This evaluation module (EVM) is a complete evaluation system for the bq40z60/bq294700 battery management system. The EVM includes one bq40z60/bq294700 circuit module and a link to Microsoft® Windows® based PC software. The circuit module includes one bq40z60 integrated circuit (IC), one bq294700 IC, and all other onboard components necessary to charge, monitor, and predict capacity, perform cell balancing, monitor critical parameters, protect the cells from overcharge, over-discharge, short-circuit, and overcurrent in 2-, 3- or 4-series cell Li-ion or Li-polymer battery packs. The circuit module connects directly across the cells in a battery. With the EV2300 or EV2400 interface board and software, the user can read the bq40z60 data registers, program the chipset for different pack configurations, log cycling data for further evaluation, and evaluate the overall functionality of the solution under different charge and discharge conditions.

Contents

1 Features ... 3
 1.1 Kit Contents .. 3
 1.2 Ordering Information .. 3
 1.3 Documentation ... 3
 1.4 bq40z60/bq294700 Circuit Module Performance Specification Summary ... 3
2 bq40z60EVM Quick Start Guide ... 3
 2.1 Items needed for EVM setup and Evaluation ... 3
 2.2 Software Installation ... 4
 2.3 EVM Connections .. 4
3 Battery Management Studio .. 6
 3.1 Registers Screen ... 6
 3.2 Setting Programmable bq40z60 Options ... 7
 3.3 Calibration Screen .. 8
 3.4 Chemistry Screen ... 9
 3.5 Firmware Screen ... 10
 3.6 Advanced Comm SMB Screen ... 11
4 bq40z60EVM Circuit Module Schematic .. 12
 4.1 System Present .. 12
 4.2 Pre-charge ... 12
 4.3 Battery Trip Point (BTP) .. 12
 4.4 LED Control .. 12
 4.5 Emergency Shutdown ... 13
 4.6 Testing Fuse-Blowing Circuit .. 13
 4.7 Charger ... 13
 4.8 Thermistors .. 13
5 Circuit Module Physical Layouts ... 14
 5.1 Board Layout ... 14
 5.2 Schematic ... 18
6 Bill of Materials (BOM) ... 19
7 Related Documentation from Texas Instruments .. 21

Impedance Track is a registered trademark of Texas Instruments.
Microsoft, Windows are registered trademarks of Microsoft Corporation.
All other trademarks are the property of their respective owners.
List of Figures

1. bq40z60 Circuit Module Connection to Cells, System Load and AC Adapter .. 4
2. Registers Screen .. 6
3. Data Memory Screen .. 7
4. Calibration Screen ... 8
5. Chemistry Screen ... 9
6. Firmware Screen ... 10
7. Advanced Comm Screen .. 11
8. Fuse Trace Modification ... 13
9. Top Silk Screen ... 14
10. Bottom Silk Screen .. 14
11. Top Assembly .. 15
12. Bottom Assembly .. 15
13. Top Layer .. 16
14. Internal Layer 1 ... 16
15. Internal Layer 2 ... 17
16. Bottom Layer .. 17
17. bq294700 /bq294700 EVM Schematic .. 18

List of Tables

1. Ordering Information ... 3
2. Cell Connection Configuration .. 5
3. SYSPRES / PRE_CHARGE / ALERT (BTP INTERRUPT) Data Flash Configuration 12
4. LED / Emergency Shutdown Button Configuration .. 12
5. Charger Configuration Setting .. 13
6. Bill of Materials ... 19
1 Features
 • Complete evaluation system for the bq40z60 SBS 1.1-compliant advanced gas gauges with Impedance Track® technology and bq294700 independent overvoltage protection IC
 • Populated circuit module for quick setup
 • Software that allows data logging for system analysis

1.1 Kit Contents
 • bq40z60 /bq294700 circuit module
 • Cable to connect the EVM to an EV2300 or EV2400 communications interface adapter.

1.2 Ordering Information

<table>
<thead>
<tr>
<th>EVM PART NUMBER</th>
<th>CHEMISTRY</th>
<th>CONFIGURATION</th>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>bq40z60EVM-578</td>
<td>Li-ion</td>
<td>2, 3, or 4 cell</td>
<td>Any</td>
</tr>
</tbody>
</table>

1.3 Documentation
See the device data sheets for bq40z60 and bq294700 and technical reference manuals (TRMs) on www.ti.com for information on device firmware and hardware.

1.4 bq40z60 /bq294700 Circuit Module Performance Specification Summary
This section summarizes the performance specifications of the bq40z60 /bq294700 circuit module.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage VAC to PGND</td>
<td>9</td>
<td>15</td>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>Charge and discharge current</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>A</td>
</tr>
</tbody>
</table>

2 bq40z60EVM Quick Start Guide
This section provides the step-by-step procedures required to take a new EVM and configure it for operation in a laboratory environment.

2.1 Items needed for EVM setup and Evaluation
 • bq40z60 /bq294700 circuit module
 • EV2300 or EV2400 communications interface adapter
 • Cable to connect the EVM to an EV2300 or EV2400 communications interface adapter
 • USB cable to the communications interface adapter to the computer
 • Computer setup with Windows XP or higher operating system
 • Access to the Internet to download the Battery Management Studio software setup program
 • Two to four battery cells or 1-kΩ resistors to configure a cell simulator
 • A DC power supply that can supply 20 V and 3 ampere. (Constant current and constant voltage capability is desirable.)
2.2 Software Installation

Find the latest software version in the bq40z60 tool folder on www.ti.com. Use the following steps to install the bq40z60 Battery Management Studio software:

1. Download and run the Battery Management Studio setup program from the bqStudio product folder on www.ti.com. See Battery Management Studio, for detailed information on using the tools.

2. If the communications interface adapter was not previously installed, after the Battery Management Studio installation, a TI USB driver installer pops up. Click Yes for the agreement message and follow its instructions. Two drivers are associated with the EV2300 and an additional file may be required for the EV2400. Follow the instructions to install both. Do not reboot the computer, even if asked to do so.

3. Plug the communications interface adapter into a USB port using the USB cable. The Windows system may show a prompt that new hardware has been found. When asked, *Can Windows connect to Windows Update to search for software?*, select No, not this time, and click the Next button. The next dialog window indicates *This wizard helps you install software for: TI USB Firmware Updater*. Select *Install the software automatically (Recommended)* and click the Next button. It is common for the next screen to be the Confirm File Replace screen. Click No to continue. If this screen does not appear, then go to the next step. After Windows indicates that the installation was finished, a similar dialog window pops up to install the second driver. Proceed with the same installation preference as the first one. The second driver is the TI USB bq80xx driver.

2.3 EVM Connections

This section covers the hardware connections for the EVM (see Figure 1).

![Figure 1. bq40z60 Circuit Module Connection to Cells, System Load and AC Adapter](image)

- Direct connection to the cells: 1N (BAT–), 1P, 2P, 3P, 4P (BAT+)

Attach the cells to the J3 terminal block. A specific cell connection sequence is not required; although, it is good practice to start with the lowest cell in the stack (cell 1), then attach cells 2 through 4 in sequence. The U1 and U2 devices should not be damaged by other cell connection sequences, but there is a possibility that the bq294700 could blow the fuse. Attaching cells starting with cell 1 should eliminate this risk. A short should be placed across unused voltage sense inputs (see Table 2).
Table 2. Cell Connection Configuration

<table>
<thead>
<tr>
<th>Number of Cells</th>
<th>1N</th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>4P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>–cell1+</td>
<td>–cell2+</td>
<td>short</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>short</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>–cell1+</td>
<td>–cell2+</td>
<td>–cell3+</td>
<td>short</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>–cell1+</td>
<td>–cell2+</td>
<td>–cell3+</td>
<td>–cell4+</td>
</tr>
</tbody>
</table>

A resistor cell simulator can be used instead of battery cells. Connect a resistor between each of the contacts on the J3 connector (for example, from 1N to 1P, from 1P to 2P, and so forth) until the desired number of cells has been achieved. A power supply can provide power to the cell simulator. Set the power supply to the desired cell voltage x the number of cells, and attach the ground wire to 1N and the positive wire to 4P, for example, for a 3S configuration with a 3.6-V cell voltage, set the power supply to $3 \times 3.6 = 10.8$ V.

- **Serial communications port (SMBC, SMBD)**
 Attach the communications interface adapter cable to the J6 terminal block (see Figure 1).

- **System load connection across VSYS and PGND**
 Attach the load to the J1/J5 terminal blocks. Connect the positive load wire to at least one of the two terminal block positions labeled VSYS. Connect the ground wire for the load to at least one of the two terminal block positions labeled PGND (see Figure 1).

- **Charger supply voltage connection across VAC and PGND**
 Attach the power supply for the charger to the J1 terminal block. Connect the positive load wire to at least one of the two terminal block positions labeled VAC. Connect the ground wire for the load to at least one of the two terminal block positions labeled PGND (see Figure 1).

- **SYSPRES jumper**
 The SYSPRES shunt should be placed on the J7 terminal, if the system present feature is enabled. The SYSPRES can be left open, if the non-removable (NR) bit is set to 1 in the DA configuration register.

- **PRE-CHARGE / SYSPRES / ALERT (BTP INTERRUPT) jumper**
 The shunt should be removed from the J2 jumper, if the system present feature is enabled. The shunt should be placed from the PRE-CHARGE pin to the SYSPRES pin, if the precharge feature is enabled. The shunt should be placed from the SYSPRES pin to the ALERT pin, if the BTP INTERRUPT feature is enabled.

- **SERIES CELL SELECT jumper**
 The shunt should be placed on the 4S, 3S or 2S pins of the J4 jumper to select the number of series cells configured in the DA configuration register. This selection block configures the charger for the proper output voltage corresponding to the number of series cells.

- **Wake-up the device up from shutdown (WAKE-UP)**
 Press the WAKE-UP pushbutton switch to temporarily connect BAT+ to VAC. This applies voltage to the ACP pin on the bq40z60 to power-up the regulators and start the initialization sequence.

- **Parameter setup**
 The default data flash settings configure the device for 3-series Li-Ion cells. Change the Data Flash → Settings → DA Configuration register to set up the number of series cells to match the physical pack configuration. This provides basic functionality to the setup. Other data flash parameters should also be updated to fine-tune the gauge to the pack. See the bq40z60 TRM (SLUUA04) for parameter settings.

- **Charge and Discharge FET Control**
 The Charge and Discharge FETs can be enabled by entering a 0x0022 command in the Manufacturing Access register on the Registers screen or by selecting the FET_EN button on the Commands panel.
3 Battery Management Studio

3.1 Registers Screen

Run Battery Management Studio from the Start → Programs → Texas Instruments → Battery Management Studio menu sequence, or the Battery Management Studio shortcut. The Registers screen (see Figure 2) appears. The Registers section contains parameters used to monitor gauging. The Bit Registers section provides a bit-level picture of status and fault registers. A green flag indicates that the bit is 0 (low state) and a red flag indicates that the bit is 1 (high state). Data begins to appear once the Refresh (single-time scan) button is selected, or it scans continuously, if the Scan button is selected.

The continuous scanning period can be set via the Window → Preferences → SBS → Scan Interval menu selection.

The Battery Management Studio program provides a logging function which logs the values selected by the Log check boxes located beside each parameter in the Registers section. To enable this function, select the Log button; this causes the Scan button to be selected. When logging is stopped, the Scan button is still selected and has to be manually deselected.

Figure 2. Registers Screen

The continuous scanning period can be set via the Window → Preferences → SBS → Scan Interval menu selection.

The Battery Management Studio program provides a logging function which logs the values selected by the Log check boxes located beside each parameter in the Registers section. To enable this function, select the Log button; this causes the Scan button to be selected. When logging is stopped, the Scan button is still selected and has to be manually deselected.
3.2 Setting Programmable bq40z60 Options

The bq40z60 data flash comes configured per the default settings detailed in the bq40z60 TRM. Ensure that the settings are correctly changed to match the pack and application for the solution being evaluated.

NOTE: The correct setting of these options is essential to get the best performance. The settings can be configured using the Data Memory screen (see Figure 3).

![Figure 3. Data Memory Screen](image-url)
3.3 Calibration Screen

The voltages, temperatures, and currents should be calibrated to provide good gauging performance. Press the Calibration button to select the Advanced Calibration window (see Figure 4).

![Advanced Calibration Window]

3.3.1 Voltage Calibration

- Measure the voltage from cell 1 to 1N and enter this value in the Applied Cell 1 Voltage field and select the Calibrate Voltage box.
- Measure the voltage from BAT+ to BAT– and enter this value in the Applied Battery Voltage field and select the Calibrate Battery Voltage box.
- Measure the voltage from VSYS to PGND and enter this value in the Applied Pack Voltage field and select the Calibrate Pack Voltage box. If the voltage is not present, then turn the charge and discharge FETs on by selecting the FET_EN button on the Commands window.
- Press the Calibrate Gas Gauge button to calibrate the voltage measurement system.
- Deselect the Calibrate Voltage boxes after voltage calibration has completed.

3.3.2 Temperature Calibration

- Enter the room temperature in each of the Applied temperature fields and select the Calibrate box for each thermistor to be calibrated. Enter temperature values in degrees Celsius.
- Press the Calibrate Gas Gauge button to calibrate the temperature measurement system.
- Deselect the Calibrate boxes after temperature calibration has completed.
3.3.3 Current Calibration

- The Board Offset calibration option is not offered in Battery Management Studio, because it is not required when using the bq40z60EVM. The Board Offset calibration option is available in bqProduction.
- Connect and measure a 2-A current source from 1N (–) and PGND (+) to calibrate without using the FETs. (TI does not recommend calibration using the FETs.)
- Enter –2000 in the **Applied Current** field and select the **Calibrate Current** box.
- Press the **Calibrate Gas Gauge** button to calibrate.
- Deselect the **Calibrate Current** box after current calibration has completed.

NOTE: Current can also be calibrated using the FETs. Measure the current in the discharge path and enter this value in the **Applied Current** field.

3.4 Chemistry Screen

The chemistry file contains parameters that the simulations use to model the cell and its operating profile. It is critical to program a Chemistry ID that matches the cell used in the pack. Some of these parameters can be viewed in the Data Flash section of the Battery Management Studio.

Press the **Chemistry** button to select the Chemistry window (see Figure 5).

![Figure 5. Chemistry Screen](image)

- The table can be sorted by clicking the desired column, for example: click the **Chemistry ID** column header.
3.5 **Firmware Screen**

Press the **Firmware** button to select the **Firmware Update** window. Device firmware is exported and imported in the **Firmware Update** window.

![Firmware Screen](image)

Figure 6. Firmware Screen

3.5.1 **Programming the Flash Memory**

The upper section of the Firmware screen is used to initialize the device by loading the default .srec into the flash memory (see **Figure 6**).

- Search for the .srec file using the **Browse** button.
- Select the **Execute after programming** box to automatically return the device to Normal mode after programming has completed.
- Press the **Program** button and wait for the download to complete.

3.5.2 **Exporting the Flash Memory**

The lower section of the Firmware screen is used to export all of the flash memory from the device (see **Figure 6**).

- Press the **Browse** button and enter an .srec filename.
- Press the **Read Srec** to save the flash memory contents to the file. Wait for the download to complete.
3.6 **Advanced Comm SMB Screen**

Press the *Advanced Comm SMB* button to select the Advanced SMB Comm window. This tool provides access to parameters using SMB and Manufacturing Access commands (see Figure 7).

![Advanced Comm SMB Screen](image)

Figure 7. Advanced Comm Screen

Examples:

- **Reading an SMB Command.**
 - Read SBData Voltage (0x09)
 - SMBus Read Word. Command = 0x09
 - Word = 0x3A7B, which is hexadecimal for 14971 mV

- **Sending a MAC Gauging() to enable IT via ManufacturerAccess().**
 - With Impedance Track™ disabled, send Gauging() (0x0021) to ManufacturerAccess().
 - SMBus Write Word. Command = 0x00. Data = 00 21

- **Reading Chemical ID() (0x0006) via ManufacturerAccess()**
 - Send Chemical ID() to ManufacturerAccess()
 - SMBus Write Word. Command = 0x00. Data sent = 00 06
 - Read the result from ManufacturerData()
 - SMBus Read Block. Command = 0x23. Data read = 00 01
 - That is 0x0100, chem ID 100
4 bq40z60EVM Circuit Module Schematic

This section contains information on modifying the EVM and using various features on the reference design.

4.1 System Present

The SYSPRES input is used to detect whether the pack is installed in, or removed from the system. The bq40z60 detects the BATTERY PACK REMOVED mode if the [NR] bit is set to 0 AND the SYSPRES input is high. The bq40z60 exits the BATTERY PACK REMOVED state if the [NR] flag is set to 0 and the PRES input is low. The SYSPRES input is ignored if the [NR] flag is set to 1.

The System Present function is enabled by installing the shunt on the J7 jumper and removing the shunt from the J2 jumper. Configure the data flash parameters for SYSPRES (see Table 3).

4.2 Pre-charge

The EVM provides a power resistor and FET to support a reduced current pre-charge path to charge the pack when cell voltages are below the pre-charge voltage threshold. This reduces heating that could lead to cell damage or reduced operating lifetime. The resistor (R1) is set up to limit the charging current.

Change R1 to setup the pre-charge current to a different value.

The pre-charge function is enabled by removing the shunt from the J7 jumper and installing a shunt from PRE_CHARGE to SYSPRES on the J2 jumper. Configure the data flash parameters for Precharge (see Table 3).

4.3 Battery Trip Point (BTP)

The Battery Trip Point (BTP) feature indicates when the Remaining State of Charge (RSOC) of a battery pack has depleted to a certain value set in a DF register. The BTP feature allows the host to program two capacity-based thresholds that govern the triggering of a BTP interrupt on the GPIO0 output pin. The BTP interrupt can be monitored on the ALERT test point.

The BTP interrupt function is enabled by removing the shunt from the J7 jumper and installing a shunt from SYSPRES to ALERT on the J2 jumper. Configure the data flash parameters to enable BTP and the BTP interrupt (see Table 3).

4.4 LED Control

The EVM is configured to support four LEDs to provide state-of-charge information for the cells. The LED interface is enabled by entering a 0x0027 command in the Manufacturing Access register on the Registers screen or by selecting the LED_EN button on the Commands panel. Press the LED DISPLAY button to illuminate the LEDs for approximately 5 seconds.

The EVM includes a 3.3-V regulator to power the LEDs. This regulator is powered by the batteries and it can be disabled by removing R48 (see the bq294700 /bq294700 EVM schematic).

Configure the data flash parameters for LED enable and to select the LED button (see Table 4).
4.5 Emergency Shutdown

Use the Emergency Shutdown function to disable the charge and discharge FETs with an external GPIO pin. Press the SHUTDOWN pushbutton switch for one second to disable these FETs, and press it again for one second to enable them. Configure the data flash parameters for Emergency Shutdown (see Table 4).

4.6 Testing Fuse-Blowing Circuit

To prevent the loss of board functionality during the fuse-blowing test, the actual fuse is not installed on the EVM. FET Q7 drives the FUSE test point low if a fuse-blow condition occurs. FUSE is attached to an open drain FET, so a pull-up resistor is required to check whether the FUSE pulls low. A FUSEPIN test point is attached to the gate of Q7; so, monitoring FUSEPIN can be used to test this condition without adding a pull-up resistor. A chemical fuse can also be soldered to the EVM for in-system testing. A copper bridge is included on the PCB to bypass the chemical fuse, so it has to be cut to allow the fuse to open the power path. The cut is illustrated in yellow on Figure 8 with an arrow pointing to the location.

![Figure 8. Fuse Trace Modification](image)

4.7 Charger

The bq40z60 supports an integrated NVDC charger with a default configuration set up for three series cells. The charger can be reconfigured for 2S or 4S with the SERIES CELL SELECT jumper block. Three data flash parameters must be changed to reconfigure the number of series cells (see Table 5). The charger must be enabled with the Manufacturer Access Command (MAC) C0.

<table>
<thead>
<tr>
<th>No. of Series Cells</th>
<th>CC1</th>
<th>CC0</th>
<th>Minimum Voltage Output</th>
<th>Voltage Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4350 mV</td>
<td>17 mV</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>6500 mV</td>
<td>25 mV</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>8644 mV</td>
<td>34 mV</td>
</tr>
</tbody>
</table>

4.8 Thermistors

The bq40z60 supports up to four external NTC thermistors. Each thermistor can be enabled using the data flash Temperature Enable register and they can be assigned to cells or FETs using the Temperature Mode register.
Circuit Module Physical Layouts

This section contains the printed-circuit board (PCB) layout, assembly drawings, and schematic for the bq40Z60 and bq294700 circuit modules.

5.1 Board Layout

This section shows the dimensions, PCB layers (Figure 9 through Figure 16), and assembly drawing for the bq40Z60 modules.

Figure 9. Top Silk Screen

![Top Silk Screen Diagram](image1)

Figure 10. Bottom Silk Screen

![Bottom Silk Screen Diagram](image2)
Figure 11. Top Assembly

Figure 12. Bottom Assembly
Figure 13. Top Layer

Figure 14. Internal Layer 1
Figure 15. Internal Layer 2

Figure 16. Bottom Layer
5.2 Schematic

Figure 17 illustrates the schematic for this EVM.

Figure 17. bq294700 /bq294700 EVM Schematic
Bill of Materials (BOM)

Table 6 lists the BOM for this EVM.

<table>
<thead>
<tr>
<th>Count</th>
<th>RefDes</th>
<th>Value</th>
<th>Description</th>
<th>Size</th>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCB1</td>
<td></td>
<td>Printed Circuit Board</td>
<td></td>
<td>PWR578</td>
<td>Any</td>
</tr>
<tr>
<td>18</td>
<td>C1–C4, C6, C–C11, C14, C16, C17, C19, C21–C23, C25, C26</td>
<td>0.1µF</td>
<td>CAP, CERM, 0.1µF, 50V, ±10%, X7R, 0603</td>
<td>603</td>
<td>GRM188R71H104KA93D</td>
<td>Murata</td>
</tr>
<tr>
<td>3</td>
<td>C5, C20, C29</td>
<td>2.2µF</td>
<td>CAP, CERM, 2.2µF, 25V, ±10%, X7R, 0805</td>
<td>805</td>
<td>GRM21R71E225KA73L</td>
<td>Murata</td>
</tr>
<tr>
<td>2</td>
<td>C7, C35</td>
<td>10µF</td>
<td>CAP, CERM, 10 µF, 35 V, ±10%, X7R, 1206</td>
<td>1206</td>
<td>GKM316AB7106KL</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td>2</td>
<td>C12, C13</td>
<td>10µF</td>
<td>CAP, CERM, 10 µF, 50 V, ±10%, X5R, 1206_190</td>
<td>1206_190</td>
<td>CGASL3X5R1H106K160AB</td>
<td>TDK</td>
</tr>
<tr>
<td>1</td>
<td>C15</td>
<td>22pF</td>
<td>CAP, CERM, 22pF, 50V, ±5%, C0G/NP0, 0603</td>
<td>603</td>
<td>06035A220J12A</td>
<td>AVX</td>
</tr>
<tr>
<td>1</td>
<td>C18</td>
<td>1µF</td>
<td>CAP, CERM, 1µF, 25V, ±10%, X5R, 0603</td>
<td>603</td>
<td>GRM188R61E105KA12L</td>
<td>Murata</td>
</tr>
<tr>
<td>6</td>
<td>C24, C28, C31–C34</td>
<td>1µF</td>
<td>CAP, CERM, 1µF, 50V, ±10%, X7R, 0805</td>
<td>805</td>
<td>GRM21R71H105KA12L</td>
<td>Murata</td>
</tr>
<tr>
<td>1</td>
<td>C27</td>
<td>1.5µF</td>
<td>CAP, CERM, 1.5µF, 25V, ±10%, X7R, 0805</td>
<td>805</td>
<td>GRM21R71E155KA88L</td>
<td>Murata</td>
</tr>
<tr>
<td>2</td>
<td>C30, C36</td>
<td>100pF</td>
<td>CAP, CERM, 100pF, 50V, ±5%, C0G/NP0, 0603</td>
<td>603</td>
<td>C0603C101J5GAC</td>
<td>Kemet</td>
</tr>
<tr>
<td>2</td>
<td>D1, D3, D5</td>
<td>30V</td>
<td>Diode, Schottky, 30V, 0.2A, SOD-323</td>
<td>SOD-323</td>
<td>BAT54HT1G</td>
<td>ON Semiconductor</td>
</tr>
<tr>
<td>4</td>
<td>D6–D9</td>
<td>5.6V</td>
<td>Diode, Zener, 5.6V, 200mW, SOD-323</td>
<td>SOD-323</td>
<td>MMSZ5235US-7-F</td>
<td>Diodes Inc.</td>
</tr>
<tr>
<td>1</td>
<td>F1</td>
<td>SFH-1412B</td>
<td>Fuse, 12A, 36V, SMD</td>
<td>5.4x1.35x3.2mm</td>
<td>SFH-1412B</td>
<td>Dexerials Corporation</td>
</tr>
<tr>
<td>1</td>
<td>H1, H2, H3, H4</td>
<td>S61A1</td>
<td>Bumper, Cylindrical, 0.312 x 0.200, Black</td>
<td>Black Bumper</td>
<td>S61A1</td>
<td>3M</td>
</tr>
<tr>
<td>1</td>
<td>H5</td>
<td>CBL002</td>
<td>Cable</td>
<td>Used in PnP output</td>
<td>CBL002</td>
<td>Any</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>ED555/4DS</td>
<td>Terminal Block, 6A, 3.5mm Pitch, 4-Pos, TH</td>
<td>14x8.2x6.5mm</td>
<td>ED555/4DS</td>
<td>On-Shore Technology</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>TSW-103-07-G-S</td>
<td>Header, 100mil, 3x1, Gold, TH</td>
<td>3x1 Header</td>
<td>TSW-103-07-G-S</td>
<td>Samtec</td>
</tr>
<tr>
<td>1</td>
<td>J3</td>
<td>ED555/5DS</td>
<td>Terminal Block, 6A, 3.5mm Pitch, 5-Pos, TH</td>
<td>17.5x8.2x6.5mm</td>
<td>ED555/5DS</td>
<td>On-Shore Technology</td>
</tr>
<tr>
<td>1</td>
<td>J4</td>
<td>TSW-103-07-G-D</td>
<td>Header, TH, 100mil, 3x2, Gold plated, 230 mil above insulator</td>
<td>3x2 Header</td>
<td>TSW-103-07-G-D</td>
<td>Samtec</td>
</tr>
<tr>
<td>1</td>
<td>J5</td>
<td>ED555/2DS</td>
<td>Terminal Block, 6A, 3.5mm Pitch, 2-Pos, TH</td>
<td>7.0x8.2x6.5mm</td>
<td>ED555/2DS</td>
<td>On-Shore Technology</td>
</tr>
<tr>
<td>1</td>
<td>J6</td>
<td>22-05-3041</td>
<td>Header, 100mil, 4x1, R/A, TH</td>
<td>4x1 R/A Header</td>
<td>22-05-3041</td>
<td>Molex</td>
</tr>
<tr>
<td>1</td>
<td>J7</td>
<td>TSW-102-07-G-S</td>
<td>Header, 100mil, 2x1, Gold, TH</td>
<td>2x1 Header</td>
<td>TSW-102-07-G-S</td>
<td>Samtec</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>2.2µH</td>
<td>Inductor, Shielded Drum Core, Powdered Iron, 2.2 µH, 5 A, 0.0377 Ω, SMD</td>
<td>5.49x2x5.18mm</td>
<td>IHP2008BZER2R2M11</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>–30V</td>
<td>MOSFET, P-CH, -30V, -1.5A, SSOT-3</td>
<td>SSOT-3</td>
<td>FDN358P</td>
<td>Fairchild Semiconductor</td>
</tr>
<tr>
<td>5</td>
<td>Q2, Q3, Q5, Q8, Q9</td>
<td>30V</td>
<td>MOSFET, N-CH, 30V, 47A, SON 3.3x3.3mm</td>
<td>SON 3.3x3.3mm</td>
<td>CSD17308Q3</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>1</td>
<td>Q4</td>
<td>60V</td>
<td>MOSFET, N-CH, 60V, 0.31A, SOT-323</td>
<td>SOT-323</td>
<td>2N7002KW</td>
<td>Fairchild Semiconductor</td>
</tr>
<tr>
<td>6</td>
<td>Q6, Q7, Q10–Q13</td>
<td>50V</td>
<td>MOSFET, N-CH, 50V, 0.22A, SOT-23</td>
<td>SOT-23</td>
<td>BSS138</td>
<td>Fairchild Semiconductor</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>20</td>
<td>RES, 20 Ω, 5%, 0.5W, 1210</td>
<td>1210</td>
<td>ERU-14YJ200U</td>
<td>Panasonic</td>
</tr>
<tr>
<td>3</td>
<td>R2, R3, R8</td>
<td>10Meg</td>
<td>RES, 10MΩ, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW060310M0JNEA</td>
<td>Vishay-Dale</td>
</tr>
</tbody>
</table>
Table 6. Bill of Materials (continued)

<table>
<thead>
<tr>
<th>Count</th>
<th>RefDes</th>
<th>Value</th>
<th>Description</th>
<th>Size</th>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>R4, R30, R32, R33, R35–R37, R39–R42</td>
<td>100</td>
<td>RES, 100Ω, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW0603100RJNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>6</td>
<td>R5, R10, R11, R15, R22, R55</td>
<td>5.1k</td>
<td>RES, 5.1kΩ, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW06035K10JNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R6</td>
<td>100k</td>
<td>RES, 100kΩ, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW0603100KJNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R7</td>
<td>2</td>
<td>RES, 2.0Ω, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW06032R00JNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R9</td>
<td>1.0Meg</td>
<td>RES, 1.0MΩ, 1%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW06031M00FKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>9</td>
<td>R12, R13, R16, R19, R34, R35–R37</td>
<td>1.0k</td>
<td>RES, 1.0kΩ, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW06031K00JNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R14</td>
<td>10k</td>
<td>RES, 10kΩ, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW060310K0JNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R17</td>
<td>499k</td>
<td>RES, 499kΩ, 1%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW0603499KFKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R18</td>
<td>20k</td>
<td>RES, 20kΩ, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW060320K0JNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R20</td>
<td>0.01</td>
<td>RES, 0.01Ω, 1%, 0.1W, 2512</td>
<td>2512</td>
<td>ERIJ-M1WSF10MU</td>
<td>Panasonic</td>
</tr>
<tr>
<td>2</td>
<td>R21, R54</td>
<td>332k</td>
<td>RES, 332kΩ, 1%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW0603332KFKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>5</td>
<td>R23, R24, R38, R44, R48</td>
<td>0</td>
<td>RES, 0, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW060300000Z0EA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R25</td>
<td>10</td>
<td>RES, 10Ω, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW060310R0JNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R26</td>
<td>26.1k</td>
<td>RES, 26.1kΩ, 1%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW060326K1FKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R27</td>
<td>9.53k</td>
<td>RES, 9.53kΩ, 1%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW06039K53FKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R28</td>
<td>20.5k</td>
<td>RES, 20.5kΩ, 1%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW060320K5FKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R29</td>
<td>78.7k</td>
<td>RES, 78.7kΩ, 1%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW06037K7FKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>1</td>
<td>R31</td>
<td>10</td>
<td>RES, 10.0, 1%, 0.25W, 1206</td>
<td>1206</td>
<td>ERIJ-8EN10R0V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>1</td>
<td>R43</td>
<td>0.005</td>
<td>RES, 0.005Ω, 1%, 1W, 1210</td>
<td>1210</td>
<td>PMR25HZPFUSL00</td>
<td>Rohm</td>
</tr>
<tr>
<td>4</td>
<td>R45–R47, R49</td>
<td>330k</td>
<td>RES, 330kΩ, 5%, 0.1W, 0603</td>
<td>603</td>
<td>CRCW0603330KJNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>4</td>
<td>RT1–RT4</td>
<td>10.0kQ</td>
<td>Thermistor NTC, 10.0kΩ, 1%, Disc, 5x8.4 mm</td>
<td>Disc, 5x8.4 mm</td>
<td>103AT-2</td>
<td>SEMITEC Corporation</td>
</tr>
<tr>
<td>2</td>
<td>S1, S2</td>
<td>26.1k</td>
<td>Switch, Tactile, SPST-NO, SMT</td>
<td>Switch, 6.2X5X6.2 mm</td>
<td>KST221JLFS</td>
<td>C&K Components</td>
</tr>
<tr>
<td>3</td>
<td>SH-J1, SH-J2, SH-J3</td>
<td>1x2</td>
<td>Shunt, 100mil, Gold plated, Black</td>
<td>Shunt</td>
<td>969102-0000-DA</td>
<td>3M</td>
</tr>
<tr>
<td>3</td>
<td>TP1, TP2, TP3</td>
<td>White</td>
<td>Test Point, Miniature, White, TH</td>
<td>White Miniature Test point</td>
<td>5002</td>
<td>Keystone</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Overvoltage Protection for 2-Series to 4-Series Cell Li-Ion Batteries with External Delay Capacitor, DSG0008A</td>
<td>DSG0008A</td>
<td>bq294700DSG</td>
<td>Texas Instruments</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>Programmable Battery Pack Manager, RH80032E</td>
<td>RH80032E</td>
<td>bq40z60RHT/bq40z60RHB</td>
<td>Texas Instruments</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>Fixed Regulator with 1 to 30 V Input and 1.2 to 30 V Output, −40 to 125°C, 8-Pin SOIC (D), Green (RoHS & no Sn/Br)</td>
<td>D0008A</td>
<td>LP2951-33DRG4</td>
<td>Texas Instruments</td>
<td></td>
</tr>
</tbody>
</table>
7 Related Documentation from Texas Instruments
 • bq40z60 Programmable Battery Pack Manager data sheet, SLUSAW3.
 • bq294700, Overvoltage Protection for 2-Series to 4-Series Cell Li-Ion Batteries With External Delay Capacitor, SLUSB15.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party, under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rald.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video
TI E2E Community	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated