1 Introduction

The TPD4S214 is a single-chip protection solution for USB On-the-Go and other current limited USB applications. This device includes an integrated low \(R_{DS(on)} \) N-channel current limited switch for OTG current supply to peripheral devices. TPD4S214 offers low capacitance TVS ESD clamps for the D+, D–, and ID pins for both USB2.0 and USB3.0 applications. The VBUS pin can handle continuous voltage ranging from \(-2\)V to \(30\)V. The over voltage lock-out (OVLO) at the VBUS pin ensures that if there is a fault condition at the VBUS line, the TPD4S214 is able to isolate it and protects the system from damage. Similarly, the under voltage lock out (UVLO) at the VOTG_IN pin ensures that there is no power drain from the internal OTG supply to external VBUS if VOTG_IN drops below safe operating level.

When EN is high, the OTG switch is activated and the FLT pin indicates whether there is a fault condition. The soft start feature waits 16 ms to turn on the OTG switch after all operating conditions are met. The FLT pin asserts low during any one of the following fault conditions: OVLO (\(V_{BUS} > V_{OVLO}\)), over temperature, over current, short circuit condition, or reverse-current-condition (\(V_{BUS} > V_{OTG_IN}\)). The OTG switch is turned off during any fault condition; in addition, it is also turned off during UVLO condition (\(V_{OTG_IN} < V_{UVLO}\)). Once the switch is turned off, the IC periodically rechecks the faults and UVLO internally. If the IC returns to normal operating conditions, the switch turns back on and FLT is reset to high.

There is also a VBUS detection feature for facilitating USB communication between USB host and peripheral device. Refer to Table 2 in data sheet for detection scheme. If this is not used, DET pin can be either floating or connected to ground.
2 Highlighted Features

- Input Voltage Protection at VBUS up to 30V
- Low RDS(ON) N-CH FET Switch for high efficiency
- Compliant with USB2.0 and USB3.0 OTG spec
- User Adjustable current limit from 250mA to beyond 900mA
- Built-in soft-start
- Reverse current blocking
- Over Voltage Lock Out for VBUS
- Under Voltage Lock Out for VOTG_IN
- Thermal shutdown and short circuit protection
- Auto retry on any fault; no latching off states
- Integrated VBUS detection circuit
- Low Capacitance TVS ESD Clamp for USB2.0 High speed Data Rate
- Internal 16ms startup delay
- ESD Performance D+/D–/ID/VBUS Pins:
 - ±15-kV Contact Discharge (IEC 61000-4-2)
 - ±15-kV Air Gap Discharge (IEC 61000-4-2)

Space Saving WCSP (12-YFF) Package

3 EVM Description

The TPD4S214EVM provides full functionality of TPD4S214. Dependent on the jumper configurations, VOTG_IN can be supplied through either the USB Type-A connector labeled USB_IN or the banana jack labeled VOTG_IN. VBUS can be output to either the Micro USB-B connector labeled USB_OUT or a two pin terminal block labeled VBUS_OUT. This configuration allows the device to be tested without the use of expensive breakout boards; yet one or two breakout boards can still be accommodated. D+/D– lines can only be characterized through the USB connectors.

Test points are provided for monitoring the DET, EN, and FLT logic pins.

VBUS current limiting adjustments are made by jumper selection of ADJ_SEL. R3 is left unpopulated to allow for a custom user preferred value.
Table 1. Jumper Configurations

<table>
<thead>
<tr>
<th>Jumper Configurations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OTG_IN} Source selection</td>
<td>USB_IN port</td>
<td>VOTG_IN banana connector</td>
</tr>
<tr>
<td>EN</td>
<td>Sets EN pin low</td>
<td>Sets EN pin high in reference to VCCA</td>
</tr>
</tbody>
</table>

Table 2. Jumper Configurations

<table>
<thead>
<tr>
<th>Jumper Configurations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VBUS Source selection</td>
<td>VBUS_OUT Terminal block</td>
<td>USB_OUT connector</td>
</tr>
</tbody>
</table>

Table 3. Jumper Configurations

<table>
<thead>
<tr>
<th>VBUS current limiter adjust</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJ_SELECT</td>
<td>~ 1A</td>
<td>~ 0.5A</td>
<td>~ 1.5A</td>
</tr>
</tbody>
</table>
Table 4. Bill of Materials

<table>
<thead>
<tr>
<th>Qty</th>
<th>RefDes</th>
<th>Size</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U1</td>
<td>0.051 inch x 0.067</td>
<td></td>
<td>IC, USB OTG COMPANION DEVICE</td>
<td>TPD4S214YFF</td>
<td>TI</td>
</tr>
<tr>
<td>1</td>
<td>CBUS</td>
<td>603</td>
<td>1uF</td>
<td>Capacitor, Ceramic Chip, 10V, ±10%</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>COTG</td>
<td>603</td>
<td>10uF</td>
<td>Capacitor, Ceramic Chip, 10V, ±10%</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>3</td>
<td>J4 J6 J8</td>
<td>0.300 inch dia</td>
<td></td>
<td>Connector, Banana Jack, Uninsulated</td>
<td>3267</td>
<td>Pomona</td>
</tr>
<tr>
<td>1</td>
<td>J6</td>
<td>0.354 inch x 0.628</td>
<td></td>
<td>Connector, 15A, 300V Male 2 Pole, 5.08 mm</td>
<td>ED120/2DS</td>
<td>On Shore Technology Inc.</td>
</tr>
<tr>
<td>1</td>
<td>USB_OUT</td>
<td>0.201 inch x 0.295</td>
<td></td>
<td>Connector, SMT, Micro USB-B, flangeless</td>
<td>SD-105017-1001</td>
<td>Molex</td>
</tr>
<tr>
<td>1</td>
<td>USB_IN</td>
<td>0.596 inch x 0.618</td>
<td></td>
<td>CONN USB 2.0 R/A FMAL TYPE-A SMD</td>
<td>AU-Y1006-2-R</td>
<td>Assman WSW Components</td>
</tr>
<tr>
<td>2</td>
<td>D1-2</td>
<td>603</td>
<td>SML-LX0603GW-TR</td>
<td>Diode, LED, Red, 1.8, 2mA, 2.5 mcd</td>
<td>SML-311UTT86</td>
<td>Rohm Semiconductor</td>
</tr>
<tr>
<td>3</td>
<td>J1-3</td>
<td>0.10 inch x 0.30</td>
<td>PEC03SAAN</td>
<td>Header, Male 3-pin, 100mil spacing,</td>
<td>PEC03SAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>1</td>
<td>J7</td>
<td>0.20 inch x 0.30</td>
<td>PEC03DAAN</td>
<td>Header, Male 2x3-pin, 100mil spacing</td>
<td>PEC03DAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>2</td>
<td>R4-5</td>
<td>1206</td>
<td>10K</td>
<td>Resistor, Metal Film, 1/4 watt, ±5%</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>1206</td>
<td>110K</td>
<td>Resistor, Metal Film, 1/4 watt, ±5%</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>1206</td>
<td>56K</td>
<td>Resistor, Metal Film, 1/4 watt, ±5%</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>4</td>
<td>TP1-4</td>
<td>0.10 inch dia.</td>
<td>5002</td>
<td>Test Point, White, Thru Hole Color Keyed</td>
<td>5002K-NB</td>
<td>Keystone</td>
</tr>
</tbody>
</table>
Figure 1. Schematic Drawing
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio | www.ti.com/audio
Amplifiers | www.amplifier.ti.com
Data Converters | www.dataconverter.ti.com
DLP® Products | www.dlp.com
DSP | dsp.ti.com
Clocks and Timers | www.ti.com/clocks
Interface | interface.ti.com
Logic | logic.ti.com
Power Mgmt | power.ti.com
Microcontrollers | www.ti.com/microcontroller
RFID | www.ti-rfid.com
OMAP Applications Processors | www.ti.com/omap
Wireless Connectivity | www.ti.com/wirelessconnectivity

Automotive and Transportation | www.ti.com/automotive
Communications and Telecom | www.ti.com/communications
Computers and Peripherals | www.ti.com/computers
Consumer Electronics | www.ti.com/consumer-apps
Energy and Lighting | www.ti.com/energy
Industrial | www.ti.com/industrial
Medical | www.ti.com/medical
Security | www.ti.com/security
Space, Avionics and Defense | www.ti.com/space-avionics-defense
Video and Imaging | www.ti.com/video
TI E2E Community | e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated