Contents
1 Introduction .. 2
 1.1 Background ... 2
 1.2 Performance Specification Summary .. 2
 1.3 Modifications ... 3
2 Test Setup and Results .. 3
 2.1 Input / Output Connections .. 3
 2.2 Start Up Procedure .. 4
 2.3 Efficiency .. 4
 2.4 Load Regulation .. 5
 2.5 Line Regulation ... 5
 2.6 Load Transient Response ... 6
 2.7 Output Voltage Ripple ... 6
 2.8 Input Voltage Ripple ... 7
 2.9 Start Up .. 7
 2.10 Switching Frequency ... 8
3 Board Layout .. 8
 3.1 Layout ... 8
4 Schematic, Bill of Materials and Reference .. 12
 4.1 Schematic ... 12
 4.2 Bill of Materials ... 13
 4.3 Reference ... 13
List of Figures
1 TPS54326EVM-540 Efficiency .. 4
2 TPS54326EVM-540 Load Regulation .. 5
3 TPS54326EVM-540 Line Regulation ... 5
4 TPS54326EVM-540 Load Transient Response .. 6
5 TPS54326EVM-540 Output Voltage Ripple .. 6
6 TPS54326EVM-540 Input Voltage Ripple .. 7
7 TPS54326EVM-540 Start Up .. 7
8 TPS54326EVM-540 Switching Frequency .. 8
9 Top Assembly ... 9
10 Top Layer ... 10
11 Internal Layer 1 ... 10
12 Internal Layer 2 ... 11
13 Bottom Layer .. 11
14 Bottom Assembly .. 11
15 TPS54326EVM-540 Schematic Diagram ... 12
List of Tables
D-CAP2 is a trademark of Texas Instruments.
Introduction

This user's guide contains background information for the TPS54326 as well as support documentation for the TPS54326EVM-540 evaluation module. Also included are the performance specifications, schematic and the bill of materials for the TPS54326EVM-540.

1.1 Background

The TPS54326 is a single, adaptive on-time D-CAP2™ mode synchronous buck converter requiring a very low external component count. The D-CAP2™ control circuit is optimized for low ESR output capacitors such as POSCAP, SP-CAP or ceramic types and features fast transient response with no external compensation. The switching frequency is internally set at a nominal 700 kHz. The high-side and low-side switching MOSFETs are incorporated inside the TPS54326 package along with the gate drive circuitry. The low drain-to-source on resistance of the MOSFETs allow the TPS54326 to achieve high efficiencies and helps keep the junction temperature low at high output currents. The TPS54226 also has an Auto-Skip mode to enable higher efficiency at light loads. The TPS54326 dc/dc synchronous converter is designed to provide up to a 2A output from an input control voltage source of 4.5V to 18V, input power voltage source of 2V to 18V and output voltage from 0.76V to 5.5V. Rated input voltage, output voltage and output current range for the evaluation module are given in Table 1.

Table 1. Input Voltage and Output Current Summary

<table>
<thead>
<tr>
<th>EVM</th>
<th>Input Voltage Range</th>
<th>Output Voltage and Current Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54326EVM-540</td>
<td>VIN = 4.5V to 18V</td>
<td>Vout = 1.05 V, 0A to 2A</td>
</tr>
</tbody>
</table>

1.2 Performance Specification Summary

A summary of the TPS54326EVM-540 performance specifications is provided in Table 2. Specifications are given for an input voltage of VIN = 12V and an output voltage of 1.05V, unless otherwise noted. The ambient temperature is 25°C for all measurement, unless otherwise noted.

Table 2. TPS54326 EVM and Performance Specifications Summary

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (VIN)</td>
<td></td>
<td>4.5</td>
<td>12</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>1.05</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>VIN = 12V, I</td>
<td>700</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Output current range</td>
<td></td>
<td>0</td>
<td>3</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Over current limit</td>
<td>VIN = 12V</td>
<td></td>
<td>4.1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Output ripple voltage</td>
<td>VIN = 12V, I</td>
<td></td>
<td></td>
<td>7</td>
<td>mVpp</td>
</tr>
</tbody>
</table>
1.3 Modifications

These evaluation modules are designed to provide access to the features of the TPS54326. Some modifications can be made to this module.

1.3.1 Output Voltage Set Point

To change the output voltage of the EVMs, it is necessary to change the value of resistor R1. Changing the value of R1 can change the output voltage above 0.765V. The value of R1 for a specific output voltage can be calculated using Equation 1 and Equation 2.

For output voltage from 0.76V to 2.5V:

\[V_O = 0.765 \times \left(1 + \frac{R1}{R2}\right) \]

(1)

For output voltage over 2.5V:

\[V_O = (0.763 + 0.0017 \times V_O) \times \left(1 + \frac{R1}{R2}\right) \]

(2)

Table 3 lists the R1 value for some common output voltages. For higher output voltages, a feed forward capacitor is required. Pads for this component (C2) are provided on the printed circuit board. C2 is used for faster load transient response and is recommended for auto skip mode stability. Note that the values given in Table 3 are standard values, and not the exact value calculated using Table 3.

Table 3. Output Voltages

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>R1 (kΩ)</th>
<th>R2 (kΩ)</th>
<th>C2 (pF)</th>
<th>L1 (µH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>6.81</td>
<td>22.1</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>1.05</td>
<td>8.25</td>
<td>22.1</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>1.2</td>
<td>12.7</td>
<td>22.1</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>1.8</td>
<td>30.1</td>
<td>22.1</td>
<td>150-220</td>
<td>2.2</td>
</tr>
<tr>
<td>2.5</td>
<td>49.9</td>
<td>22.1</td>
<td>68-100</td>
<td>2.2</td>
</tr>
<tr>
<td>3.3</td>
<td>73.2</td>
<td>22.1</td>
<td>47 - 68</td>
<td>2.2</td>
</tr>
<tr>
<td>5.0</td>
<td>121</td>
<td>22.1</td>
<td>33 - 47</td>
<td>3.3</td>
</tr>
</tbody>
</table>

2 Test Setup and Results

This section describes how to properly connect, set up, and use the TPS54326EVM-540. The section also includes test results typical for the evaluation modules and efficiency, output load regulation, output line regulation, load transient response, output voltage ripple, input voltage ripple, start up and switching frequency.

2.1 Input / Output Connections

The TPS5326EVM-540 is provided with input/output connectors and test points as shown in Table 4. A power supply capable of supplying 3 A must be connected to J1 through a pair of 20 AWG wires. The load must be connected to J2 through a pair of 20 AWG wires. The maximum load current capability is 3 A. Wire lengths must be minimized to reduce losses in the wires. Test point TP1 provides a place to monitor the \(V_{in} \) input voltages with TP2 providing a convenient ground reference. TP8 is used to monitor the output voltage with TP9 as the ground reference.
2.2 Start Up Procedure
1. Make sure the jumper at JP1 (Enable control) is set from EN to OFF.
2. Apply appropriate VIN voltage to VIN and PGND terminals at J1.
3. Move the jumper at JP1 (Enable control) to cover EN and ON. The EVM will enable the output voltage.

2.3 Efficiency

Figure 1 shows the efficiency for the TPS54326EVM-540 at an ambient temperature of 25°C.

![Efficiency graph](image_url)
2.4 Load Regulation

The load regulation for the TPS54326EVM-540 is shown Figure 2.

![Figure 2. TPS54326EVM-540 Load Regulation](image)

2.5 Line Regulation

The line regulation for the TPS54326EVM-540 is shown Figure 3.

![Figure 3. TPS54326EVM-540 Line Regulation](image)
2.6 Load Transient Response

The TPS54326EVM-540 response to load transient is shown in Figure 4. The current step is from 0.75 A to 2.25 A (25% to 75% of rated load). Total peak-to-peak output voltage variation is as shown.

![Graph of load transient response](image)

Figure 4. TPS54326EVM-540 Load Transient Response

2.7 Output Voltage Ripple

The TPS54326EVM-540 output voltage ripple is shown in Figure 5. The output current is the rated full load of 3A.

![Graph of output voltage ripple](image)

Figure 5. TPS54326EVM-540 Output Voltage Ripple
2.8 Input Voltage Ripple

The TPS54326EVM-540 input voltage ripple is shown in Figure 6. The output current is the rated full load of 3A.

![Input Voltage Ripple Graph](image1)

Figure 6. TPS54326EVM-540 Input Voltage Ripple

2.9 Start Up

The TPS54326EVM-540 start up waveform is shown in Figure 7.

![Start Up Graph](image2)

Figure 7. TPS54326EVM-540 Start Up
2.10 Switching Frequency

The TPS54326EVM-540 switching frequency is shown in Figure 8.

\[I_0 = 1 \text{ A} \]

\[V_0 = 1.8 \text{ V} \]

\[V_0 = 3.3 \text{ V} \]

3 Board Layout

This section provides description of the TPS54326EVM-540, board layout, and layer illustrations.

3.1 Layout

The board layout for the TPS54326EVM-540 and is shown in Figure 9 through Figure 14. The top layer contains the main power traces for VIN, VO and ground. Also on the top layer are connections for the pins of the TPS54326 and a large area filled with ground. Many of the signal traces are also located on the top side. The input decoupling capacitor are located as close to the IC as possible. The input and output connectors, test points and most of the components are located on the top side. R3, the 0-Ω resistor that connects VIN to VCC and R4, the power good pull up, are located on the back side. Analog ground and power ground are connected at a single point on the top layer near pin 5 of the TPS54326. The internal layer 1 is a split plane containing analog and power grounds. The internal layer 2 is primarily power ground. There are also a fill area of VIN and a trace routing VCC to the enable control jumper JP1. The bottom layer is primarily analog ground. There are also traces to connect VIN to VCC through R3, traces for the power good signal and the feedback trace from VOUT to the voltage setpoint divider network.
Figure 9. Top Assembly

Figure 10. Top Layer
Figure 11. Internal Layer 1

Figure 12. Internal Layer 2
Figure 13. Bottom Layer

Figure 14. Bottom Assembly
4 Schematic, Bill of Materials and Reference

This section presents the TPS54326EVM-540 schematic, bill of materials and reference.

4.1 Schematic

Figure 15 is the schematic for the TPS54326EVM-540.

Figure 15. TPS54326EVM-540 Schematic Diagram
4.2 Bill of Materials

Table 5. Bill of Materials

<table>
<thead>
<tr>
<th>RefDes</th>
<th>QTY</th>
<th>Value</th>
<th>Description</th>
<th>Size</th>
<th>Part Number</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C3</td>
<td>2</td>
<td>10uF</td>
<td>Capacitor, Ceramic, 25V, X5R, 20%</td>
<td>1210</td>
<td>C3225X5R1E106M</td>
<td>TDK</td>
</tr>
<tr>
<td>C11</td>
<td>0</td>
<td>Open</td>
<td>Capacitor, Ceramic</td>
<td>1206</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C2, C4, C8</td>
<td>0</td>
<td>Open</td>
<td>Capacitor, Ceramic</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>3300pF</td>
<td>Capacitor, Ceramic, 25V, X7R, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C6</td>
<td>1</td>
<td>1uF</td>
<td>Capacitor, Ceramic, 16V, X7R, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C7</td>
<td>1</td>
<td>0.1uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C9, C10</td>
<td>2</td>
<td>22uF</td>
<td>Capacitor, Ceramic, 6.3V, X5R, 20%</td>
<td>1206</td>
<td>C3216X5R0J226M</td>
<td>TDK</td>
</tr>
<tr>
<td>J1, J2</td>
<td>2</td>
<td>ED555/2DS</td>
<td>Terminal Block, 2-pin, 6-A, 3.5mm</td>
<td>0.27 x 0.25 inch</td>
<td>ED555/2DS</td>
<td>Sullins</td>
</tr>
<tr>
<td>JP1</td>
<td>1</td>
<td>PEC03SAAN</td>
<td>Header, Male 3-pin, 100mil spacing</td>
<td>0.100 inch x 3</td>
<td>PEC03SAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>L1</td>
<td>1</td>
<td>1.5uH</td>
<td>Inductor, SMT, 11.5 A, 9.7 milliohm</td>
<td>0.256 x 0.280 inch</td>
<td>SPM6530T-1R5M100</td>
<td>TDK</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>8.25k</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>22.1k</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>0</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R4</td>
<td>1</td>
<td>100k</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R5</td>
<td>0</td>
<td>Open</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>TP1, TP3, TP4, TP6, TP7, TP8, TP9</td>
<td>3</td>
<td>5000</td>
<td>Test Point, Red, Thru Hole Color Keyed</td>
<td>0.100 x 0.100 inch</td>
<td>5000</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP2, TP5, TP9</td>
<td>3</td>
<td>5001</td>
<td>Test Point, Black, Thru Hole Color Keyed</td>
<td>0.100 x 0.100 inch</td>
<td>5001</td>
<td>Keystone</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>TPS54326PWP</td>
<td>IC, 2-A Output Single Sync. Step-Down</td>
<td></td>
<td>TPS54326PWP</td>
<td>TI</td>
</tr>
<tr>
<td>–</td>
<td>1</td>
<td>Shunt, 100-mil, Black</td>
<td>0.100</td>
<td>929950-00</td>
<td>3M</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>1</td>
<td>PCB, 2.76 In x 1.97 In x 0.062 In</td>
<td></td>
<td>HPAS540</td>
<td>Any</td>
<td></td>
</tr>
</tbody>
</table>

4.3 Reference

1. TPS54326 data sheet, *Single Synchronous Converter with Integrated High Side and Low Side MOS FET (SLVSA14)*
Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. **THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.**

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes **no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.**

Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 5V to 17V and the output voltage range of 1V to 5V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 85°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Broadband</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Military</td>
</tr>
<tr>
<td>Logic</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Security</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Telephony</td>
</tr>
<tr>
<td>RFID</td>
<td>Wireless</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated