This user’s guide describes the characteristics, operation, and use of the TPS735xxEVM-276 evaluation module (EVM). This EVM demonstrates the Texas Instruments TPS735xx a low dropout (LDO) linear regulator that is capable of 500 mA at both fixed and adjustable output voltage levels. This user’s guide includes setup instructions, a schematic diagram, thermal guidelines, a bill of materials, and printed-circuit board layout drawings for the EVM.

Contents

1. Introduction .. 1
2. Setup ... 1
3. Operation .. 1
4. Thermal Guidelines .. 2
5. Board Layout .. 3
6. Schematic and Bill of Materials .. 5

List of Figures

1. Assembly Layer ... 4
2. Top Layer Routing ... 4
3. Bottom Layer Routing ... 4
4. TPS735xxEVM-276 Schematic .. 5

List of Tables

1. TPS735xxEVM-276 Bill of Materials .. 6

1 Introduction

The TPS735xxEVM-276 evaluation module (EVM) helps designers evaluate the operation and performance of the TPS735xx family. The TPS735xx is a 500-mA, low quiescent current, ultra-low noise, high PSRR, fast start-up LDO linear regulator with excellent line and load transient response.

2 Setup

This section describes the jumpers and connectors on the EVM as well as how to properly connect, setup, and use the TPS735xxEVM.

2.1 Input/Output Connector Descriptions

2.1.1 J1 – VIN

This is the positive input supply voltage. The leads to the input supply must be twisted and kept as short as possible to minimize EMI transmission. Additional bulk capacitance must be added between J1 and J2 if the supply leads are greater than six inches. An additional 47-µF or greater capacitor improves the transient response of the TPS735xx and helps to reduce ringing on the input when long supply wires are used.
2.1.2 **J2 –GND**

This is the return connection for the input power supply of the regulator.

2.1.3 **J3 –VOUT**

This is the positive connection from the output. Connect this pin to the positive input of the load.

2.1.4 **J4 –GND**

This is the return connection for the output.

2.1.5 **J5 –ENABLE**

This jumper enables or disables the regulator. Connecting the shorting jumper between pin 1 and pin 2 (ENABLE and EN) enables the converter. Connecting the shorting jumper between pin 2 and pin 3 (DISABLE and GND) disables the converter. Never leave this pin floating.

2.2 Soldering Guidelines

Any soldering work on the TPS735xxEVM must be performed using a hot air system to avoid damaging the integrated circuit (IC). A hot air system must be used when soldering or de-soldering any external components such as the feedback network as well as the IC. A hot air system heats all of the traces on the board equally, which equalizes the thermal expansion of the traces on the board and thus reduces stress. Heating only one trace, such as with a soldering iron, allows one trace to expand more than the others and to cause shear stress on the pins of the QFN package. The shear stress on a single pin can be enough to break the pin of the IC, thus causing an IC failure.

3 Operation

This section provides information about the operation of the TPS735xxEVM.

3.1 Operation

Connect the positive input power supply to J1. Connect the input power return (ground) to J2. The TPS735xxEVM has an absolute maximum input voltage of 7 V. The recommended maximum operating voltage is 6.5 V. The actual highest input voltage may be less than 6.5 V due to thermal conditions. See the Thermal Considerations section of this manual to determine if the highest input voltage.

Connect the desired load between J3 (positive lead) and J4 (negative lead). Configure jumper JP1 as required. The function of JP1 is described in the Setup section (2.1.5) of this manual.

4 Thermal Guidelines

This section provides guidelines for the thermal management of the TPS735xxEVM-276 board.

4.1 Thermal Considerations

Thermal management is a key component of design of any power converter and is especially important when the power dissipation in the LDO is high. To better help you design the TPS735xx family into your application, use the following formula to approximate the maximum power dissipation at a particular ambient temperature:

\[
T_J = T_A + P_d \times \theta_{JA}
\]

where \(T_J\) is the junction temperature, \(T_A\) is the ambient temperature, \(P_d\) is the power dissipation in the IC, and \(\theta_{JA}\) is the thermal resistance from junction to ambient. All temperatures are in degrees Celsius.
The thermal resistance from junction to ambient for the TPS735xxEVM has a typically value of 27.5°C/W. The recommended maximum operating junction temperature specified in the data sheet for the TPS735xx family is 125°C. With these two pieces of information, the maximum power dissipation can be found by using Equation 1.

Example Calculation:

For example, what is the maximum input voltage that can be applied to a TPS73525 (fixed 2.5-V output) if the ambient temperature is 85°C and the full 500 mA of load current is required?

Given: \(T_J = 125°C, T_A = 85°C, \theta_{JA} = 27.5°C/W \) \hspace{1cm} (2)

Using Equation 1, substitute in the preceding given values and find that the maximum power dissipation for the part is \(P_d = 1.45 \) W.

\[125°C = 85°C + P_d \times (27.5°C/W) \hspace{1cm} (3) \]

This means that the total power dissipation of the TPS73525 must be less than 1.45 W. Now, the input voltage can be calculated.

\[P_d = (V_{in} - V_{out}) \times I_{out} = (Vin - 2.5V) \times 0.5 \text{ A} = 1.45 \text{ W} \hspace{1cm} (4) \]

So, the maximum input voltage needs to be 5.4 V or less in order to maintain a safe junction temperature.

Similar analysis can be performed to determine the maximum ambient temperature over a range of operation. The maximum recommended input voltage for the TPS735xx is 6.5 V. You can calculate the highest ambient temperature allowed and still provide full output current. The answer depends on the output voltage.

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Maximum Ambient Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>60.3</td>
</tr>
<tr>
<td>2.5</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>81</td>
</tr>
</tbody>
</table>

5 **Board Layout**

This section provides the TPS735xxEVM-276 board layout and illustrations

5.1 **Layout**

When laying out the board for the TPS735xx, TI recommends that the board be designed with separate ground planes for Vin and Vout which are only connected at the GND pin of the device. Also, the ground connection for the bypass capacitor must be connected directly to the GND pin of the device. By following the foregoing two guidelines, you can improve the PSRR performance of the TPS735xx. See the TPS735xx data sheet (SBVS087) for specific layout guidelines.
Figure 1. Assembly Layer

Figure 2. Top Layer Routing

Figure 3. Bottom Layer Routing
6 Schematic and Bill of Materials

This section provides the TPS735xxEVM-276 schematic and bill of materials.

6.1 Schematic

![Schematic Diagram]

<table>
<thead>
<tr>
<th>ASSY</th>
<th>U1</th>
<th>R1</th>
<th>R2/C4</th>
<th>C3</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-001</td>
<td>TPS73501RB</td>
<td>56.2K</td>
<td>110K</td>
<td>22pF</td>
<td>1.80V</td>
</tr>
<tr>
<td>-002</td>
<td>TPS73525RB</td>
<td>Open</td>
<td>0.01uF</td>
<td>Open</td>
<td>2.50V</td>
</tr>
</tbody>
</table>

Figure 4. TPS735xxEVM-276 Schematic
6.2 Bill of Materials

Table 1. TPS735xxEVM-276 Bill of Materials

<table>
<thead>
<tr>
<th>-001</th>
<th>-002</th>
<th>RefDes</th>
<th>Value</th>
<th>Description</th>
<th>Size</th>
<th>Part Number</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>C1</td>
<td>1.0 µF</td>
<td>Capacitor, Ceramic, 10V, X5R, 10%</td>
<td>0603</td>
<td>C16085R1A105K</td>
<td>TDK</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>C2</td>
<td>2.2 µF</td>
<td>Capacitor, Ceramic, 10V, X5R, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>C3</td>
<td>22 pF</td>
<td>Capacitor, Ceramic, 16V, X5R, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>C3</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>C4</td>
<td>0.01 µF</td>
<td>Capacitor, Ceramic, 16V, X5R, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>J1–J4</td>
<td>PTC36SAAN</td>
<td>Header, Male 2-pin, 100mil spacing, (36-pin strip)</td>
<td>0.100 inch × 2</td>
<td>PTC36SAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>JP1</td>
<td>PTC36SAAN</td>
<td>Header, 3-pin, 100mil spacing, (36-pin strip)</td>
<td>0.100 inch × 3</td>
<td>PTC36SAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>R1</td>
<td>56.2K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>R2</td>
<td>110K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>U1</td>
<td>TPS73501DRB</td>
<td>IC, 500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR LDO, adjustable</td>
<td>SON-8</td>
<td>TPS73501DRB</td>
<td>TI</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>U1</td>
<td>TPS73525DRB</td>
<td>IC, 500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR LDO, 2.5V</td>
<td>SON-8</td>
<td>TPS73525DRB</td>
<td>TI</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>HPA276</td>
<td>PCB, 2.0" × 2.5" × 0.062"</td>
<td></td>
<td>HPA276</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>—</td>
<td>Shunt, 100 mil, Black</td>
<td>0.100</td>
<td>929950-00</td>
<td>3M</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. These assemblies are ESD sensitive, ESD precautions shall be observed.
2. These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.
3. These assemblies must comply with workmanship standards IPC-A-610 Class 2.
4. Ref designators marked with an asterisk (***) cannot be substituted. All other components can be substituted with equivalent MFG’s components.
EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 2.7 V to 6.5 V and the output voltage range of 1.193 V to 6.5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 85°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>RF/I and ZigBee® Solutions</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated