1 +10.0V Boost Converter

1.1 Output voltage ripple

The output ripple of the 10.0V boost converter with a 1A load is shown in Figure 1. The input voltage is set to 3.0V, 5.0V and 7.0V.

Channel M1: **3.0V input voltage**, 189mV peak-peak
100mV/div, 5us/div

Channel M2: **5.0V input voltage**, 154mV peak-peak
100mV/div, 5us/div

Channel M3: **7.0V input voltage**, 139mV peak-peak
100mV/div, 5us/div

![Figure 1](image-url)
1.2 Switching node (10.0V Boost Converter)

The switching node is shown in Figure 2.
The input voltage is set to 3.0V with a 1.0A load on the 10.0V output.

Channel C2: **Switching node**, -1.2V min, 21.6V max
5V/div, 2us/div

![Figure 2](image-url)
1.3 Transient response (10.0V Boost Converter)

The response to a load step is shown in Figure 3.

Channel C2: **Output voltage**, -72mV undershoot, 110mV overshoot
100mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 0.5A to 1.0A and vice versa
1A/div, 1ms/div

![Figure 3](image-url)
1.4 Frequency response (10.0V Boost Converter)

Figure 4 shows the loop response of the boost converter at a load of 0.5A.

3.0V input
- 63 deg phase margin @ crossover frequency of 1.2 kHz
- -23 db gain margin

5.0V input
- 63 deg phase margin @ crossover frequency of 3.1 kHz
- -23 db gain margin

7.0V input
- 53 deg phase margin @ crossover frequency of 6.2 kHz
- -20 dB gain margin

Figure 4
1.5 Efficiency (10.0V Boost Converter)

The efficiency at 3.0V and 7.0V input voltage is shown in Figure 5. The 7.5V buck converter was running to supply the IC.

![Graph of Efficiency - Boost @ +10.0V](image)

Figure 5
1.6 Load regulation (10.0V Boost Converter)

The load regulation of the boost converter is shown in Figure 6.

![Load regulation - Boost @ +10.0V](image)

Figure 6
2 +3.3V Buck Converter

2.1 Output voltage ripple (3.3V Buck Converter)

The output ripple of the 3.3V buck converter with a 5A load is shown in Figure 7. The input voltage is set to 12.0V.

Channel C2: 12.0V input voltage, 17mV peak-peak
20mV/div, 5us/div

Figure 7
2.2 Switching node (3.3V Buck Converter)

The switching node is shown in Figure 8.
The input voltage is set to 12.0V with a 5.0A load on the 3.3V output.

Channel C2: **Switching node**, -1.4V min, 38.0V max
10V/div, 1us/div

![Figure 8](image-url)
2.3 Transient response (3.3V Buck Converter)

The response to a load step is shown in Figure 9.

Channel C2: **Output voltage**, -162mV undershoot, 146mV overshoot
100mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 2.5A to 5.0A and vice versa
2A/div, 1ms/div

![Figure 9](image-url)
2.4 Frequency response (3.3V Buck Converter)

Figure 10 shows the loop response of the 3.3V buck converter at a load of 2.5A.

10.0V input
- 67 deg phase margin @ crossover frequency of 9.5 kHz
- -19 db gain margin

14.0V input
- 72 deg phase margin @ crossover frequency of 10.6 kHz
- -18 db gain margin

30.0V input
- 72 deg phase margin @ crossover frequency of 10.4 kHz
- -18 dB gain margin

Figure 10
2.5 Efficiency (3.3V Buck Converter)

The efficiency at 12.0V input voltage is shown in Figure 11. The 7.5V buck converter and the boost converter were disabled.

![Efficiency - Buck @ +3.3V](image-url)

Figure 11
2.6 Load regulation (3.3V Buck Converter)

The load regulation of the 3.3V buck converter is shown in Figure 12.

![Load regulation - Buck @ 3.3V](image)

Figure 12
2.7 Startup (3.3V Buck Converter)

The startup of the 3.3V buck with no load on the output is shown in Figure 13.

Figure 13
2.8 Shutdown (3.3V Buck Converter)

The shutdown of the 3.3V buck with 5.0A load on the output is shown in Figure 14.

![Figure 14](image-url)
3 +7.5V Buck Converter

3.1 Output voltage ripple (7.5V Buck Converter)

The output ripple of the 7.5V buck converter with a 2A load is shown in Figure 15. The input voltage is set to 12.0V.

Channel C2: **12.0V input voltage**, 5mV peak-peak
20mV/div, 5us/div

![Figure 15]({{image_url}})
3.2 Switching node (7.5V Buck Converter)

The switching node is shown in Figure 16. The input voltage is set to 12.0V with a 2.0A load on the 7.5V output.

Channel C2: **Switching node, -1.2V min, 29.7V max**

5V/div, 1us/div

![Figure 16](image-url)
3.3 Transient response (7.5V Buck Converter)

The response to a load step is shown in Figure 17.

Channel C2: **Output voltage**, -79mV undershoot, 74mV overshoot
50mV/div, 1ms/div, AC coupled

Channel C1: **Load current**, load step 1.0A to 2.0A and vice versa
1A/div, 1ms/div

![Figure 17](image-url)
3.4 Frequency response (7.5V Buck Converter)

Figure 18 shows the loop response of the 7.5V buck converter at a load of 1.0A.

10.0V input
- 96 deg phase margin @ crossover frequency of 9.1 kHz
- -11 db gain margin

14.0V input
- 99 deg phase margin @ crossover frequency of 9.9 kHz
- -11 db gain margin

30.0V input
- 105 deg phase margin @ crossover frequency of 11.2 kHz
- -10 dB gain margin
3.5 Efficiency (7.8V Buck Converter)

The efficiency at 12.0V input voltage is shown in Figure 19. The 3.3V buck converter and the boost converter were disabled.

![Efficiency - Buck @ +7.5V](image_url)
3.6 Load regulation (7.5V Buck Converter)

The load regulation of the 7.5V buck converter is shown in Figure 20.

![Graph showing load regulation of 7.5V buck converter](attachment:image.png)
3.7 Startup (5.0V Buck Converter)

The startup of the 7.5V buck with no load on the output is shown in Figure 21.

Figure 21
3.8 Shutdown (5.0V Buck Converter)

The shutdown of the 7.5V buck with 2.0A load on the output is shown in Figure 22.

Figure 22
For Feasibility Evaluation Only, in Laboratory/Development Environments. The EVM is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

Certain Instructions. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI is not responsible or liable for such failure or compliance.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>DSP</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated