register Address 001C0010 – Filter 0 KI_YN Read Register

Bit Number	23:0
Bit Name	KI_YN
Access	R
Default	-

Bits 23-0: KI_YN - 24-bit signed KI_YN register value, read-only

21.9.6 Filter KD_YN Read Register (FILTERKDYNREAD)

Address 00160014 – Filter 2 KD_YN Register Address 00190014 – Filter 1 KD_YN Register Address 001C0014 – Filter 0 KD_YN Register

Bit Number	23:0
Bit Name	KD_YN
Access	R
Default	-

Bits 23-0: KD_YN – 24-bit signed KD_YN register value, read-only

21.9.7 Filter YN Read Register (FILTERYNREAD)

Address 00160018 – Filter 2 YN Read Register Address 00190018 – Filter 1 YN Read Register Address 001C0018 – Filter 0 YN Read Register

Bit Number	23:0
Bit Name	YN
Access	R
Default	-

Bits 23-0: YN - 24-bit signed YN register value, read-only

21.9.8 Coefficient Configuration Register (COEFCONFIG)

Address 0016001C – Filter 2 Coefficient Configuration Register Address 0019001C – Filter 1 Coefficient Configuration Register Address 001C001C – Filter 0 Coefficient Configuration Register

Bit Number	27	26:24	23	22:20
Bit Name	BIN6_ALPHA	BIN6_CONFIG	BIN5_ALPHA	BIN5_CONFIG
Access	R/W	R/W	R/W	R/W
Default	0	000	0	000

Bit Number	19	18:16	15	14:12	11
Bit Name	BIN4_ALPHA	BIN4_CONFIG	BIN3_ALPHA	BIN3_CONFIG	BIN2_ALPHA
Access	R/W	R/W	R/W	R/W	R/W
Default	0	000	0	000	0

Bit Number	10:8	7	6:4	3	2:0
Bit Name	BIN2_CONFIG	BIN1_ALPHA	BIN1_CONFIG	BIN0_ALPHA	BIN0_CONFIG
Access	R/W	R/W	R/W	R/W	R/W
Default	000	0	000	0	000

Bit 27: BIN6_ALPHA – Selects which alpha value to use in Bin 6 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample

0 = Bank 0 KD Alpha (KD_ALPHA_0) selected (Default)

1 = Bank 1 KD Alpha (KD_ALPHA_1) selected

Bits 26-24: BIN6_CONFIG – Selects which coefficient set to place in Bin 6 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample.

- 0 = Coefficient Set A Selected (Default)
- 1 = Coefficient Set B Selected
- 2 = Coefficient Set C Selected
- 3 = Coefficient Set D Selected
- 4 = Coefficient Set E Selected
- 5 = Coefficient Set F Selected
- 6 = Coefficient Set G Selected

Bit 23: BIN5_ALPHA – Selects which alpha value to use in Bin 5 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample

- 0 = Bank 0 KD Alpha (KD_ALPHA_0) selected (Default)
 - 1 = Bank 1 KD Alpha (KD_ALPHA_1) selected

Bits 22-20: BIN5_CONFIG – Selects which coefficient set to place in Bin 5 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample.

- 0 = Coefficient Set A Selected (Default)
- 1 = Coefficient Set B Selected
- 2 = Coefficient Set C Selected
- 3 = Coefficient Set D Selected
- 4 = Coefficient Set E Selected
- 5 = Coefficient Set F Selected
- 6 = Coefficient Set G Selected

Bit 19: BIN4_ALPHA – Selects which alpha value to use in Bin 4 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample

- 0 = Bank 0 KD Alpha (KD_ALPHA_0) selected (Default)
- 1 = Bank 1 KD Alpha (KD_ALPHA_1) selected

Bits 18-16: BIN4_CONFIG – Selects which coefficient set to place in Bin 4 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample.

- 0 = Coefficient Set A Selected (Default)
- 1 = Coefficient Set B Selected
- 2 = Coefficient Set C Selected
- 3 = Coefficient Set D Selected
- 4 = Coefficient Set E Selected
- 5 = Coefficient Set F Selected
- 6 = Coefficient Set G Selected

Bit 15: BIN3_ALPHA – Selects which alpha value to use in Bin 3 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample

- 0 = Bank 0 KD Alpha (KD_ALPHA_0) selected (Default)
- 1 = Bank 1 KD Alpha (KD_ALPHA_1) selected

Bits 14-12: BIN3_CONFIG – Selects which coefficient set to place in Bin 3 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample.

- 0 = Coefficient Set A Selected (Default)
- 1 = Coefficient Set B Selected
- 2 = Coefficient Set C Selected
- 3 = Coefficient Set D Selected
- 4 = Coefficient Set E Selected
- 5 = Coefficient Set F Selected
- 6 = Coefficient Set G Selected

Bit 11: BIN2_ALPHA – Selects which alpha value to use in Bin 2 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample

- 0 = Bank 0 KD Alpha (KD_ALPHA_0) selected (Default)
- 1 = Bank 1 KD Alpha (KD_ALPHA_1) selected

Bits 10-8: BIN2_CONFIG – Selects which coefficient set to place in Bin 2 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample.

0 = Coefficient Set A Selected (Default)

- 1 = Coefficient Set B Selected
- 2 = Coefficient Set C Selected
- 3 = Coefficient Set D Selected
- 4 = Coefficient Set E Selected
- 5 = Coefficient Set F Selected
- 6 = Coefficient Set G Selected

Bit 7: BIN1_ALPHA – Selects which alpha value to use in Bin 1 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample

- 0 = Bank 0 KD Alpha (KD_ALPHA_0) selected (Default)
- 1 = Bank 1 KD Alpha (KD_ALPHA_1) selected

Bits 6-4: BIN1_CONFIG – Selects which coefficient set to place in Bin 1 of Non-Linear Table.

These bits are shadowed and updated to filter when filter is not processing an EADC sample.

- 0 = Coefficient Set A Selected (Default)
- 1 = Coefficient Set B Selected
- 2 = Coefficient Set C Selected
- 3 = Coefficient Set D Selected

- 4 = Coefficient Set E Selected
- 5 = Coefficient Set F Selected
- 6 = Coefficient Set G Selected

Bit 3: BIN0_ALPHA – Selects which alpha value to use in Bin 0 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample

- 0 = Bank 0 KD Alpha (KD_ALPHA_0) selected (Default)
- 1 = Bank 1 KD Alpha (KD_ALPHA_1) selected

Bits 2-0: BIN0_CONFIG – Selects which coefficient set to place in Bin 1 of Non-Linear Table. These bits are shadowed and updated to filter when filter is not processing an EADC sample.

0 = Coefficient Set A Selected (Default)

- 1 = Coefficient Set B Selected
- 2 = Coefficient Set C Selected
- 3 = Coefficient Set D Selected
- 4 = Coefficient Set E Selected
- 5 = Coefficient Set F Selected
- 6 = Coefficient Set G Selected

21.9.9 Filter KP Coefficient 0 Register (FILTERKPCOEF0)

Address 00160020 – Filter 2 KP Coefficient 0 Register Address 00190020 – Filter 1 KP Coefficient 0 Register Address 001C0020 – Filter 0 KP Coefficient 0 Register

Bit Number	31:16	15:0
Bit Name	KP_COEF_1	KP_COEF_0
Access	R/W	R/W
Default	0000_0000_0000_0000	0100_0010_0011_0100

Bits 31-16: KP_COEF_1 – KP Coefficient 1, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

Bits 15-0: KP_COEF_0 – KP Coefficient 0, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

21.9.10 Filter KP Coefficient 1 Register (FILTERKPCOEF1)

Address 00160024 – Filter 2 KP Coefficient 1 Register Address 00190024 – Filter 1 KP Coefficient 1 Register Address 001C0024 – Filter 0 KP Coefficient 1 Register

Bit Number	15:0	
Bit Name	KP_COEF_2	
Access	R/W	
Default	0000_0000_0000_0000	

Bits 15-0: KP_COEF_2 – KP Coefficient 2, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

21.9.11 Filter KI Coefficient 0 Register (FILTERKICOEF0)

Address 00160028 – Filter 2 KI Coefficient 0 Register Address 00190028 – Filter 1 KI Coefficient 0 Register Address 001C0028 – Filter 0 KI Coefficient 0 Register

Bit Number	31:16	15:0
Bit Name	KI_COEF_1	KI_COEF_0
Access	R/W	R/W
Default	0000_0000_0000_0000	0010_0100_0001_0010

Bits 31-16: KI_COEF_1 – KI Coefficient 1, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

Bits 15-0: KI_COEF_0 – KI Coefficient 0, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

21.9.12 Filter KI Coefficient 1 Register (FILTERKICOEF1)

Address 0016002C – Filter 2 KI Coefficient 1 Register Address 0019002C – Filter 1 KI Coefficient 1 Register Address 001C002C – Filter 0 KI Coefficient 1 Register

Bit Number	31:16	15:0
Bit Name	KI_COEF_3	KI_COEF_2
Access	R/W	R/W
Default	0000_0000_0000_0000	0000_0000_0000_0000

Bits 31-16: KI_COEF_3 – KI Coefficient 3, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

Bits 15-0: KI_COEF_2 – KI Coefficient 2, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

21.9.13 Filter KD Coefficient 0 Register (FILTERKDCOEF0)

Address 00160030 – Filter 2 KD Coefficient 0 Register Address 00190030 – Filter 1 KD Coefficient 0 Register Address 001C0030 – Filter 0 KD Coefficient 0 Register

Bit Number	31:16	15:0
Bit Name	KD_COEF_1	KD_COEF_0
Access	R/W	R/W
Default	0000_0000_0000_0000	1100_0100_0000_0001

Bits 31-16: KD_COEF_1 – KD Coefficient 1, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

Bits 15-0: KD_COEF_0 – KD Coefficient 0, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

21.9.14 Filter KD Coefficient 1 Register (FILTERKDCOEF1)

Address 00160034 – Filter 2 KD Coefficient 1 Register Address 00190034 – Filter 1 KD Coefficient 1 Register Address 001C0034 – Filter 0 KD Coefficient 1 Register

Bit Number	15:0
Bit Name	KD_COEF_2
Access	R/W
Default	0000_0000_0000_0000

Bits 15-0: KD_COEF_2 – KD Coefficient 2, 16-bit signed coefficient, configurable to any bin using the Coefficient Control Register

21.9.15 Filter KD Alpha Register (FILTERKDALPHA)

Address 00160038 – Filter 2 KD Alpha Register Address 00190038 – Filter 1 KD Alpha Register Address 001C0038 – Filter 0 KD Alpha Register

Bit Number	24:16	15:9	8:0
Bit Name	KD_ALPHA_1	RESERVED	KD_ALPHA_0
Access	R/W	-	R/W
Default	0_000_0000	000_0000	0_0101_0010

Bits 24-16: KD_ALPHA_1 – Bank 1 KD Alpha, 9-bit signed value, configurable to any bin using the Coefficient Control Register

Bits 15-9: RESERVED

Bits 8-0: KD_ALPHA_0 – Bank 0 KD Alpha, 9-bit signed value, configurable to any bin using the Coefficient Control Register

21.9.16 Filter Nonlinear Limit Register 0 (FILTERNL0)

Address 0016003C – Filter 2 Nonlinear Limit Register 0 Address 0019003C – Filter 1 Nonlinear Limit Register 0 Address 001C003C – Filter 0 Nonlinear Limit Register 0

		0	
Bit Number	24:16	15:9	8:0
Bit Name	LIMIT1	RESERVED	LIMIT0
Access	R/W	-	R/W
Default	0_000_0000	000_0000	0_1111_1111

Bits 24-16: LIMIT1 – Configures LIMIT1 in Nonlinear Coefficient tables Bits 15-9: RESERVED

Bits 8-0: LIMIT0 – Configures LIMIT0 in Nonlinear Coefficient tables

21.9.17 Filter Nonlinear Limit Register 1 (FILTERNL1)

Address 00160040 – Filter 2 Nonlinear Limit Register 1 Address 00190040 – Filter 1 Nonlinear Limit Register 1 Address 001C0040 – Filter 0 Nonlinear Limit Register 1

Bit Number	24:16	15:9	8:0
Bit Name	LIMIT3	RESERVED	LIMIT2
Access	R/W	-	R/W
Default	0_000_0000	000_0000	0_000_0000

Bits 24-16: LIMIT3 – Configures LIMIT3 in Nonlinear Coefficient tables Bits 15-9: RESERVED

Bits 8-0: LIMIT2 – Configures LIMIT2 in Nonlinear Coefficient tables

21.9.18 Filter Nonlinear Limit Register 2 (FILTERNL2)

Address 00160044 – Filter 2 Nonlinear Limit Register 2 Address 00190044 – Filter 1 Nonlinear Limit Register 2 Address 001C0044 – Filter 0 Nonlinear Limit Register 2

Bit Number	24:16	15:9	8:0
Bit Name	LIMIT5	RESERVED	LIMIT4
Access	R/W	-	R/W
Default	0_000_0000	000_0000	0_000_0000

Bits 24-16: LIMIT5 – Configures LIMIT5 in Nonlinear Coefficient tables **Bits 15-9: RESERVED Bits 8-0: LIMIT4** – Configures LIMIT4 in Nonlinear Coefficient tables

21.9.19 Filter KI Feedback Clamp High Register (FILTERKICLPHI)

Address 00160048 – Filter 2 KI Feedback Clamp High Register Address 00190048 – Filter 1 KI Feedback Clamp High Register Address 001C0048 – Filter 0 KI Feedback Clamp High Register

Bit Number	23:0
Bit Name	KI_CLAMP_HIGH
Access	R/W
Default	0111_1111_1111_1111_1111_1111

Bits 23-0: KI_CLAMP_HIGH – Sets the upper limit of KI_YN value. If calculated KI_YN exceeds this threshold, the KI_YN register will be set to KI_CLAMP_HIGH

21.9.20 Filter KI Feedback Clamp Low Register (FILTERKICLPLO)

Address 0016004C– Filter 2 KI Feedback Clamp Low Register Address 0019004C– Filter 1 KI Feedback Clamp Low Register Address 001C004C – Filter 0 KI Feedback Clamp Low Register

Bit Number	23:0
Bit Name	KI_CLAMP_LOW
Access	R/W
Default	0000_0000_0000_0000_0000

Bits 23-0: KI_CLAMP_LOW – Sets the lower limit of KI_YN value. If calculated KI_YN falls below this threshold, the KI_YN register will be set to KI_CLAMP_LOW

21.9.21 Filter YN Clamp High Register (FILTERYNCLPHI)

Address 00160050 – Filter 2 YN Clamp High Register Address 00190050 – Filter 1 YN Clamp High Register Address 001C0050 – Filter 0 YN Clamp High Register

Bit Number	23:0
Bit Name	YN_CLAMP_HIGH
Access	R/W
Default	0111_1111_1111_1111_1111_1111

Bits 23-0: YN_CLAMP_HIGH – Sets the upper limit of YN value. If calculated YN exceeds this threshold, the YN register will be set to YN_CLAMP_HIGH

21.9.22 Filter YN Clamp Low Register (FILTERYNCLPLO)

Address 00160054 – Filter 2 YN Clamp Low Register Address 00190054 – Filter 1 YN Clamp Low Register Address 001C0054 – Filter 0 YN Clamp Low Register

Bit Number	23:0
Bit Name	YN_CLAMP_LOW
Access	R/W
Default	0000_0000_0000_0000_0000

Bits 23-0: YN_CLAMP_LOW – Sets the lower limit of YN value. If calculated YN falls below this threshold, the YN register will be set to YN_CLAMP_LOW

21.9.23 Filter Output Clamp High Register (FILTEROCLPHI)

Address 00160058 – Filter 2 Output Clamp High Register Address 00190058 – Filter 1 Output Clamp High Register Address 001C0058 – Filter 0 Output Clamp High Register

Bit Number	17:0
Bit Name	OUTPUT_CLAMP_HIGH
Access	R/W
Default	11_1111_1111_1111_1111

Bits 17-0: OUTPUT_CLAMP_HIGH – Sets the upper limit of filter output value. If calculated filter output exceeds this threshold, the filter output will be set to OUTPUT_CLAMP_HIGH

21.9.24 Filter Output Clamp Low Register (FILTEROCLPLO)

Address 0016005C – Filter 2 Output Clamp Low Register Address 0019005C – Filter 1 Output Clamp Low Register Address 001C005C – Filter 0 Output Clamp Low Register

Bit Number	17:0
Bit Name	OUTPUT_CLAMP_LOW
Access	R/W
Default	00_0000_0000_0000_0000

Bits 17-0: OUTPUT_CLAMP_LOW – Sets the lower limit of filter output value. If calculated filter output falls below this threshold, the filter output will be set to OUTPUT_CLAMP_LOW

21.9.25 Filter Preset Register (FILTERPRESET)

Address 00160060 – Filter 2 Filter Preset Register Address 00190060 – Filter 1 Filter Preset Register Address 001C0060 – Filter 0 Filter Preset Register

Bit Number	27	26:24	23:0
Bit Name	PRESET_EN	PRESET_REG_SEL	PRESET_VALUE
Access	R/W	R/W	R/W
Default	00	000	0000_0000_0000_0000_0000

Bit 27: PRESET_EN – Set to '1' to initiate write of internal filter register (Self cleared by hardware after successful programming)

Bits 26-24: PRESET_REG_SEL – Selects internal filter register to preset by processor 0 = XN_M1 Register (only bits 10:0 of PRESET_VALUE will be programmed into

register)

1 = KI_YN Register

2 = KD_YN Register

3 = YN Register

4 = 18-bit Filter Data Register (after multiplication)

Bits 23-0: PRESET_VALUE - Value to preset into selected register

21.10 Front End Control Registers

Registers for Front End Control modules 0-2 are identical in their bit definitions

21.10.1 Ramp Control Register (RAMPCTRL)

Address 0x0018_0000 – Front End Control 2 Ramp Control Register Address 0x001B_0000 – Front End Control 1 Ramp Control Register Address 0x001E_0000 – Front End Control 0 Ramp Control Register

Bit Number	29:16	15:13	12
Bit Name	SYNC_FET_RAMP_START	RESERVED	RAMP_SAT_EN
Access	R/W	-	R/W
Default	00_0000_0000_0000	00	0

Bit Number	11	10	9
Bit Name	RAMP_COMP_INT_EN	RAMP_DLY_INT_EN	PREBIAS_INT_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	8	7	6:5	4
Bit Name	PCM_START_SEL	SYNC_FET_EN	MASTER_SEL	SLAVE_COMP_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	00	0

Bit Number	3	2	1	0
Bit Name	SLAVE_DELAY_EN	CONTROL_EN	FIRMWARE_START	RAMP_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bits 29-16: SYNC_FET_RAMP_START – Provides the starting value for the SyncFET Ramp with a resolution of High Frequency Oscillator Period/bit

Bits 15-13: RESERVED - Unused Bits

Bit 12: RAMP_SAT_EN – Enables addition or subtraction of DAC Saturation Step when EADC is in saturation.

0 = DAC Saturation Step logic is disabled, DAC incremented/decremented by value calculated by Ramp logic when EADC is in saturation (Default)

1 = DAC Saturation Step logic is enabled, DAC incremented/decremented by value stored in DAC Saturation Step register when EADC is in saturation

Bit 11: RAMP_COMP_INT_EN – Enables Ramp I/F Interrupt when soft-start/power-down ramp procedure is complete

0 = Soft-start/Power-Down Ramp Complete Interrupt is disabled (Default)

1 = Soft-start/Power-Down Ramp Complete Interrupt is enabled

Bit 10: RAMP_DLY_INT_EN – Enables Ramp I/F Interrupt when ramp delay procedure is complete

0 = Soft-start/Power-Down Ramp Delay Complete Interrupt is disabled (Default)

1 = Soft-start/Power-Down Ramp Delay Complete Interrupt is enabled

Bit 9: PREBIAS_INT_EN – Enables Ramp I/F Interrupt when Pre-Bias procedure is completed

0 = Pre-bias Complete Interrupt is disabled (Default)

1 = Pre-bias Complete Interrupt is enabled

Bit 8: PCM_START_SEL - Peak Current Mode Ramp Start Value Select

0 = Ramp starts from value programmed in DAC_VALUE bits in EADC_DAC_VALUE Register (Default)

1 = Ramp starts from filter output selected by PCM_SEL bits in Front End Control Mux Register

- **Bit 7: SYNC_FET_EN** Enables SyncFET Ramp Operation
 - 0 = SyncFET Ramp Operation disabled (Default)
 - 1 = SyncFET Ramp Operation enabled
- Bits 6-5: MASTER_SEL Selects Master Ramp I/F in slave mode
 - 0 = Front End Control 0 acts as master (Default)
 - 1 = Front End Control 1 acts as master
 - 2 = Front End Control 2 acts as master
- Bit 4: SLAVE_COMP_EN Enables syncing of ramp start to Master Ramp I/F Complete pulse
 - 0 = Ramp initiated by Master Ramp Complete pulse disabled (Default)
 - 1 = Ramp initiated by Master Ramp Complete pulse enabled

Bit 3: SLAVE_DELAY_EN – Enables syncing of ramp start to Master Ramp I/F Delay Complete pulse

- 0 = Ramp initiated by Master Ramp Delay Complete pulse disabled (Default)
- 1 = Ramp initiated by Master Ramp Delay Complete pulse enabled
- Bit 2: CONTROL_EN Enables PMBus Control line to initiate ramp
 - 0 = PMBus Control does not initiate ramp (Default)
 - 1 = PMBus Control initiates ramp
- **Bit 1: FIRMWARE_START** Ramp start bit, self-clearing by ramp logic
 - 0 = No ramp sequence initiated by firmware (Default)
 - 1 = Ramp sequence initiated by firmware

Bit 0: RAMP_EN – Enable Ramp Logic (Pre-biasing should be disabled before asserting ramp, bit 16 of Pre-Bias Control Register)

- 0 = No soft start or power-down ramp controlled by hardware (Default)
- 1 = Enables hardware control of soft start or power-down ramp

21.10.2 Ramp Status Register (RAMPSTAT)

Address 0x0018_0004 – Front End Control 2 Ramp Status Register Address 0x001B_0004 – Front End Control 1 Ramp Status Register Address 0x001E_0004 – Front End Control 0 Ramp Status Register

Bit Number	11	10	9
Bit Name	EADC_DONE_RAW	RAMP_COMP_INT_STATUS	RAMP_DLY_INT_STATUS
Access	R	R	R
Default	-	-	-

Bit Number	8	7	6
Bit Name	PREBIAS_INT_STATUS	EADC_SAT_HIGH	EADC_SAT_LOW
Access	R	R	R
Default	-	-	-

Bit Number	5	4	3
Bit Name	EADC_EOC	PREBIAS_BUSY	RAMP_BUSY
Access	R	R	R
Default	-	-	-

Bit Number	2	1	0
Bit Name	RAMP_COMP_STATUS	RAMP_DLY_STATUS	PREBIAS_STATUS
Access	R	R	R
Default	-	-	-

Bit 11: EADC_DONE_RAW – EADC Conversion Done Raw Status

0 = EADC Conversion has not completed

1 = EADC Conversion has completed

- Bit 10: RAMP_COMP_INT_STATUS Ramp Complete latched status
 - 0 = No Ramp Complete has been declared
 - 1 = Ramp Complete has been declared
- Bit 9: RAMP_DLY_INT_STATUS Ramp Delay Complete latched status
 - 0 = No Ramp Delay Complete has been declared 1 = Ramp Delay Complete has been declared
- Bit 8: PREBIAS INT STATUS Pre-Bias Complete latched status
- 0 = No Pre-Bias Complete has been declared 1 = Pre-Bias Complete has been declared
- Bit 7: EADC_SAT_HIGH EADC Saturation High Indicator
- 0 = EADC output is not saturated at high limit
 - 1 = EADC output is saturated at high limit
- Bit 6: EADC SAT LOW EADC Saturation Low Indicator
 - 0 = EADC output is not saturated at low limit
 - 1 = EADC output is saturated at low limit
- Bit 5: EADC_EOC Indicates EADC end of conversion
- Bit 4: PRE_BIAS_BUSY Pre-Bias Busy
 - 0 = Pre-Bias is not in progress
 - 1 = Pre-Bias in progress
- Bit 3: RAMP_BUSY Ramp Busy
 - 0 = Soft-Start/Power-Down Ramp is not in progress
 - 1 = Soft-Start/Power-Down Ramp is in progress
- Bit 2: RAMP_COMP_STATUS Ramp Complete, Raw Status

- 0 = Ramp procedure is not complete
- 1 = Ramp procedure is complete

Bit 1: RAMP_DLY_STATUS – Ramp Delay Complete, Raw Status

- 0 = Ramp delay procedure is not complete
- 1 = Ramp delay procedure is complete

Bit 0: PRE_BIAS_STATUS – Pre-Bias Complete, Raw Status

- 0 = Pre-Bias is not completed
- 1 = Pre-Bias is completed

21.10.3 Ramp Cycle Register (RAMPCYCLE)

Address 0x0018_0008 – Front End Control 2 Ramp Cycle Register
Address 0x001B_0008 – Front End Control 1 Ramp Cycle Register
Address 0x001E_0008 – Front End Control 0 Ramp Cycle Register

Bit Number	23:8	7	6:0
Bit Name	DELAY_CYCLES	RESERVED	SWITCH_CYC_PER_STEP
Access	R/W	-	R/W
Default	0000_0000_0000_0000	0	000_0000

Bits 23-8: DELAY_CYCLES – Configures the number of delay cycles before an initiation of ramp sequence. Each delay cycle consists of n switching cycles, as specified by

SWITCH_CYC_PER_STEP (Bits 6-0). Number of delay cycles can vary from 0 to 65535 0 = Ramp starts without delay (Default)

1 = Ramp starts after (1*SWITCH_CYC_PER_STEP) switching cycles

2 = Ramp starts after (2*SWITCH_CYC_PER_STEP) switching cycles

.....

65535 = Ramp starts after (65535*SWITCH_CYC_PER_STEP) switching cycles Bit 7: RESERVED

Bits 6-0: SWITCH_CYC_PER_STEP – Selects number of switching cycles per DAC step. Number of subcycles can vary from 1 to 128.

0 = 1 switching cycle per step (Default)

1 = 2 subcycles per cycle

2 = 3 subcycles per cycle

.

127 = 128 subcycles per cycle

21.10.4 EADC DAC Value Register (EADCDAC)

Address 0x0018_000C – Front End Control 2 EADC DAC Value Register Address 0x001B_000C – Front End Control 1 EADC DAC Value Register Address 0x001E_000C– Front End Control 0 EADC DAC Value Register

Bit Number	16	15	14	13:0
Bit Name	DAC_DITHER_ON_SAMPL E	DAC_DITHER_E N	RESERVE D	DAC_VALUE
Access	R/W	R/W	-	R/W
Default	0	0	0	00_1111_1111_0000

Bit 16: DAC_DITHER_ON_SAMPLE - DAC Dithering on based on Sample Trigger

- 0 = DAC Dithering disabled on input sample trigger (Default)
- 1 = DAC Dithering enabled on input sample trigger
- Bit 15: DAC_DITHER_EN DAC Dithering Enable
 - 0 = DAC Dithering disabled (Default)
 - 1 = DAC Dithering enabled

Bit 15: RESERVED

Bits 13-0: DAC_VALUE - Programmable DAC Value, effective LSB equals 0.09765625mV

21.10.5 Ramp DAC Ending Value Register (RAMPDACEND)

Address 0x0018_0010 – Front End Control 2 Ramp DAC Ending Register Address 0x001B_0010 – Front End Control 1 Ramp DAC Ending Register Address 0x001E_0010 – Front End Control 0 Ramp DAC Ending Register

Bit Number	13:0
Bit Name	RAMP_DAC_VALUE
Access	R/W
Default	00_0000_0000_0000

Bits 13-0: RAMP_DAC_VALUE – Programmable Ramp Ending DAC Value, LSB equals 0.09765625mV

21.10.6 DAC Step Register (DACSTEP)

Address 0x0018_0014 – Front End Control 2 DAC Step Register Address 0x001B_0014 – Front End Control 1 DAC Step Register Address 0x001E_0014 – Front End Control 0 DAC Step Register

Bit Number	17:0			
Bit Name	DAC_STEP			
Access	R/W			
Default	00_0000_0000_0000_0000			

Bits 17-0: DAC_STEP – Programmable 18-bit unsigned DAC Step. Bits 17:10 represent the real portion of the DAC Step (0-255 DAC counts at bit resolution of 0.09765625mV). Bits 9:0 represent the fractional portion of the DAC Step.

21.10.7 DAC Saturation Step Register (DACSATSTEP)

Address 0x0018_0018 – Front End Control 2 DAC Saturation Step Register Address 0x001B_0018 – Front End Control 1 DAC Saturation Step Register Address 0x001E_0018 – Front End Control 0 DAC Saturation Step Register

Bit Number	13:0	
Bit Name	DAC_SAT_STEP	
Access	R/W	
Default	00_0000_0000_0000	

Bits 13-0: DAC_SAT_STEP – Programmable DAC Saturation Step, LSB equals 0.009765625mV 0 = DAC not adjusted on EADC saturation during ramp (Default)

1 = DAC adjusted by 1 DAC count on EADC saturation during ramp

1023 = DAC adjusted by 1023 DAC counts on EADC saturation during ramp

21.10.8 EADC Control Register (EADCCTRL)

Address 0x0018_0020 – Front End Control 2 EADC Control Register Address 0x001B_0020 – Front End Control 1 EADC Control Register Address 0x001E 0020 – Front End Control 0 EADC Control Register

Bit Number	28	27	26
Bit Name	D2S_COMP_EN	EN_HYST_HIGH	EN_HYST_LOW
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	25:22	21	20
Bit Name	SAMP_TRIG_SCALE	FRAME_SYNC_EN	SCFE_CNT_RST
Access	R/W	R/W	R/W
Default	0000	0	0

Bit Number	19:16	15	14
Bit Name	SCFE_CNT_INIT	EADC_INV	AUTO_GAIN_SHIFT_MODE
Access	R/W	R/W	R/W
Default	0000	0	0

Bit Number	13	12	11
Bit Name	AUTO_GAIN_SHIFT_EN	AVG_WEIGHT_EN	AVG_SPATIAL_EN
Access	R/W	R/W	R/W
Default	0	0	0

Bit Number	10:9	8:6	5:4
Bit Name	AVG_MODE_SEL	EADC_MODE	AFE_GAIN
Access	R/W	R/W	R/W
Default	00	000	11

Bit Number	3	2	1	0
Bit Name	SCFE_GAIN_FILTER_SEL	SCFE_CLK_DIV_2	SCFE_ENA	EADC_ENA

Access	R/W	R/W	R/W	R/W
Default	1	1	1	1

Bit 28: D2S_COMP_EN - Analog Front End Ramp Comparator Enable

0 = Analog Front End Ramp Comparator disabled (Default)

1 = Analog Front End Ramp Comparator enabled

Bit 27: EN_HYST_HIGH – Increase comparator trip point by ~70mV

0 = Disables increase of ramp comparator trip point (Default)

1 = Enables increase of ramp comparator trip point

Bit 26: EN_HYST_LOW – Decrease comparator trip point by ~70mV

0 = Disables decrease of ramp comparator trip point (Default)

1 = Enables decrease of ramp comparator trip point

Bits 25-22: SAMP_TRIG_SCALE – Provides capability to mask incoming sample triggers to Front End Control

0 = EADC conversion initiated on every received sample trigger (Default)

1 = EADC conversion initiated once every 2 received sample triggers

2 = EADC conversion initiated once every 3 received sample triggers

15 = EADC conversion initiated once every 16 received sample triggers **Bit 21: FRAME SYNC EN** – Enable synchronization of switched cap front end counter to

Switching Cycle Frame boundary

 $\vec{0}$ = Switch Cap Front End Counter not synchronized to frame (Default)

1 = Switch Cap Front End Counter synchronized to frame boundary

Bit 20: SCFE_CNT_RST - Force reset of Switched Cap Front End Counter

0 = Switch Cap Front End Counter operational (Default)

1 = Switch Cap Front End Counter reset

Bits 19-16: SCFE_CNT_INIT – Configures initial Switched Cap Front End Counter value out of reset or at start of switching cycle in Peak Current mode

Bit 15: EADC_INV - Enables EADC Data Inversion on data to filter module

0 = EADC Data is not inverted (Default)

1 = EADC Data Inverted

Bit 14: AUTO_GAIN_SHIFT_MODE – Configures Automatic Gain Shifting mode

0 = Fixed mode, gain shifting dependent on saturation of EADC for decreasing gain and less than 1/4 of dynamic range for increasing gain (Default)

1 = NL mode, gain shifting dependent on Non-Linear limit thresholds

Bit 13: AUTO_GAIN_SHIFT_EN – Enables Automatic Gain Shifting mode

0 = Automatic Gain Shifting Mode disabled (Default)

1 = Automatic Gain Shifting Mode enabled

Bit 12: AVG_WEIGHT_EN – Enables weighted averaging in EADC averaging mode, only applicable in 4x and 8x averaging mode. For 4x averaging, two oldest samples are each weighted by 1/8, the next oldest sample has a weight of $\frac{1}{4}$ and the newest sample is weighted by $\frac{1}{2}$. For 8x averaging, the four oldest samples are each weighted by 1/16, the next 2 oldest samples are weighted by 1/8, the next oldest sample is weighted by $\frac{1}{4}$ and the newest sample is weighted by $\frac{1}{8}$.

0 = Weighted averaging disabled (Default)

1 = Weighted averaging enabled

Bit 11: AVG_SPATIAL_EN – Enables spatial mode in EADC averaging mode

0 = Consecutive EADC samples averaged based on every received sample trigger from DPWM modules (Default)

1 = EADC samples averaged based on received sample triggers from DPWM modules. 2 sample triggers required for a single averaged sample to filter. 4 sample triggers required for a single averaged sample to filter module

- Bit 10-9: AVG_MODE_SEL Averaging Mode Configuration
 - 0 = 2x Averaging (Default)
 - 1 = 4x Averaging
 - 2 = 8x Averaging
- Bits 8-6: EADC_MODE Selects EADC Mode Operation

0 = Standard mode, EADC samples based on sample triggers from DPWM module (Default)

- 1 = Averaging Mode, configured by AVG_MODE_SEL
- 2 = Non-continuous SAR Mode
- 3 = Continuous SAR Mode
- 4 = Reserved
- 5 = Peak Current Mode
- 6 = Constant Power/Constant Current Control Mode (CPCC module controls switching between Standard Mode and Non-Continuous SAR Mode)
- 7 = Constant Power/Constant Current Control 2 Mode (CPCC module controls switching between Standard mode and Continuous SAR Mode)
- Bits 5-4: AFE_GAIN AFE Front End Gain Setting
 - 0 = 1x Gain, 8mV/LSB
 - 1 = 2x Gain, 4mV/LSB
 - 2 = 4x Gain, 2mV/LSB
 - 3 = 8x Gain, 1mV/LSB (Default)
- Bit 3: SCFE_GAIN_FILTER_SEL Switched Cap Noise Filter Enable
 - 0 = Disables Switch Cap Noise Filter
 - 1 = Enables Switch Cap Noise Filter (Default)
- Bit 2: SCFE_CLK_DIV_2 Switched Cap Front End Clock Divider Select
 - 0 = Switch Cap Clock divide by 1
 - 1 = Switch Cap Clock divide by 2 (Default)
- Bit 1: SCFE_ENA Switch Cap Front Enable
 - 0 = Disables Switch Cap Front End logic
 - 1 = Enables Switch Cap Front End logic (Default)
- Bit 0: EADC_ENA EADC Enable
 - 0 = Disables EADC
 - 1 = Enables EADC (Default)

21.10.9 Pre-Bias Control Register 0 (PREBIASCTRL0)

Address 0x0018_0028 – Front End Control 2 Pre-Bias Control Register 0 Address 0x001B_0028 – Front End Control 1 Pre-Bias Control Register 0 Address 0x001E_0028 – Front End Control 0 Pre-Bias Control Register 0

Bit Number	17	16	15:8	7:0	
Bit Name	PRE_BIAS_POL	PRE_BIAS_EN	PRE_BIAS_RANGE	PRE_BIAS_LIMIT	
Access	R/W	R/W	R/W	R/W	
Default	0	0	1111_1111	0000_0000	

Bit 17: PRE_BIAS_POL – Configures polarity of received error voltage

- 0 = Error equals Vref-Vin (Default)
- 1 = Error equals Vin-Vref

Bit 16: PRE_BIAS_EN – Enable Pre-Biasing of Error ADC (Ramp should be disabled during prebiasing, bit 0 of Ramp Control Register)

0 = Pre-Biasing has not been initiated (Default)

1 = Pre-Biasing by hardware has been enabled

Bits 15-8: PRE_BIAS_RANGE - Sets the acceptable range around the zero error point. If Error

ADC value stays in range for number of samples specified by **PRE_BIAS_LIMIT** (Bits 7:0), **PREBIAS_STATUS** (Bit 0 of Ramp Status Register) is enabled. Range will be +/-**PRE_BIAS_RANGE** around zero error point.

Bits 7-0: PRE_BIAS_LIMIT – Sets the acceptable number of samples in which the Error ADC value stays in range before asserting **PREBIAS_STATUS** (Bit 0 of Ramp Status Register). Counter limit ranges from 0 to 255. If **PREBIAS_STATUS** is set, it will take **PRE_BIAS_LIMIT** samples outside of acceptable range before clearing **PREBIAS_STATUS**.

21.10.10 Pre-Bias Control Register 1 (PREBIASCTRL1)

Address 0x0018_002C – Front End Control 2 Pre-Bias Control Register 1 Address 0x001B_002C – Front End Control 1 Pre-Bias Control Register 1 Address 0x001E 002C – Front End Control 0 Pre-Bias Control Register 1

Bit Number	23:16	15:14	13:0
Bit Name	SAMPLES_PER_ADJ	RESERVED	MAX_DAC_ADJ
Access	R/W	-	R/W
Default	0000_0000	00	00_0000_0000_0000

Bits 23-16: SAMPLES_PER_ADJ – Configures the number of EADC samples between Pre-Bias DAC setpoint adjustments

0 = DAC Setpoint adjustment on each EADC sample

1 = DAC Setpoint adjustment after 2 EADC sample

2 = DAC Setpoint adjustment after 3 EADC samples

255 = DAC Setpoint adjustment after 256 EADC samples

Bits 15-14: RESERVED – Unused Bits

Bits 13-0: MAX_DAC_ADJ – Configures the maximum DAC setpoint adjustment step

21.10.11 SAR Control Register (SARCTRL)

Address 0x0018_0030 – Front End Control 2 SAR Control Register Address 0x001B_0030 – Front End Control 1 SAR Control Register Address 0x001E_0030 – Front End Control 0 SAR Control Register

Bit Number	31:24	23:16	15:8
Bit Name	EADC_WINDOW_2	EADC_WINDOW_1	SAR_RANGE
Access	R/W	R/W	R/W
Default	0010_1000	0110_0000	0000_0000

Bit Number	7:2	1:0
Bit Name	RESERVED	SAR_RESOLUTION
Access	-	R/W
Default	0000_00	00

Bits 31-24: EADC_WINDOW_2 – Configures acceptable range of error values to transition to AFE Gain of 2 during SAR process

Bits 23-16: EADC_WINDOW_1 – Configures acceptable range of error values to transition to AFE Gain of 1 during SAR process

Bits 15-8: SAR_RANGE – Configures acceptable range of error values before declaring SAR completion

Bits 7-2: RESERVED – Unused bits

Bits 1-0: SAR_RESOLUTION – Configures the final resolution for SAR Conversions 0 = 8mV Resolution, 1x AFE Gain

- 1 = 4mV Resolution, 2x AFE Gain
- 2 = 2mV Resolution, 4x AFE Gain 3 = 1mV Resolution, 8x AFE Gain

21.10.12 SAR Timing Register (SARTIMING)

Address 0x0018_0034 – Front End Control 2 SAR Timing Register
Address 0x001B_0034– Front End Control 1 SAR Timing Register
Address 0x001E_0034 – Front End Control 0 SAR Timing Register

Bit Number	10:8	7
Bit Name	SAR_TIMING_UPPER	RESERVED
Access	R/W	-
Default	100	0

Bit Number	6:4	3	2:0
Bit Name	SAR_TIMING_MID	RESERVED	SAR_TIMING_LOWER
Access	R/W	-	R/W
Default	011	0	010

Bits 10-8: SAR_TIMING_UPPER – Configures timing for Bits 9:8 of DAC setpoint for SAR Algorithm

Bit 7: RESERVED - Unused bit

Bits 6-4: SAR_TIMING_MID – Configures timing for Bits 7:6 of DAC setpoint for SAR Algorithm Bit 3: RESERVED – Unused bit

Bits 2-0: SAR_TIMING_LOWER – Configures timing for Bits 5:0 of DAC setpoint for SAR Algorithm

21.10.13 EADC Value Register (EADCVALUE)

Address 0x0018_0038 – Front End Control 2 EADC Value Register Address 0x001B_0038 – Front End Control 1 EADC Value Register Address 0x001E_0038 – Front End Control 0 EADC Value Register

			<u> </u>
Bit Number	25:16	15	14
Bit Name	ABS_VALUE	EADC_SAT_HIGH	EADC_SAT_HIGH
Access	R	R	R
Default	-	-	-

Bit Number	13:9	8:0
Bit Name	RESERVED	ERROR_VALUE
Access	-	R
Default	00_000	-

Bits 25-16: ABS_VALUE – 10-bit Absolute Value calculated by Front End Control Module with a resolution of 1.5625mV/bit

Bit 15: EADC_SAT_HIGH - EADC Saturation High Indicator

0 = EADC output is not saturated at high limit

1 = EADC output is saturated at high limit

Bit 14: EADC_SAT_LOW – EADC Saturation Low Indicator

0 = EADC output is not saturated at low limit

1 = EADC output is saturated at low limit

Bits 13-9: RESERVED – Unused bits

Bits 8-0: ERROR_VALUE – Signed 9-bit Error value measured by Front End Control Module with a resolution of 1mV/bit

21.10.14 EADC Raw Value Register (EADCRAWVALUE)

Address 0x0018_003C – Front End Control 2 EADC Raw Value Register Address 0x001B_003C – Front End Control 1 EADC Raw Value Register Address 0x001E_003C – Front End Control 0 EADC Raw Value Register

Bit Number	8:0
Bit Name	RAW_ERROR_VALUE
Access	R
Default	-

Bits 8-0: RAW_ERROR_VALUE – Signed 9-bit Error value measured by Front End Control Module with a resolution of 1mV/bit. Value is raw EADC data before averaging.

21.10.15 DAC Status Register (DACSTAT)

Address 0x0018_0040 – Front End Control 2 DAC Status Register Address 0x001B_0040 – Front End Control 1 DAC Status Register Address 0x001E_0040 – Front End Control 0 DAC Status Register

Bit Number	9:0	
Bit Name	DAC_VALUE	
Access	R	
Default	00_0000_0000	

Bits 9-0: DAC_VALUE - Current 10-bit Value sent to DAC

21.11 Miscellaneous Analog Control

The Miscellaneous Analog Control module provides control signals to the oscillator and AFE blocks.

21.11.1 Clock Trim Register (CLKTRIM)

Bit Number	16	15:12	11:8	7:0
Bit Name	RESET_DISABLE	HFO_FINE_TRIM	HFO_COARSE_TRIM	RESERVED
Access	R/W	R/W	R/W	
Default	0	1000	0110	

Bits 16: RESET_DISABLE - Firmware disable of RESET pin

Bits 15-12: HFO_FINE_TRIM - High Frequency Oscillator Clock Fine Trim Bits. Register will be programmed during device test. Changing this value will change the clock speed. It should only be changed in conjunction with the coarse trim and with an additional clock reference for comparison

Bits 11-8: HFO_COARSE_TRIM - High Frequency Oscillator Clock Coarse Trim Bits. Register will be programmed during device test. Changing this value will change the clock speed. It should only be changed in conjunction with the fine trim and with an additional clock reference for comparison

Bits 7-0: **RESERVED** – These bits are reserved for TI use and should be preserved in whatever state the device starts up in. Modifying the contents of these bits may cause the UCD3138A64 to move out of specification.

21.11.2 Package ID Register (PKGID)

Address FFF7F010

Bit Number	1:0	
Bit Name	PKG_ID	
Access	R/W	
Default	00	

Bits 1-0: PKG_ID – Represents package type of device 0 = 80-pin package (Default)

21.11.3 Brownout Register (BROWNOUT)

Address FFF7F014

Bit Number	2	1	0
Bit Name	INT	INT_EN	COMP_EN
Access	R	R/W	R/W
Default	-	0	0

Bit 2: INT – Brownout Interrupt Status

0 = No Brownout Condition observed

1 = Brownout Condition observed

Bit 1: INT_EN – Brownout Interrupt Enable

0 = Brownout Interrupt disabled (Default) 1 = Brownout Interrupt enabled

Bit 0: COMP_EN – Brownout Comparator Enable

0 = Brownout comparator logic disabled (Default)

1 = Brownout comparator logic enabled

21.11.4 Global I/O EN Register (GLBIOEN)

Address FFF7F018

Bit Number	31:0
Bit Name	GLOBAL_IO_EN
Access	R/W
Default	0000_0000_0000_0000_0000_0000_0000

Bits 31-0: GLOBAL_IO_EN – This register enables the global control of digital I/O pins

0 =Control of IO is done by the functional block assigned to the IO (Default)

1 = Control of IO is done by Global IO registers.

Bit assignment is done by this table:

BIT PIN_NAME				
31	TMR_PWM[2]			
30	TMR_PWM[3]			
29	FAULT[3]			
28	ADC_EXT_TRIG			
27	TCK			
26	TDO			
25	TMS			
24	TDI			
23	SCI_TX[1]			
22	SCI_TX[0]			
21	SCI_RX[1]			
20	SCI_RX[0]			
19	TMR_CAP[0]			
18	TMR_PWM[1]			
17	TMR_PWM[0]			
16	TMR_CAP[1]			
15	I2C-DATA			
14	CONTROL			
13	ALERT			
12	EXT_INT			
11	FAULT[2]			
10	FAULT[1]			
9	FAULT[0]			
8	SYNC			
7	DPWM3B			
6	DPWM3A			
5	DPWM2B			
4	DPWM2A			
3	DPWM1B			
2 1	DPWM1A			
	DPWM0B			
0	DPWM0A			

21.11.5 Global I/O OE Register (GLBIOOE) Address FFF7F01C

Bit Number	31:0			
Bit Name	GLOBAL_IO_OE			
Access	R/W			
Default	0000_0000_0000_0000_0000_0000_0000			

Bits 31-0: GLOBAL_IO_OE – This register controls the output enable signals for all digital I/O pins

0 = Input (Default) 1 = Output

BIT	PIN_NAME
31	TMR_PWM[2]
30	TMR_PWM[3]
29	FAULT[3]
28	ADC_EXT_TRIG
27	TCK
26	TDO
25	TMS
24	TDI
23	SCI_TX[1]
22	SCI_TX[0]
21	SCI_RX[1]
20	SCI_RX[0]
19	TMR_CAP[0]
18	TMR_PWM[1]
17	TMR_PWM[0]
16	TMR_CAP[1]
15	I2C-DATA
14	CONTROL
13	ALERT
12	EXT_INT
11	FAULT[2]
10	FAULT[1]
9	FAULT[0]
8	SYNC
7	DPWM3B
6	DPWM3A
5	DPWM2B
4	DPWM2A
3	DPWM1B
2	DPWM1A
1	DPWM0B
0	DPWM0A

21.11.6 Global I/O Open Drain Control Register (GLBIOOD)

Address FFF7F020

Bit Number	31:0			
Bit Name	GLOBAL_IO_OD			
Access	R/W			
Default	0000_0000_0000_0000_0000_0000_0000			

Bits 31-0: GLOBAL_IO_OD – This register controls if the global IO is configured as an open drain. This bit multiplexes the GLOBAL_IO_VALUE register to the OE signals

0 = Normal I/O (Default)

1 = Open Drain

BIT	PIN_NAME	
31	TMR_PWM[2]	
30	TMR_PWM[3]	
29	FAULT[3]	
28	ADC_EXT_TRIG	
27	TCK	
26	TDO	
25	TMS	
24	TDI	
23	SCI_TX[1]	
22	SCI_TX[0]	
21	SCI_RX[1]	
20	SCI_RX[0]	
19	TMR_CAP[0]	
18	TMR_PWM[1]	
17	TMR_PWM[0]	
16	TMR_CAP[1]	
15	I2C-DATA	
14	CONTROL	
13	ALERT	
12	EXT_INT	
11	FAULT[2]	
10	FAULT[1]	
9	FAULT[0]	
8	SYNC	
7	DPWM3B	
6	DPWM3A	
5	DPWM2B	
4	DPWM2A	
3 2	DPWM1B	
2	DPWM1A	
1	DPWM0B	
0	DPWM0A	

21.11.7 Global I/O Value Register (GLBIOVAL)

Address FFF7F024				
Bit Number	31:0			
Bit Name	GLOBAL_IO_VALUE			
Access	R/W			
Default	0000_0000_0000_0000_0000_0000_0000			

Bits 31-0: GLOBAL_IO_VALUE - This register set the output value of the digital I/O pins when configured as outputs

0 = Digital I/O pin configured as low in output mode (Default) 1 = Digital I/O pin configured as high in output mode

	ient is done by this tabl	
BIT	PIN_NAME	
31	TMR_PWM[2]	
30	TMR_PWM[3]	
29	FAULT[3]	
28	ADC_EXT_TRIG	
27	TCK	
26	TDO	
25	TMS	
24	TDI	
23	SCI_TX[1]	
22	SCI_TX[0]	
21	SCI_RX[1]	
20	SCI_RX[0]	
19	TMR_CAP[0]	
18	TMR_PWM[1]	
17	TMR_PWM[0]	
16	TMR_CAP[1]	
15	I2C-DATA	
14	CONTROL	
13	ALERT	
12	EXT_INT	
11	FAULT[2]	
10	FAULT[1]	
9	FAULT[0]	
8	SYNC	
7	DPWM3B	
6	DPWM3A	
5	DPWM2B	
4	DPWM2A	
3	DPWM1B	
2	DPWM1A	
1	DPWM0B	
0	DPWM0A	

21.11.8 Global I/O Read Register (GLBIOREAD)

Address FFF7F028

Bit Number	31:0			
Bit Name	GLOBAL_IO_READ			
Access	R			
Default	-			

Bits 31-0: GLOBAL_IO_READ – This register provides the value on these signals after I/O muxing

0 = Digital I/O pin low (Default)

1 = Digital I/O pin high

BIT	PIN NAME	
31	TMR_PWM[2]	
30	TMR_PWM[3]	
29	FAULT[3]	
28	ADC_EXT_TRIG	
27	TCK	
26	TDO	
25	TMS	
24	TDI	
23	SCI_TX[1]	
22	SCI_TX[0]	
21	SCI_RX[1]	
20	SCI_RX[0]	
19	TMR_CAP[0]	
18	TMR_PWM[1]	
17	TMR_PWM[0]	
16	TMR_CAP[1]	
15	I2C-DATA	
14	CONTROL	
13	ALERT	
12	EXT_INT	
11	FAULT[2]	
10	FAULT[1]	
9	FAULT[0]	
8	SYNC	
7	DPWM3B	
6	DPWM3A	
5	DPWM2B	
4	DPWM2A	
3 2	DPWM1B	
2	DPWM1A	
1	DPWM0B	
0	DPWM0A	

21.11.9 RTCCTRLI/O Mux Control Register (IOMUX)

Address FFF7F030

Bit Number	7:6	5:4	3
Bit Name	TCAP1_MUX_SEL	TCAP0_MUX_SEL	RESERVED
Access	R/W	R/W	R
Default	00	00	0

Bit Number	2	1	0
Bit Name	JTAG_MUX_SEL	RTC_CLK_IN_SEL	RTC_CLK_OUT_SEL
Access	R/W	R/W	R/W
Default	See below	0	0

Bits 7-6: TCAP1_MUX_SEL – Pin Mux Select

0: TMR_CAP_1 function utilized via the TMR_CAP_1 pin

1: TMR_CAP_1 function utilized via the TDI pin

2: TMR_CAP_1 function utilized via the TDO pin

3: TMR_CAP_1 function utilized via the TMR_CAP_0 pin

Bits 5-4: TCAP0_MUX_SEL – Pin Mux Select

0: TMR_CAP_0 function utilized via the TMR_CAP_0 pin

1: TMR_CAP_0 function utilized via the TDI pin

2: TMR_CAP_0 function utilized via the TDO pin

3: TMR_CAP_0 function utilized via the TMR_CAP_1 pin

Bit 3: RESERVED

Bit 2: JTAG_MUX_SEL

0: JTAG pins function as JTAG port. TCK/TMS/TDI/TDO

1: JTAG pins disabled

JTAG port functions as SPI port in this mode.

TCK -> SPI_CLK

TMS -> SPI_CS

TDI -> SPI_MISO

TDO -> SPI_MOSI

This bit will be set to a 1 if there is a valid checksum in program flash and ROM jumps to directly to program flash on power up. If there is no valid checksum, and the ROM program stays in ROM mode for program download, this bit will be a 0.

Bit 1: RTC_CLK_IN_SEL - Pin Mux Select

0: Input to RTC module clock connected to XTAL_CLK_IN

1: Input to RTC module clock connected to TCK

Bit 0: RTC_CLK_OUT_SEL - Pin Mux Select

0: Output of RTC reference clock disabled

1: Output of RTC reference clock connected to TCK

21.11.10 Current Sharing Control Register (CSCTRL)

Address FFF7F038

Bit Number	23:16	15:8	7:4	3:0
Bit Name	DPWM_DUTY	DPMW_PERIOD	RESERVED	TEST_MODE
Access	R/W	R/W	-	R/W
Default	0000_0000	0000_0000	0000	0000

Bits 23-16: DPWM_DUTY – Configures Pulse Width/Duty Cycle for DPWM output to Current Sharing circuit. Resolution of LSB equals period of MCLK clock

Bits 15-8: DPWM_PERIOD – Configures Period for DPWM output to Current Sharing circuit. Output period equals DPWM_PERIOD+1 * LSB resolution. Resolution of LSB equals period of MCLK clock

Bits 7-4: RESERVED – Unused bits

Bits 3-0: TEST_MODE – Controls Current Sharing Operation

Test Mode	EN_SW1	EN_SW2	DIS_RES	DPWM	EN_HALF_CURR
0000	0	0	1	0	0
0001	1	0	0	ACTIVE	0
0010	0	0	1	0	0
0011	0	1	1	0	0
01XX	1	0	1	1	0
10XX	0	0	0	0	0
11XX	1	0	0	1	1

21.11.11 Temperature Reference Register (TEMPREF)

Address FFF7F03C

Bit Number	11:0	
Bit Name	e TEMP_REF	
Access	R/W	
Default	0000_0000_0000	

Bits 11-0: TEMP_REF – Reference measurement taken during factory trim, ADC12 measurement of the internal temperature sensor at room temperature for use in offset calibration

21.11.12 Power Disable Control Register (PWRDISCTRL)

Address FFF7	7F040		- J - · · · ·	-	- /		
Bit Number	20		19			18	
Bit Name	RTC_CLK_EN		I2C_CL	K_EN		SPI_CLK_EN	
Access	R/W		R/\	V		R/W	
Default	1		1			1	
Bit Number	17		16			15	
Bit Name	PCM_CLK_EN		CPCC_C	LK_EN	FI	LTER2_CLK_EN	
Access	R/W		R/\	V		R/W	
Default	1		1			1	
Bit Number	14	13			12	11	
Bit Name	FILTER1_CLK_EN	FILTE	R0_CLK_EN	FE_CTR	_2_CLK_EN	FE_CTRL1_CLK_EN	
Access	R/W		R/W	R/W		R/W	
Default	1		1		1	1	
Bit Number	10		9			8	
Bit Name	FE_CTRL0_CLK_EN		DPWM3_CLK	_EN			
Access	R/W		R/W		R/W		
Default	1		1			1	
	_				_		
Bit Number	7		6		5	4	
Bit Name	DPWM1_CLK_EN	DPV	M0_CLK_EN	SCI1	_CLK_EN	SCI0_CLK_EN	
Access	R/W		R/W		R/W	R/W	
Default	1	1			1	1	
B ¹ H			•		4		
Bit Number	3		2		1	0	
Bit Name	ADC12_CLK_EN	PME	BUS_CLK_EN	GIO	_CLK_EN	TIMER_CLK_EN	
Access	R/W		R/W		R/W	R/W	

Bit 17: PCM_CLK_EN – Clock Enable for Digital Peak Current Control Module

0 = Disables clocks to Digital Peak Current Control Module

1

1 = Enables clocks to Digital Peak Current Control Module (Default)

1

Bit 16: CPCC_CLK_EN - Clock Enable for Constant Power/Constant Current Module

0 = Disables clocks to Constant Power/Constant Current Module

1

1

Default

1 = Enables clocks to Constant Power/Constant Current Module (Default) Bit 15: FILTER2 CLK EN - Clock Enable for Filter 2 Module 0 = Disables clocks to Filter 2 Module 1 = Enables clocks to Filter 2 Module (Default) Bit 14: FILTER1 CLK EN – Clock Enable for Filter 1 Module 0 = Disables clocks to Filter 1 Module 1 = Enables clocks to Filter 1 Module (Default) Bit 13: FILTER0 CLK EN - Clock Enable for Filter 0 Module 0 = Disables clocks to Filter 0 Module 1 = Enables clocks to Filter 0 Module (Default) Bit 12: FE_CTRL2_CLK_EN - Clock Enable for Front End Control 2 Module 0 = Disables clocks to Front End Control 2 Module 1 = Enables clocks to Front End Control 2 Module (Default) Bit 11: FE CTRL1 CLK EN - Clock Enable for Front End Control 1 Module 0 = Disables clocks to Front End Control 1 Module 1 = Enables clocks to Front End Control 1 Module (Default) Bit 10: FE CTRL0 CLK EN – Clock Enable for Front End Control 0 Module 0 = Disables clocks to Front End Control 0 Module 1 = Enables clocks to Front End Control 0 Module (Default) Bit 9: DPWM3_CLK_EN - Clock Enable for DPWM 3 Module 0 = Disables clocks to DPWM 3 Module 1 = Enables clocks to DPWM 3 Module (Default) Bit 8: DPWM2_CLK_EN - Clock Enable for DPWM 2 Module 0 = Disables clocks to DPWM 2 Module 1 = Enables clocks to DPWM 2 Module (Default) Bit 7: DPWM1_CLK_EN - Clock Enable for DPWM 1 Module 0 = Disables clocks to DPWM 1 Module 1 = Enables clocks to DPWM 1 Module (Default) Bit 6: DPWM0_CLK_EN - Clock Enable for DPWM 0 Module 0 = Disables clocks to DPWM 0 Module 1 = Enables clocks to DPWM 0 Module (Default) Bit 5: SCI1_CLK_EN – Clock Enable for SCI/UART 1Module 0 = Disables clocks to SCI/UART 1 Module 1 = Enables clocks to SCI/UART 1 Module (Default) Bit 4: SCI0 CLK EN - Clock Enable for SCI/UART 0 Module 0 = Disables clocks to SCI/UART 0 Module 1 = Enables clocks to SCI/UART 0 Module (Default) Bit 3: ADC12 CLK EN - Clock Enable for ADC12 Control Module 0 = Disables clocks to ADC12 Control Module 1 = Enables clocks to ADC12 Control Module (Default) Bit 2: PMBUS_CLK_EN - Clock Enable for PMBus Interface Module 0 = Disables clocks to PMBus Interface Module 1 = Enables clocks to PMBus Interface Module (Default) Bit 1: GIO_CLK_EN - Clock Enable for GIO Module 0 = Disables clocks to GIO Module 1 = Enables clocks to GIO Module (Default) Bit 0: TIMER CLK EN - Clock Enable for Timer Module 0 = Disables clocks to Timer Module

1 = Enables clocks to Timer Module (Default)

21.12 PMBus Interface

21.12.1 PMBUS Control Register 1 (PMBCTRL1)

PMBus Address FFF7F600

PMBus1 Address FFF7F700

Bit Number	20	19	18	17
Bit Name	PRC_CALL	GRP_CMD	PEC_ENA	EXT_CMD
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	16	15:8	7:1	0
Bit Name	CMD_ENA	BYTE_COUNT	SLAVE_ADDR	RW
Access	R/W	R/W	R/W	R/W
Default	0	0000_0000	000_0000	0

Bit 20: PRC_CALL – Master Process Call Message Enable

- 0 = Default state for all messages besides Process Call message (Default) 1 = Enables transmission of Process Call message
- Bit 19: GRP_CMD Master Group Command Message Enable
- 0 = Default state for all messages besides Group Command message (Default) 1 = Enables transmission of Group Command message
- Bit 18: PEC_ENA Master PEC Processing Enable
 - 0 = Disables PEC processing (Default)
 - 1 = Enables PEC byte transmission/reception
- Bit 17: EXT_CMD Master Extended Command Code Enable
 - 0 = Use 1 byte for Command Code (Default)
 - 1 = Use 2 bytes for Command Code
- Bit 16: CMD_ENA Master Command Code Enable
 - 0 = Disables use of command code on Master initiated messages (Default)
 - 1 = Enables use of command code on Master initiated messages

Bits 15-8: BYTE_COUNT – Indicates number of data bytes transmitted in current message. Byte count does not include any device addresses, command words or block lengths in block messages. In block messages, the PMBus Interface automatically inserts the block length into the message based on the byte count setting. The firmware only needs to load the address, command words and data to be transmitted. PMBus Interface supports byte writes up to 255 bytes.

Bits 7-1: SLAVE_ADDR – Specifies the address of the slave to which the current message is directed towards.

Bit 0: RW – Indicates if current Master initiated message is read operation or write operation.

- 0 = Message is a write transaction (data from Master to Slave) (Default)
 - 1 = Message is a read transaction (data from Slave to Master)

21.12.2 PMBus Transmit Data Buffer (PMBTXBUF)

PMBus Address FFF7F604

PMBus1 Address FFF7F704

Bit Number	31:24	23:16	15:8	7:0
Bit Name	BYTE3	BYTE2	BYTE1	BYTE0
Access	R/W	R/W	R/W	R/W
Default	0000_0000	0000_0000	0000_0000	0000_0000

Bits 31-24: BYTE3 – Last data byte transmitted from Transmit Data Buffer **Bits 23-16: BYTE2** – Third data byte transmitted from Transmit Data Buffer **Bits 15-8: BYTE1** – Second data byte transmitted from Transmit Data Buffer **Bits 7-0: BYTE0** – First data byte transmitted from Transmit Data Buffer

21.12.3 PMBus Receive Data Register (PMBRXBUF)

PMBus Address FFF7F608 PMBus1 Address FFF7F708

Bit Number	31:24	23:16	15:8	7:0
Bit Name	BYTE3	BYTE2	BYTE1	BYTE0
Access	R	R	R	R
Default	-	-	-	-

Bits 31-24: BYTE3 – Last data byte received in Receive Data Buffer **Bits 23-16: BYTE2** – Third data byte received in Receive Data Buffer **Bits 15-8: BYTE1** – Second data byte received in Receive Data Buffer **Bits 7-0: BYTE0** – First data byte received in Receive Data Buffer

21.12.4 PMBus Acknowledge Register (PMBACK)

PMBus Address FFF7F60C PMBus1 Address FFF7F70C

Bit Number	0
Bit Name	ACK
Access	R/W
Default	0

Bit 0: ACK – Allows firmware to acknowledge or not acknowledge received data

0 = NACK received data (Default)

1 = Acknowledge received data, bit clears upon issue of ACK on PMBus

21.12.5 PMBus Status Register (PMBST)

PMBus Address FFF7F610

PMBus1 Address FFF7F710

Bit Number	21	20	19	18
Bit Name	SCL_RAW	SDA_RAW	CONTROL_RAW	ALERT_RAW
Access	R	R	R	R
Default	-	-	-	-

Bit Number	17	16	15
Bit Name	CONTROL_EDGE	ALERT_EDGE	MASTER
Access	R	R	R
Default	-	-	-

Bit Number	14	13	12	11	10
Bit Name	LOST_ARB	BUS_FREE	UNIT_BUSY	RPT_START	SLAVE_ADDR_READY
Access	R	R	R	R	R
Default	-	-	-	-	-

Bit Number	9	8	7	6
Bit Name	CLK_HIGH_TIMEOUT	CLK_LOW_TIMEOUT	PEC_VALID	NACK
Access	R	R	R	R
Default	-	-	-	-

Bit Number	5	4	3	2:0
Bit Name	EOM	DATA_REQUEST	DATA_READY	RD_BYTE_COUNT
Access	R	R	R	R
Default	-	-	-	-

Bit 21: SCL_RAW – PMBus Clock Pin Real Time Status

0 = PMBus clock pin observed at logic level low

1 = PMBus clock pin observed at logic level high

Bit 20: SDA_RAW – PMBus Data Pin Real Time Status

0 = PMBus data pin observed at logic level low

1 = PMBus data pin observed at logic level high

Bit 19: CONTROL_RAW – Control Pin Real Time Status – this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin

0 = Control pin observed at logic level low

1 = Control pin observed at logic level high

Bit 18: ALERT_RAW – Alert Pin Real Time Status – this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin

0 = Alert pin observed at logic level low

1 = Alert pin observed at logic level high

Bit 17: CONTROL_EDGE – Control Edge Detection Status – this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin

0 = Control pin has not transitioned

1 = Control pin has been asserted by another device on PMBus

Bit 16: ALERT_EDGE - Alert Edge Detection Status - this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin 0 = Alert pin has not transitioned 1 = Alert pin has been asserted by another device on PMBus Bit 15: MASTER – Master Indicator 0 = PMBus Interface in Slave Mode or Idle Mode 1 = PMBus Interface in Master Mode Bit 14: LOST_ARB – Lost Arbitration Flag 0 = Master has attained control of PMBus 1 = Master has lost arbitration and control of PMBus Bit 13: BUS FREE – PMBus Free Indicator 0 = PMBus processing current message 1 = PMBus available for new message Bit 12: UNIT BUSY – PMBus Busy Indicator 0 = PMBus Interface is idle, ready to transmit/receive message 1 = PMBus Interface is busy, processing current message Bit 11: RPT_START – Repeated Start Flag 0 = No Repeated Start received by interface 1 = Repeated Start condition received by interface

- Bit 10: SLAVE_ADDR_READY Slave Address Ready
 - 0 =Indicates no slave address is available for reading
 - 1 = Slave address ready to be read from Receive Data Register (Bits 6:0)
- Bit 9: CLK_HIGH_DETECTED Clock High Detection Status
 - 0 = No Clock High condition detected
 - 1 = Clock High exceeded 50us during message
- Bit 8: CLK_LOW_TIMEOUT Clock Low Timeout Status
 - 0 = No clock low timeout detected
 - 1 = Clock low timeout detected, clock held low for greater than 35ms
- Bit 7: PEC_VALID PEC Valid Indicator
 - 0 = Received PEC not valid (if EOM is asserted)
 - 1 = Received PEC is valid
- Bit 6: NACK Not Acknowledge Flag Status
 - 0 = Data transmitted has been accepted by receiver
 - 1 = Receiver has not accepted transmitted data
- Bit 5: EOM End of Message Indicator
 - 0 = Message still in progress or PMBus in idle state.
- 1 = End of current message detected
- Bit 4: DATA_REQUEST Data Request Flag
 - 0 = No data needed by PMBus Interface

1 = PMBus Interface request additional data. PMBus clock stretching enabled to stall bus until firmware provides transmit data.

Bit 3: DATA_READY - Data Ready Flag

0 = No data available for reading by processor

1 = PMBus Interface read buffer full, firmware required to read data prior to further bus activity. PMBus clock stretching enabled to stall bus until data is read by firmware.

Bits 2-0: RD_BYTE_COUNT - Number of Data Bytes available in Receive Data Register

0 = No received data

- 1 = 1 byte received. Data located in Receive Data Register, Bits 7-0
- 2 = 2 bytes received. Data located in Receive Data Register, Bits 15-0
- 3 = 3 bytes received. Data located in Receive Data Register, Bits 23-0
- 4 = 4 bytes received. Data located in Receive Data Register, Bits 31-0

21.12.6 PMBus Interrupt Mask Register (PMBINTM)

PMBus Address FFF7F614

PMBus1 Address FFF7F714

Bit Number	9	8	7	6
Bit Name	CLK_HIGH_TIMEOUT	LOST_ARB	CONTROL	ALERT
Access	R/W	R/W	R/W	R/W
Default	1	1	1	1

Bit Number	5	4	3
Bit Name	EOM	SLAVE_ADDR_READY	DATA_REQUEST
Access	R/W	R/W	R/W
Default	1	1	1

Bit Number	2	1	0
Bit Name	DATA_READY	BUS_LOW_TIMEOUT	BUS_FREE
Access	R/W	R/W	R/W
Default	1	1	1

Bit 9: CLK_HIGH_TIMEOUT – Clock High Timeout Interrupt Mask

0 = Generates interrupt if clock high exceeds 50us during message

1 = Disables interrupt generation for Clock High Timeout (Default)

- Bit 8: LOST_ARB Lost Arbitration Interrupt Mask
 - 0 = Generates interrupt upon assertion of Lost Arbitration flag

1 = Disables interrupt generation upon assertion of Lost Arbitration flag (Default) Bit 7: CONTROL – Control Detection Interrupt Mask – this is only valid on PMBusRegs, not on

PMBus1Regs, because only PMBusRegs is connected to the device pin

0 = Generates interrupt upon assertion of Control flag

1 = Disables interrupt generation upon assertion of Control flag (Default)

Bit 6: ALERT - Alert Detection Interrupt Mask - this is only valid on PMBusRegs, not on

PMBus1Regs, because only PMBusRegs is connected to the device pin

0 = Generates interrupt upon assertion of Alert flag

1 = Disables interrupt generation upon assertion of Alert flag (Default)

- Bit 5: EOM End of Message Interrupt Mask
 - 0 = Generates interrupt upon assertion of End of Message flag
 - 1 = Disables interrupt generation upon assertion of End of Message flag (Default)

Bit 4: SLAVE_ADDR_READY – Slave Address Ready Interrupt Mask

0 = Generates interrupt upon assertion of Slave Address Ready flag

1 = Disables interrupt generation upon assertion of Slave Address Ready flag (Default)

- Bit 3: DATA_REQUEST Data Request Interrupt Mask
 - 0 = Generates interrupt upon assertion of Data Request flag

1 = Disables interrupt generation upon assertion of Data Request flag (Default)

- Bit 2: DATA_READY Data Ready Interrupt Mask
 - 0 = Generates interrupt upon assertion of Data Ready flag
 - 1 = Disables interrupt generation upon assertion of Data Ready flag (Default)
- Bit 1: BUS_LOW_TIMEOUT Clock Low Timeout Interrupt Mask
 - 0 = Generates interrupt upon assertion of Clock Low Timeout flag
 - 1 = Disables interrupt generation upon assertion of Clock Low Timeout flag (Default)
- **Bit 0: BUS_FREE** Bus Free Interrupt Mask
 - 0 = Generates interrupt upon assertion of Bus Free flag
 - 1 = Disables interrupt generation upon assertion of Bus Free flag (Default)

21.12.7 PMBus Control Register 2 (PMBCTRL2)

PMBus Address FFF7F618

PMBus1 Address FFF7F718

Bit Number 30		29:23	
Bit Name	SLAVE_ADDR_2_EN	SLAVE_ADDR_2	
Access	R/W	R/W	
Default	0	110_0000	

Bit Number	22:21	20	19	18:16
Bit Name	RX_BYTE_ACK_CNT	MAN_CMD	TX_PEC	TX_COUNT
Access	R/W	R/W	R/W	R/W
Default	11	0	0	000

Bit Number	15	14:8	7	6:0
Bit Name	PEC_ENA	SLAVE_MASK	MAN_SLAVE_ACK	SLAVE_ADDR
Access	R/W	R/W	R/W	R/W
Default	0	111_1111	0	111_1100

Bit 30: SLAVE_ADDR_2_EN – Enable auto detection of the 2nd slave address.

 $0 = 2^{nd}$ slave address disabled (default)

 $1 = 2^{nd}$ slave address enabled

Bits 29-23: SLAVE_ADDR_2 – Configures the second device address of the slave. Used in automatic slave address acknowledge mode (default mode).

Bit 22-21: RX_BYTE_ACK_CNT – Configures number of data bytes to automatically acknowledge when receiving data in slave mode.

00 = 1 byte received by slave. Firmware is required to manually acknowledge every received byte.

01 = 2 bytes received by slave. Hardware automatically acknowledges the first received byte. Firmware is required to manually acknowledge after the second received byte.

10 = 3 bytes received by slave. Hardware automatically acknowledges the first 2 received bytes. Firmware is required to manually acknowledge after the third received byte.

11 = 4 bytes received by slave. Hardware automatically acknowledges the first 3 received bytes. Firmware is required to manually acknowledge after the fourth received byte (Default)

Bit 20: MAN_CMD - Manual Command Acknowledgement Mode

0 = Slave automatically acknowledges received command code (Default)

1 = Data Request flag generated after receipt of command code, firmware required to issue ACK to continue message

Bit 19: TX_PEC – Asserted when the slave needs to send a PEC byte at end of message. PMBus Interface will transmit the calculated PEC byte after transmitting the number of data bytes indicated by TX Byte Cnt(Bits 19:17).

0 = No PEC byte transmitted (Default)

1 = PEC byte transmitted at end of current message

Bit 18-16: TX_COUNT- Number of valid bytes in Transmit Data Register

- 0 = No bytes valid (Default)
- 1 = One byte valid, Byte #0 (Bits 7:0 of Receive Data Register)
- 2 = Two bytes valid, Bytes #0 and #1 (Bits 15:0 of Receive Data Register)
- 3 = Three bytes valid, Bytes #0-2 (Bits 23:0 of Receive Data Register)
- 4 = Four bytes valid, Bytes #0-3 (Bits 31:0 of Receive Data Register)

Bit 15: PEC_ENA – PEC Processing Enable

0 = PEC processing disabled (Default)

1 = PEC processing enabled

Bit 14-8: SLAVE_MASK – Used in address detection, the slave mask enables acknowledgement of multiple device addresses by the slave. Writing a '0' to a bit within the slave mask enables the corresponding bit in the slave address to be either '1' or '0' and still allow for a match. Writing a '0' to all bits in the mask enables the PMBus Interface to acknowledge any device address. Upon power-up, the slave mask defaults to 7Fh, indicating the slave will only acknowledge the address programmed into the Slave Address (Bits 6-0). Not applicable to the 2nd Slave Address. **Bit 7: MAN_SLAVE_ACK**– Manual Slave Address Acknowledgement Mode

0 = Slave automatically acknowledges device address specified in SLAVE_ADDR, Bits 6-0 (Default)

1 = Enables the Manual Slave Address Acknowledgement Mode. Firmware is required to read received address and acknowledge on every message

Bits 6-0: SLAVE_ADDR – Configures the current device address of the slave. Used in automatic slave address acknowledge mode (default mode). The PMBus Interface will compare the received device address with the value stored in the Slave Address bits and the mask configured in the Slave Mask bits. If matching, the slave will acknowledge the device address.

21.12.8 PMBus Hold Slave Address Register (PMBHSA)

PMBus Address FFF7F61C PMBus1 Address FFF7F71C

Bit Number	7:1	0
Bit Name	SLAVE_ADDR	SLAVE_RW
Access	R	R
Default	-	-

Bits 7-1: SLAVE_ADDR – Stored device address acknowledged by the slave **Bit 0: SLAVE_RW** – Stored R/W bit from address acknowledged by the slave

0 = Write Access

1 = Read Access

21.12.9 PMBus Control Register 3 (PMBCTRL3)

PMBus Address FFF7F620

PMBus1 Address FFF7F720

Bit Number	24	23
Bit Name	I2C_MODE_EN	CLK_HI_DIS
Access	R/W	R/W
Default	0	1

Bit Number	22	21	20	19	18
Bit Name	MASTER_EN	SLAVE_EN	CLK_LO_DIS	IBIAS_B_EN	IBIAS_A_EN
Access	R/W	R/W	R/W	R/W	R/W
Default	0	1	0	0	0

Bit Number	17	16	15	14	13
Bit Name	SCL_DIR	SCL_VALUE	SCL_MODE	SDA_DIR	SDA_VALUE
Access	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit Number	12	11	10	9
Bit Name	SDA_MODE	CNTL_DIR	CNTL_VALUE	CNTL_MODE
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	8	7	6	5
Bit Name	ALERT_DIR	ALERT_VALUE	ALERT_MODE	CNTL_INT_EDGE
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	4	3	2	1	0
Bit Name	Reserved	FAST_MODE	BUS_LO_INT_EDGE	ALERT_EN	RESET
Access		R/W	R/W	R/W	R/W
Default	0	0	0	0	0

Bit 21: I2C_MODE_EN - I2C Mode Enable - Utilized for Master mode only

0 = I2C Mode Disabled (Default)

1 = I2C Mode Enabled

Bit 20: CLK_HI_DIS - Clock High Timeout Disable

0 = Clock High Timeout Enabled

1 = Clock High Timeout Disabled (Default)

Bit 22: MASTER_EN – PMBus Master Enable 0 = Disables PMBus Master capability (Default) 1 = Enables PMBus Master capability Bit 21: SLAVE EN – PMBus Slave Enable 0 = Disables PMBus Slave capability 1 = Enables PMBus Slave capability (Default) Bit 20: CLK LO DIS - Clock Low Timeout Disable 0 = Clock Low Timeout Enabled (Default) 1 = Clock Low Timeout Disabled Bit 19: IBIAS_B_EN – PMBus Current Source B Control – This bit is only valid on PMBusRegs. The second interface, PMBusRegs1, is not connected to the ADC 0 = Disables Current Source for PMBUS address detection thru ADC (Default) 1 = Enables Current Source for PMBUS address detection thru ADC Bit 18: IBIAS A EN – PMBus Current Source A Control – see note above for IBIAS B EN 0 = Disables Current Source for PMBUS address detection thru ADC (Default) 1 = Enables Current Source for PMBUS address detection thru ADC Bit 17: SCL DIR – Configures direction of PMBus clock pin in GPIO mode 0 = PMBus clock pin configured as output (Default) 1 = PMBus clock pin configured as input Bit 16: SCL_VALUE - Configures output value of PMBus clock pin in GPIO Mode 0 = PMBus clock pin driven low in GPIO Mode (Default) 1 = PMBus clock pin driven high in GPIO Mode Bit 15: SCL_MODE – Configures mode of PMBus Clock pin 0 = PMBus clock pin configured in functional mode (Default) 1 = PMBus clock pin configured as GPIO Bit 14: SDA_DIR - Configures direction of PMBus data pin in GPIO mode 0 = PMBus data pin configured as output (Default) 1 = PMBus data pin configured as input Bit 13: SDA_VALUE - Configures output value of PMBus data pin in GPIO Mode 0 = PMBus data pin driven low in GPIO Mode (Default) 1 = PMBus data pin driven high in GPIO Mode Bit 12: SDA_MODE - Configures mode of PMBus Data pin 0 = PMBus data pin configured in functional mode (Default) 1 = PMBus data pin configured as GPIO Bit 11: CNTL DIR - Configures direction of Control pin in GPIO mode - this is only valid on PMBusReas, not on PMBus1Reas, because only PMBusReas is connected to the device pin 0 = Control pin configured as output (Default)1 = Control pin configured as input Bit 10: CNTL VALUE - Configures output value of Control pin in GPIO Mode- this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin 0 = Control pin driven low in GPIO Mode (Default) 1 = Control pin driven high in GPIO Mode Bit 9: CNTL_MODE - Configures mode of Control pin- this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin 0 = Control pin configured in functional mode (Default) 1 = Control pin configured as GPIO Bit 8: ALERT DIR - Configures direction of Alert pin in GPIO mode- this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin 0 = Control pin configured as output (Default)1 = Control pin configured as input

Bit 7: ALERT_VALUE – Configures output value of Alert pin in GPIO Mode– this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin

- 0 = Alert pin driven low in GPIO Mode (Default)
- 1 = Alert pin driven high in GPIO Mode

Bit 6: ALERT_MODE – Configures mode of Alert pin– this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin

- 0 = Alert pin configured in functional mode (Default)
- 1 = Aler3 pin configured as GPIO

Bit 5: CNTL_INT_EDGE – Control Interrupt Edge Select– this is only valid on PMBusRegs, not on PMBus1Regs, because only PMBusRegs is connected to the device pin

- 0 = Interrupt generated on falling edge of Control (Default)
 - 1 = Interrupt generated on rising edge of Control
- Bit 3: FAST_MODE Fast Mode Enable
 - 0 = Standard 100 KHz mode enabled (Default)
 - 1 = Fast Mode enabled (400KHz operation on PMBus)
- Bit 2: BUS_LO_INT_EDGE Clock Low Timeout Interrupt Edge Select
 - 0 = Interrupt generated on rising edge of clock low timeout (Default)
 - 1 = Interrupt generated on falling edge of clock low timeout
- Bit 1: ALERT_EN Šlave Alert Enable
 - 0 = PMBus Alert is not driven by slave, pulled up high on PMBus (Default)
 - 1 = PMBus Alert driven low by slave
- Bit 0: RESET PMBus Interface Synchronous Reset
 - 0 = No reset of internal state machines (Default)
 - 1 = Control state machines are reset to initial states

21.13 GIO – General Purpose Input/Output Module

GIO Registers have the following attributes:

- Addresses placed on word boundaries
- Byte, Half-word and Word Writes are permitted
- All Registers can be read in any mode
- All Registers are writeable

21.13.1 Fault IO Direction Register (FAULTDIR)

Address FFF7FA00

Bit Number	7	6	5	4
Bit Name	GIO_D_DIR	GIO_C_DIR	GIO_B_DIR	GIO_A_DIR
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	3	2	1	0
Bit Name	FLT3_DIR	FLT2_DIR	FLT1_DIR	FLT0_DIR
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 7: GIO_D_DIR – GIO_D Pin Configuration

0 = GIO_D pin configured as an input pin in GPIO mode (Default)

1 = GIO_D pin configured as an output pin in GPIO mode

Bit 6: GIO_C_DIR – GIO_C Pin Configuration

0 = GIO_C pin configured as an input pin in GPIO mode (Default)

1 = GIO_C pin configured as an output pin in GPIO mode

- Bit 5: GIO_B_DIR GIO_B Pin Configuration
 - 0 = GIO_B pin configured as an input pin in GPIO mode (Default)

1 = GIO_B pin configured as an output pin in GPIO mode

Bit 4: GIO_A_DIR – GIO_A Pin Configuration

 $0 = GIO_A$ pin configured as an input pin in GPIO mode (Default)

1 = GIO_A pin configured as an output pin in GPIO mode

Bit 3: FLT3_DIR - FAULT[3] Pin Configuration

0 = FAULT[3] pin configured as an input pin (Default)

- 1 = FAULT[3] pin configured as an output pin
- Bit 2: FLT2_DIR FAULT[2] Pin Configuration
 - 0 = FAULT[2] pin configured as an input pin (Default)

1 = FAULT[2] pin configured as an output pin

Bit 1: FLT1_DIR - FAULT[1] Pin Configuration

0 = FAULT[1] pin configured as an input pin (Default)

1 = FAULT[1] pin configured as an output pin

- Bit 0: FLT0_DIR FAULT[0] Pin Configuration
 - 0 = FAULT[0] pin configured as an input pin (Default)
 - 1 = FAULT[0] pin configured as an output pin

21.13.2 Fault Input Register (FAULTIN)

Address	FFF7FA04
/ 144/ 000	

Bit Number	7	6	5	4
Bit Name	GIO_D_IN	GIO_C_IN	GIO_B_IN	GIO_A_IN
Access	R	R	R	R
Default	-	-	-	-

Bit Number	3	2	1	0
Bit Name	FLT3_IN	FLT2_IN	FLT1_IN	FLT0_IN
Access	R	R	R	R
Default	-	-	-	-

Bit 7: GIO D IN – Input Value of GIO D Pin $0 = GIO_D$ pin driven low in GPIO mode 1 = GIO D pin driven high in GPIO mode **Bit 6: GIO_C_IN** – Input Value of GIO_C Pin $0 = GIO_C$ pin driven low in GPIO mode 1 = GIO C pin driven high in GPIO mode **Bit 5: GIO_B_IN** – Input Value of GIO_B Pin $0 = GIO_B$ pin driven low in GPIO mode 1 = GIO B pin driven high in GPIO mode Bit 4: GIO_A_IN – Input Value of GIO_A Pin $0 = GIO_A$ pin driven low in GPIO mode 1 = GIO A pin driven high in GPIO mode Bit 3: FLT3_IN – Input Value of FAULT[3] Pin 0 = FAULT[3] pin driven low 1 = FAULT[3] pin driven high Bit 2: FLT2_IN – Input Value of FAULT[2] Pin 0 = FAULT[2] pin driven low 1 = FAULT[2] pin driven high Bit 1: FLT1_IN – Input Value of FAULT[1] Pin 0 = FAULT[1] pin driven low 1 = FAULT[1] pin driven high Bit 0: FLT0_IN – Input Value of FAULT[0] Pin 0 = FAULT[0] pin driven low 1 = FAULT[0] pin driven high

21.13.3 Fault Output Register (FAULTOUT)

Address FFF7FA08	8			
Bit Number	7	6	5	4
Bit Name	GIO_D_OUT	GIO_C_OUT	GIO_B_OUT	GIO_A_OUT
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	3	2	1	0
Bit Name	FLT3_OUT	FLT2_OUT	FLT1_OUT	FLT0_OUT
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 7: GIO_D_OUT - GIO_D Pin Output Value

0 = GIO_D pin driven low when configured as output in GPIO mode (Default)

1 = GIO_D pin driven high when configured as output in GPIO mode

Bit 6: GIO_C_OUT - GIO_C Pin Output Value

 $0 = GIO_C$ pin driven low when configured as output in GPIO mode (Default) 1 = GIO_C pin driven high when configured as output in GPIO mode

Bit 5: GIO B OUT – GIO B Pin Output Value

 $0 = GIO_B$ pin driven low when configured as output in GPIO mode (Default)

1 = GIO_B pin driven high when configured as output in GPIO mode

Bit 4: GIO_A_OUT - GIO_A Pin Output Value

0 = GIO_A pin driven low when configured as output in GPIO mode (Default)

1 = GIO_A pin driven high when configured as output in GPIO mode

Bit 3: FLT3_OUT - FAULT[3] Pin Output Value

0 = FAULT[3] pin driven low when configured as output (Default)

1 = FAULT[3] pin driven high when configured as output

Bit 2: FLT2_OUT - FAULT[2] Pin Output Value

0 = FAULT[2] pin driven low when configured as output (Default)

1 = FAULT[2] pin driven high when configured as output

Bit 1: FLT1_OUT – FAULT[1] Pin Output Value

0 = FAULT[1] pin driven low when configured as output (Default)

1 = FAULT[1] pin driven high when configured as output

- Bit 0: FLT0_OUT FAULT[0] Pin Output Value
 - 0 = FAULT[0] pin driven low when configured as output (Default)

1 = FAULT[0] pin driven high when configured as output

21.13.4 Fault Interrupt Enable Register (FAULTINTENA)

Address FFF7FA14

Bit Number	7	6	5	4
Bit Name	GIO_D_INT_EN	GIO_C_INT_EN	GIO_B_INT_EN	GIO_A_INT_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	3	2	1	0
Bit Name	FLT3_INT_EN	FLT2_INT_EN	FLT1_INT_EN	FLT0_INT_EN
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 7: GIO_D_INT_EN – GIO_D Interrupt Enable
0 = Interrupt disabled for GIO_D pin (Default)
1 = Interrupt enabled for GIO_D pin in GPIO mode
Bit 6: GIO_C_INT_EN – GIO_C Interrupt Enable
0 = Interrupt disabled for GIO_C pin (Default)
1 = Interrupt enabled for GIO_C pin in GPIO mode
Bit 5: GIO_B_INT_EN – GIO_B Interrupt Enable
0 = Interrupt disabled for GIO_B pin (Default)
1 = Interrupt enabled for GIO_B pin in GPIO mode
Bit 4: GIO_A _INT_EN – GIO_A Interrupt Enable
0 = Interrupt disabled for GIO_A pin (Default)
1 = Interrupt enabled for GIO_A pin in GPIO mode
Bit 3: FLT3_INT_EN – FAULT[3] Interrupt Enable
0 = Interrupt disabled for FAULT[3] pin (Default)
1 = Interrupt enabled for FAULT[3] pin
Bit 2: FLT2_INT_EN – FAULT[2] Interrupt Enable
0 = Interrupt disabled for FAULT[2] pin (Default)
1 = Interrupt enabled for FAULT[2] pin
Bit 1: FLT1_INT_EN – FAULT[1] Interrupt Enable
0 = Interrupt disabled for FAULT[1] pin (Default)
1 = Interrupt enabled for FAULT[1] pin
Bit 0: FLT0_INT_EN – FAULT[0] Interrupt Enable
0 = Interrupt disabled for FAULT[0] pin (Default)
1 = Interrupt enabled for FAULT[0] pin

21.13.5 Fault Interrupt Polarity Register (FAULTINTPOL)

Address	FFF7FA18
/144/000	

Bit Number	7	6	5	4
Bit Name	GIO_D_INT_POL	GIO_C_INT_POL	GIO_B_INT_POL	GIO_A_INT_POL
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	3	2	1	0
Bit Name	FLT3_INT_POL	FLT2_INT_POL	FLT1_INT_POL	FLT0_INT_POL
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

 Bit 7: GIO_D_INT_POL – GIO_D Interrupt Polarity Select 0 = Interrupt generated on falling edge (Default) 1 = Interrupt generated on rising edge Bit 6: GIO_C_INT_POL – GIO_C Interrupt Polarity Select 0 = Interrupt generated on falling edge (Default) 1 = Interrupt generated on rising edge
Bit 5: GIO_B_INT_POL – GIO_B Interrupt Polarity Select
0 = Interrupt generated on falling edge (Default)
1 = Interrupt generated on rising edge
Bit 4: GIO_A_INT_POL – GIO_A Interrupt Polarity Select
0 = Interrupt generated on falling edge (Default)
1 = Interrupt generated on rising edge
Bit 3: FLT3_INT_POL – FAULT[3] Interrupt Polarity Select
0 = Interrupt generated on falling edge (Default)
1 = Interrupt generated on rising edge
Bit 2: FLT2_INT_POL – FAULT[2] Interrupt Polarity Select
0 = Interrupt generated on falling edge (Default)
1 = Interrupt generated on rising edge
Bit 1: FLT1_INT_POL – FAULT[1] Interrupt Polarity Select
0 = Interrupt generated on falling edge (Default)
1 = Interrupt generated on rising edge
Bit 0: FLT0_INT_POL – FAULT[0] Interrupt Polarity Select
0 = Interrupt generated on falling edge (Default)
1 = Interrupt generated on rising edge

21.13.6	Fault Interrupt Pending Register (FAULTINTPEND)
---------	---

Address FFF7FA1C

Bit Number	7	6	5	4
Bit Name	GIO_D_INT_PEND	GIO_C_INT_PEND	GIO_B_INT_PEND	GIO_A_INT_PEND
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit Number	3	2	1	0
Bit Name	FLT3_INT_PEND	FLT2_INT_PEND	FLT1_INT_PEND	FLT0_INT_PEND
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 7: GIO_D_INT_PEND – GIO_D has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

Bit 6: GIO_C_INT_PEND – GIO_C has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

Bit 5: GIO_B_INT_PEND – GIO_B has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

Bit 4: GIO_A_INT_PEND – GIO_A has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

Bit 3: FLT3_INT_PEND – FAULT[3] has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

Bit 2: FLT2_INT_PEND – FAULT[2] has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

Bit 1: FLT1_INT_PEND – FAULT[1] has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

Bit 0: FLT0_INT_PEND – FAULT[0] has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag

0 = No Interrupt detected (Default)

1 = Interrupt pending

21.13.7 External Interrupt Direction Register (EXTINTDIR)

Address FFF7FA20

Bit Number	0
Bit Name	EXT_INT_DIR
Access	R/W
Default	0

Bit 0: EXT_INT_DIR – EXT-INT Pin Configuration

0 = EXT-INT pin configured as an input pin (Default)

1 = EXT-INT pin configured as an output pin

21.13.8 External Interrupt Input Register (EXTINTIN)

Address FFF7FA24

Bit Number	0
Bit Name	EXT_INT_IN
Access	R
Default	-

Bit 0: EXT_INT_IN – Input Value of EXT-INT Pin

0 = EXT-INT pin driven low in GPIO mode

1 = EXT-INT pin driven high in GPIO mode

21.13.9 External Interrupt Output Register (EXTINTOUT)

Address FFF7FA28

Bit Number	0
Bit Name	EXT_INT_OUT
Access	R/W
Default	0

Bit 0: EXT_INT_OUT - EXT-INT Pin Output Value

0 = EXT-INT pin driven low (Default)

1 = EXT-INT pin driven high

21.13.10 External Interrupt Enable Register (EXTINTENA)

Address FFF7FA34

Bit Number	0
Bit Name	EXT_INT_EN
Access	R/W
Default	0

Bit 0: EXT_INT_EN – EXT-INT Interrupt Enable

0 = Interrupt disabled for EXT-INT pin (Default)

1 = Interrupt enabled for EXT-INT pin

21.13.11 External Interrupt Polarity Register (EXTTINTPOL)

Address FFF7FA38

Bit Number	0
Bit Name	EXT_INT_POL
Access	R/W
Default	0

Bit 0: EXT_INT_POL - EXT-INT Interrupt Polarity Select

0 = Interrupt generated on falling edge (Default)

1 = Interrupt generated on rising edge

21.13.12 External Interrupt Pending Register (EXTINTPEND)

Address FFF7FA3C

Bit Number	0		
Bit Name	EXT_INT_PEND		
Access	R/W		
Default	0		

Bit 0: EXT_INT_PEND – EXT-INT has caused an interrupt. Writing a 1 to a bit will clear the interrupt flag.

21.14 Timer Module

Timer Registers have the following attributes:

- 32-bit wide
- Addresses placed on word boundaries
- Byte, Half-Word and word writes permitted
- All Registers can be read in any mode

- All Registers, except for the Timer Powerdown Control Register, are writeable in any mode. The Timer Powerdown Control Register is writeable only in privilege mode.

21.14.1 24-bit Counter Data Register (T24CNTDAT)

Address FFF7FD00

Bit Number	23:0			
Bit Name	CNT_DAT			
Access	R			
Default	-			

Bits 23-0: CNT_DAT: - Contains the 24-bit counter value

21.14.2 24-bit Counter Control Register (T24CNTCTRL)

Address FFF7FD04

Bit Number	15:8	7:3	2	1	0
Bit Name	PRESCALE	RESERVED	EXT_CLK_SEL	OV_INT_ENA	OV_FLAG
Access	R/W	-	R/W	R/W	R
Default	0000_0000	00000	0	0	0

Bits 15-8: PRESCALE – Defines the prescaler value used to select the 24-bit counter resolution. The minimum divider ratio is 4, prescaler value less than 3 defaults to 3.

Counter Resolution = (Prescaler Value+1)*1/ICLK

Bits 7-3: RESERVED – Unused bits

Bit 2: EXT_CLK_SEL – External Clock Select

0 = Selects ICLK as clock for 24-bit counter (Default)

1 = Selects External Clock on FAULT-0 as clock for 24-bit counter

- **Bit 1: OV_INT_ENA** Counter Overflow Interrupt Enable
 - 0 = Disables 24-bit Counter Overflow Interrupt (Default)
 - 1 = Enables 24-bit Counter Overflow Interrupt

Bit 0: OV_FLAG – Indicates a counter overflow. Overflow event is cleared by writing a '1' to this bit. If a clear and an overflow event occur at the same time, the flag will remain high (set has priority versus clear).

0 = No counter overflow since last clear

1 = Counter overflow since last clear

21.14.3 24-bit Capture Channel Data Register x(T24CAPDATx)

Address FFF7FD08 – 24-bit Capture Data Register 0

Address FFF7FD0C – 24-bit Capture Data Register 1

Bit Number	23:0		
Bit Name	CAP_DAT		
Access	R		
Default	-		

Bits 23-0: CAP_DAT- Contains the 24-bit input capture value

21.14.4 24-bit Capture Channel Control Register x(T24CAPCTRLx)

Address FFF7FD14 – 24-bit Capture Channel Control Register 0

Address FFF7FD18 – 24-bit Capture Channel Control Register 1

Bit Number	5:4	3:2	1	0
Bit Name	CAP_SEL	EDGE	CAP_INT_ENA	CAP_INT_FLAG
Access	R/W	R/W	R/W	R/W
Default	00	00	0	0

Bits 5-4: CAP_SEL – Capture Pin Select

- 00 = TCAP-A pin (Default)
- 01 = SCI_RX[0] pin
- 10 = SCI_RX[1] pin
- 11 = SYNC pin

Bits 3-2: EDGE – Input Capture Edge Select

- 00 = No Capture (Default)
- 01 = Rising Edge
- 10 = Falling Edge
- 11 = Both Edges
- Bit 1: CAP_INT_ENA Input Capture Interrupt Enable
 - 0 = Disables 24-bit input capture interrupt (Default)
 - 1 = Enables 24-bit input capture interrupt

Bit 0: CAP_INT_FLAG – Flag which indicates a valid input capture event. This bit is cleared by writing a '1' to it or by reading the corresponding Capture Channel Data Register. If a clear and a valid capture event occur at the same time, the flag will remain high (set has priority versus clear).

- 0 = No valid capture event since last clear
- 1 = Valid capture event since last clear

21.14.5 24-bit Capture I/O Control and Data Register (T24CAPIO)

Address FFF7FD20

Bit Number	5	4	3	2	1	0
Bit Name	TCAP_1_IN	TCAP_1_OUT	TCAP_1_DIR	TCAP_0_IN	TCAP_0_OUT	TCAP_0_DIR
Access	R	R/W	R/W	R	R/W	R/W
Default	-	0	0	-	0	0

Bit 5: TCAP_1_IN – Input data for pin TCAP_1/TDI/TDO pin, when connected to chip I/O

0 =Logic level low detected on TCAP pin

1 = Logic level high detected on TCAP pin

Bit 4: TCAP_1_OUT – Output data for pin TCAP_1 pin, when connected to chip I/O

- 0 = Logic level low driven on TCAP_1 pin in output mode (Default)
- 1 = Logic level high driven on TCAP_1 pin in output mode

- **Bit 3: TCAP_1_DIR** Controls data direction for pin TCAP, when connected to chip I/O 0 = TCAP_1 pin configured as input (Default)
 - 1 = TCAP_1 pin configured as output
- **Bit 2: TCAP_0_IN** Input data for pin TCAP_0/TDI/TDO pin, when connected to chip I/O 0 = Logic level low detected on TCAP pin
 - 1 = Logic level high detected on TCAP pin
- **Bit 1: TCAP_0_OUT** Output data for pin TCAP_0 pin, when connected to chip I/O 0 = Logic level low driven on TCAP_0 pin in output mode (Default)
 - $1 = \text{Logic level high driven on TCAP_0 pin in output mode}$
- Bit 0: TCAP_0_DIR Controls data direction for pin TCAP_0, when connected to chip I/O 0 = TCAP_0 pin configured as input (Default)
 - 1 = TCAP_0 pin configured as output

21.14.6 24-bit Output Compare Channel 0 Data Register (T24CMPDAT0)

Address FFF7FD24

Bit Number	23:0			
Bit Name	CMP_DAT			
Access	R/W			
Default	0000_0000_0000_0000_0000			

Bits 23-0: CMP_DAT- Contains the 24-bit output comparison value

21.14.7 24-bit Output Compare Channel 1 Data Register (T24CMPDAT1)

Address FFF7FD28

Bit Number	23:0		
Bit Name	CMP_DAT		
Access	R/W		
Default	0000_0000_0000_0000_0000		

Bits 23-0: CMP_DAT- Contains the 24-bit output comparison value

21.14.8 24-bit Output Compare Channel 0 Control Register (T24CMPCTRL0) Address FFF7FD2C

Bit Number	1	0
Bit Name	CMP_INT_ENA	CMP_INT_FLAG
Access	R/W	R/W
Default	0	0

Bit 1: CMP_INT_ENA- Output Compare Channel Interrupt

0 = Disables Output Compare Channel Interrupt (Default)

1 = Enables Output Compare Channel Interrupt

Bit 0: CMP_INT_FLAG – Indicates a valid output compare event. Bit can be cleared by writing a '1' to the bit or by rewriting the 24-bit Output Compare Channel Data Register. If a clear and compare event occur at the same time, the flag will remain high (set has priority versus clear).

0 = No compare event since last clear

1 = Compare event since last clear

21.14.9 24-bit Output Compare Channel 1 Control Register (T24CMPCTRL1) Address FFF7FD30

Bit Number 1		0
Bit Name CMP_INT_ENA		CMP_INT_FLAG
Access	R/W	R/W
Default	0	0

Bit 1: CMP_INT_ENA- Output Compare Channel Interrupt

0 = Disables Output Compare Channel Interrupt (Default)

1 = Enables Output Compare Channel Interrupt

Bit 0: CMP_INT_FLAG – Indicates a valid output compare event. Bit can be cleared by writing a '1' to the bit or by rewriting the 24-bit Output Compare Channel Data Register. If a clear and compare event occur at the same time, the flag will remain high (set has priority versus clear).

0 = No compare event since last clear

1 = Compare event since last clear

21.14.10 PWMx Counter Data Register (T16PWMxCNTDAT)

Address FFF7FD34 – 16-bit PWM0 Counter Data Register Address FFF7FD58 – 16-bit PWM1 Counter Data Register Address FFF7FD6C – 16-bit PWM2 Counter Data Register Address FFF7FD80 – 16-bit PWM3 Counter Data Register

Bit Number	15:0		
Bit Name	CNT_DAT		
Access	R		
Default	-		

Bits 15-0: CNT_DAT – Contains the 16-bit counter value. Read-only.

21.14.11 PWMx Counter Control Register (T16PWMxCNTCTRL)

Address FFF7FD38 – 16-bit PWM0 Counter Control Register Address FFF7FD5C – 16-bit PWM1 Counter Control Register Address FFF7FD70 – 16-bit PWM2 Counter Control Register Address FFF7FD84 – 16-bit PWM3 Counter Control Register

Bit Number	15:8	7	6:5	4
Bit Name	PRESCALE	RESERVED	SYNC_SEL	SYNC_EN
Access	R/W	-	R/W	R/W
Default	0000_0000	0	00	0

Bit Number	3	2	1	0
Bit Name	SW_RESET	CMP_RESET_ENA	OV_INT_ENA	OV_INT_FLAG
Access	R/W	R/W	R/W	R/W
Default	0	0	0	0

Bit 15-8: PRESCALE – Defines the prescaler value to select the PWM counter resolution. Counter Resolution = (Prescaler + 1) *1/ICLK

Bit 7: RESERVED - Unused bit

Bits 6:5: SYNC_SEL - Configures master PWM counter

- 0 = PWM0 Counter (Default)
- 1 = PWM1 Counter
- 2 = PWM2 Counter
- 3 = PWM3 Counter
- Bit 4: SYNC_EN PWM counter starts when master PWM counter is enabled
 - 0 = PWM counter independent of other PWM counters (Default)
 - 1 = PWM counter controlled by Master PWM counter

Bit 3: SW_RESET – PWM counter reset by software. This bit is cleared after reset and has to be set to run the PWM counter.

- 0 = PWM counter reset and counter stop (Default)
- 1 = PWM counter is running

Bit 2: CMP_RESET_ENA – Enables PWM counter reset by compare action of T16CMPxDR.

- 0 = Disable PWM counter reset by compare action (Default)
- 1 = Enable PWM counter reset by compare action
- Bit 1: OV_INT_ENA- PWM Counter Overflow Interrupt Enable

0 = Disable PWM counter overflow interrupt (Default)

1 = Enable PWM counter overflow interrupt

Bit 0: OV_INT_FLAG – Flag which indicates a PWM counter overflow. This bit is cleared by writing '1' to it. If a clear and an overflow event occur at the same time, the flag will remain high (set has priority versus clear).

- 0 = No PWM counter overflow since last clear
- 1 = PWM counter overflow since last clear

21.14.12 PWMx 16-bit Compare Channel 0-1 Data Register (T16PWMxCMPyDAT)

Address FFF7FD3C – 16-bit PWM0 Compare Channel 0 Data Register Address FFF7FD40 – 16-bit PWM0 Compare Channel 1 Data Register Address FFF7FD60 – 16-bit PWM1 Compare Channel 0 Data Register Address FFF7FD64 – 16-bit PWM1 Compare Channel 1 Data Register Address FFF7FD74 – 16-bit PWM2 Compare Channel 0 Data Register Address FFF7FD78 – 16-bit PWM2 Compare Channel 1 Data Register Address FFF7FD78 – 16-bit PWM3 Compare Channel 1 Data Register Address FFF7FD88 – 16-bit PWM3 Compare Channel 1 Data Register Address FFF7FD8C – 16-bit PWM3 Compare Channel 1 Data Register Address FFF7FD8C – 16-bit PWM3 Compare Channel 1 Data Register Bit Number 15:0

Bit Name	CMP_DAT		
Access	R/W		
Default	0000_0000_0000_0000		

Bits 15-0: CMP_DAT – Contains the 16-bit compare value. When in PWM mode, the value in the T16PWMxCMPyDAT is loaded after a match with the PWMx Counter Data Register. When in OC mode, it has to be written by the CPU. The mode is controlled by the bit SHADOW in the PWMx/Dual Compare Control Register. If both Registers T16PWMxCMP0DAT and T16PWMxCMP1DAT contain the same value, the interrupt and pin behavior is controlled by output compare channel 0 (T16PWMxCMP0DAT has priority over T16PWMxCMP1DAT).

21.14.13 PWM Compare Control Register (T16PWMxCMPCTRL)

Address FFF7FD44 – 16-bit PWM0 Compare Control Register Address FFF7FD68 – 16-bit PWM1 Compare Control Register Address FFF7FD7C – 16-bit PWM2 Compare Control Register Address FFF7FD90 – 16-bit PWM3 Compare Control Register

Bit Number	12	11	10	9	8
Bit Name	SHADOW	PWM_IN	PWM_OUT	PWM_OUT_ENA	PWM_OUT_DRV
Access	R/W	R	R/W	R/W	R/W
Default	0	-	0	0	0

Bit Number	7:6	5:4	3
Bit Name	PWM_OUT_ACTION1	PWM_OUT_ACTION0	CMP1_INT_ENA
Access	R/W	R/W	R/W
Default	00	00	0

Bit Number	2	1	0
Bit Name	CMP1_INT_FLAG	CMP0_INT_ENA	CMP0_INT_FLAG
Access	R/W	R/W	R/W
Default	0	0	0

Bit 12: SHADOW – Controls the update of the 16-bit output compare Registers.

- 0 = PWM output compare Registers immediately written (Default) 1 = PWM output compare Registers updated through the buffers T16PWMxCMPvDAT after a match occurs in the corresponding
- Register T16PWMxCMPyDAT.
- Bit 11: PWM_IN Input value of PWM pin when configured in PWM mode
 - 0 = Logic level low detected on PWM pin
 - 1 = Logic level high detected on PWM pin
- Bit 10: PWM_OUT Data to be written into the output latch when PWM_OUT_DRV is high.
 - 0 = Output latch is cleared when PWM_OUT_DRV=1 (Default)
 - 1 = Output latch is set when PWM_OUT_DRV=1
- Bit 9: PWM_OUT_ENA FAN-PWM pin configuration
 - 0 = FAN-PWM configured as an input pin (Default)
 - 1 = FAN-PWM configured as an output pin

Bit 8: PWM_OUT_DRV – Causes the value of the bit PWM_OUT to be written into the output latch. So it is possible to preload the output latch or to use the pin as GPIO. The compare action has priority before the preload function. This bit is always read as '0'.

- 0 = Output latch not affected by the value of PWM_OUT (Default)
- 1 = Value of OUT written into the output latch

Bits 7-6: PWM_OUT_ACTION1 – These 2 bits select the output action when a compare equal is detected on T16CMP1DAT

- 00 = No action (Default)
- 01 = Set pin
- 10 = Clear pin
- 11 = Toggle pin

Bits 5-4: PWM_OUT_ACTION0 – Selects the output action when a compare equal is detected on T16CMP0DAT.

- 00 = No action (Default)
- 01 = Set pin
- 10 = Clear pin
- 11 = Toggle pin

Bit 3: CMP1_INT_ENA- Compare 1 Interrupt Enable

- 0 = Disables Compare 1 Interrupt (Default)
- 1 = Enables Compare 1 Interrupt

Bit 2: CMP1_INT_FLAG – Flag which indicates a valid output compare 1 event. This bit is cleared by writing '1' to this bit or by rewriting T16PWMxCMP1DAT. If a clear and a compare event occurs at the same time, the flag will remain high (set has priority versus write clear).

- 0 = No compare event since last clear
- 1 = Compare event since last clear

Bit 1: CMP0_INT_ENA - Compare 0 Interrupt Enable

0 = Disables Compare 0 Interrupt (Default)

1 = Enables Compare 0 Interrupt

Bit 0: CMP0_INT_FLAG – Flag which indicates a valid output compare 1 event. This bit is cleared by writing '1' to this bit or by rewriting T16PWMxCMP0DAT. If a clear and a compare event occurs at the same time, the flag will remain high (set has priority versus write clear).

- 0 = No compare event since last clear
- 1 = Compare event since last clear

21.14.14 Watchdog Status (WDST)

Address FFF7FD94

Bit Number	3	2	1	0
Bit Name	WAKE_EV_RAW	WD_EV_RAW	WAKE_EV_INT	WD_EV_INT
Access	R	R	R	R
Default	-	-	-	-

Bit 3: WAKE_EV_RAW – Watchdog Wake Event Raw Status

0 = Watchdog Timer has not reached $\frac{1}{2}$ of terminal count

1 = Watchdog Timer has reached ¹/₂ of terminal count

Bit 2: WD_EV_RAW – Watchdog Event Raw Status

0 = Watchdog Timer has not reached terminal count

1 = Watchdog Timer has reached terminal count

Bit 1: WAKE_EV_INT – Watchdog Wake Event Interrupt Status, cleared on read of Watchdog Status Register

0 = Watchdog Timer has not reached $\frac{1}{2}$ of terminal count

1 = Watchdog Timer has reached $\frac{1}{2}$ of terminal count

Bit 0: WD_EV_INT – Watchdog Event Interrupt Status, cleared on read of Watchdog Status Register

0 = Watchdog Timer has not reached terminal count

1 = Watchdog Timer has reached terminal count

21.14.15 Watchdog Control (WDCTRL)

Address FFF7FD98					
Bit Number	14:8	7	6	5	4
Bit Name	WD_PERIOD	RESERVED	PROTECT	CPU_RESET_EN	WDRST_INT_EN
Access	R/W	-	R/W	R/W	R/W
Default	111_1111	0	1	0	0

Bit Number	3	2	1	0
Bit Name	WKEV_INT_EN	WKEV_EN	WDRST_EN	CNT_RESET
Access	R/W	R/W	R/W	R/W
Default	0	0	0	1

Bits 14-8: WD_PERIOD - Configures the time for the watchdog reset.

H'7F ~ 1.3s (minimum) (Default)

H'00 ~ 10ms (maximum)

Bit 7: RESERVED - Unused bits

Bit 6: PROTECT – Watchdog Protect Bit, Active Low

0 = Watchdog enable bits are protected, only can be cleared by POR. CPU_RESET_ENA (Bit 5), WDRST_ENA (Bit 2) and WKEV_ENA (Bit 1) are automatically set high when PROTECT is written low.

1 = Watchdog enable bits can be set by processor (Default)

Bit 5: CPU_RESET_EN – Enables Watchdog Reset Event to reset the CPU

0 = Watchdog Reset does not reset CPU (Default)

1 = Watchdog Reset does resets CPU

Bit 4: WDRST_INT_EN – Watchdog Reset Event Interrupt Enable

0 = Disables generation of Watchdog Reset Interrupt (Default)

1 = Enables generation of Watchdog Reset Interrupt

Bit 3: WKEN_INT_EN – Watchdog Wake Event Interrupt Enable

0 = Disables generation of Watchdog Wake Event Interrupt (Default)

- 1 = Enables generation of Watchdog Wake Event Interrupt
- Bit 2: WKEV_EN Watchdog Wake Event Comparator Enable
 - 0 = Disables Watchdog Wake Event Comparator (Default)
 - 1 = Enables Watchdog Wake Event Comparator
- Bit 1: WDRST_EN Watchdog Reset Event Comparator Enable
 - 0 = Disables Watchdog Reset Event Comparator (Default)
 - 1 = Enables Watchdog Reset Event Comparator

Bit 0: CNT_RESET – This bit resets the watchdog counters. This bit self clears and if the enables are set, the counters restart counting.

- 0 = Watchdog counters enabled (Default)
- 1 = Watchdog counters reset

21.15 Memory Controller - MMC

- All MMC control Registers have the following attributes:
 - 16-bit wide
 - Addresses placed on word boundaries
 - 16-bit data is placed on the least significant data bus D[15:0]
 - Only half-word writes are permitted
 - Registers are readable in any mode, but writeable only in privilege mode

21.15.1 Static Memory Control Register (SMCTRL)

Address FFFFFD00

Bit Number	13:12	11:9	7:4	3	1:0
Bit Name	LEAD	TRAIL	ACTIVE	ENDIAN	WIDTH
Access	R/W	R/W	R/W	R	R/W
Default	00	000	0000	-	00

Bits 13-12: LEAD – Address setup time cycles (write operations)

00 = No setup time required (Default)

01 = Write strobe is delayed one cycle

10 = Write strobe is delayed two cycles

11 = Write strobe is delayed three cycles

Bits 11-9: TRAIL – Number of Trailing wait states. Determine the trailing wait states after read and write operations to the memory associated with the chip select corresponding to the wait states.

Bit s 7-4: ACTIVE – Active Wait states (both read/write operations)

- 0000 = 0 Wait states (Default)
- 0001 = 1 Wait states
- 0010 = 2 Wait states
- 0011 = 3 Wait states
- 0100 = 4 Wait states
- 0101 = 5 Wait states
- 0110 = 6 Wait states
- 0111 = 7 Wait states
- 1000 = 8 Wait states
- 1001 = 9 Wait states
- 1010 = 10 Wait states
- 1011 = 11 Wait states
- 1100 = 12 Wait states
- 1101 = 13 Wait states
- 1110 = 14 Wait states
- 1111 = 15 Wait states
- Bit 3: ENDIAN Endian Mode Identification
 - 0 = CPU configured in big endian mode
 - 1 = CPU configured in little endian mode
- Bits 1-0: WIDTH Data Width for Memories
 - 00 = 8 bits (Default)
 - 01 = 16 bits
 - 10 = 32 bits
 - 11 = Reserved

21.15.2 Write Control Register (WCTRL)

Address	FFFFFD2C

Bit Number	1	0
Bit Name	TRAIL_OVR	WBUF_ENA
Access	R/W	R/W
Default	0	0

Bit 1: TRAIL_OVR – Write trailing wait state override.

0 = At least one trailing wait state (Default)

1 = TRAIL sets trailing wait states

Bit 0: WBUF_ENA – Write buffer enable. When this bit is 1, the memory controller latches the data and control signals in the first cycle for write operations to the memories and peripherals on the expansion bus and lets the CPU perform other operations. However, the CPU starts a wait state if there is another request before the memory controller finishes.

0 = Write buffer disabled (Disabled)

1 = Write buffer enabled

21.15.3 Peripheral Control Register (PCTRL)

Address FFFFFD30

0
PBUF_ENA
R/W
0

Bit 0: PBUF_ENA – Write buffer enable. When this bit is set to 1, the memory controller latches the data and control signals in the first cycle for write operations to the memories and peripherals on the expansion bus and lets the CPU perform other operations. However, the CPU starts a wait state if there is another request before the memory controller finishes.

0 = Write buffer disabled (Default)

1 = Write buffer enabled

21.15.4 Peripheral Location Register (PLOC)

Addrass	FFFFFD34
Augu 633	11111037

Bit Number	15:0
Bit Name	LOC
Access	R/W
Default	0000_0000_0000_0000

Bits 15-0: LOC – These 16 bits represent the peripheral location bits, which correspond to each of the 16 peripheral selects.

0 = Peripheral is internal (Default)

1 = Peripheral is external

21.15.5 Peripheral Protection Register (PPROT)

Address FFFFFD38

Bit Number	15:0
Bit Name	PROT
Access	R/W
Default	0000_0000_0000_0000

Bits 15-0: PROT – These 16 bits represent the peripheral protection bits, which correspond to each of the 16 peripheral selects.

0 = Peripheral is accessible in all modes (Default)

1 = Peripheral is accessible in privilege mode only

21.16 DEC – Address Manager

The DEC generates the memory selects and SAR peripheral select signals by decoding the address and control signals from the ARM processor. In addition, the DEC provides the control signals for the Program and Data Flash.

The assigned memory selects for Cyclone are as follows:

Memory Select $0 \Rightarrow$ Boot ROM (1Kx32) Memory Select 1 => Program Flash 0(8Kx32) Memory Select $2 \Rightarrow$ Data Flash (512x32) Memory Select $3 \Rightarrow$ Data RAM (2Kx32) Memory Select $4 \Rightarrow Loop Mux (1Kx32)$ Memory Select $5 \Rightarrow$ Fault Mux (1Kx32) Memory Select 6 => ADC12 Control (1Kx32) Memory Select 7 => DPWM3 (1Kx32) Memory Select 8 => Filter 2 (1Kx32) Memory Select 9 => DPWM 2 (1Kx32) Memory Select 10 => Front End Control 2 (1Kx32) Memory Select 11 => Filter 1 (1Kx32) Memory Select 12 => DPWM 1 (1Kx32) Memory Select 13 => Front End Control 1 (1Kx32) Memory Select 14 => Filter 0 (1Kx32) Memory Select 15 => DPWM 0 (1Kx32) Memory Select 16 => Front End Control 0 (1Kx32) Memory Select 17 => Program Flash 1(8Kx32)

21.16.1 Memory Fine Base Address High Register 0 (MFBAHR0)

Address FFFFFE00

Bit Number	15:0
Bit Name	ADDRESS[31:16]
Access	R/W
Default	0000_0000_0000_0000

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.2 Memory Fine Base Address Low Register 0 (MFBALR0)

Address FFFFFE04

Bit Number	15:10	8	7:4	1	0
Bit Name	ADDRESS[15:10]	MS	BLOCK_SIZE	RONLY	PRIV
Access	R/W	R/W	R/W	R/W	R/W
Default	000000	0	0000	0	0

Bits15-10: ADDRESS[15:10] – 6 Least Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

Bit 8: MS – Memory Map Select

0 = Memory Map configuration not updated (Default)

1 = Enables the fine and coarse memory selects and activates the memory map

Bits 7-4: BLOCK_SIZE – Configures the size of the memory

0000 = Memory select is disabled (Default)

0001 = 1K Bytes

- 0010 = 2K Bytes 0011 = 4K Bytes 0100 = 8K Bytes 0101 = 16K Bytes 0110 = 32K Bytes 0111 = 64K Bytes 1000 = 128K Bytes 1001 = 256K Bytes 1011 = 1M Bytes 1010 = 2M Bytes
- 1101 = 4M Bytes
- 1110 = 8M Bytes
- 1111 = 16M Bytes

Bit 1: RONLY – Read-only protection. This bit sets read-only protection for the memory selected by the memory select. An illegal access exception is generated when a write is attempted to the memory.

0 = Read/write access to memory (Default)

1 = Read accesses to memory only

Bit 0: PRIV – Privilege mode protection. This bit sets privilege mode protection for the memory Registration selected by the memory select. An illegal access exception is generated on any access to memory protected by privilege mode.

0 = User/privilege mode accesses to memory (Default)

1 = Privilege mode accesses to memory only

21.16.3 Memory Fine Base Address High Register 1-3,17-19 (MFBAHRx)

Address FFFFFE08 – Memory Fine Base Address High Register 1 Address FFFFFE10– Memory Fine Base Address High Register 2 Address FFFFFE18 – Memory Fine Base Address High Register 3 Address FFFFFE88 – Memory Fine Base Address High Register 17 Address FFFFFEA8 – Memory Fine Base Address High Register 18 – only on UCD3138128 Address FFFFFEB0 – Memory Fine Base Address High Register 19 – only on UCD3138128

Bit Number	15:0
Bit Name	ADDRESS[31:16]
Access	R/W
Default	0000_0000_0000_0000

Note: - The values shown for these bitfields are the reset values. The ROM will load other values into these bitfields to configure the memory map for ROM mode. Some of the bitfields will be changed again when the ROM jumps to FLASH mode.

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.4 Memory Fine Base Address Low Register 1-3,17-19 (MFBALRx)

Address FFFFE0C – Memory Fine Base Address Low Register 1

Address FFFFFE14 – Memory Fine Base Address Low Register 2

Address FFFFE1C – Memory Fine Base Address Low Register 3

Address FFFFE8C – Memory Fine Base Address Low Register 17

Address FFFFFEAC – Memory Fine Base Address Low Register 18 – only on UCD3138128 Address FFFFFFB4 – Memory Fine Base Address Low Register 19 – only on UCD3138128

Address FFFFFEb+ memory File base Address Low Register 15 only on 0005130120					
Bit Number	15:10	9	7:4	1	0
Bit Name	ADDRESS[15:10]	AW	BLOCK_SIZE	RONLY	PRIV
Access	R/W	R/W	R/W	R/W	R/W

Default	0000	0	0000	0	0

Note: - The values shown for these bitfields are the reset values. The ROM will load other values into these bitfields to configure the memory map for ROM mode. Some of the bitfields will be changed again when the ROM jumps to FLASH mode.

Bits 15-10: ADDRESS[15:10] – 6 Least Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

Bit 9: AW – Auto-wait-on-write. When this bit is set, any write operation on this memory select takes two system cycles.

0 = Write operation is not supplemented with an additional cycle (Default)

1 = Write operation takes an additional cycle

Bits 7-4: BLOCK_SIZE – Configures the size of the memory

- 0000 = Memory select is disabled (Default)
- 0001 = 1K Bytes
- 0010 = 2K Bytes
- 0011 = 4K Bytes
- 0100 = 8K Bytes
- 0101 = 16K Bytes
- 0110 = 32K Bytes
- 0111 = 64K Bytes
- 1000 = 128K Bytes
- 1001 = 256K Bytes
- 1010 = 512K Bytes
- 1011 = 1M Bytes
- 1100 = 2M Bytes
- 1101 = 4M Bytes
- 1110 = 8M Bytes
- 1111 = 16M Bytes

Bit 1: RONLY – Read-only protection. This bit sets read-only protection for the memory selected by the memory select. An illegal access exception is generated when a write is attempted to the memory.

- 0 = Read/write access to memory (Default)
- 1 = Read accesses to memory only

Bit 0: PRIV – Privilege mode protection. This bit sets privilege mode protection for the memory Registration selected by the memory select. An illegal access exception is generated on any access to memory protected by privilege mode.

0 = User/privilege mode accesses to memory (Default)

1 = Privilege mode accesses to memory only

21.16.5 Memory Fine Base Address High Register 4 (MFBAHR4)

Address FFFFFE20 – Memory Fine Base Address High Register 4

Bit Number	15:0	
Bit Name	ADDRESS[31:16]	
Access	R/W	
Default	0000_0000_0001_0010	

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.6 Memory Fine Base Address Low Register 4-16 (MFBALRx)

Address FFFFFE24 – Memory Fine Base Address Low Register 4 Address FFFFFE2C – Memory Fine Base Address Low Register 5 Address FFFFFE34 – Memory Fine Base Address Low Register 6

Address FFFFFE3C – Memory Fine Base Address Low Register 7 Address FFFFFE44 – Memory Fine Base Address Low Register 8 Address FFFFFE4C – Memory Fine Base Address Low Register 9 Address FFFFFE5C – Memory Fine Base Address Low Register 10 Address FFFFFE6C – Memory Fine Base Address Low Register 12 Address FFFFFE6C – Memory Fine Base Address Low Register 13 Address FFFFFE6C – Memory Fine Base Address Low Register 13 Address FFFFFE7C – Memory Fine Base Address Low Register 14 Address FFFFFE7C – Memory Fine Base Address Low Register 15 Address FFFFFE84 – Memory Fine Base Address Low Register 15 Address FFFFFE84 – Memory Fine Base Address Low Register 16

Bit Number	15:10	9	8:2	1	0
Bit Name	ADDRESS[15:10]	AW	RESERVED	RONLY	PRIV
Access	R/W	R/W	-	R/W	R/W
Default	000000	0	0_0000_00	0	0

Bits 15-10: ADDRESS[15:10] – 6 Least Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

Bit 9: AW – Auto-wait-on-write. When this bit is set, any write operation on this memory select takes two system cycles.

- 0 = Write operation is not supplemented with an additional cycle (Default)
- 1 = Write operation takes an additional cycle

Bits 8-2: RESERVED - Unused bits

Bit 1: RONLY – Read-only protection. This bit sets read-only protection for the memory selected by the memory select. An illegal access exception is generated when a write is attempted to the memory.

- 0 = Read/write access to memory (Default)
- 1 = Read accesses to memory only

Bit 0: PRIV – Privilege mode protection. This bit sets privilege mode protection for the memory Registration selected by the memory select. An illegal access exception is generated on any access to memory protected by privilege mode.

0 = User/privilege mode accesses to memory (Default)

1 = Privilege mode accesses to memory only

21.16.7 Memory Fine Base Address High Register 5 (MFBAHR5)

Address FFFFFE28 – Memory Fine Base Address High Register 5

Bit Number	15:0
Bit Name	ADDRESS[31:16]
Access	R/W
Default	0000_0000_0001_0011

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.8 Memory Fine Base Address High Register 6 (MFBAHR6)

Address FFFFFE30 – Memory Fine Base Address High Register 6

Bit Number	15:0
Bit Name	ADDRESS[31:16]
Access	R/W
Default	0000_0000_0001_0100

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.9 Memory Fine Base Address High Register 7 (MFBAHR7)

Address FFFFFE38 – Memory Fine Base Address High Register 7

Bit Number	15:0	
Bit Name	ADDRESS[31:16]	
Access	R/W	
Default	0000_0000_0001_0101	

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.10 Memory Fine Base Address High Register 8 (MFBAHR8)

Address FFFFFE40 – Memory Fine Base Address High Register 8

Bit Number	15:0		
Bit Name	ADDRESS[31:16]		
Access	R/W		
Default	0000_0000_0001_0110		

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.11 Memory Fine Base Address High Register 9 (MFBAHR9)

Address FFFFFE48 – Memory Fine Base Address High Register 9

Bit Number	15:0			
Bit Name	ADDRESS[31:16]			
Access	R/W			
Default	0000_0000_0001_0111			

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.12 Memory Fine Base Address High Register 10 (MFBAHR10)

Address FFFFE50 – Memory Fine Base Address High Register 10

Bit Number	15:0			
Bit Name	ADDRESS[31:16]			
Access	R/W			
Default	0000_0000_0001_1000			

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.13 Memory Fine Base Address High Register 11 (MFBAHR11)

Address FFFFFE58 – Memory Fine Base Address High Register 11

Bit Number	15:0			
Bit Name	ADDRESS[31:16]			
Access	R/W			
Default	0000_0000_0001_1001			

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.14 Memory Fine Base Address High Register 12 (MFBAHR12)

Address FFFFE60 – Memory Fine Base Address High Register 12

Bit Number	15:0		
Bit Name	ADDRESS[31:16]		
Access	R/W		
Default	0000_0000_0001_1010		

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.15 Memory Fine Base Address High Register 13 (MFBAHR13)

Address FFFFFE68 – Memory Fine Base Address High Register 13

Bit Number	15:0		
Bit Name	ADDRESS[31:16]		
Access	R/W		
Default	0000_0000_0001_1011		

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.16 Memory Fine Base Address High Register 14 (MFBAHR14)

Address FFFFFE70 – Memory Fine Base Address High Register 14

Bit Number	15:0			
Bit Name	ADDRESS[31:16]			
Access	R/W			
Default	0000_0000_0001_1100			

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.17 Memory Fine Base Address High Register 15 (MFBAHR15)

Address FFFFFE78 – Memory Fine Base Address High Register 15

Bit Number	15:0			
Bit Name	ADDRESS[31:16]			
Access	R/W			
Default	0000_0000_0001_1101			

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.18 Memory Fine Base Address High Register 16 (MFBAHR16)

Address FFFFFE80 – Memory Fine Base Address High Register 16

Bit Number	15:0			
Bit Name	ADDRESS[31:16]			
Access	R/W			
Default	0000_0000_0001_1110			

Bits 15-0: ADDRESS[31:16] – 16 Most Significant Bits of the Base Address. The Base Address sets the 22 most significant bits of the memory address.

21.16.19 Program Flash Control Register 0-3 (PFLASHCTRL_x)

Address FFFFFE90 - PFLASHCTRL_0 Address FFFFFE9C - PFLASHCTRL_1 Address FFFFFEA0 - PFLASHCTRL_2 – only on UCD3138128 Address FFFFFEA4 - PFLASHCTRL_3 – only on UCD3138128

Bit Number	11	10	9	8	7:5	4:0
Bit Name	BUSY	RESERVED	PAGE_ERASE	MASS_ERASE	RESERVED	PAGE_SEL
Access	R	-	R/W	R/W	-	R/W
Default	-	0	0	0	000	00000

Bit 11: BUSY – Program Flash Busy Indicator

0 = Program Flash available for read/write/erase access

1 = Program Flash unavailable for read/write/erase access

Bit 10: INFO_BLOCK_ENA - Program Flash Information Block Enable. Test use only.

0 = Access enabled to main memory block (Default)

1 = Access enabled to information block

Bit 9: PAGE_ERASE - Program Flash Page Erase Enable

0 = No Page Erase initiated on Program Flash (Default)

1 = Page Erase on Program Flash enabled. Page erased is based on PAGE_SEL (Bits 4-0). Interlock Key must be set in Flash Interlock Register (Section 17.21) to initiate Page Erase cvcle. This bit is cleared upon completion of Page Erase cvcle.

Bit 8: MASS ERASE – Program Flash Mass Erase Enable

0 = No Mass Erase initiated on Program Flash (Default)

1 = Mass Erase of Program Flash enabled. Interlock Key must be set in Flash Interlock Register (Section 17.21) to initiate Mass Erase cycle. This bit is cleared upon completion of Mass Erase cycle.

Bits 4-0: PAGE_SEL – Selects page to be erased during Page Erase Cycle

21.16.20 Data Flash Control Register (DFLASHCTRL)

Address FFFFFE94

Bit Number	11	10	9	8	7:6	5:0
Bit Name	BUSY	RESERVED	PAGE_ERASE	MASS_ERASE	RESERVED	PAGE_SEL
Access	R	-	R/W	R/W	-	R/W
Default	-	-	0	0	-	000000

Bit 11: BUSY - Data Flash Busy Indicator

0 = Data Flash available for read/write/erase access

1 = Data Flash unavailable for read/write/erase access

Bit 9: PAGE_ERASE – Data Flash Page Erase Enable

0 = No Page Erase initiated on Data Flash (Default)

1 = Page Erase Cycle on Data Flash enabled. Page erased is based on PAGE_SEL (Bits

4-0). This bit is cleared upon completion of Page Erase cycle.

Bit 8: MASS_ERASE – Data Flash Mass Erase Enable

0 = No Mass Erase initiated on Data Flash (Default)

1 = Mass Erase of Data Flash enabled. Bit is cleared upon completion of mass erase.

Bits 5-0: PAGE_SEL – Selects page to be erased during Page Erase Cycle

21.16.21 Flash Interlock Register (FLASHILOCK)

Address FFFFFE98

Bit Number	31:0
Bit Name	INTERLOCK_KEY
Access	R/W
Default	0000_0000_0000_0000_0000_0000_0000

Bit 31-0: INTERLOCK_KEY – Flash Interlock Key. Register must be set to: 0x42DC157E prior to every Data Flash write/mass erase/page erase or

0x42DC157E prior to every Program Flash#0 write/mass erase/page erase or

0x6C97D0C5 prior to every Program Flash#1 write/mass erase/page erase or

If the Interlock Key is not set, the write/erase cycle to the Flash will not initiate. This register will clear upon the completion of a write/erase cycle to the Flash modules.

21.17 CIM – Central Interrupt Module

CIM Registers have the following attributes:

- 32-bit wide
- Addresses placed on word boundaries
- Byte, half-word and word writes permitted
- All Registers have read/write access in any mode
- Interrupt Mask and FIQ/IRQ Program Control Registers are writeable in privilege mode only. A write in user mode to these Registers causes a peripheral illegal access exception.

21.17.1 IRQ Index Offset Vector Register (IRQIVEC)

Address	FFFFFF20	

Bit Number	7:0			
Bit Name	IRQIVEC			
Access	R			
Default	-			

Bits 7-0: IRQIVEC – Index of the IRQ Pending Interrupt (Cleared upon read)

- 0 = No interrupt pending
- 1 = Pending interrupt on Channel 0
- 2 = Pending interrupt on Channel 1
- N = Pending interrupt on Channel N-1, where N <= 31

21.17.2 FIQ Index Offset Vector Register (FIQIVEC)

Address FFFFFF24

Bit Number	7:0
Bit Name	FIQIVEC
Access	R
Default	-

Bits 7-0: FIQIVEC – Index of the FIQ pending interrupt (Cleared upon read)

- 0 = No interrupt pending
- 1 = Pending interrupt on Channel 0
- 2 = Pending interrupt on Channel 1
- N = Pending interrupt on Channel N-1, where N \leq 31.

21.17.3 FIQ/IRQ Program Control Register (FIRQPR)

Address FFFFFF2C

A 32-bit FIQ/IRQ program control Register (FIRQPR) determines whether a given interrupt request will be FIQ or IRQ type.

Bit Number	31:0
Bit Name	FIRQPR
Access	R/W
Default	0000_0000_0000_0000_0000_0000_0000

Bits 31-0: FIRQPR – These bits determine whether an interrupt request from a peripheral is of type FIQ or IRQ. Each bit corresponds to one request channel. This Register is writeable in privilege mode only.

- 0 = Interrupt request is of IRQ type (Default)
- 1 = Interrupt request is of FIQ type

21.17.4 Pending Interrupt Read Location Register (INTREQ)

Address	FFFFFF30

Bit Number	31:0
Bit Name	INTREQ
Access	R
Default	-

Bits 31-0: INTREQ – Pending Interrupt Requests

0 = No interrupt has occurred

1 = Interrupt is pending

21.17.5 Interrupt Mask Register (REQMASK)

Address	FFFFFF34
---------	----------

Bit Number	31:0
Bit Name	REQMASK
Access	R/W
Default	0000_0000_0000_0000_0000_0000_0000_0000

Bits 31-0: REQMASK – Interrupt Request Mask Select

0 = Interrupt request channel is disabled (Default)

1 = Interrupt request channel is enabled

21.18 SYS – System Module

SYS Registers have the following attributes:

- 16-bit wide
- Addresses placed on word boundaries
- Byte, half-word and word writes permitted
- All Registers can be read in any mode of operation.
- Global Control Register is writeable in privilege mode only. All other Registers are writeable in any mode.

21.18.1 Clock Control Register (CLKCNTL)

Address FFFFFFD0

The clock control Register configures the MCLK divider for low power modes and the clock multiplexer which drives the Sync pin when configured to output the CLKOUT signal. CLKCNTRL is accessible in user and privilege mode and supports byte, half-word and word accesses. Any access to this Register takes two SYSCLK cycles.

Bit Number	9:8	7	6:5	4	3	2:0
Bit Name	M_DIV_RATIO	RESERVED	CLKSR	RESERVED	CLKDOUT	RESERVED
Access	-	-	R/W	-	R/W	-
Default	00	0	00	0	0	000

Bits 9-8: M_DIV_RATIO - MCLK (Processor Clock) Divide Ratio

00 = MCLK frequency equals High Frequency Oscillator divided by 8 (Default)

01 = MCLK frequency equals High Frequency Oscillator divided by 16

10 = MCLK frequency equals High Frequency Oscillator divided by 32

11 = MCLK frequency equals High Frequency Oscillator divided by 64

Bit 7: RESERVED

Bit 6-5: CLKSR – These bits control the source/function of CLKOUT

00 = Driven by value in CLKDOUT (Bit 3) (Default)

01 = Driven by the interface clock (ICLK)

10 = Driven by the CPU clock (MCLK)

11 = Driven by the system clock (SYSCLK)

Bit 4: RESERVED - Unused bit

Bit 3: CLKDOUT - This pin represents the output value of CLKOUT

0 = CLKOUT driven to logic low in output mode (Default)

1 = CLKOUT driven to logic high in output mode

Bits 2-0: RESERVED

21.18.2 System Exception Control Register (SYSECR)

Address FFFFFFE0

The system exception control Register contains bits that allow the user to generate a software reset. The OVR bits disable some reset/abort conditions when TRST is high.

Bit Number	15:14	13:3	2	1	0
Bit Name	RESET	RESERVED	PACCOVR	ACCOVR	ILLOVR
Access	R/W	-	R/W	R/W	R/W
Default	01	-	0	0	0

Bits 15-14: RESET – Software Reset Enable. These bits always read as 01

01 = No reset

1X = Global system reset (X = don't care)

X0 = Global system reset (X = don't care)

Bits 13-3: RESERVED

Bit 2: PACCOVR – Peripheral Access Violation Override

0 = Peripheral access violation error causes a reset or abort (Default)

1 = No action taken on a peripheral access violation

Bit 1: ACCOVR – Memory Access Reset Override

0 = Memory access violation error causes a reset or abort (Default)

1 = No action taken on an illegal address

- Bit 0: ILLOVR Illegal Address Reset Override
 - 0 = Illegal address causes a reset or abort (Default)

1 = No action taken on an illegal address

21.18.3 System Exception Status Register (SYSESR)

Address FFFFFFE4

The System Exception Status Register contains flags for different reset/abort sources. On power-up, all bits are cleared to 0. When a reset condition is recognized, the appropriate bit in the Register is set and the value of the bit is maintained through the reset. When a new reset condition occurs, the current contents of this Register are not cleared. The contents of this Register are cleared on a power-on reset or by software.

Bit Number	15	14	13	12	11	10
Bit Name	PORRST	CLKRST	WDRST	ILLMODE	ILLADR	ILLACC
Access	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0	0

Bit Number	9	8	7	6:0
Bit Name	PILLACC	ILLMAP	SWRST	RESERVED
Access	R/W	R/W	R/W	-
Default	0	0	0	000_0000

Bit 15: PORRST – Power-On reset flag. Set when power-on reset is asserted. Reset is asserted as long as power-on-reset is active. Whenever a device is powered, this bit is set.

User and privilege modes (read)

0 = Power-up reset has not occurred since the last clear

1 = Power-up reset has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 14: CLKRST - This bit represents the clock fail flag. This bit indicates a clock fault condition

has occurred. After power-on-reset, the CLKRST is reset to 0. Value remains unchanged during other resets.

User and privilege modes (read)

0 = Clock failure has not occurred since the last clear

1 = Clock failure has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 13: WDRST – This bit represents the watchdog reset flag. This bit indicates that the last reset was caused by the watchdog.

User and privilege modes (read)

0 = Watchdog reset has not occurred since the last clear

1 = Watchdog reset has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 12: ILLMODE – This bit represents the illegal mode flag. This bit is set when the mode bits in the program status Register are set to an illegal value.

User and privilege modes (read)

0 = Illegal mode has not occurred since the last clear

1 = Illegal mode has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 11: ILLADR – This bit represents the illegal address access flag. This bit is set when an access to an unimplemented location in the memory map is detected in non-user mode.

User and privilege modes (read)

0 = Illegal address has not occurred since the last clear

1 = Illegal address has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 10: ILLACC – This bit represents the illegal memory access flag. This bit is set when an access to a protected location without permission rights is detected in non-user mode.

User and privilege modes (read)

0 = Illegal memory access has not occurred since the last clear

1 = Illegal memory access has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 9: PILLACC – This bit represents the peripheral illegal access flag. This bit is set when a peripheral access violation is detected in user mode.

User and privilege modes (read)

0 = Illegal peripheral access has not occurred since the last clear

1 = Illegal peripheral access has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 8: ILLMAP – This bit represents the illegal address map flag. This bit is set when the base addresses of one or more memories overlap. Reset occurs when the overlapped registration is accessed.

User and privilege modes (read)

0 = Illegal address mapping has not occurred since the last clear

1 = Illegal address mapping has occurred since the last clear

User and privilege modes (write)

0 =Clears the corresponding bit to 0

1 = No effect

Bit 7: SWRST – This bit represents the software reset flag. This bit is set when the last reset is caused by software writing the RESET bits.

- User and privilege modes (read)
- 0 = Software reset has not occurred since the last clear
- 1 = Software reset has occurred since the last clear
- User and privilege modes (write)
- 0 =Clears the corresponding bit to 0

1 = No effect

Bit 6-0: RESERVED

21.18.4 Abort Exception Status Register (ABRTESR)

Address FFFFFE8

The Abort Exception Status Register shows the abort cause.

Bit Number	15	14	13	12:0
Bit Name	ADRABT	MEMABT	PACCVIO	RESERVED
Access	R/W	R/W	R/W	-
Default	0	0	0	0_0000_0000_0000

Bit 15: ADRABT – This bit represents the illegal address abort. An illegal address access was detected in user mode. An abort was generated due to an illegal address access from either the MPU or system

User and privilege modes (read)

- 0 = No illegal address
- 1 = Abort caused by an illegal address

User and privilege modes (write)

- 0 = Clears bit to 0
- 1 = No effect

Bit 14: MEMABT – This bit represents the memory access abort. This bit indicates an illegal memory access was detected in user mode. An abort was generated due to the illegal memory access from either the MPU or system.

- User and privilege modes (read)
- 0 = No illegal memory access
- 1 = Abort caused by an illegal memory access
- User and privilege modes (write)
- 0 = Clears bit to 0
- 1 = No effect

Bit 13: PACCVIO – This bit represents the peripheral access violation error. This bit indicates a peripheral access violation error was detected during a peripheral Register access in user mode. An abort was generated due to a peripheral access violation.

- User and privilege modes (read)
- 0 = No peripheral access violation
- 1 = Abort caused by a peripheral access violation
- User and privilege modes (write)
- 0 = Clears bit to 0
- 1 = No effect

Bit 12-0: RESERVED – Unused bits

21.18.5 Global Status Register (GLBSTAT)

Address FFFFFFEC

The Global Status Register specifies the module that triggered the illegal address, illegal access, abort or reset. When a new reset condition reset occurs, the current contents of this Register are not cleared. The contents of this Register are cleared on a power-on reset or by software.

Bit Number	7	6	5	4	3:0
Bit Name	SYSADDR	SYSACC	MPUADDR	MPUACC	RESERVED
Access	R/W	R/W	R/W	R/W	-
Default	0	0	0	0	0000

Bit 7: SYSADDR – This bit represents the system illegal address flag. This bit is set when the system detects an illegal address.

User and privilege modes (read)

0 = No system illegal address

1 = Abort or reset caused by a system illegal address

User and privilege modes (write)

- 0 = Clears bit to 0
- 1 = No effect

Bit 6: SYSACC – This bit represents the system illegal access flag. This bit is set when the system detects an illegal access.

User and privilege modes (read)

0 = No system illegal access

1 = Abort or reset caused by a system illegal access

User and privilege modes (write)

- 0 = Clears bit to 0
- 1 = No effect

Bit 5: MPUADDR – This bit represents the MPU illegal address flag. This bit is set when the memory protection unit detects an illegal address.

User and privilege modes (read)

0 = No MPU illegal address

1 = Abort or reset caused by a MPU illegal address

User and privilege modes (write)

- 0 =Clears bit to 0
- 1 = No effect

Bit 4: MPUACC – This bit represents the MPU illegal access flag. This bit is set when the MPU detects an illegal access.

User and privilege modes (read)

0 = No MPU illegal access

1 = Abort or reset caused by a MPU illegal access

User and privilege modes (write)

0 = Clears bit to 0

1 = No effect

Bit 3-0: RESERVED

21.18.6 Device Identification Register (DEV)

Address FFFFFF0

The Device Identification Register contains device specification information that is hard coded during device manufacturing. This register is read-only.

Bit Number	15:0	
Bit Name	DEV	
Access	R	
Default	0000_0100_0100_0111	

Bits 15-0: DEV – These bits represent the device identification code.

21.18.7 System Software Interrupt Flag Register (SSIF)

Address FFFFFF8

The System Software Interrupt Flag Register is set when a software interrupt is triggered. The flag allows the user to poll for a software interrupt.

Bit Number	0
Bit Name	SSIFLAG
Access	R/W
Default	0

Bit 0: SSIFLAG – This bit represents the system software interrupt flag. This bit is set when a correct SSKEY is written to the System Software Interrupt Flag Register. This bit is cleared only by software.

User and privilege modes (read)

- 0 = No IRQ/FIQ interrupt request has been generated since the last clear
- 1 = IRQ/FIQ interrupt request has been generated since the last clear

User and privilege modes (write)

- 0 = Clears bit to 0
- 1 = No effect

21.18.8 System Software Interrupt Request Register (SSIR)

Address FFFFFFFC

The System Software Interrupt Request Register contains a key sequence that triggers a software interrupt request to the CIM. Also, the Register contains an 8-bit data field.

Bit Number	15:8	7:0
Bit Name	SSKEY	SSDATA
Access	R/W	R/W
Default	0000_0000	0000_0000

Bits 15-8: SSKEY – These bits represent the system software interrupt request key. These writeonly bits are executable in both user and privilege modes. A 0x75 written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as zero.

Bits 7-0: SSDATA – These bits represent the system software interrupt data. The SSDATA bits provide an 8-bit field that can be used for passing messages into the system software interrupt.

22 Converting UCD3138 programs to UCD3138A64

The main issue in converting programs from UCD3138 to UCD3138A64 is the changes in the memory map. There are also a few changes necessary because of the addition of an additional FLASH bank, and the related changes to register names for FLASH control.

22.1 Change Linker Addresses

To change the linker addresses, there are three files which need to change:

Cyclone.cmd Cyclone_headers.cmd Cyclone_global_variables_defs.c

All the files have the same name, but the contents are different. The simplest thing to do is to move the file to a new directory which contains the new files.

22.2 Change Header Files Which Define Peripherals

There are several header files which change. A new set of header files is available from TI. The new versions have the same names. This makes it unnecessary to change all the #include statements in all the source files. Normally the include files are all in a headers folder. Use the headers folder that has UCD3138A64 headers in it, and the program will compile properly.

22.3 Changes to the Flash Control Registers

The changes to the flash control registers are described in Section 2.4, 17 Register Changes for Program Flash Blocks . For programs which use the full features of the UCD3138A64, read that section, and look at TI example codes.

For a quick test of a 32K byte or less code, replace DecRegs.PFLASHCTRL with DecRegs.PFLASHCTRL0 wherever it occurs in the code.

22.4 Set BLANK_PCM_EN for Peak Current Mode

For Peak Current Mode, the BLANK_PCM_EN bit should be set in the appropriate DPWMCTRL2 registers that provide blanking for PCM.

PCM blanking provides blanking logic in the Front End, rather than in the DPWM. For more information, see the UCD3138064 manual.

22.5 Update Parm Info/Parm Value Pointers

The parm info/parm value PMBus commands are used by the GUI. They support memory accesses for the memory debugger and some of the filter design functions. The GUI is designed for a standard set of pointers. There is a list of memory areas. Each memory area has a start pointer and a length. The GUI accesses each memory area by sending the number for the area, and the offset within that area.

There are areas for RAM, DFLASH, PFLASH, one for each fast peripheral, and one for the block of slow peripherals at the end of the memory space. For conversion to the UCD3138A64, it is necessary to move some blocks to new addresses. In addition, the three added flash blocks get their own pointer values.

22.5.1 Changes in pmbus.h

It is necessary to change the parm info/parm value pointers in pmbus.h. The changes are marked in bold, italic, underline, and red:

// Memory limits used by the PARM_INFO and PARM_VALUE commands.
#define RAM_START_ADDRESS 0x000<u>6A</u>000 // Beginning of RAM
#define RAM_END_ADDRESS 0x000<u>6B</u>FFF // End of RAM
#define RAM_LENGTH (RAM_END_ADDRESS - RAM_START_ADDRESS + 1)

// Allow access to peripherals, but not core ARM regs. #define REG_START_ADDRESS_0xFFF7**E4**00 // Beginning of Register space #define REG END ADDRESS 0xFFF7fdff // End of Register space #define REG LENGTH (REG END ADDRESS - REG START ADDRESS + 1) // Allow read-only access to Data Flash #define DFLASH START ADDRESS 0x00069800 // Beginning of DFLASH 0x000**69**FFF #define DFLASH END ADDRESS // End of DFLASH #define DFLASH LENGTH (DFLASH END ADDRESS - DFLASH START ADDRESS + 1) // Allow read-only access to Constants in Program Flash #define PFLASH_0 CONST START ADDRESS 0x0000000 // Beginning of PFLASH_0 Constants #define PFLASH **0** CONST END ADDRESS // End of PFLASH Constants 0x00007FFF #define PFLASH_0_CONST_LENGTH (((unsigned short)PFLASH_O_CONST_END_ADDRESS) - PFLASH_O_CONST_START_ADDRESS + 1) // Allow read-only access to Program in Program Flash #define PFLASH_0_PROG_START_ADDRESS // Beginning of PFLASH Program 0x00000000 #define PFLASH **0** PROG END ADDRESS 0x00007FFF // End of PFLASH Program #define PFLASH 0 PROG LENGTH (((unsigned short)PFLASH 0 PROG END ADDRESS) -PFLASH_0_PROG_START_ADDRESS + 1) //fast peripherals #define LOOP MUX_START_ADDRESS 0x00120000 #define LOOP_MUX_LENGTH 0x0000070 #define FAULT MUX START ADDRESS 0x00130000 #define FAULT MUX LENGTH 0x0000080 #define ADC_START_ADDRESS 0x00**1**40000 #define ADC LENGTH 0x0000098 #define DPWM3 START ADDRESS 0x00150000 #define DPWM3 LENGTH 0x00000090 #define FILTER2 START ADDRESS 0x00160000 #define FILTER2_LENGTH 0x0000064 #define DPWM2_START_ADDRESS 0x00170000 #define DPWM2 LENGTH 0x00000090 #define FE CTRL2 START ADDRESS 0x00180000 #define FE CTRL2 LENGTH 0x00000044 #define FILTER1 START ADDRESS 0x00190000 #define FILTER1_LENGTH 0x0000064

#define DPWM1_START_ADDRESS 0x00<u>1</u>a0000 #define DPWM1_LENGTH 0x000000<u>90</u>

#define FE_CTRL1_START_ADDRESS 0x00<u>1</u>b0000 #define FE_CTRL1_LENGTH 0x00000044

#define FILTER0_START_ADDRESS 0x00<u>1</u>c0000 #define FILTER0_LENGTH 0x00000064

#define DPWM0_START_ADDRESS0x001/d0000#define DPWM0_LENGTH0x00000090

#define FE_CTRL0_START_ADDRESS 0x00<u>1</u>e0000 #define FE_CTRL0_LENGTH 0x00000044

#define SYSTEM_REGS_START_ADDRESS 0xfffffd00
#define SYSTEM_REGS_LENGTH 0x2d0

// Allow read-only access to Program in Program Flash1

#define PFLASH 1_PROG_START_ADDRESS0x00008000// Beginning of PFLASH Program#define PFLASH 1_PROG_END_ADDRESS0x0000FFFF// End of PFLASH Program#define PFLASH_1_PROG_LENGTH(((unsigned short)PFLASH_1_PROG_END_ADDRESS) -
PFLASH_1_PROG_START_ADDRESS + 1)

#define NUM_MEMORY_SEGMENTS 20 // 20 memory segments for Cyclone A64

22.5.2 Changes in Parm Info/Parm Value File

It is also necessary to add start and length for pflash 1 to the lists in the c file with parm info/parm value in it. These may be in different files in different codes.

SYSTEM_REGS_START_ADDRESS, <u>PFLASH_1_PROG_START_ADDRESS</u>; SYSTEM_REGS_LENGTH, <u>PFLASH_1_PROG_LENGTH</u>};

In the same list, change the PFLASH names to PFLASH_0:

PFLASH_O_CONST_START_ADDRESS, PFLASH_O_PROG_START_ADDRESS, PFLASH_O_CONST_LENGTH, PFLASH_O_PROG_LENGTH,

Generally the table holding the above will have some conditional compilation based on NUM_MEMORY_SEGMENTS. The if-statements can be removed, and the code which was compiled with NUM_MEMORY_SEGMENTS = 19 should be retained with the PFLASH2 segment added as above. The array sizes for these tables need to be changed from 19, either to 20 or to NUM_MEMORY_SEGMENTS.

const Uint32 parm_mem_start[<u>NUM_MEMORY_SEGMENTS</u>] = {

const Uint16 parm_mem_length[*NUM_MEMORY_SEGMENTS*] = { RAM_LENGTH,

22.6 Changes to load.asm

It is also necessary to change load.asm. The stack addresses and the ram address for ram clearing need to be changed to match the new RAM location. For clarity, and if dual processor compilation is desired, it might be good to rename load.asm to load_128.asm.

```
SUP_STACK_TOP.equ0x \underline{6b} ffc ;Supervisor mode (SWI stack) starts at top of memoryFIQ_STACK_TOP.equ0x \underline{6b} e00 ;allocate 256 bytes to supervisor stack, then do FIQ stackIRQ_STACK_TOP.equ0x \underline{6b} d00 ;allocate 256 bytes to fiq stack, then start irq stackUSER_STACK_TOP.equ0x \underline{6b} b00 ;Allocate 512 bytes to irq stack, regular stack gets rest, downto variables
```

MOV A2, #<u>106</u> ;point at 0x<u>6a</u>000 - start of RAM

It is also necessary to change the counter for RAM clearing, because there are twice as many bytes of Ram in the UCD3138A64:

Instead of this:

MOV A1, #255 ;loop counter LSL A1, A1, #2 ;almost all words cleared 1020 of 1024

Use this:

MOV A1, #1 ;loop counter LSL A1, A1, #11 ;set to 2** 11 = 2048 words = 8192 bytes - all of RAM

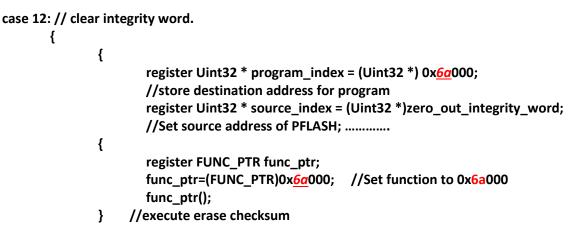
Also in load.asm, it is probably necessary to comment out or change these lines:

ż	LDR	r4,c_mfbalr1_half0 ;point r4 at program flash base address register
i	MOV	r0,#0x62 ;make block size 32K, address 0, read only
i	STRH	r0,[r4]; store it there

Commenting them out will work. Their main function is to make the program flash read only. This isn't as important as it was on the original UCD30xx devices because the FLASH key now also protects the program flash from writes. Executing the statements above is problematic because it is possible that the device is set up to have block2 in the address 0 position instead of block 0. This would occur in a multi-image system.

22.7 Changes to system_defines.h

Change data flash addresses in system_defines	.h.
#define DATA_FLASH_START_ADDRESS	(0x <u>69</u> 800)
#define DATA_FLASH_END_ADDRESS	(0x <u>69</u> fff)



It may also be necessary to change a constant which is written to the memory fine base address low register for data flash:

#define MFBALR2_HALF0_DATA_FLASH_BASE_ADDRESS (0x9800)

22.8 Changes to Software Interrupt Addresses

Change RAM addresses in the software interrupt for checksum clearing/flash erasure. This code is in interrupts.c

22.9 Changes to Data Flash Write in Software Interrupt

This code is also in interrupts.c. The original code wrote the data flash address every time. This is not necessary, and the data flash has moved in the UCD3138A64, so it will cause a problem. Here is what to comment out:

DecRegs.FLASHILOCK.all = 0x42DC157E; //unlock flash write

```
// DecRegs.MFBALR2.bit.BLOCK_SIZE =2;
```

// DecRegs.MFBALR2.bit.ADDRESS = 0x22; DecRegs.MFBALR2.bit.RONLY = 0;

22.10 Changes to Device ID

Change OISO to A64V in device ID:

#define DEVICE UCD310<u>A64V</u>1

And/or

#define DEVICE_ID "UCD310<u>A64V</u>1|0.0.35.0068|120227"

This tells the GUI that this is a UCD3138A64 instead of a UCD3138.

//Device Name

22.11 DPWM Registers – Bits Removed

When compiling a UCD3138 code converted to UCD3138A64, there will be error messages about bits missing from the DPWM registers. In general, the statement which writes to the missing bit can be removed, as it will not affect the functionality. The bits were removed because only one of the states was being used. The DPWM is now always in that state.

22.12 Change APCMCTRL to PCMCTRL

PCMCTRL has been removed, and its one bitfield has been moved to PCMCTRL. So all references to PCMCTRL will cause an error. Just change PCMCTRL to APCMCTRL.

22.13 Changing to Fixed Frequency Sampling on LLC

This is beyond the scope of this document. See the Reference code for LLC on UCD3138A64 available from TI.

23 Converting UCD3138064 Programs to UCD3138A64

Converting programs from UCD3138064 is very similar to converting from UCD3138. Here are the major differences

- 6. You start with 2 flash blocks instead of 1.
 - This means that the number of memory segments doesn't change
 - Note that PFLASH1 in the UCD3138064 is equivalent to PFLASH0 in the UCD3138A64
 - PFLASH 2 changes to PFLASH1 in the UCD3138A64
- 7. Data Flash and RAM still move, but from different places
- 8. The .cmd and cyclone_device.h files have different names.

Other than that, the same guidelines apply completely.

24 Converting UCD3138A64 Programs to UCD3138128

This conversion is very simple, because all that needs to be changed is the Device ID and the table for parm info/parm value. It may also be necessary to change the checksum location. Of course it is also necessary to use the '128 header and .cmd files.

These lines need to be added to the start and end section of pmbus.h:

// Allow read-only access to Program in Program Flash 1
#define PFLASH_1_PROG_START_ADDRESS0x00008000 // Beginning of PFLASH Program
#define PFLASH_1_PROG_END_ADDRESS 0x0000FFFF // End of PFLASH Program
#define PFLASH_1_PROG_LENGTH ((unsigned
short)(PFLASH_1_PROG_END_ADDRESS - PFLASH_1_PROG_START_ADDRESS) + 1)

// Allow read-only access to Program in Program Flash 2
#define PFLASH_2_PROG_START_ADDRESS0x00010000 // Beginning of PFLASH Program
#define PFLASH_2_PROG_END_ADDRESS 0x00017FFF // End of PFLASH Program
#define PFLASH_2_PROG_LENGTH ((unsigned
short)(PFLASH_2_PROG_END_ADDRESS - PFLASH_2_PROG_START_ADDRESS) + 1)

// Allow read-only access to Program in Program Flash 3
#define PFLASH_3_PROG_START_ADDRESS0x00018000 // Beginning of PFLASH Program
#define PFLASH_3_PROG_END_ADDRESS 0x0001FFFF // End of PFLASH Program
#define PFLASH_3_PROG_LENGTH ((unsigned
short)(PFLASH_3_PROG_END_ADDRESS - PFLASH_3_PROG_START_ADDRESS) + 1)

The number of memory segments needs to be changed to 22 to cover the additional segments for the added flash blocks:

#define NUM_MEMORY_SEGMENTS 22 // 22 memory segments for Cyclone 128

In addition, it is necessary to add start and length for pflash 2 and 3 to the c file with parm info/parm value in it. Depending on the program, these may be in different files:

It is also necessary to add start and length for pflash 1 to 3 to the lists in the c file with parm info/parm value in it. These may be in different files in different codes.

SYSTEM_REGS_START_ADDRESS, PFLASH_1_PROG_START_ADDRESS, PFLASH_2_PROG_START_ADDRESS, PFLASH_3_PROG_START_ADDRESS}; SYSTEM_REGS_LENGTH, PFLASH_1_PROG_LENGTH, PFLASH_2_PROG_LENGTH, PFLASH_3_PROG_LENGTH_};

If it hasn't been done already, the array size value for the memory start and size arrays should be changed to NUM_MEMORY_SEGMENTS:

const Uint32 parm_mem_start[<u>NUM_MEMORY_SEGMENTS</u>] = {

const Uint16 parm_mem_length[<u>NUM_MEMORY_SEGMENTS</u>] = { RAM_LENGTH,

Device ID also needs to be changed to show that it is a '128. Here is the correct Device ID:

#define DEVICE UCD310128V1

//Device Name

And/or

#define DEVICE_ID "UCD310<u>128V</u>1|0.0.35.0068|120227"

25 References

- 1. UCD3138 Digital Power Peripherals Programmer's Manual (SLUU995).
- 2. UCD3138 ARM and Digital System Programmer's Manual (SLUU994).
- 3. UCD3138 Monitoring and Communications Programmer's Manual (SLUU996).
- 4. UCD3138 Device Datasheet (SLUSAP2).
- 5. UCD3138064 Device Datasheet (SLUSB27).
- 6. UCD3138064 Programmer's Manual (SLUUAD8).

Document Revision History

Version	Release Date	List of Changes
SLUUB54	July 2014	Initial Document
SLUUB54A	September 2014	Rev. A.
SLUUB54B	April 2016	Rev B.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safetyrelated requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any nondesignated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications	
Audio www.ti.com/audio	Automotive and Transportation www.ti.com/automotive	
Amplifiers amplifier.ti.com	Communications and Telecom www.ti.com/communications	
Data Converters dataconverter.ti.com	Computers and Peripherals www.ti.com/computers	
DLP® Products www.dlp.com	Consumer Electronics www.ti.com/consumer-apps	
DSP dsp.ti.com	Energy and Lighting www.ti.com/energy	
Clocks and Timers www.ti.com/clocks	Industrial www.ti.com/industrial	
Interface interface.ti.com	Medical www.ti.com/medical	
Logic logic.ti.com	Security www.ti.com/security	
Power Mgmt power.ti.com	Space, Avionics and Defense www.ti.com/space-avionics-defense	
Microcontrollers microcontroller.ti.com	Video and Imaging www.ti.com/video	
RFID <u>www.ti-rfid.com</u>	OMAP Mobile Processors www.ti.com/omap	
Wireless Connectivity www.ti.com/wirelessconnectivity		

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated