This user's guide details the hardware systems and operation of the Booster Pack for the BOOSTXL-DRV8301 Motor Drive.

Contents

1 BOOSTXL-DRV8301 PCB (3-D Views) ................................................................. 2
2 Introduction to the BOOSTXL-DRV8301 ..................................................... 3
   2.1 Features ............................................................................................................ 3
   2.2 Pinout ................................................................................................................ 4
3 Getting Started .................................................................................................... 4
   3.1 Requirements .................................................................................................... 4
   3.2 Configuring the LaunchPad ............................................................................. 5
   3.3 Connecting the Hardware ............................................................................... 6
4 Demo Application ................................................................................................ 6
5 Detailed Hardware Description .......................................................................... 6
   5.1 DC Bus and Phase Voltage Sense ................................................................. 6
   5.2 Low-Side Current Shunt Sense ...................................................................... 7
   5.3 Booster Pack PWM Signals .......................................................................... 8
   5.4 Booster Pack GPIO Signals ........................................................................... 8
   5.5 Hardware Files (Schematic and Gerber) ...................................................... 8

List of Figures

1 PCB Top 3-D View............................................................................................... 2
2 PCB Bottom 3-D View......................................................................................... 2
3 BOOSTXL-DRV8301 on Top of LAUNCHXL-F28027F .................................... 3
4 Booster Pack Pinout ............................................................................................ 4
5 LAUNCHXL-F28027F Configurations ............................................................... 5
6 Voltage Sense Configuration ............................................................................. 6
7 Current Sense Configuration ............................................................................. 7
8 OPA2374 External Amplifier ............................................................................ 8

NexFET, InstaSPIN, TI are trademarks of Texas Instruments.
The following views are 3-D models of the BOOSTXL-DRV8301 Motor Drive Booster Pack.

**Figure 1. PCB Top 3-D View**

**Figure 2. PCB Bottom 3-D View**
2 Introduction to the BOOSTXL-DRV8301

Learn more about the Motor Drive Booster Pack based on the DRV8301 3-phase pre-driver and CSD18533Q5A N-channel NexFET™ power MOSFETs. This Booster Pack provides a complete 3-phase drive stage to evaluate motor applications.

2.1 Features

- Complete 3-phase drive stage in a small form factor (2.2 in. × 2.3 in.)
- Supports 6 to 24 V and up to 10-A RMS (14-A Peak)
- 6× CSD18533Q5A N-Channel NexFET Power MOSFETs (< 6.5 mΩ)
- Individual phase and DC bus voltage sense
- Low-side current shunt sense on each phase
- Fully protected drive stage including short circuit, thermal, shoot-through, and undervoltage protection
- Integrated 1.5-A step-down buck converter
- Combine with compatible LaunchPad XL kits to create a complete 3-phase motor drive control platform
- Optimized for the Piccolo LAUNCHXL-F28027F LaunchPad to support the InstaSPIN™ FOC sensorless control solution

Figure 3. BOOSTXL-DRV8301 on Top of LAUNCHXL-F28027F
2.2 Pinout

The BOOSTXL-DRV8301 brings out a combination of power, control, and feedback signals to the XL LaunchPad headers.

**BOOSTXL-DRV8301 Pinout**

- Onboard step-down buck converter of the DRV8301 device to provide 3.3-V power to the LaunchPad
- Fault reporting through the nFAULT and nOCTW signals
- SPI interface to set device configuration, operating parameters, and read out diagnostic information
- Independent control through three or six PWM inputs
- Voltage sense for the DC bus and each phase output (scaled for 6-V to 24-V operation)
- Low-side current shunt sensing on each phase (scaled for 0-A to 14-A peak operation)

3 Getting Started

3.1 Requirements

The Motor Drive Booster Pack is not a standalone evaluation kit. It requires a compatible XL LaunchPad to provide the appropriate control signals. The Motor Drive Booster Pack and compatible XL LaunchPad also require a 3-phase motor and sufficient power supply.
3.2 Configuring the LaunchPad

The BOOSTXL-DRV8301 Motor Drive Booster Pack supplies 3.3-V power to the LaunchPad through the onboard 1.5-A step-down buck converter of the DRV8301. TI™ recommends removing the jumper on the LaunchPad that connects the 3.3-V emulation and controller power supplies.

The BOOSTXL-DRV8301 nFAULT and nOCTW signals share lines with the LaunchPad UART RX and TX signals. To see proper nFAULT and nOCTW reporting on the onboard LEDs and microcontroller GPIO, disconnect the UART lines from the emulation side of the LaunchPad to the microcontroller.

Ex. LAUNCHXL-F28027F

Remove the 3.3-V jumper, JP1, for the LAUNCHXL-F28027F LaunchPad. Turn switch S4 OFF (UART connection to emulation hardware) on the LaunchPad.
3.3 Connecting the Hardware

1. Plug the Motor Drive Booster Pack onto the LaunchPad as shown in Figure 3. The terminal block headers should be oriented towards the USB connector.

2. Connect the 3-phase motor to the terminal block header, J11. The motor connections are labeled A, B, and C, but can connect in any order.

3. Connect the power supply, which powers the Motor Drive Booster Pack’s DRV8301 3-Phase Pre-Driver and Drive Stage, to the terminal block header, J2. The connections have been labeled PVDD and GND. For full performance, ensure the current supply is sufficient for the motor. The Motor Drive Booster Pack has a designed operating range from 6 to 24 V, up to 10-A RMS (14-A peak). (1)

4. Enable the power supply.

5. Enable the control algorithm and spin the motor. The BOOSTXL-DRV8301 Booster Pack combined with a compatible XL LaunchPad provides a complete motor drive and control evaluation platform. The Piccolo LAUNCHXL-F28027F LaunchPad works with the TI InstaSPIN™ FOC to provide a sensorless control solution. To get started with InstaSPIN-FOC download and run MotorWare and review the LAUNCHXL and BOOSTXL resources.

4 Demo Application

As mentioned previously, the BOOSTXL-DRV8301 Motor Drive Booster Pack is optimized to work with Piccolo LAUNCHXL-F28027F LaunchPad to provide a complete motor drive and control platform. To quickly make the 3-phase motors spin, see InstaSPIN-FOC sensorless control solution. Multiple projects, labs, and an easy-to-use GUI are available with MotorWare, available at http://www.ti.com/tool/motorware with detailed documentation and user guides.

5 Detailed Hardware Description

The BOOSTXL-DRV8301 Motor Drive Booster Pack is a complete drive stage for a 3-phase application. This Motor Drive Booster Pack consists of the DRV8301 pre-driver and CSD18533Q5A N-Channel NexFET™ Power MOSFETs. See the respective data sheets for the DRV8301 and CSD18533Q5A for more information concerning the individual devices.

5.1 DC Bus and Phase Voltage Sense

The Motor Drive Booster Pack is designed with voltage sense circuits on the DC bus (PVDD) and each half-bridge outputs (phases A, B, and C). These circuits (shown in Figure 6) consist of a voltage divider with a filtering capacitor to reduce high-frequency noise on the ADC pins. These circuits are scaled for 26.314 V, with a filter pole location of 364.692 Hz. The high-side resistors for the phase outputs are located near the motor output header, J11, whereas the low side resistors and filtering capacitors are located near the ADC inputs on the Booster Pack to LaunchPad header, J3, for improved noise reduction. This requirement and the calculations are described in the InstaSPIN™ FOC User’s Guide in Chapter 5.

---

Figure 6. Voltage Sense Configuration

(1) At high currents, the drive stage can increase to high temperatures
5.2 Low-Side Current Shunt Sense

The Motor Drive Booster Pack has low side current shunt sense for each half-bridge (phases A, B, and C). The current sense setup takes advantage of the dual shunt current amplifiers (phases A and B) of DRV8301 and an external TI OPA2374 CMOS operation amplifier (phase C). The configuration for the low-side sense resistor is shown in Figure 7. The amplifier senses voltage across a 0.01-Ω sense resistor through differential connections. The current measurement is scaled for ±16.5 A. This requirement and the calculations are described in the InstaSPIN™ FOC User's Guide in Chapter 5.

![Figure 7. Current Sense Configuration](image)

The configuration for the external OPA2374 (phase C current sense), shown in Figure 8, is set to closely mirror the internal amplifiers of the DRV8301. The gain is set to 10 with a reference voltage of approximately 1.65 V.
5.3 **Booster Pack PWM Signals**

The DRV8301 can be configured for two different PWM control modes outlined further in the DRV8301 datasheet. These control modes give PWM control through three or six independent inputs. Six-input PWM mode gives independent control of the low-side and high-side gates for each half-bridge. Three-input PWM mode gives control of the high-side gates and low-side control by an internally generated complementary signal with minimum internal dead time.

5.4 **Booster Pack GPIO Signals**

The Motor Drive Booster Pack brings out the GPIO signals for the DRV8301 to the LaunchPad XL. These signals are described in detail in the following list and further information can be found in the DRV8301 datasheet.

1. **nFAULT** – Fault report indicator; specific fault status can be obtained through the status registers
2. **nOCTW** – Overcurrent, overtemperature, or both warning indicator, specific OCTW status can obtained through the status registers
3. **EN_GATE** – Enables gate driver and current shunt amplifiers
4. **DC_CAL** – When high, device shorts inputs of shunt amplifiers and disconnects loads; the LaunchPad XL calibrates DC offset

5.5 **Hardware Files (Schematic and Gerber)**

The complete design files are in the tool folder (www.ti.com/drv8301-boosterpack) including the schematic, Gerbers, layout files, PCB views, and bill of materials.
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détaçables
Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
【Important Notice for Users of EVMs for RF Products in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan.
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for any altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

**Products**

<table>
<thead>
<tr>
<th>Audio</th>
<th><a href="http://www.ti.com/audio">www.ti.com/audio</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td><a href="http://www.dlp.com">www.dlp.com</a></td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td><a href="http://www.ti.com/clocks">www.ti.com/clocks</a></td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td><a href="http://www.ti-rfid.com">www.ti-rfid.com</a></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td><a href="http://www.ti.com/omap">www.ti.com/omap</a></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td><a href="http://www.ti.com/wirelessconnectivity">www.ti.com/wirelessconnectivity</a></td>
</tr>
</tbody>
</table>

**Applications**

| Automotive and Transportation | www.ti.com/automotive |
| Communications and Telecom   | www.ti.com/communications |
| Computers and Peripherals    | www.ti.com/computers |
| Consumer Electronics         | www.ti.com/consumer-apps |
| Energy and Lighting          | www.ti.com/energy |
| Industrial                   | www.ti.com/industrial |
| Medical                      | www.ti.com/medical |
| Security                     | www.ti.com/security |
| Space, Avionics and Defense  | www.ti.com-space-avionics-defense |
| Video and Imaging            | www.ti.com/video |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated