

UCD90SEQ64EVM-650: 64-Pin Sequencer Development Board

This user's guide describes the 64-pin Sequencer Development Board (UCD90SEQ64EVM-650) for the following sequencer devices: UCD90120, UCD90124, UCD90120A, UCD90124A, UCD90910, and UCD90160. This development board contains a 64-pin socket and interface circuitry to support the full line of 64-pin sequencers.

Contents

Descri	ption	2
1.1	Features	2
1.2	Sequencer Applications	2
Quick	Start	2
2.1	Test Setup	2
UCD9	0SEQ64EVM-650 GUI Setup	3
3.1	UCD90SEQ64EVM-650 GUI Installation	3
3.2	UCD90SEQ64EVM-650 GUI Operation	4
Gener	al-Use Features	6
4.1	EVM Input/Output Connectors and Switches	6
4.2	EVM Test Jumpers	7
4.3	EVM Test Points	7
4.4		-
Descri	ption	8
5.1	Communication Interface	8
5.2	Input Power	9
5.3	Status LED's	9
5.4	Analog Monitor Inputs	9
EVM S	Schematic, Assembly Drawings, Layout Guidelines, and Bill of Materials	10
6.1	Schematic	10
6.2	PCB Drawings	12
6.3	Bill of Materials	16
	1.1 1.2 Quick 2.1 UCD9 3.1 3.2 Gener 4.1 4.2 4.3 4.4 Descri 5.1 5.2 5.3 5.4 EVM \$ 6.1 6.2	1.2 Sequencer Applications Quick Start

List of Figures

1	Typical Test Setup	3
2	UCD90SEQ64EVM-650 Schematic (Sheet 1 of 2)	10
3	Figure 3. UCD90SEQ64EVM-650 Schematic (sheet 2 of 2)	11
4	Top-Side Layout/Routing	12
5	Layer-2 Routing	13
6	Layer-3 Routing	14
7	Bottom-Side Placement/Routing	15

List of Tables

1	Sequencers Summary	2
2	EVM Input/Output Connectors and Switches	6
3	EVM Jumpers	7
4	EVM Test Points	7

UCD90SEQ64EVM-650:— 64-Pin Sequencer Development Board 1

5	EVM Status LEDS	8
6	UCD90SEQ64EVM-650 Bill of Materials	16

1 Description

Description

UCD90SEQ64EVM-650 allows any of TI's 64-pin sequencers to be installed into the onboard socket for evaluation. Access to all of the user input/output (I/O) is provided via strip connectors for integration into complex systems using clip-type jumper wires.

UCD90SEQ64EVM-650 allows direct PMBus (power management bus) communication with the sequencer via an onboard USB interface. This interface allows direct control of and feedback from the sequencer when using the TI Fusion Digital Power Designer graphical user interface (GUI).

64-Pin (RGC) Device Part No.	Description	Number of Voltage Rails	Number of Fans
UCD90120 (released)	Generation 1 12-rail sequencer and system health monitor	12 (13 monitor inputs) 10 rails with margining	0
UCD90124 (released)	Generation 1 12-rail sequencer and system health monitor with fan control	12 (13 monitor inputs) 10 rails with margining	4
UCD90910 (released)	Generation 1+ 10-rail sequencer and system health monitor with fan control	10 (13 monitor inputs) 10 rails with margining	10
UCD90160 (release in 2011)	Generation 2 16-rail sequencer and system health monitor	16 (16 monitor inputs) 10 rails with margining	0
UCD90120A (release in 2011)	Generation 2 12-rail sequencer and system health monitor	12 (13 monitor inputs) 10 rails with margining	0
UCD90124A (release in 2011)	Generation 2 12-rail sequencer and system health monitor with fan control	12 (13 monitor inputs) 10 rails with margining	4

1.1 Features

- General Features
 - USB port powered or power with single 5-V supply
 - JTAG programming port for "in socket" device configuration
 - Serial port for advanced debugging
 - Status LED's on all GPIO
 - Strip connector I/O access
 - USB-PMBus interface for communication
 - UCD90124 (in socket) and mini-USB cable provided

1.2 Sequencer Applications

- Industrial/ATE
- Telecommunications and networking equipment
- Servers and storage systems
- Any system requiring sequencing and monitoring of multiple power rails

2 Quick Start

2.1 Test Setup

Figure 1 shows a typical test setup for UCD90SEQ64EVM-650. All that is required is a personal computer (PC) with a USB port and the TI Fusion Digital Power Designer GUI. The USB-EVM cable is provided with the EVM and is used for EVM power.

When installing other UCD90xxx sequence devices into XU1, ensure that the device pin 1 is oriented as shown in Figure 1.

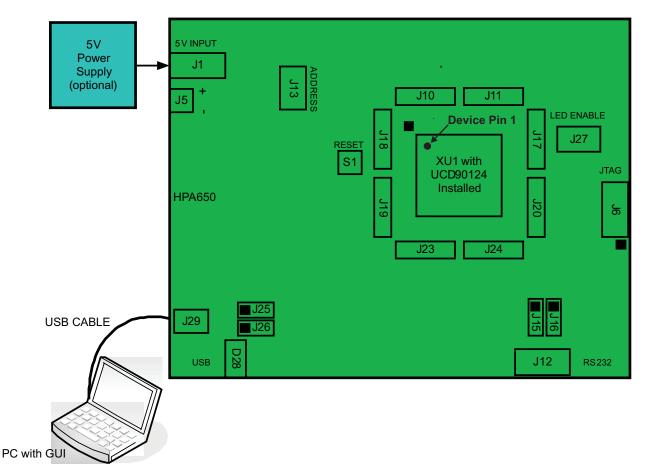


Figure 1. Typical Test Setup

3 UCD90SEQ64EVM-650 GUI Setup

3.1 UCD90SEQ64EVM-650 GUI Installation

The UCD90SEQ64EVM-650 uses the TI Fusion Digital Power Designer GUI which may be downloaded from the following Web site:

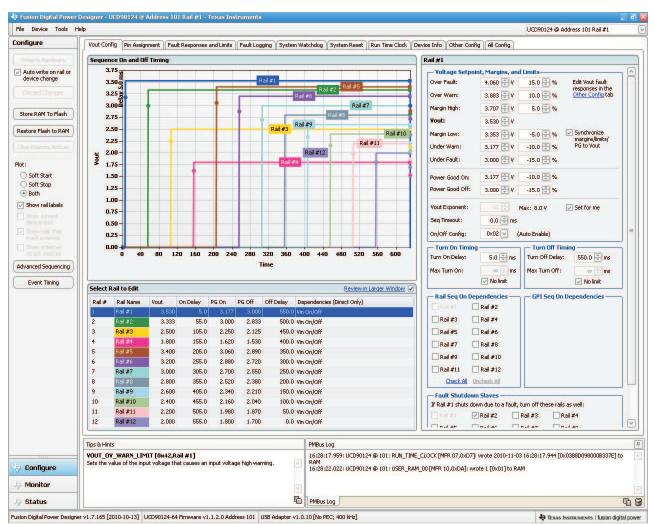
http://focus.ti.com/docs/toolsw/folders/print/fusion_digital_power_designer.html

Click the link for the official release for sequencers to start the download. Place the TI Fusion Digital Power Designer zip file in a known location on the PC. Unzip the TI Fusion Digital Power Designer zip file.

Double-click the unzipped TI Fusion Digital Power Designer .exe file. Proceed through the installation by accepting the installer prompts and the license agreement. Accept the GUI-suggested default PC installation locations to complete the install.

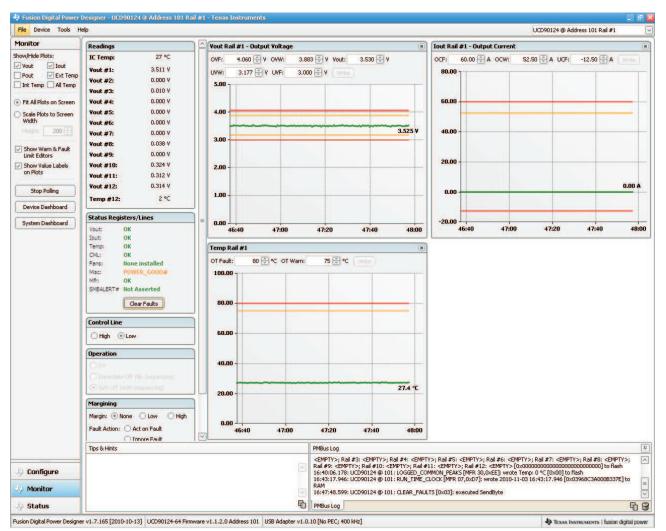
Once the GUI completes the installation, the program starts. The first time the GUI is launched on a particular PC, the user may be prompted to select a device. Choose UCD9xxx. Afterwards, the GUI may be closed.

Note that the TI Fusion Digital Power Designer version 1.7.165 was used for the GUI figures in this document.



3.2 UCD90SEQ64EVM-650 GUI Operation

The EVM comes preloaded with a 12-rail default project that illuminates the onboard GPIO LED's at power up. It is a good idea to export the default project to a file on the PC prior to making changes. To do this, go to the File menu and select Save Project As ... then select a project file name and location.


3.2.1 Launch TI Fusion Digital Power Designer

Navigate to the location where the Fusion GUI is installed and (Start, All Programs, Texas Instruments Fusion Digital Power Designer, Fusion Digital Power Designer), and start it. A window similar to the following illustration appears.

Most of the GUI control features are available from the Configure window. Monitor and Status information is available from the respective buttons on the GUI lower left. A typical Monitor window is follows.

4 General-Use Features

4.1 EVM Input/Output Connectors and Switches

Table 2. EVM Input/Output Connectors and Switches

Connector/ Switch	Label	Description
J1	+5V POWER	5-V DC jack
J5	+5V	5-V screw jack
J29	USB IN	USB input connector for communication and EVM power
J12	RS232	Serial debug connector
J6	JTAG	JTAG connector
XU1	XU1	Onboard socket for the 64-pin sequencer
S1	PBRESET	Pushbutton reset
J18		Sequencer I/O strip connector. Pin name silkscreened on EVM
J21		Sequencer I/O strip connector. Pin name silkscreened on EVM
J23		Sequencer I/O strip connector. Pin name silkscreened on EVM
J24		Sequencer I/O strip connector. Pin name silkscreened on EVM
J20		Sequencer I/O strip connector. Pin name silkscreened on EVM
J17		Sequencer I/O strip connector. Pin name silkscreened on EVM
J11		Sequencer I/O strip connector. Pin name silkscreened on EVM. Unique UCD90160 pin names are shown on the inside of J11.
J10		Sequencer I/O strip connector. Pin name silkscreened on EVM. Unique UCD90160 pin names are shown on the inside of J10.

4.2 EVM Test Jumpers

The EVM is equipped with shunts on the jumper positions identified in the Default Pin Position shown in Table 3. Shunts can be moved and removed as required during use.

Jumper	Default Pin Position	Label	Description	
J2	1-2	LDO 3.3V	LDO 3.3V. Install for complete EVM operation. Remove to allow power access to only the sequencer device.	
J25	1-2	SCL	EEPROM SCL. For EVM manufacturing only.	
J26	1-2	SDA	EEPROM SDA. For EVM manufacturing only.	
J9	1-2	GPI1	General purpose input #1. Install shunt to allow status LED operation.	
J14	1-2	GPI2	General purpose input #2. Install shunt to allow status LED operation.	
J19	1-2	GPI3	General purpose input #3. Install shunt to allow status LED operation.	
J22	1-2	GPI4	General purpose input #4. Install shunt to allow status LED operation.	
J13	1-2,7-8	PM ADDR	PMBus address (default to 101). Remove shunts for JTAG operation at address 126.	
J7		TCK	TAG TCK. Install shunt when JTAG operation is desired.	
J3		TDI	TAG TDI. Install shunt when JTAG operation is desired.	
J8		TDO	JTAG TDO. Install shunt when JTAG operation is desired.	
J4		TMS	JTAG TMS. Install shunt when JTAG operation is desired.	
J27	1-2	LEDEN	Status LED enable. Install to enable non-PWM GPIO status LED's. Remove to disable status LED loading on the GPIOs.	
J28	1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16	LEDEN	Status LED enable for FPWMs (GPI05-GPI012). Install to enable FPWM GPI0 status LED's. Remove to disable status LED loading on the FPWM GPIOs.	
J15		GPIO14/TX	Debug port TX (used for debug)	
J16		GPIO15/RX	Debug port RX (not used during debug)	

Table 3. EVM Jumpers

4.3 EVM Test Points

Table 4. EVM Test Points

TP	Color	Label	Description
TP2	WHT	LDO 3.3V	LDO 3.3V. EVM 3.3V
TP1	WHT	V33D	V33D. Sequencer 3.3V.
TP5	WHT	ADDR0	ADDRSENS0. EVM PMBus address.
TP6	ORG	ADDR1	ADDRSENS1. EVM PMBus address.
TP3	WHT	RIN	Receive input from terminal device. Connects to GPIO15 through the onboard RS232 transceiver when J16 is installed.
TP4	WHT	TOUT	Transmit output to terminal device. Connects to GPIO14 through the onboard RS232 transceiver when J15 is installed.
TP7	SM-SLV	GND	Surface mount GND
TP8	SM-SLV	GND	Surface mount GND
TP9	SM-SLV	GND	Surface mount GND
TP10	SM-SLV	GND	Surface mount GND
TP11	SM-SLV	GND	Surface mount GND
TP12	SM-SLV	GND	Surface mount GND

Description

4.4 EVM Status LEDS

LED	Color	Label	Description
D5	RED	5V ON	5VBUS ON indicator
D4	RED	V33D	Sequencer power ON
D13	RED	ALERT	PMBus Alert
D16	GREEN	CTRL	PMBus Control
D28	GREEN	USB ON	USB attached
D6	AMBER	GPI1	GPI1 input HIGH
D7	AMBER	GPI2	GPI2 input HIGH
D8	AMBER	GPI3	GPI3 input HIGH
D9	AMBER	GPI4	GPI4 input HIGH
D10	GREEN	GPIO1	GPIO1 HIGH
D11	GREEN	GPIO2	GPIO2 HIGH
D12	GREEN	GPIO3	GPIO3 HIGH
D14	GREEN	GPIO4	GPIO4 HIGH
D15	GREEN	GPIO13	GPIO13 HIGH
D17	GREEN	GPIO14/TX	GPIO14 HIGH
D18	GREEN	GPIO15/RX	GPIO15 HIGH
D19	GREEN	GPIO16	GPIO16 HIGH
D20	GREEN	GPIO17	GPIO17 HIGH
D21	GREEN	GPIO18	GPIO18 HIGH
D22	GREEN	GPIO19	GPIO19 HIGH
D23	GREEN	GPIO20	GPIO20 HIGH
D24	GREEN	GPIO21	GPIO21 HIGH
D25	GREEN	GPIO22	GPIO22 HIGH
D26	AMBER	GPIO5	GPIO5 HIGH
D27	AMBER	GPIO6	GPIO6 HIGH
D29	AMBER	GPIO7	GPIO7 HIGH
D30	AMBER	GPIO8	GPIO8 HIGH
D31	AMBER	GPIO9	GPIO9 HIGH
D32	AMBER	GPIO10	GPIO10 HIGH
D34	AMBER	GPIO11	GPIO11 HIGH
D36	AMBER	GPIO12	GPIO12 HIGH

Table 5. EVM Status LEDS

5 Description

The following paragraphs describe the UCD90SEQ64EVM-650 functionality and operation.

5.1 Communication Interface

Several communication interfaces to the sequencer are provided on the EVM.

5.1.1 USB Interface

8

An onboard USB-to-PMBus interface is provided through the USB Input (J29) connector. D28 provides USB attach status. The EVM can be fully operated from USB input power only.

5.1.2 PMBus

Standard PMBus interface is provided to the sequencer from the onboard USB-PMBus circuitry. PMBus addressing is set using the J13 jumper block for ADDRSENS1 and ADDRSENS0. respectively. ADDRx = 8 and ADDRx = 5 positions for each are provided. The EVM comes with PMBus address set to 101 decimal.

Description

PMBus Address (decimal) = 12 x ADDR1 + ADDR0 jumper block setting.

5.1.3 JTAG

Standard JTAG programming interface is provided to the sequencer through the J6 connector. The sequencer address must be set to 126 decimal to invoke sequencer JTAG operation. Install shunts at J3, J4, J7, and J8, and remove the shunts on J13 to use the JTAG interface.

5.1.4 RS232 Debug

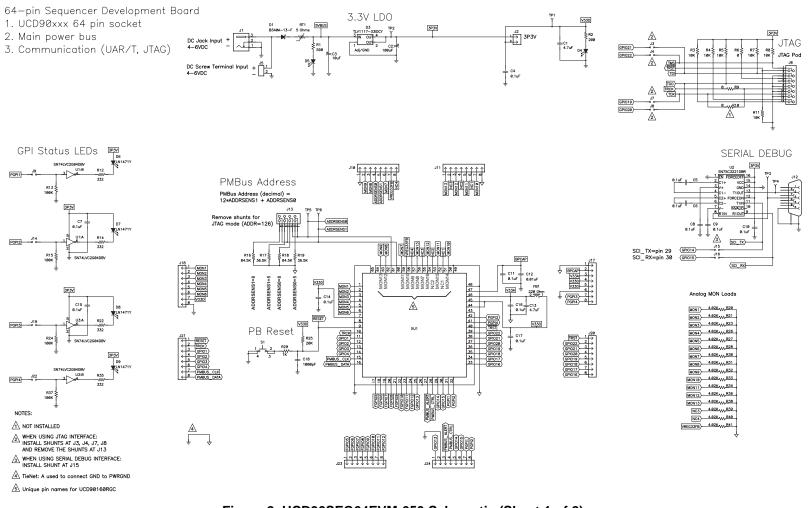
A serial debug port is provided to the sequencer through the J12 connector. Install J15 when using the RS232 interface. For debug, the terminal listens only to the sequencer.

5.2 Input Power

5VDC EVM input power is provided through the USB interface. For stand-alone operation without a USB source, EVM input power can be provided at J1 (standard dc jack) or J5 (screw jack). A wall or laptop adapter with 200-mA capability and 2.5-mm I.D. × 5.5-mm O.D. × 9.5-mm dc jack can power the EVM.

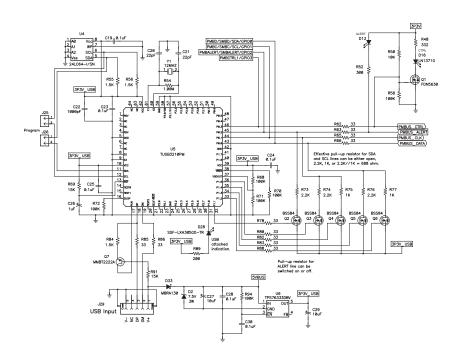
5.3 Status LED's

Visual status information for the GPI, GPIO, and PMBus signals (control and alert) is provided. Logic high at GPI1-4 or GPIO1-22 illuminates the associated LED. The GPIO status LEDs can be enabled (J27 shunt installed) or disabled (J27 shunt not installed) to prevent the LED bias from affecting the logic state of the GPIO signal during device reset. In addition, the sequencer PWM signals PWM1-PWM4 and FPWM1-FPWM8 can be disconnected from the status LEDs through the use of shunts when used for voltage margining.


5.4 Analog Monitor Inputs

The sequencer monitor inputs can be used to monitor offboard voltages. Each monitor input has a $4-k\Omega$ resistor to ground. Ensure that the external source does not exceed 2.5 V.

6 EVM Schematic, Assembly Drawings, Layout Guidelines, and Bill of Materials


6.1 Schematic

64-pin Sequencer Development Board

- 1. Status LED's
- 2. Local/external PMBUS/USB-I2C

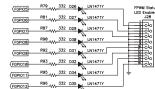
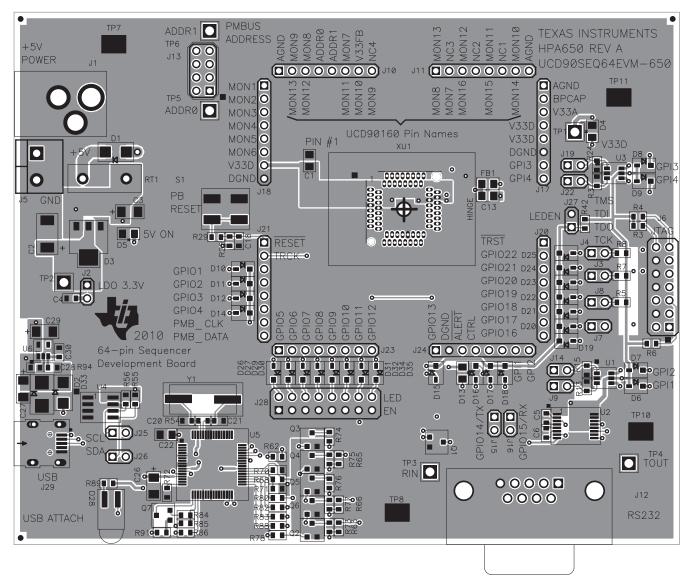



Figure 3. Figure 3. UCD90SEQ64EVM-650 Schematic (sheet 2 of 2)

6.2 PCB Drawings

www.ti.com

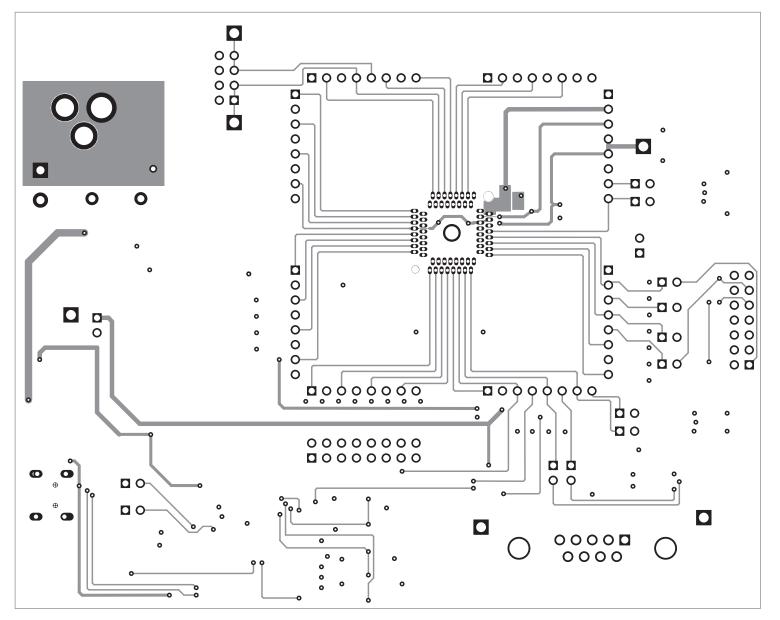


Figure 5. Layer-2 Routing

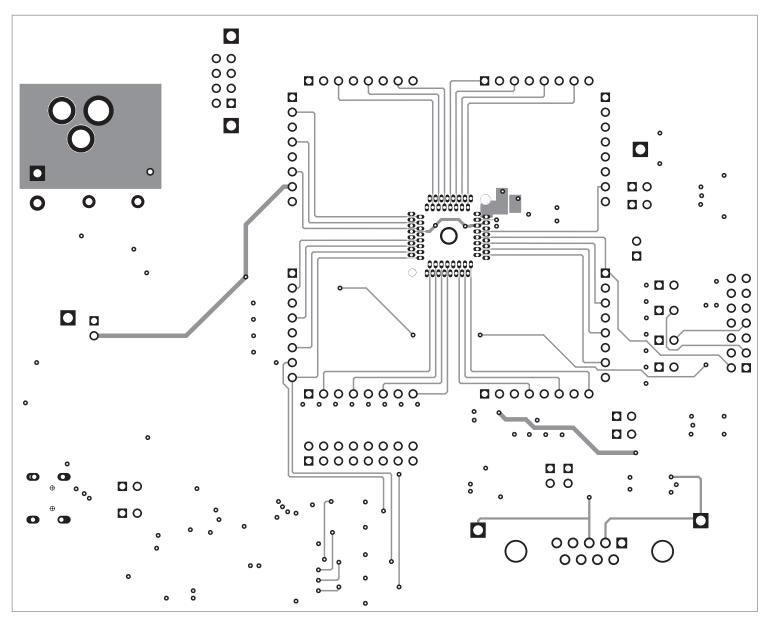


Figure 6. Layer-3 Routing

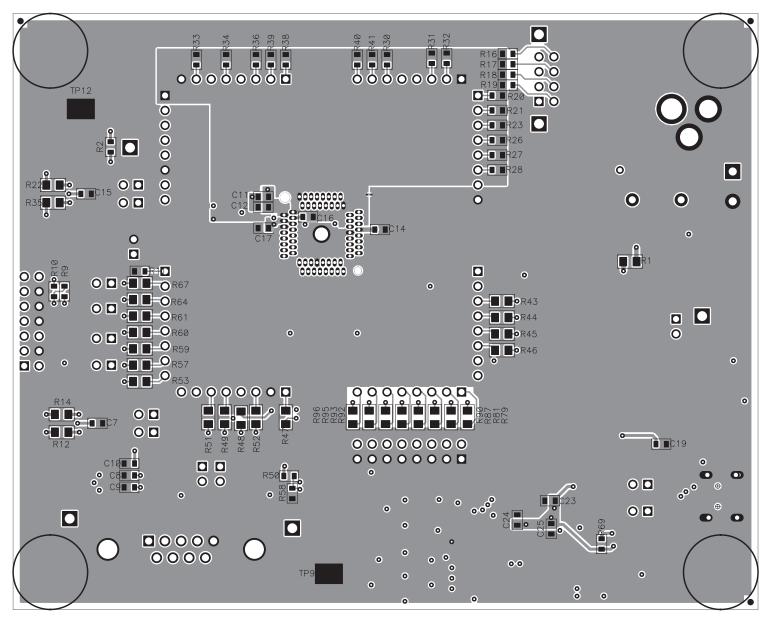


Figure 7. Bottom-Side Placement/Routing

6.3 Bill of Materials

Table 6. UCD90SEQ64EVM-650 Bill of Materials

QTY	RefDes	Value	Description	Size	Part Number	MFR
2	C1, C13	4.7uF	Capacitor, Ceramic, 10V, X5R, 20%	0805	Std	Std
1	C12	0.01uF	Capacitor, Ceramic, 50V, X7R, 10%	0603	Std	Std
1	C18	1000pF	Capacitor, Ceramic, X7R, 16V, 10%	0603	Std	Std
1	C2	100uF	Capacitor, Tantalum, 10V, 10%	6032	TAJC107K010R	AVX
2	C20, C21	22pF	Capacitor, Ceramic, 50V, C0G, 10%	0603	Std.	Std.
1	C22	1000pF	Capacitor, Ceramic, 100V, C0G, 5%	0805	Std.	Std.
1	C26	1uF	Capacitor, Tantalum, 16V, 20%	3216	293D105X0016A2T	Vishay
3	C3, C27, C29	10uF	Capacitor, Tantalum, 10V, 20%	3216	293D106X0010A2T	Vishay
18	C4–C11, C14–C17, C19, C23–C25, C28, C30	0.1uF	Capacitor, Ceramic, X7R, 16V, 10%	0603	Std	Std
1	D1	B340A-13-F	Diode, Schottky, 3A, 40V	SMA	B340A-13-F	Diodes Inc
15	D10–D12, D14–D25	LN1371G	Diode, LED, Green, 20-mA, 0.9-mcd	SMD	LN1371G	Panasonic
1	D2	7.5V	Diode, Zener, 7.5V, 3W	SMB	1SMB5922BT3	On Semi
1	D28	SSF-LXH305GD-TR	Diode, LED, Green, 20 mA, 30 mcd	SMD	SSF-LXH305GD-TR	Lumex
1	D3	TLV1117-33IDCY	IC, Adj., 3.3 V, 800mA LDO Voltage Regulators	SOT-223	TLV1117-33CDCY	TI
1	D33	MBRA130	Diode, Schottky, 1A, 30V	SMA	MBRA130	IR
3	D4, D5, D13	SML-LXT0805SRW-TR	Diode, LED, Red, 100 mA	0805	SML-LXT0805SRW-TR	Lumex
12	D6–D9, D26, D27, D29–D32, D34, D35	LN1471Y	Diode, LED, Amber, 20-mA, 0.4-mcd	0.114 x 0.049 inch	LN1471YTR	Panasonic
1	FB1	220 Ohm	Ferrite Bead, 2A	0805	BLM21PG221SN	Murata
1	J1	RAPC712X	Connector, DC Jack, Pin dia.2.5mm, Shell dia 5.5mm	0.57 x 0.35 inch	RAPC712X	Switchcraft
8	J10, J11, J17, J18, J20, J21, J23, J24	PEC08SAAN	Header, Male 8-pin, 100mil spacing,	0.100 inch x 8	PEC08SAAN	Sullins
1	J12	182-009-213R171	Connector, 9-pin D, Right Angle, Female	1.213 x 0.510	182-009-213R171	Norcomp
1	J13	PEC04DAAN	Header, Male 2x4-pin, 100mil spacing	0.20 x 0.40 inch	PEC04DAAN	Sullins
14	J2–J4, J7–J9, J14–J16, J19, J22, J25–J27	PEC02SAAN	Header, Male 2-pin, 100mil spacing,	0.100 inch x 2	PEC02SAAN	Sullins
1	J28	PEC08DAAN	Header, Male 2x8 pin, 100mil spacing	0.100 inch x 2 x 8	PEC08DAAN	Sullins
1	J29	UX60-MB-5ST	Connector, Recpt, USB-B, Mini, 5-pins, SMT	0.354in. x 0.303in.	UX60-MB-5S8	Hirose
1	J5	ED120/2DS	Terminal Block, 2-pin, 15-A, 5.1mm	0.40 x 0.35 inch	ED120/2DS	OST
1	J6	PEC07DAAN	Header, Male 2x7 pin, 100mil spacing	0.100 inch x 2x7	PEC07DAAN	Sullins
1	Q1	FDN5630	MOSFET, N-ch, 60-V,1.7-A, 100-milliohm	SSOT3	FDN5630	Fairchild
5	Q2–Q6	BSS84	Transistor, PFET, -50 V, 130 mA, Rds(ON) < 10 Ω at V(gs) = 5 V	SOT-23	BSS84	Fairchild
1	Q7	MMBT2222A	Transistor, NPN, 40 V, 500 mA	SOT-23	MMBT2222A	Fairchild
1	R1	590	Resistor, Chip, 1/10W, 1%	0805	Std	Std

Table 6. UCD90SEQ64EVM-650 Bill of Materials (continued)

QTY	RefDes	Value	Description	Size	Part Number	MFR
27	R12, R14, R22, R35, R43– R49, R51, R53, R57, R59–R61, R64, R67, R79, R81, R87, R90, R92, R93, R95, R96	332	Resistor, Chip, 1/10W, 1%	0805	Std	Std
10	R13, R15, R24, R37, R58, R68, R70–R72, R94	100K	Resistor, Chip, 1/16W, 1%	0603	Std	Std
2	R16, R18	84.5K	Resistor, Chip, 1/16W, 1%	0603	Std	Std
2	R17, R19	36.5K	Resistor, Chip, 1/16W, 1%	0603	Std	Std
2	R2, R89	200	Resistor, Chip, 1/16W, 5%	0603	Std	Std
16	R20, R21, R23, R26–R28, R30–R34, R36, R38–R41	4.02K	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	R25	20K	Resistor, Chip, 1/16W, 1%	0603	Std	Std
4	R29, R42, R75, R77	1K	Resistor, Chip, 1/16W, 1%	0603	Std	Std
7	R3–R5, R7, R8, R11, R50	10K	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	R52	300	Resistor, Chip, 1/10W, 1%	0805	Std	Std
1	R54	1.00M	Resistor, Chip, 1/16 W, 1%	0603	Std.	Std.
3	R55, R56, R84	1.5K	Resistor, Chip, 1/16 W, 5%	0603	Std	Std
3	R6, R9, R10	0	Resistor, Chip, 1/16W, 1%	0603	Std	Std
11	R62, R63, R65, R66, R78, R80, R82, R83, R85, R86, R88	33	Resistor, Chip, 1/16W, 5%	0603	Std	Std
2	R69, R91	15K	Resistor, Chip, 1/16 W, 5%	0603	Std.	Std
3	R73, R74, R76	2.2K	Resistor, Chip, 1/16 W, 5%	0603	Std.	Std.
1	RT1	5 Ohms	Inrush current limiter, 4.7A, 0.11 Ω	0.180 x 0.550	CL-150	GE Sensing
1	S1	KT11P2JM34LFS	Switch, SPST, PB Momentary, Sealed Washable	0.245 x 0.251	KT11P2JM34LFS	C & K
5	TP1– TP5	5012	Test Point, White, Thru Hole	0.125 x 0.125 inch	5012	Keystone
1	TP6	5013	Test Point, Orange, Thru Hole	0.125 x 0.125 inch	5013	Keystone
6	TP7–TP12	5016	Test Point, SM, 0.150 x 0.090"	0.185 x 0.135	5016	Keystone
2	U1, U3	SN74LVC2G04DBV	IC, Dual Schmitt-Trigger Inverter	SOT23-6	SN74LVC2G04DBV	ТІ
1	U2	SN75C3221DBR	IC, RS-232 Transceivers with AutoShutdown	SSOP-16	SN75C3221DBR	ТІ
1	U4	24LC64-I/SN	IC, Serial EEPROM, 64K, 2.5-5.5V, 400 kHz Max.	SO-8	24LC64-I/SN	Microchip
1	U5	TUSB3210PM	IC, USB, General Purpose Device Controller	PQFP-64	TUSB3210PM**	Texas Instruments
1	U6	TPS76333DBV	IC, Micro-Power 100 mA LDO Regulator	SOT23-5	TPS76333DBV	ТІ
1	XU1	64QN50S19090	Socket, 64-pin Clamshell	0.800 x 1.080 inch	64QN50S19090	Plastronics
1	Y1	12MHZ	Crystal, 12-MHz, 20 pF, ±50 PPM at 25C	0.185 x 0.532	CY12BPSMD	Crystek
1	NA	UCD90124RGC	IC, Digital PWM System Controller with Fan Control	PFC-64	UCD90124RGC	ТІ
4		SJ-5003	BUMPON HEMISPHERE 0.44 × 0.20 BLACK		SJ-5003	3M
18			Shunt, Black	100-mil	929950-00	3M

UCD90SEQ64EVM-650:— 64-Pin Sequencer Development Board 17

Table 6. UCD90SEQ64EVM-650 Bill of Materials (continued)

QTY	RefDes	Value	Description	Size	Part Number	MFR
1	-		PCB, 5 ln x 4 ln x 0.062 ln		HPA650	Any
1	N/A		USB Cable, 5-pin, B-Mini Male to Type A Male, 2m		AK672M/2-2-R	Assman

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 0 V to 5.5 V and the output voltage range of 0 V to 3.8 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 40° C. The EVM is designed to operate properly with certain components above 70° C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated