

Getting Started with the BQ79606A-Q1 GUI

This document provides a guide to install, setup and use the BQ79606A-Q1 graphical user's interface (GUI). In this document only the basic functionalities of the GUI will be documented with the intent of reducing the time needed to become familiar with the GUI.

		Contents	
1	Getting	g Started	3
	1.1	Download the GUI	3
	1.2	Setup and Connect the BQ79606A EVM	3
2	Comm	unications Tab	4
	2.1	Opening the GUI	4
	2.2	Basics	7
3	Cell Vo	bltage Monitor Tab (ADC Config)	10
	3.1	One Shot ADC Configuration and Readings Configuration	10
	3.2	Continuous ADC Configuration and Readings Configuration	11
	3.3	Cell Voltage Data Logging	13
4	AUX A	DC Monitor Tab	13
	4.1	ADC Configuration	13
	4.2	AUX ADC Selection	13
	4.3	Absolute/Ratiometric Selection	14
	4.4	AUX_CELL Configuration	14
5	Cell Ba	alancing	14
	5.1	Balancing Configuration	14
	5.2	Balancing Status	15
6	GPIO/	SPI Master	16
	6.1	GPIO Configuration and Set GPIO Output High/Low	16
	6.2	SPI Master	16
7	Regist	ers	17
	7.1	Bit Level Register Map	17
8	Protec	tors	19
	8.1	Protector Configuration and OV/UV/OT/UT Selection	19
	8.2	OV/UV/ and OT/UT Reset	21
9	Faults		22
10	Status		22
11	Comm	and Sequence and Advanced Comms	23
	11.1	Advance Comm Tab	23
	11.2	Command Sequence Tab	25
12	Troubl	eshooting	27
	12.1	Troubleshooting for GUI communications	27
	12.2	General troubleshooting for device recognition	27

List of Figures

1	Placing .bqz filte into the BatteryManagementStudio/config Director	3
2	FTDI Cable	4
3	Selecting Monitor After Opening bqStudio	5
4	Selecting bq79606.bqz File	6
5	Communications Tab	7

www.ti.	.com
Auto Addressing	8
Stack Shutdown	8
Sleep To Active	
Soft Reset	. 9

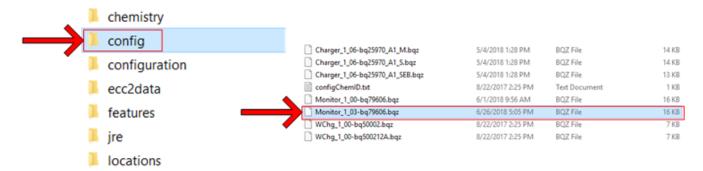
8	Sleep To Active	. 9
9	Soft Reset	. 9
10	Sleep and Exiting Sleep	. 9
11	UART Configuration	10
12	Daisy Chain Configuration	10
13	One-Shot ADC Measurement	10
14	Updating Cell Voltage Registers	11
15	ADC Config for Continuous Readings	12
16	Polling ADC Readings in Continuous Mode	13
17	AUX ADC Selection	14
18	Cell Balancing Tab	15
19	Cell Balancing: Completed	15
20	GPIO High/Low Testing	16
21	SPI Master Command Frame Change	16
22	SPI Master Configuration	17
23	Registers	18
24	Enable TSREF	19
25	Disable OVUV and OTUT	20
26	Configuration of OVUV/OTUT	20
27	Enable OVUV and OTUT	21
28	OVUV and OTUT Reset	21
29	Fault Summary	22
30	Status Registers	23
31	Read Command	24
32	Write Command	24
33	Write Command - With Transaction Log	25
34	Generating Command Frame	26
35	Sequence File Assignment	27

Trademarks

6

7

All trademarks are the property of their respective owners.


1 Getting Started

1.1 Download the GUI

bqStudio version 1.3.70 or higher is needed to support the BQ79606A GUI. During the initial sampling period, bqStudio is available on TLcom as "bqStudioTest", which is version 1.3.87. Please contact your local TI representative to receive the .bqz file required to run the bq79606 GUI. The GUI is compatible with Windows 10/8/7/XP.

Use the following steps to download and install the GUI:

- 1. Receive the latest bqStudio (Version 1.3.87 or higher) from the web. The file "Monitor_1_03bq79606.bqz" should be provided by your local TI representative.
- 2. Run the installer and follow the wizard
- 3. Once bqStudio is installed, locate the BatteryManagementStudio folder in the directory it was installed into (typically the C: Drive)
- 4. Place the Monitor_1_03-bq79606.bqz file into the config directory: (C://->ti->BatteryManagementStudio->config) as shown in Figure 1

Figure 1. Placing .bqz filte into the BatteryManagementStudio/config Director

Once completed, continue to Section 1.2

1.2 Setup and Connect the BQ79606A EVM

Before connecting the bq79606EVM, please refer to the EVM user's guide to ensure the EVM is configured correctly.

To ensure the base device is connected correctly, there are a few points of interest:

- SW1 must be set to "Base"
- A minimum of 5 V must be applied to PWR or VSTACK(Jumper J2 connects them together)
 - For this document, a resistor ladder is used to provide correct voltages at each Cell_X
- Connect the FTDI-USB serial cable from the PC to the EVM Header J8. Header J8 has 6 through-hole
 pads, with the square pad denoting GND and Pin 0. To properly connect the FTDI cable, the black wire
 denotes GND and the exposed metal on the connector should be facing "up". An example of this cable
 can be seen in Figure 2.
 - FTDI Cable part number: TTL-232R-5V
 - The latest drivers can be found on the FTDI chip website here

Exposed metal is facing up

Figure 2. FTDI Cable

To ensure stack devices are connected correctly, there are a few points of interest:

- SW1 must be set to "Stack"
- The bq79606EVM should be connected to a minimum of 3 cells, with all unused VC connections shorted to the highest cell.
- Connect COMMH header J6 of the base device to COMML header J5 of the next highest stack device. Repeat for all stacked devices.

2 Communications Tab

2.1 Opening the GUI

After installing follow these next steps to open the GUI.

- 1. Launch bqStudio and select "Monitor" as seen in Figure 3.
 - a. If a "Monitor" option is not available, check bqStudio version. It should be 1.3.70 or higher.

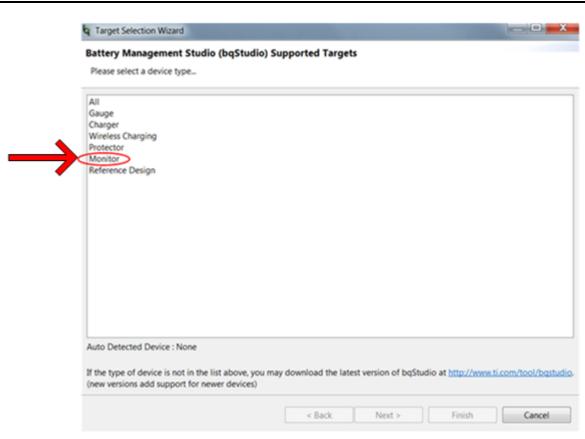


Figure 3. Selecting Monitor After Opening bqStudio

2. Select bq79606 as seen in Figure 4.

TEXAS

www.ti.com

TRUMENTS

Communications Tab		W	ww.ti.com
a Target Selection Wizard	_		×
Battery Management Studio (bqStudio) Supported Targets			
Please select a target			
Monitor_1_03-bq79606.bqz			
Auto Detected Device : None			
If the type of device is not in the list above, you may download the latest version of bqStudio at http://www.newversions add support for newer devices)	ww.ti.cor	n/tool/b	<u>qstudio</u> .
< Back Next > Finish		Cance	el
		Correct	

Figure 4. Selecting bq79606.bqz File

1. Reach communication tab (opening screen) shown in Figure 5. If the screen is showing this then the GUI has successfully been opened. However before running "auto addressing" there will be no data in the "Device Communication Information" section.

Adress .					
Icadceit v Read Write					
ammunication Setup					
Device Addressing	UART Configuration				
Start Address 0	COMM: OK (1 Mbpi)	Comm Direction	North		 Enable UART TX
Max Addressed Devices 64	TX Holdoff 0 Bit Periods	Short Comm Timeout	Disabled		City Couble NSAULT
Run Auto Address	BAUD Rate 1 Mops -	Long Comm Timeout	Disabled		v
Addressing Method Normal Auto Addressing Mode ~	and the second second	Long Tiemout Action	Set SYSFAULTRICTL) bit	t and send device to sleep mode	÷
Dairy Chain Configuration	Control1 Register	U	UIT Pulse Control		
Enable COMH TX Enable COMH RX Enable Daisy Chain Control	nd SHUTDOWN Next Dev Set	Send WAKE	SHUTDOWN Base	Send COMM Reset Pulse	
Enable COML TX Enable COML RX	Set Send SLEEPIDACTIVE Gots	SHUTDOWN is	nd SLEEPIGACTIVE Pulse	Send COMM Break Pulse	
Enable FAULT TX Enable FAULT FX Enable FAULT FX Enable FAULT TX	Set Goto SLEEP Set	SOFT_RESET	Send WAKE Pulse		

ADDRESS	DEVADO_07P	CONFIG	CONTROL1	CONTROL2	COMM_CTRL	DAISY, CHAIN, CTRL	TK,HOLD,OFF	COMM_TO	DEV_STAT	OTP_PROG_STAT	01P_0.6T1_STAT1	OTP_CUST1_STAT2	OTP_OUST2_STAT1	OFP_CUST2_STAT2	DEV_ADD_STAT	DAISY, CHAIN, STAT
0x00	0.0	0x0	0x0	0x0	0x0C	0x3C	0x0	0.0	0x0	0.0	0x1	0x0	0x1	0.0	0-0	0x13
0x01	0.0	0.2	0x0	0x0	0.00	0x0C	0.0	0.0	0.0	0.0	Dc1	0x0	Ov1	0x0	0x1	0.6
0x02	0.0	0x2	0x0	0x0	0x00	0x0C	0x0	0.0	0x0	0.0	Dx1	0x0	0x1	0x0	0x2	0.6
0x03	0.0	0x2	0x0	0x0	0x0C	0.00	0x0	0x0	0x0	0.0	0x1	0x0	0x1	040	0x3	0.6
0x04	0.0	0x2	040	0.0	0.00	0.00	Cw0	0.0	040	0.0	0x1	0x0	041	040	Ox4	0.6
0x05	0.0	0x2	0x0	040	0.00	0.00	0x0	0.0	0x0	0.0	0x1	0x0	0x1	0x0	0x5	0xF
0x06	0.0	0x2	0x0	0x0	0.00	0.00	0x0	0x0	0x0	0.0	0x1	0x0	0x1	0x0	0.6	04
0x07	0.0	0x2	0x0	0x0	0x3C	0.00	0x0	0.0	0x0	0.0	Dx1	0x0	0x1	0x0	0x7	0.6
0x08	0.0	0x2	0x0	0x0	0x3C	0x0C	0x0	0.0	0x0	0.0	Dx1	0x0	Ox1	0x0	0x8	0xF
0x09	0.0	0x3	0x0	0x0	0x0C	0x0C	0x0	0x0	0x0	0.0	0x1	0x0	0x1	0.0	0.9	0.6
Unit																

Figure 5. Communications Tab

2.2 Basics

The following section describes basic actions to communicate to the BQ79606A EVM's.

2.2.1 Address

Allows the user to select broadcast read/write, stack read/write, or select the device address for a single read/write.

Use the dropdown to choose the communication type to be used. For most cases, the default "broadcast" choice will suffice (it will work for a single device or stacked devices.

2.2.2 Device Addressing

Device addressing configures the start and end address for "auto" addressing, or configures GPIO addressing.

Before beginning any other portion of the guide, ensure that the device(s) have been correctly autoaddressed using the "Run Auto Address" button. This ensures that all devices are started properly and all future commands are sent to the appropriate devices. Figure 6 shows how to do this. After running auto addressing the "Device Communication Information" section should be filled out like Figure 5.

🛃 Commur	nication					
Commu	nication Cor	ntrol				
Address	1					
Broadcast	~ R	ead		Write		
Communica	ition Setup					
Device	Addressing					
Start A	ddress	0				
Max A	ddressed Devices	64			2	
		Run Auto	Address			
Addres	sing Method	Normal Au	to Addres	sing Mode	~	

Figure 6. Auto Addressing

2.2.3 Control1 Register and UART Pulse Control

Sends commands to base or stack devices to transition to shutdown, sleep, or active mode. Also sends Comm reset/break command.

Stack Shutdown

To send a shutdown call to all devices, use the Control1 Register's "Send SHUTDOWN Next Device" command, followed by the UART Pulse Control's "SHUTDOWN Base" command.(Figure 7). This sets the shutdown command bits and then calls the shutdown pulse.

Control1 Register		UART Pulse Control					
Send SHUTDOWN Next Device	Set Send WAKE	SHUTDOWN Base	Send COMM Reset Pulse				
Set Send SLEEPtoACTIVE	Goto SHUTDOWN	Send SLEEPtoACTIVE Pulse	Send COMM Break Pulse				
Set Goto SLEEP	Set SOFT_RESET	Send WAKE Pulse					

Figure 7. Stack Shutdown

Sleep to Active

If the device is left active without any commands for an extended period of time, the device will enter sleep mode by default. To wake up all devices, press the "Send SLEEPtoACTIVE Pulse" button as shown in Figure 8.

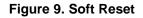

Control1 Register		UART Pulse Control					
Send SHUTDOWN Next Device	Set Send WAKE	SHUTDOWN Base	Send COMM Reset Pulse				
Set Send SLEEPtoACTIVE	Goto SHUTDOWN	Send SLEEPtoACTIVE Pulse	Send COMM Break Pulse				
Set Goto SLEEP	Set SOFT_RESET	Send WAKE Pulse					

Figure 8. Sleep To Active

Soft Rest

When using the "Set SOFT_RESET" command, remember to use the "Run Auto Address" button again in order to re-establish addressing for all devices. Figure 9 shows the correct order to perform a soft reset in.

Device Addressing Start Address Max Addressed Devices 64 2 Run Auto Address Addressing Method Normal Auto Addressing Mode	UART Configuration COMM: OK (1 Mbps) TX Holdoff 0 Bit Periods BAUD Rate 1 Mbps ~	Short Comm Timeout Dis		v v to sleep mode v	☑ Enable UART TX ☑ Enable NFAULT
Daisy Chain Configuration	Control1 Register Send SHUTDOWN Next Device Set Send SLEEPtoACTIVE Set Goto SLEEP	Set Send WAKE Goto SHUTDOWN Set SOFT_RESET	UART Pulse Control SHUTDOWN Base Send SLEEPtoACTIVE Pulse Send WAKE Pulse	Send COMM Res	

Sleep and Exiting Sleep

When using the "Set Goto SLEEP" command, you can wake the device using the "Send SLEEPtoACTIVE Pulse." Number 1 in Figure 10 is the button to set the device into sleep mode while 2 is used for waking the devices back up.

Control1 Register		UART Pulse Control					
Send SHUTDOWN Next Device	Set Send WAKE	SHUTDOWN Base 2 Send COMM Reset Pulse					
Set Send SLEEPtoACTIVE	Goto SHUTDOWN	Send SLEEPtoACTIVE Pulse Send COMM Break Pulse					
Set Goto SLEEP	Set SOFT_RESET	Send WAKE Pulse					

Figure 10. Sleep and Exiting Sleep

2.2.4 UART Configuration

The UART configuration displays GUI communication status (COMM OK), baud rate, and UART communication setting as shown in Figure 11.

To check the UART communications status of the device(s) at any point, the refresh button can be pressed and status read. BAUD Rate, Comm Direction, Comm Timeouts, NFAULT enable, and TX configuration are all provided in this section of the GUI.

UART Configuration				
OANT Configuration				
COMM: OK (1 Mbps)	Comm Direction	North	\sim	Enable UART TX
	Short Comm Timeout	Disabled	\sim	Enable NFAULT
TX Holdoff 0 Bit Periods BAUD Rate 1 Mbps ~	Long Comm Timeout	Disabled	\sim	
BAOD Rate Thops V	Long Tiemout Action	Set SYSFAULT1[CTL] bit and send device to sleep mode	\sim	

Figure 11. UART Configuration

2.2.5 Daisy Chain Configuration

Daisy chain configurations allows for the configuration of daisy chain communication settings.

Desired Daisy Chain communications lines can be enabled or disabled using the provided boxes, and written to the device with the "Write" command button. By default, COMH/L TX/RX are enabled as shown in Figure 12. Once the desired boxes are selected then press the "Write" button.

Daisy Chain Configuration		
builty chain configuration		
Enable COMH TX	Enable COMH RX	Enable Daisy Chain Control
Enable COML TX	Enable COML RX	
Enable FAULT TX	Enable FAULT RX	
Enable FAULT Heartbeat	Enable FAULT Tone	

Figure 12. Daisy Chain Configuration

3 Cell Voltage Monitor Tab (ADC Config)

3.1 One Shot ADC Configuration and Readings Configuration

- 1. Configure CELL channels and the ADC in available fields (Figure 13)
 - a. Select ADC Delay, Decimation Ratio, ADC Frequency, Cell Conversion Interval, and LP Corner Frequency
 - b. Select desired cells to sample under CELL SELECTION
 - c. Write to Register (Labeled 1 in Figure 13)
 - d. Press START ADC MEASUREMENT (Labeled 2 in Figure 13) to begin sampling cells.

Address 1 Broadcast Wine Cell Values Monitor ADC Configuration 2 CELL Section ADC Configuration C CELL Section D Cell J Cell J Cell J Cell J Cell J Cell L D Cell J Cell J Cell J Cell J Cell L D Cell J Cell J Cell J Cell J	
Cell Valuese Monitor ADC Configuration Cell Selection	
ADC Configuration 2 CELL Selection ADC Delay us START ADC MEASUREMENTS CELLS CELLS CELLA CELLS CELLS CELLA CELLS CELLS CELLA CELLS CELLA CELLS	
ADC Delay 0 vis START ADC MEASUREMENTS 0CELLS 0CELL	
Decimation Ratio 256 v Example Automation ADC Frequency 1 v MHz LP Comer Frequency 40.1 v Hz Cell Conversion Interval 0 v ms	
Device Information	
Continuous Loop Delay Between Reads (mt) 500 S00ms Minimum for Stack Data Logging (Includes AUX) Logging Samples Sow H	ex values
ADDRESS CONTROL2 CELLADC_CONF1 CELLADC_CONF2 ADC_DELAY CELLADC_CTRL ADDRESS VCELL1_F VCELL3_F	
0x00 0x40 0x62 0x6 0x0 0x37 0x10 0x10 0x10 0x10 0x10 0x10 0x10 0x1	

Figure 13. One-Shot ADC Measurement

2. After completing step 1, the ADC values will be stored in their respective registers and are ready to be

3.70083 3.70026 3.70159 3.70407 3.70617 3.70846 3.70083 3.70026 3.70159 V V V V V V V V V

31.538

read (Figure 14)

www.ti.com

- a. Click "read" to update cell values.
- b. Values will be read in as a voltage, or alternatively as a two bye Hex value
- c. VCELLX_F contains cell values after the ADC output filter
- d. VCELLX contains corrected cell values before the ADC output filter
- e. To continue reading cell voltages, click "START ADC MEASUREMENT" and read the registers again to update cell voltages.

Cell Volta	ge Monito	or																				
Address																						
Broadcast	~	Read	Write																			
Cell Voltage	Monitor																					
ADC Cont	iguration				C	ELL Selection																
ADC Dela	v	0 ~ us	START ADC MEA	SUREMENTS] 6	CELLI CELL2 CELL3																
Decimati		256 ~			5	CELL4 ☑ CELL5 ☑ CELL6																
Decimati	on naud	10001																				
ADC Free	uency	$1 \rightarrow MH$	z LP Corner Frequen	cy 40.1 ~	Hz																	
Cell Com	ersion Interva	I 0 → ms	Continuous Cel	Conversions I	Enable																	
		L																				
Device Info	rmation																					
] Continuo	us Loop	Delay Betwe	en Reads (m	s) 500 500	Oms Minimu	m for Stack	🗌 Data	Logging	(Includes)	AUX) Lo	gging San	nples			Show Hex values
ADDRESS	CONTROL2	CELL_ADC_CONF1	CELL_ADC_CONF2	ADC_DELAY	CELL_ADC_CTR	L	ADDRESS	VCELL1_F	VCELL2_F	VCELL3_F	VCELL4_F	VCELL5_F	VCELL6_F	VCELL1	VCELL2	VCELL3	VCELL4	VCELL5	VCELL6	CONV_CNT	DIE_TEMP	
0x00	0x40	0x62	0x8	0x0	0x3F		0x00	3.69892	3.70121	3.70446	3.70598	3.70751	3.70941	3.69892	3.70102	3.70407	3.70598	3.70751	3.70961	3001	36.244	
0x01	0x40	0x62	0x8	0x0	0x3F		0x01	3.69797	3.69969	3.70159	3.70331	3.70465	3.70693	3.6974	3.69911	3.70102	3.70274	3.70407	3.70617	3008	30.758	
0x02	0x40	0x62	0x8	0x0	0x3F		0x02	3.70083	3.70026	3.70159	3.70407	3.70617	3.70846	3.70083	3.70026	3.70159	3.70407	3.70617	3.70827	2998	31.538	
Unit							Unit	V	v	V	v	V	V	V	V	V	V	V	V	N	°C	

Figure 14. Updating Cell Voltage Registers

3.2 Continuous ADC Configuration and Readings Configuration

- 1. Configure CELL channels and the ADC in available fields
 - a. Select ADC Delay, Decimation Ratio, ADC Frequency, Cell Conversion Interval, and LP Corner Frequency
 - b. Select desired cells to sample under CELL SELECTION
 - c. Check "Continuous Cell Conversions Enable" (Labeled 1 in Figure 15)
 - d. Click "Write" (Labeled 2 in Figure 15)
 - e. Click" START ADC MEASUREMENT" (Labeled 3 in Figure 15) to begin sampling cells
 - f. Click "Read" to update voltage registers.
 - g. Repeat step f as needed to update voltage registers

Cell Voltage Monito	or			
Address			3	
Broadcast 🗸	Read		Write	
Cell Voltage Monitor				
ADC Configuration			2	CELL Selection
ADC Delay	0	∼ us	START ADC MEASUREMENTS	CELL1 [
Decimation Ratio	256	\sim		CELL4 [
ADC Frequency	1	∽ MHz	LP Corner Frequency $40.1 \vee$ Hz 1	
Cell Conversion Interval	0	∨ ms	Continuous Cell Conversions Enable	

Device Information

ADDRESS	CONTROL2	CELL_ADC_CONF1	CELL_ADC_CONF2	ADC_DELAY	CELL_ADC_CTRL	
0x00	0x0	0x62	0x8	0x0	0x3F	
0x01	0x0	0x62	0x8	0x0	0x3F	
0x02	0x0	0x62	0x8	0x0	0x3F	
Unit						

Figure 15. ADC Config for Continuous Readings

- 2. After completing step 1, the ADC values will be stored in their respective registers and are ready to be read.
 - a. Click "read" to update cell values.
 - b. Values will be read in as a voltage, or alternatively as a two bye Hex value
 - c. VCELLX_F contains cell values after the ADC output filter
 - d. VCELLX contains corrected cell values before the ADC output filter
 - e. To continue updating cell voltages, click "Read" again to update cell voltages as seen in Figure 16.
 - f. Repeat step e as needed to update cell voltage registers

Cell Volta	ge Monito	or																			
Address Broadcast	~	Read	Write																		
Cell Voltage	Monitor																				
ADC Conf ADC Dela Decimatio ADC Freq Cell Conv	v in Ratio		START ADC MEA z LP Corner Frequen Continuous Cel	cy 40.1 v																	
Device Infor	mation					🗹 Continuo	us Loop I	Delay Betwee	n Reads (msj	500	500ms	Minimum fo	or Stack	🗌 Data I	Logging (Ir	ncludes AL	JX) Log	gging Samp	les		Show Hex values
ADDRESS 0x00 0x01	CONTROL2 0x0 0x0	CELL_ADC_CONF1 0x62 0x62	CELL_ADC_CONF2 0x8 0x8	ADC_DELAY	CELL_ADC_CTRL 0x3F 0x3F	ADDRESS 0x00 0x01	VCELL1_F 3.69873 3.69816	VCELL2_F 3.70121 3.69969	VCELL3_F 3.70426 3.70178	VCELL4_F 3.70598 3.7035	VCELL5_F 3.70751 3.70465	VCELL6_F 3.70941 3.70693	3.69892	3.70121	VCELL3 3.70426 3.70121	3.70617	3.70732	3.70941	CONV_CNT 1942 1948	DIE_TEMP 35.308 29.952	
0x02	0x0	0x62	0x8	0x0	0x3F	0x02	3.70064	3.70045 V	3.70159 V	3.70388 V	3.70598 V	3.70827 V	3.70064		3.7014 V		3.70617 V	3.70827 V	1943 N	30.576	

Figure 16. Polling ADC Readings in Continuous Mode

3.3 Cell Voltage Data Logging

To log cell voltage readings (includes AUX readings):

- 1. Setup Continuous ADC Measurements as explained above
- 2. Type the number of samples in the "Logging Samples" text-box in the "Device Information" section of the Cell Voltage Monitor tab
- 3. Click on the "Data Logging" checkbox
- 4. Choose the file name and location to store the ".log" file, then click "Save"

The samples will be stored in a ".log" file.

4 AUX ADC Monitor Tab

4.1 ADC Configuration

The ADC configuration configures the AUX ADC frequency and decimation ratio.

Only press the "START ADC MEASUREMENTS" button after the desired AUX Selection and Absolute/Ratiometric Selections have been chosen and written to the devices. Decimation Ratio is 256 by default, and ADC Frequency is 1 MHz by default.

4.2 AUX ADC Selection

The AUX ADC selects channels for the AUX ADC to measure.

All AUX ADC channels available for measurement are available from this selection. Select the desired AUX measurements to be made. (# 1 in Figure 17). Once selections have been made, use the "Write" command button (# 2 in Figure 17), followed by the "START ADC MEASUREMENTS" button (# 3 in Figure 17), and finally the "Read" command button(# 4 in Figure 17).

The results can then be found in the bottom right, within the "Device Information" section of the GUI. To continue updating the values in this table, press "START ADC MEASUREMENTS" followed by "Read" for each desired read.

AUX ADC Monitor Tab

Address 4 2					
Broadcast 🗸 Read Write					
AUX ADC Monitor					1
ADC Configuration 3 Decimation Ratio 256 ~ START ADC MEASUREMENTS ADC Frequency 1 ~ MHz	AUX Selection BAT_EN GPIO2_EN REF3_EN TWARN_PTAT_EN	REF2_EN GPIO3_EN OV_DAC_EN DVDD_EN	ZERO_EN GPIO4_EN UV_DAC_EN TSREF_EN	AVDD_EN GPIO5_EN OT_DAC_EN CVDD_EN	GPIO1_EN GPIO6_EN UT_DAC_EN AVAO_REF_EN
AUX_CELL Configuration AUX_CELL_SEL_EN AUX GPIO Selection No GPIO ~ AUX Cell Selection No GPIO ~					

Figure 17. AUX ADC Selection

4.3 Absolute/Ratiometric Selection

Absolute and Ratiometric Selection configures GPIO ADC readings as Absolute (referenced to GND) or Ratiometric (percentage of TSREF)- generally used for thermistor readings.

To display the absolute voltage of a GPIO's specific AUX value, simply check the desired GPIO* box. Unchecked boxes display ratiometric values.

4.4 AUX_CELL Configuration

Configures the device to provide a secondary cell measurement system.

To allow for secondary measurement of a battery cell, first choose the desired "AUX Cell Selection" from the dropdown, press the "Write" command button, select the "AUX_CELL_SEL_EN" checkbox, and finally press the "Write" command button once more. This should allow for the AUX_CELL column in the "Device Information" section at the bottom of the GUI to display the chosen cell's voltage.

5 Cell Balancing

This section will discuss the basic blocks of the Cell Balancing Tab.

5.1 Balancing Configuration

To configure cell balancing, use the drop boxes to configure the duty cycle time, cell balancing timers, and balancing sequence shown in Figure 18. If desired, the cell balancing done comparator can be enabled and the threshold set.

Cell Balancing

Cell Bala	incing																		
Address																			
Broadcast	~	Read	Write																
Cell Balanci	ng Configurat	tion																	
Cell Balar	icing Configur	ration																	
NOTE: U	nits for Duty C	Cycle <mark>Time</mark> and (Call Balance Time n	sust be the same.															
Duty Cys	le Time 2	√ Secon	ds 🗸 CELL	Balance Time 1	 ✓ Seconds 	✓ CELL 4 Bala	nce Time 🚺 🗠	Seconds ~											
Balancin	g Sequence	Evens only	V CELL 2	Balance Time	~ Seconds	✓ CELL 5 Bala	nce Time 🚺 🗸 🗸	Seconds 🗸											
Balance	JV Threshold	3.600	V CELL	Balance Time 1	 ✓ Seconds 	✓ CELL 6 Bala	nce Time 🚺 🗸 🗸	Seconds \sim											
Stop	Balancing on F	Fault		Enable Cel	Balancing Pau	se Cell Balancing	Enable Cell Bala	nce Comparator											
							Disable Cell Bala	nce Comparator											
Device Info	rmation																		
ADDRESS	CONTROL2	CB_CONFIG	CB_CELL1_CTRL	CB_CELL2_CTRL	CB_CELL3_CTRL	CB_CELL4_CTRL	CB_CELL5_CTRL	CB_CELL6_CTRL	CB_DONE_THRESH	1	DDRESS	CELL6 STATUS	CELL5 STATUS	CELL4 STATUS	CELL3 STATUS	CELL2 STATUS	CELL1 STATUS	CB_DONE	CB_PAUSE
0x00	0x0	0x89	0x81	Ox81	0x81	Ox81	0x81	0x81	0x20		0x00	Completed	Not Completed	Completed	Not Completed	Completed	Not Completed		Not Completed
0x01	0x0	0x89	0x81	0x81	0x81	0x81	0x81	0x81	0x20		0x01	Completed	Not Completed	Completed	Not Completed	Completed	Not Completed		Not Completed

Figure 18. Cell Balancing Tab

The Cell X Balancing timers are independently configurable, and dictate how long each cell is to be balanced before CELLX Status is changed from "Not Completed" to "Completed". The duty cycle time dictates the how often the balancing sequence logic will switch states.

A "Write" command will update the BQ79606A registers with the configured options, Following this with an "Enable Cell Balancing" command will set the CONTROL2[BAL_GO] bit, and begin the cell balancing algorithm. If desired, the part can be put into sleep mode at this point to achieve sleep mode balancing.

For example, each Cell X Balance Time can be set to a total of 50 seconds, and the Duty Cycle Time programmed to 30 seconds, with a balancing sequence of Odds then Evens. Programming the Balance UV Threshold and clicking the "Enable Cell Balance Comparator" button will set the CB_DONE_THRESH register to stop a cell from balancing once it reaches the desired UV Threshold. Once cell balancing is enabled, the BQ79606A will switch between the odd and even banks of cells every 30 seconds. For the first duty cycle period, each bank will be balanced for the full 30 seconds. On the second duty cycle period, each bank will only be balanced for the remaining 20 seconds, as the Cell X Balance Timer will expire before the Duty Cycle timer. If at any point in time an individual cell reaches the Balance UV Threshold, that particular cell will no longer balance when it's respective bank turns on. For example, each Cell X Balance Time can be set to a total of 50 seconds, and the Duty Cycle Time programmed to 30 seconds, with a balancing sequence of Odds then Evens. Programming the Balance UV Threshold and clicking the "Enable Cell Balance Comparator" button will set the CB DONE THRESH register to stop a cell from balancing once it reaches the desired UV Threshold. Once cell balancing is enabled, the BQ79606A will switch between the odd and even banks of cells every 30 seconds. For the first duty cycle period, each bank will be balanced for the full 30 seconds. On the second duty cycle period, each bank will only be balanced for the remaining 20 seconds, as the Cell X Balance Timer will expire before the Duty Cycle timer. If at any point in time an individual cell reaches the Balance UV Threshold, that particular cell will no longer balance when it's respective bank turns on.

5.2 Balancing Status

Once the cell balancing options have been configured, and cell balancing has been configured, the host can monitor the cell balancing status by reading the CELLX Status registers.

If the balancing algorithm has not been started, or is still running, the status registers will read as "Not Completed". If a cell timer has expired, or the cell has reached the Balance UV Threshold, the register will read as "Completed", as shown in Figure 19. To monitor these registers through the GUI, the user must poll the "Read" button to manually read the registers.

ADDRESS	CELL6 STATUS	CELL5 STATUS	CELL4 STATUS	CELL3 STATUS	CELL2 STATUS	CELL1 STATUS	CB_DONE	
0x00	Completed	Not Completed	Completed	Not Completed	Completed	Not Completed	Completed	
0x01	Completed	Not Completed	Completed	Not Completed	Completed	Not Completed	Completed	
0x02	Completed	Not Completed	Completed	Not Completed	Completed	Not Completed	Completed	
Unit								

Figure 19. Cell Balancing: Completed

GPIO/SPI Master

www.ti.com

6 GPIO/SPI Master

6.1 GPIO Configuration and Set GPIO Output High/Low

Configures GPIO fault settings, I/O settings, pull up/pull down, or if used for addressing, sets GPIO output as high or low.

Address	4 3		
Broadcast 🗸 Read	l Write		
GPIO/SPI Master 2 Set GPIO Output High/Low	GPIO Configuration		1
Set GPIO6 High	GPIO1	GPIO2	GPIO3
Set GPIO5 High	GPIO_Fault_EN No fault ~	GPIO_Fault_EN No fault ~	GPIO_Fault_EN No fault ~
Set GPIO3 High	Pull Up/Down Weak pulldown V	Pull Up/Down Veak pulldown V	Pull Up/Down Weak pulldown V
Set GPIO2 High	Configuration As input ~	Configuration As input ~	Configuration As input ~
Set GPIO1 High	Use for Address?	Use for Address?	Use for Address?
	GPIO4	GPIO5	GPIO6
	GPIO_Fault_EN No fault ~	GPIO_Fault_EN No fault ~	GPIO_Fault_EN No fault ~
	Pull Up/Down Veak pulldown V	Pull Up/Down Veak pulldown V	Pull Up/Down Weak pulldown V
	Configuration As input ~	Configuration As input ~	Configuration As input ~
	Use for Address?	Use for Address?	Use for Address?

Figure 20. GPIO High/Low Testing

For GPIO output High/Low testing, first set all GPIOs to "No Fault", "Push-Pull (Output only)," and "As output" (#1 in Figure 20). This will ensure that the GPIO are ready as outputs to be set high and low by the GUI.

GPIO can now be enabled and disabled using the checkboxes in the "Set GPIO Output High/Low" section of the GUI (#2 in Figure 20). Press the "Write" command button at the top of the screen to update the devices (#3 in Figure 20). The resultant GPIO values can be viewed using the "GPIO_STAT" (0x262) GPIO Input Status section at the bottom of the GUI after the "Read" button has been pressed (#4 in Figure 20).

The enable for TSREF is on the far right side of the page. Click the box if configuring for NTC monitoring.

Note from data sheet: "Pull-downs must not be used in output mode. Additionally, push-pull mode must not be used in input mode. If either of these configurations is selected, correct operation is not guaranteed and undesirable operation may occur.

6.2 SPI Master

The SPI master will configure SPI settings for when using GPIO 3-6 as a SPI Master.

First, ensure that only one device is selected in the top left dropdown menu when using SPI Master as shown in Figure 21.

GPIO/SPI Master	GPIO/SPI Master
Address	Address
Broadcast V Read Write	Device 0x00 V Read Write

Figure 21. SPI Master Command Frame Change

To enable SPI across GPIO3-GPIO6, check the "Enable SPI" checkbox provided (#1 in Figure 22). Ensure the desired settings for CPOL, CPHA, SS, and SPI Transaction length (1 to 8 bits long) are correct. There is loopback functionality provided by the "Enable Loopback" checkbox, as well as boxes for transmitting/receiving the SPI data (#2 in Figure 22). You may send 1 byte of data over SPI by writing the desired byte in the "SPI Transmit" box, in hex (#3 in Figure 22). Then use the "Execute SPI (Single Device Only)" button to send/receive the data (#4 in Figure 22).

SPI Master 1 Enable SPI?		2
CPOL (SCLK polarity)	Idles low clocks high	~
CPHA (SCLK edge sample MISO)	First clock transition	~
State of SS	Output high	~
SPI Transaction length	8 bits	~
Enable Loopback?		
SPI Transmit	0	hex
SPI Receive	0	hex
🙊 Execute SPI(Single Device Only)		

Figure 22. SPI Master Configuration

7 Registers

7.1 Bit Level Register Map

Displays a register map of all user addressable registers in the BQ79606A, as well as allowing for bit level read and writes.

Registers

isters ess 1													
ess													
ice 0 🗸 🛛 Read /	All												
		3											
sters													
egister Name	Access	Address(H	Value(Hex)	7	6	5	4	3	2	1	0	^	Control Group
T_FLT_MSK	RW	6	0	0	0	0	0	0	0	0	0	- 10	Read All
ONE_FLT_MSK	RW	7	0	0	0	0	0	0	0	0	0		Read All
OMM UART FLT MSK	RW	8	0	õ	0	õ	0	0	0	0	0		Read Selected Register
OMM_UART_RC_FL	RW	9	0	0	0	0	0	0	0	0	0	_	neuo serecteo negister
OMM_UART_RR_FL	RW	A	0	0	0	0	0	0	0	0	0	_	Write All Registers
OMM_UART_TR_FLT	RW	В	0	0	0	0	0	0	0	0	0		g
OMM COMH FLT M	RW	C	0	0	0	0	0	0	0	0	0		Write Selected Register
OMM COMH RC FL	RW	D	0	0	0	0	0	0	0	0	0		
OMM COMH RR FL	RW	E	0	0	0	0	0	0	0	0	0		Import Register File
OMM_COMH_TR_FL	RW	F	0	0	0	0	0	0	0	0	0		
OMM_COML_FLT_M	RW	10	0	0	0	0	0	0	0	0	0		Export Register File
OMM_COML_RC_FL	RW	11	0	0	0	0	0	0	0	0	0		
OMM_COML_RR_FL	RW	12	0	0	0	0	0	0	0	0	0		
OMM_COML_TR_FL	RW	13	0	0	0	0	0	0	0	0	0		
TP_FLT_MSK	RW	14	0	0	0	0	0	0	0	0	0		One Time Programmable Memory
AIL_FLT_MSK	RW	15	0	0	0	0	0	0	0	0	0		
YS_FLT1_FLT_MSK	RW	16	0	0	0	0	0	0	0	0	0		Select OTP Page 1
YS_FLT2_FLT_MSK	RW	17	0	0	0	0	0	0	0	0	0		
YS_FLT3_FLT_MSK	RW	18	0	0	0	0	0	0	0	0	0		Select OTP Page 2
VUV_BIST_FLT_MSK	RW	19	0	0	0	0	0	0	0	0	0		
TUT_BIST_FLT_MSK	RW	1A	0	0	0	0	0	0	0	0	0		Send OTP Unlock Codes
PARE_01	RW	1B	0	0	0	0	0	0	0	0	0		D
PARE_02	RW	1C	0	0	0	0	0	0	0	0	0		Program OTP
PARE_03	RW	1D	0	0	0	0	0	0	0	0	0		Compute Customer CDC
PARE_04	RW	1E	0	0	0	0	0	0	0	0	0		Compute Customer CRC
PARE_05	RW	1F	0	0	0	0	0	0	0	0	0		
OMM CTRL	RW	20	0	0	0	0	0	0	0	0	0		

Figure 23. Registers

Access to a device's current register map is available upon choosing a device and sending a "Read All" command (#1 in Figure 23). Individual registers can be updated by clicking on a specific register within the "Registers" section, then performing a "Read Selected Register" request (#2 in Figure 23). Registers can be updated on a bit-by-bit basis by simply clicking on the desired bits to flip. Registers can also be updated by entering specific hex values in the "Value(Hex)" column (#3 in Figure 23). Once the desired registers are modified, the device can be updated by using the "Write All Registers" button, or for an individual register change, by using the "Write Selected Register" (#4 in Figure 23).

The entire register map can be saved by simply exporting the current register file using the "Export Register File" button. This register map can then be applied and used on other devices by first using "Import Register File" while using the GUI on that device, then using "Write All Registers" to update that device.

8 Protectors

The protector tab allows for manipulation of a separate set of voltage and temperature thresholds, which act independent of the main ADC function. This allows for redundancy in the case of an ADC failure.

8.1 Protector Configuration and OV/UV/OT/UT Selection

Configures OT/UT/OV/UV thresholds, modes, and deglitch times. Instructions to properly configure the Protector Tab:

- 1. Enable TSREF
 - a. Go to "Advanced Comm" tab
 - b. Choose "Broadcast Write" for "Command"
 - c. Write "106" for "Register Address (Hex)"
 - d. Write "10" for "Bytes to Write (Hex)"
 - e. Press "Send Command"

🔣 Communication 🐲 Advanced Co	mm 🖾 🔐 Protector	
Advanced Comm		
Master Control Panel		
Master Control Panel		
Command Configuration		1e
1b Command	Broadcast Write \vee	Send Command
Device Address (Hex)		
1C Register Address (Hex)	106	
1d Bytes to Write (Hex)	10	^
		\sim
Number of Bytes to Read (Decimal)	128	

Figure 24. Enable TSREF

- 2. Disable OVUV and OTUT (if they are enabled) return to "Protector" tab:
 - a. Use the "Read" button (a in Figure 25)
 - b. Uncheck "Enable OVUV" and "Enable OTUT" if they are enabled (b in Figure 25)
 - c. Use the "Write" button (c in Figure 25)

ti.com

Protectors		www.ti.com
Address		
Broadcast 🗸 Read	Write	
Protector Configuration 2a	2c	
Protector Configuration		
OV Threshold $4.500 \sim V$	OVUV Deglitch $100 \ \lor$ us	OVUV Mode Round-Robin (BIST enabled) 🗸
UV Threshold 1.950 ${\scriptstyle\bigvee}$ V	TEMP Deglitch $100 \sim us$	OTUT Mode Round-Robin (BIST enabled) ~
OT Threshold 25 v % of TSREF		Enable OVUV
UT Threshold 75 \sim % of TSREF		Enable OTUT

Figure 25. Disable OVUV and OTUT

- 3. Configuration
 - a. Set the OV, UV, OT, and UT Threshold values from the dropdown menu. Also set the OVUV and TEMP Deglitch duration times, as well as the OVUV and OTUT Modes (#2 in Figure 26)
 - b. Set the OVUV CELL and OTUT GPIO Selection boxes (#3 in Figure 26)
 - c. Write the configuration to the device using the "Write" button at the top (DO NOT check "Enable OVUV" or "Enable OTUT" until you have written your configuration to the device(s) (#3 in Figure 26)

Broadcast V Read	Write 3C			
Protector Configuration		3a	3b	
Protector Configuration OV Threshold 4.500 v V UV Threshold 1.950 v V	OVUV Deglitch 100 ∨ us OVUV Mode Round-Robin (BIST TEMP Deglitch 100 ∨ us OTUT Mode Round-Robin (BIST	enabled) 🗸	OVUV CELL Selection	OVUV CELL Reset CELL1 CELL2 CELL3 CELL4 CELL5 CELL6
OT Threshold 25 v % of TSREF UT Threshold 75 v % of TSREF	Enable OVUV Enable OTUT		OTUT GPIO Selection GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6	OTUT GPIO Reset GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 Reset

Figure 26. Configuration of OVUV/OTUT

- 4. Enable OVUV/OTUT
 - a. Check "Enable OVUV" and "Enable OTUT" (#5 in Figure 27)
 - b. Use the "Write" button again (#6 in Figure 27)

...

www.ti.com	Più	JIECIOIS
Address Broadcast ∨ Read	Write 4b	
Protector Configuration		
Protector Configuration OV Threshold 4.500 V	OVUV Deglitch 100 v us OVUV Mode Round-Robin (BIST enabled)	~
UV Threshold 1.950 V	TEMP Deglitch 100 visition OTUT Mode Round-Robin (BIST enabled)	
OT Threshold 25 ~ % of TSREF	Enable OVUV	

Figure 27. Enable OVUV and OTUT

The device should now be able to detect if there is an over/under threshold event. You may view these over/under threshold events in the "Device Information" section of the GUI by pressing "Read" manually.

The OV threshold allows values from 2 V to 5 V, and the UV threshold allows values from 0.7 V to 3.875 V, both in steps of 25 mV.

8.2 OV/UV/ and OT/UT Reset

Selects channels to reset faults.

To reset OVUV/OTUT faults:

- 1. Disable OVUV and OTUT (if they are enabled):
 - a. Use the "Read" button (a in Figure 25)
 - b. Uncheck "Enable OVUV" and "Enable OTUT" if they are enabled (b in Figure 25)
 - c. Use the "Write" button (c in Figure 25)
- Check the OVUV Cells and OTUT GPIOs you would like to reset under the "OVUV CELL Reset" and "OTUT GPIO Reset" sections respectively (#2 in Figure 28)
- 3. Use the "Write" button again (#3 in Figure 28)
- 4. Press "Reset" under both "OVUV CELL Reset" and "OTUT GPIO Reset" (#4 in Figure 28)
- 5. Use the "Read" button to ensure that the desired CELL and GPIO faults have been reset.

Address	3				
Broadcast V Read	Write				
Protector Configuration				2	
Protector Configuration OV Threshold 4.500 v V UV Threshold 1.950 v V	OVUV Deglitch 100 v us TEMP Deglitch 100 v us	OVUV Mode Round-Robin (BIST enabled) v OTUT Mode Round-Robin (BIST enabled) v	OVUV CELL Selection	OVUV CELL Reset ☑ CELL1 ☑ CELL2 ☑ CELL3 ☑ CELL4 ☑ CELL5 ☑ CELL6	Reset
OT Threshold 25 v % of TSREF UT Threshold 75 v % of TSREF		☑ Enable OVUV ☑ Enable OTUT	OTUT GPIO Selection GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6	OTUT GPIO Reset	Reset

Figure 28. OVUV and OTUT Reset

Faults

9 Faults

A "Read" displays a list of device addresses, and faults associated with each device which can be seen in Figure 29.

Once "Read" is pressed, all devices are shown on the left side of the GUI, along with an overview of the major faults on each device. Pressing "Show All" next to a device provides all faults for that device, in detail, on the right side of the GUI. Here, each fault register address and value is provided. Each fault can be masked, unmasked, or reset on the right side of the GUI by pressing the corresponding checkbox, the using the "Write All" command at the top of the GUI.

Read						Bit Low (0) Bit High (1)	Write All	Write All					Bit Low (0) Bit High (1)		
Device	FAULT_SUMMARY	OTP_FAULT	SYS_FAULT	COMM_FAULT	GPIO_OTUT	CELL_OVUV	GPIO_FAULT	Fault Details	Register Name	Address	Value	Mask Al	I Unmask All	Reset All	
0x00	0x18	0	1	1	0	0	0	Show All	GPIO_FAULT	0x290	0x0				
0x01	0x18	0	1	1	0	0	0	Show All	UV_FAULT	0x291	0x0				
0x02	0x18	0	1	1	0	0	0	Show All	OV_FAULT	0x292	0x0				
									UT_FAULT	0x293	0x0				
									OT_FAULT	0x294	0x0				
									TONE_FAULT	0x295	0x0				
									COMM_UART_FAULT	0x296	0x5				
									COMM_UART_RC_FAULT	0x297	0x0				
									COMM_UART_RR_FAULT	0x298	0x0				
									COMM_UART_TR_FAULT	0x299	0x0				
									COMM_COMH_FAULT	0x29A	0x0				
									COMM_COMH_RC_FAULT	0x29B	0x0				
									COMM_COMH_RR_FAULT	0x29C	0x0				
									COMM_COMH_TR_FAULT	0x29D	0x0				
									COMM_COML_FAULT	0x29E	0x0				
									COMM_COML_RC_FAULT	0x29F	0x0				
									COMM_COML_RR_FAULT	0x2A0	0x0				
									COMM_COML_TR_FAULT	0x2A1	0x0				
									OTP_FAULT	0x2A2	0x0				
									RAIL_FAULT	0x2A3	0x0				
									OVUV_BIST_FAULT	0x2A4	0x0				
									OTUT_BIST_FAULT	0x2A5	0x0				
									SYS_FAULT1	0x201	0x1				
									SYS_FAULT2	0x202	0x1				
									SYS_FAULT3	0x203	0x0				

Figure 29. Fault Summary

10 Status

A "Read" displays a list of device addresses, and the status register for each device as shown in Figure 30.

The Status tab provides an in-depth look at a device's registers of importance (such as several of the communications status registers). Select a single device from the dropdown and then use the "Read" command button. The address of each register, hex values, and bit values of each register are provided here for quick viewing of the device's status.

Status

Register Name	Address	Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DEV_STAT	0x204	0xC5	CRC_DONE	CB_DONE	CB_PAUSE	CB_RUN	AUX_STAT	CELL_STAT	DRDY_AUX	DRDY_CELL
OOP_STAT	0x205	0x0	RSVD[3]	RSVD[2]	RSVD[1]	RSVD[0]	OTUT_BIST_DONE	OVUV_BIST_DONE	OTUT_LOOP_DONE	OVUV_LOOP_DON
CBVC_COMP_STAT	0x263	0x0	RSVD[1]	RSVD[0]	CELL6	CELL5	CELL4	CELL3	CELL2	CELL1
CBVC_VCLOW_STAT	0x264	0x0	RSVD[1]	RSVD[0]	CELL6	CELL5	CELL4	CELL3	CELL2	CELL1
COMM_UART_RC_STAT3	0x265	0x0	DISCARD[7]	DISCARD[6]	DISCARD[5]	DISCARD[4]	DISCARD[3]	DISCARD[2]	DISCARD[1]	DISCARD[0]
COMM_COML_RC_STAT3	0x266	0x0	DISCARD[7]	DISCARD[6]	DISCARD[5]	DISCARD[4]	DISCARD[3]	DISCARD[2]	DISCARD[1]	DISCARD[0]
COMM_COMH_RR_STAT3	0x267	0x0	DISCARD[7]	DISCARD[6]	DISCARD[5]	DISCARD[4]	DISCARD[3]	DISCARD[2]	DISCARD[1]	DISCARD[0]
COMM_COML_RR_STAT3	0x268	0x0	DISCARD[7]	DISCARD[6]	DISCARD[5]	DISCARD[4]	DISCARD[3]	DISCARD[2]	DISCARD[1]	DISCARD[0]
COMM_COMH_RC_STAT3	0x269	0x0	DISCARD[7]	DISCARD[6]	DISCARD[5]	DISCARD[4]	DISCARD[3]	DISCARD[2]	DISCARD[1]	DISCARD[0]
COMM_UART_RR_STAT3	0x26A	0x0	DISCARD[7]	DISCARD[6]	DISCARD[5]	DISCARD[4]	DISCARD[3]	DISCARD[2]	DISCARD[1]	DISCARD[0]
COMM_UART_RC_STAT1	0x26B	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_UART_RC_STAT2	0x26C	0x2	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COML_RC_STAT1	0x26D	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COML_RC_STAT2	0x26E	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COMH_RR_STAT1	0x26F	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COMH_RR_STAT2	0x270	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_UART_TR_STAT1	0x271	0x0	SENTL[7]	SENTL[6]	SENTL[5]	SENTL[4]	SENTL[3]	SENTL[2]	SENTL[1]	SENTL[0]
COMM_UART_TR_STAT2	0x272	0x2	SENTL[7]	SENTL[6]	SENTL[5]	SENTL[4]	SENTL[3]	SENTL[2]	SENTL[1]	SENTL[0]
COMM_COML_TR_STAT1	0x273	0x0	SENTL[7]	SENTL[6]	SENTL[5]	SENTL[4]	SENTL[3]	SENTL[2]	SENTL[1]	SENTL[0]
COMM_COML_TR_STAT2	0x274	0x0	SENTL[7]	SENTL[6]	SENTL[5]	SENTL[4]	SENTL[3]	SENTL[2]	SENTL[1]	SENTL[0]
COMM_COMH_RC_STAT1	0x275	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COMH_RC_STAT2	0x276	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COML_RR_STAT1	0x277	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COML_RR_STAT2	0x278	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_COMH_TR_STAT1	0x279	0x0	SENTL[7]	SENTL[6]	SENTL[5]	SENTL[4]	SENTL[3]	SENTL[2]	SENTL[1]	SENTL[0]
COMM_COMH_TR_STAT2	0x27A	0x0	SENTL[7]	SENTL[6]	SENTL[5]	SENTL[4]	SENTL[3]	SENTL[2]	SENTL[1]	SENTL[0]
COMM_UART_RR_STAT1	0x27B	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
COMM_UART_RR_STAT2	0x27C	0x0	VALIDL[7]	VALIDL[6]	VALIDL[5]	VALIDL[4]	VALIDL[3]	VALIDL[2]	VALIDL[1]	VALIDL[0]
DTP_PROG_STAT	0x27D	0x0	RSVD	UNLOCK	UVERR	OVERR	SUVERR	SOVERR	PROGERR	DONE
DTP_CUST1_STAT1	0x27E	0x1	RSVD	LOADED	LOADWRN	LOADERR	FMTERR	PROGOK	RETRY	FREE
DTP_CUST1_STAT2	0x27F	0x0	RSVD[1]	RSVD[0]	TRY2	UV2OK	OV2OK	TRY1	UV10K	OV10K
DTP_CUST2_STAT1	0x280	0x1	RSVD	LOADED	LOADWRN	LOADERR	FMTERR	PROGOK	RETRY	FREE
DTP_CUST2_STAT2	0x281	0x0	RSVD[1]	RSVD[0]	TRY2	UV2OK	OV2OK	TRY1	UV10K	OV10K
B_SW_STAT	0x282	0x0	RSVD[1]	RSVD[0]	CELL6	CELL5	CELL4	CELL3	CELL2	CELL1
DEV_ADD_STAT	0x2BB	0x0	RSVD[1]	RSVD[0]	ADD[5]	ADD[4]	ADD[3]	ADD[2]	ADD[1]	ADD[0]
COMM_STAT	0x2BC	0x3	RSVD[3]	RSVD[2]	RSVD[1]	RSVD[0]	COMH_TONEBUSY	COML_TONEBUSY	BAUD_STAT[1]	BAUD_STAT[0]
DAISY CHAIN STAT	0x2BD	0x13	RSVD[2]	RSVD[1]	RSVD[0]	HW_DRV	COMLTX	COMLRX	COMHTX	COMHRX

Figure 30. Status Registers

11 Command Sequence and Advanced Comms

11.1 Advance Comm Tab

Master Control Panel

Allows the user to send raw hex commands to the base device.

Read Command

Reads can be up to 128 bytes, and called as a single device read, broadcast read, or stack read. A range of registers can be read by simply choosing the starting register address, the number of bytes to read, and sending the command. Follow the order found in Figure 31.

Command Sequence and Advanced Comms

Command Configuration	1	. 5
Command	Single Device Read \sim	Send Command
Device Address (Hex)	<u>•</u> 2	
Register Address (Hex)	31 3	
Bytes to Write (Hex)	10	^
		\sim
Number of Bytes to Read (Decimal)	1 4	

Figure 31. Read Command

Write Command

Writes can be up to 128 bytes, and called as a single device write, broadcast write, stack write, or reverse direction broadcast write.

Command Configuration	1	<u> </u>
Command	Single Device Write 🛛 🗸 🗸	Send Command
Device Address (Hex)	٥ <mark>2</mark>	
Register Address (Hex)	10 3	4
Bytes to Write (Hex)	8C 2D B1 94	^
		~
Number of Bytes to Read (Decimal)	1	

Figure 32. Write Command

A range of registers can be written to by simply choosing the starting register address, then writing enough bytes in the "Bytes to Write" section to fill the desired range, as seen in Figure 32 or Figure 33. For instance, if you choose "Register Address" 10E, then provide "82828282" in the "Bytes to Write" section, registers 10E to 111 (4 registers total) will be overwritten with "82".

Advanced Comm

Master Control Panel					
Command Configuration					
Co	ommand Single Device	Vrite ~	Send Command		
Device Addre	ess (Hex) 0				
Register Addre	ess (Hex) 10				
Bytes to Wr	ite (Hex) 82 82 82 82		~		
			\sim		
Number of Bytes to Read (I	Decimal) 1				
Transaction Log					
Timestamp	Command	Device Ad	ddress Register Addre	ss Length	Data
2018-11-30 11:29:45 098	Single Device Write	0	10	4	82 82 82 82

Figure 33. Write Command - With Transaction Log

11.2 Command Sequence Tab

Command Frame

Allows the user to send raw hex commands to the base device, as a host MCU would.

The Command Sequence tab works in the same manner as the Advanced Comm tab, by sending commands in hexadecimal form to the devices. However, the Command Sequence tab takes this functionality a step further by allowing for sequences of commands to be executed, saved, and executed again at a later time.

To begin generating command sequences, start by choosing a command type from the dropdown menu (#1 in Figure 34), typing the number of bytes to read/write, and press the "Generate Command Frame Header". If a write command has been chosen, add the desired hex values to the end of the generated "command frame header" (#2 in Figure 34). Ensure the number of bytes added to the end of a write command matches the "Number of Bytes to Send" (#3 in Figure 34). Finally, send the command to the device(s) by pressing the "Send Command Frame to stack" button (#4 in Figure 34). This will also add the command to a stack of commands within the GUI. This stack of commands is located under the "Command Dialog" section. Repeat this procedure for as many commands as desired.

Command Frame	<u> </u>
Command	Single Device Read \sim
Device Address (Hex)	0
Register Address (Hex)	10A
Number of Bytes to Send (Decimal)	1
Number of Registers to Read (Decimal)	1
Calculated CRC (Hex) 2	E4 1E
🕞 Generate Command Frame Header	
Command Frame to Send. (Hex) space separated	bytes. CRC is calculated and added to frame.
80 00 00 00 01	👰 Send Command Frame to stack
3 (add bytes you want to write)	4

Figure 34. Generating Command Frame

Once the command dialog contains all of the desired commands, save the command sequence to a text file using the "Save" button to the right of the "Command Dialog" section. This file can later be loaded so that the sequence can be quickly run again.

Sequence File Assignment Buttons

Allows a script file containing several raw hex commands to be assigned to specific GUI button.

Saved command sequences can also be stored within the GUI as a button under the "Command Frame Sequence File Assignment Buttons" section. This allows complex user-created command sequences to be loaded with a single button press.

Once a user has generated a command sequence file (as explained in the above section), this file can be saved to one of the 8 buttons provided. Simply press an "Unassigned" button, and the GUI will ask for a command sequence file and name for the button. Fill these in and the button will be updated with the newly added command sequence and name.

Left-clicking the button will now load the command sequence of the saved file to the "Command Dialog". Simply press "Run" to run the file's command sequence.

Users can also delete saved buttons by right-clicking the undesired button and pressing "Clear".

l) imal)	1 1 E4 1E	Command Frame Sequence File Assignment Buttons Assign a Command Frame sequence file to a button. File will load into commands dialog when button is presse Click Run to send commands in dailog to stack. Right click on any button to clear contents.
Header pace separati	ed bytes. CRC is calculated and added to frame.	1 Image: Construction of the second seco
		Image: Clear Save Load Edit ResetComm Image: Clear Save Load Edit ResetComm Image: Clear Save Help Image: Clear Log Controls Image: Clear Log Save Log

Figure 35. Sequence File Assignment

12 Troubleshooting

12.1 Troubleshooting for GUI communications

- 1. Remove all power from device
 - a. Cell Power/ Resistor Ladder Power
 - b. USB-Serial cable power
- 2. Unplug USB-Serial cable from PC
- 3. Close bqStudio
- 4. Apply power to device and reconnect cables
- 5. Open bqStudio

12.2 General troubleshooting for device recognition

- 1. Ensure all jumpers are correctly placed as outlined in the EVM User's Guide. This includes ensuring jumpers J2 and J3 are connected if using the battery stack/resistor ladder to supply power for the EVM. Also ensure that SW1 is set properly to base or stack.
- 2. Ensure that the device lower in the stack is connected using its "High Side Comm" connector to the higher device in the stack's "Low Side Comm."
- 3. Run auto-addressing and see if all devices show up in the top left dropdown menu. If a device does not, the device may not be configured properly as described above and in the EVM User's Guide.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated