The bqTESLA™ wireless power transmitter evaluation module from Texas Instruments is a high-performance, easy-to-use development module for the design of wireless power solutions. The bq500412 EVM evaluation module (EVM) provides all the basic functions of a Qi-compliant three coil, A6 type, wireless charger pad. The EVM is intended to be used with bq51013BEVM-764 or any other Qi-compliant receiver. Both the WPC 1.0 and WPC 1.1 receivers are supported with this design. The bq500412EVM-584 is a 12-V input design with an optional boost convert for operation from 5-V input.

Contents
1 Applications .. 2
2 bq500412EVM-550 Electrical Performance Specifications .. 2
3 Modifications .. 2
4 Connector and Test Point Descriptions ... 3
 4.1 Input/Output Connections .. 3
 4.2 Test Point Descriptions .. 3
5 Schematic and Bill of Materials .. 5
6 Test Setup .. 10
 6.1 Equipment .. 10
 6.2 Equipment Setup .. 11
7 bq500412EVM-584 Assembly Drawings and Layout .. 14
8 Reference .. 19
9 FCC and IC Regulatory Compliance .. 20

List of Figures
1 bq500412EVM-584 Schematic (1 of 2) .. 5
2 bq500412EVM-584 Schematic (2 of 2) .. 6
3 Equipment Setup .. 11
4 Efficiency versus Power, bq500412EVM-584 Transmitter and HPA764 Receiver 12
5 Assembly Top .. 14
6 Top Silk .. 15
7 Top Layer ... 16
8 Layer 2 .. 17
9 Layer 3 .. 18
10 Bottom Layer .. 19

List of Tables
1 bq500412EVM-584 Electrical Performance Specifications .. 2
2 Bill of Materials .. 7
1 Applications

The bq500412EVM-584 evaluation module demonstrates the transmitter portion of the bqTESLA™
wireless power system. This transmitter EVM is a complete transmitter-side solution that powers a
bqTESLA™ receiver. The EVM requires only input power for operation, 12 V at 1 A or 5 V at 2.5 A. All
transmitter-side electronics and transmitter coils are on a single 4-layer printed-circuit board (PCB). The
open design allows easy access to key points of the electrical schematic.

This EVM has the following features:
- WPC A6-Type transmitter coil, 70 mm × 25 mm free positioning area
- Input voltage 12 V or 5 V, using optional boost converter
- WPC 1.1 Foreign Object Detection (FOD) and WPC 1.0 Parasitic Metal Object Detection (PMOD)
- Dynamic Power Limiting™ (DPL) allows operation from a 5-V supply with limited current capability (for
 example, a USB port)
- Reduced parts count from the legacy bq500410A design
- Compact power section design using the CSD97374 NexFET power stage
- LED indicates power transfer or power fault state

2 bq500412EVM-550 Electrical Performance Specifications

Table 1 provides a summary of the EVM performance specifications. All specifications are given for an
ambient temperature of 25°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notes and Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input voltage</td>
<td>11.50</td>
<td>12.0</td>
<td>12.50</td>
<td>V</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input current</td>
<td>$V_{IN} = 12$ V, RX $I_{OUT} = 1$ A at 5 V</td>
<td>570</td>
<td>1000</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Input no-load current</td>
<td>$V_{IN} = 12$ V, $I_{OUT} = 0$ A</td>
<td>72</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Input stand-by current</td>
<td>$V_{IN} = 12$ V</td>
<td>18.75</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output voltage</td>
<td>$V_{IN} = \text{Nom}$, $I_{OUT} = \text{Nom}$</td>
<td>4.5</td>
<td>5</td>
<td>5.1</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>Output ripple</td>
<td>$V_{IN} = \text{Nom}$, $I_{OUT} = \text{Max}$</td>
<td>200</td>
<td></td>
<td>mV_{pp}</td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = \text{Min to Max}$</td>
<td>$V_{IN} = \text{Min to Max}$</td>
<td>0</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Output overcurrent</td>
<td>$V_{IN} = \text{Nom}$</td>
<td>1</td>
<td>1.1</td>
<td>A</td>
</tr>
</tbody>
</table>

3 Modifications

See the datasheet (SLUSB026) when changing components.

Use LED mode – resistor R32 to change the behavior of the status LED, D6, D7 and D8. The standard
value is 42.2 kΩ for control option 1, see the datasheet for additional settings.

FOD threshold setting can be changed using R34. If R34 is removed then FOD function is disabled.

PMOD threshold setting can be changed using R35. If R35 is removed then PMOD function is disabled.

FOD_CAL can be used to change the slope of the FOD LOSS curve for better FOD performance, R33.
4 Connector and Test Point Descriptions

4.1 Input/Output Connections

The connection points are described in Section 4.1.1 through Section 4.1.5.

4.1.1 J1 – V_IN
Input power 12 V ±200 mV, return at J2.

4.1.2 J2 – GND
Return for input 12 V at J1.
J3 – Input Power 5 V ±100 mV, return at J4.
J4 – Return for 5 V input at J3

4.1.3 J6 – JTAG
Factory use only.

4.1.4 J7 – Serial Interface
Used with bqTESLA TX Tuning Tool Software for FOD set up.

4.1.5 J5 - Micro USB
Input power connector.

4.2 Test Point Descriptions

The test points are described in Section 4.2.1 through Section 4.2.15.

4.2.1 TP1 – DPWM Signal
Digital output signal from bq500412 to H-Bridge drive.

4.2.2 TP2 – I_SENSE Signal
Input current-sense voltage, scale 1 V = 0.5 A.

4.2.3 TP3 – COMM + Signal
Sample of coil voltage for communications with RX.

4.2.4 TP4 – COMM - Signal
Sample of coil return for communications.

4.2.5 TP5 – Reserved
Reserved – no connection.

4.2.6 TP6 – Reserved
Reserved – no connection.

4.2.7 TP7 – V_SENSE
Voltage sample of bridge voltage, divider ration 76.8 k / 10 k.
4.2.8 **TP8 – Buzzer AC Drive**
Output from IC to drive AC buzzer, signals start of power transfer.

4.2.9 **TP9 – Buzzer DC Drive**
Output from IC to drive DC buzzer, signals start of power transfer.

4.2.10 **TP10 - V-in**
Sample voltage used for DPL, represents 5-V input.

4.2.11 **TP11 – Analog Ground**
Low-noise analog ground.

4.2.12 **TP12 – Analog Ground**
Low-noise analog ground

4.2.13 **TP13 – Coil 1 Enable Drive**
Output from bq500412, low enables coil 1 drive.

4.2.14 **TP14 – Coil 2 Enable Drive**
Output from bq500412, low enables coil 2 drive.

4.2.15 **TP15 – Coil 3 Enable Drive**
Output from bq500412, low enables coil 3 drive.
5 Schematic and Bill of Materials

This section includes the schematics and bill of materials for the EVM.

Figure 1 and Figure 2 illustrate the schematics for this EVM.
Schematic and Bill of Materials

PCB Label

This Assembly Note is for PCB labels only.

Label Assembly Note

1. **ZZ1**: This Assembly Note is for PCB labels only.
2. **ZZ2**: These assemblies are ESD sensitive, ESD precautions shall be observed.
3. **ZZ3**: These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.
4. **ZZ4**: These assemblies must comply with workmanship standards IPC-A-610 Class 2, unless otherwise specified.

Figure 2. bq500412EVM-584 Schematic (2 of 2)
Table 2 contains the BOM for this EVM.

Table 2. Bill of Materials

<table>
<thead>
<tr>
<th>Designator</th>
<th>Qty</th>
<th>Value</th>
<th>Description</th>
<th>Package Reference</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Alternate Part Number</th>
<th>Alternate Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C5, C6, C8, C11, C12, C14, C16, C20, C27, C49, C52, C56, C58</td>
<td>14</td>
<td>0.1uF</td>
<td>CAP, CERM, 0.1uF, 25V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C1608X7R1E104K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2, C10, C26</td>
<td>3</td>
<td>100pF</td>
<td>CAP, CERM, 100pF, 50V, +/-5%, COG/NPO, 0603</td>
<td>0603</td>
<td>C0603C0G0J102J080</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>2700pF</td>
<td>CAP, CERM, 2700pF, 50V, +/-5%, C0G/NPO, 0603</td>
<td>0603</td>
<td>C1608C0G0J216K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>47uF</td>
<td>CAP, CERM, 47uF, 6.3V, +/-20%, X5R, 1206</td>
<td>1206</td>
<td>C3216X5R0J476M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7, C13, C17, C24, C59</td>
<td>5</td>
<td>1uF</td>
<td>CAP, CERM, 1uF, 16V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C1608X7R1C105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9, C15</td>
<td>2</td>
<td>4.7uF</td>
<td>CAP, CERM, 4.7uF, 6.3V, +/-20%, X5R, 0603</td>
<td>0603</td>
<td>C1608X5R0J475M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18, C19</td>
<td>2</td>
<td>10uF</td>
<td>CAP, CERM, 10uF, 16V, +/-20%, X7R, 1210</td>
<td>1210</td>
<td>C3225X7R1C106M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22, C28, C29, C53, C55</td>
<td>5</td>
<td>4700pF</td>
<td>CAP, CERM, 4700pF, 100V, +/-5%, C0G/NP0, 0805</td>
<td>0805</td>
<td>C2012C0G2A472J</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>1</td>
<td>330pF</td>
<td>CAP, CERM, 330pF, 50V, +/-5%, C0G/NP0, 0603</td>
<td>0603</td>
<td>C1608C0G1H331J</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>1</td>
<td>4.7uF</td>
<td>CAP, CERM, 4.7uF, 10V, +/-20%, X7R, 0805</td>
<td>0805</td>
<td>C2012X7R1A475M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>1</td>
<td>2.2uF</td>
<td>CAP, CERM, 2.2uF, 10V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C3216X7R1E105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>1</td>
<td>1uF</td>
<td>CAP, CERM, 1uF, 25V, +/-10%, X7R, 1206</td>
<td>1206</td>
<td>C3216X7R1E105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32, C33, C34, C35</td>
<td>4</td>
<td>0.1uF</td>
<td>CAP, CERM, 0.1uF, 25V, +/-5%, C0G/NP0, 0603</td>
<td>0603</td>
<td>C1608C0G1E103J</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36, C37, C38</td>
<td>3</td>
<td>22uF</td>
<td>CAP, CERM, 22uF, 16V, +/-20%, X7R, 1210</td>
<td>1210</td>
<td>C3225X7R1C226M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39, C40, C42, C43, C45, C46</td>
<td>6</td>
<td>0.068uF</td>
<td>CAP, CERM, 0.068uF, 50V, +/-5%, C0G/NP0, 1206</td>
<td>1206</td>
<td>C3216C0G1H683J160AA</td>
<td>TDK</td>
<td>C3216C0G1H683J160AA</td>
<td>TDK</td>
</tr>
<tr>
<td>C44</td>
<td>1</td>
<td>0.015uF</td>
<td>CAP, CERM, 0.015uF, 25V, +/-10%, X7R, 1206</td>
<td>1206</td>
<td>C3216C0G1H153J060AA</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48</td>
<td>1</td>
<td>22uF</td>
<td>CAP, CERM, 22uF, 16V, +/-20%, X7R, 1210</td>
<td>1210</td>
<td>C3225X7R1C226M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C50, C51</td>
<td>2</td>
<td>0.033uF</td>
<td>CAP, CERM, 0.033uF, 25V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C3216C0G1H333J060AA</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C60</td>
<td>1</td>
<td>100uF</td>
<td>CAP, CERM, 100uF, 6.3V, +/-20%, X5R, 1210</td>
<td>1210</td>
<td>C3225X7R1C106M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C91</td>
<td>1</td>
<td>4.7uF</td>
<td>CAP, CERM, 4.7uF, 10V, +/-20%, X7R, 0805</td>
<td>0805</td>
<td>C2012C0G2A472J</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>0.51V</td>
<td>Diode, Schottky, 0.5A, 50V, SOT-23</td>
<td>0603</td>
<td>MBRS0501TG</td>
<td>ON Semiconductor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2, D4, D5, D11</td>
<td>4</td>
<td>0.015uF</td>
<td>Diode, CERM, 0.015uF, 25V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C1608X7R1E105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3, D6, D9</td>
<td>3</td>
<td>0.015uF</td>
<td>Diode, CERM, 0.015uF, 25V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C1608X7R1E105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>1</td>
<td>0.015uF</td>
<td>Diode, CERM, 0.015uF, 25V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C1608X7R1E105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>1</td>
<td>0.015uF</td>
<td>Diode, CERM, 0.015uF, 25V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C1608X7R1E105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>1</td>
<td>0.015uF</td>
<td>Diode, CERM, 0.015uF, 25V, +/-10%, X7R, 0603</td>
<td>0603</td>
<td>C1608X7R1E105K</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>1</td>
<td>47uH</td>
<td>Inductor, Shielded Drum Core, Ferrite, 47uH, 0.25A, 0.84 ohm, SMD</td>
<td>0603</td>
<td>C3216X7R1C226M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>1</td>
<td>10uH</td>
<td>Inductor, Shielded Drum Core, Ferrite, 10uH, 1.83A, 0.064 ohm, SMD</td>
<td>0603</td>
<td>C3216X7R1C226M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3, L4, L5</td>
<td>1</td>
<td>12.5uH</td>
<td>Coil Assembly WPC type A6, 12.5uH, 12.5uH, 16V, 0.015uH, X5R, 1210</td>
<td>1210</td>
<td>C3225X7R1C226M</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6, L7</td>
<td>2</td>
<td>0.197 X 0.197 inch</td>
<td>Inductor, CMC Toroid, 1.5A, 600mohm, 0.197 X 0.197 inch</td>
<td>0603</td>
<td>DLW5BSN1025Q2L</td>
<td>muRata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>1</td>
<td>10.0k ohm</td>
<td>Thermistor NTC, 10.0k ohm, 1%, 0603</td>
<td>0603</td>
<td>NTG163UF103F</td>
<td>TDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>0.7V</td>
<td>Transistor, NPN, 45V, 0.1A, SOT-23</td>
<td>0603</td>
<td>BC847CL1TG</td>
<td>ON Semiconductor</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Table 2. Bill of Materials (continued)

<table>
<thead>
<tr>
<th>Designator</th>
<th>Qty</th>
<th>Value</th>
<th>Description</th>
<th>Package Reference</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Alternate Part Number</th>
<th>Alternate Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2, Q3, Q4</td>
<td>3</td>
<td>MOSFET 60V</td>
<td>MOSFET, N-CH, 60V, 22A, SON 3.3x3.3mm</td>
<td>SON 3.3x3.3mm</td>
<td>FDMC86520L</td>
<td>Fairchild</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>1</td>
<td>DTC114YUA</td>
<td>Transistor, Digital NPN, 50 V, 100 mA</td>
<td>SC-70</td>
<td>DTC114YUAT-106</td>
<td>Rohm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Q6, Q7</td>
<td>2</td>
<td>50V</td>
<td>MOSFET, N-CH, 50 V, 0.22A, SOT-23</td>
<td>SOT-23</td>
<td>BSS138</td>
<td>Fairchild</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>R1, R15, R17, R33, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R56, R62, R67, R68, R70, R71, R73, R75, R76</td>
<td>24</td>
<td>10.0k</td>
<td>RES, 10.0k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0710KL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>3.16k</td>
<td>RES, 3.16k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-073K16L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3, R66, R69</td>
<td>3</td>
<td>76.8k</td>
<td>RES, 76.8k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0776K8L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4, R51</td>
<td>2</td>
<td>3.60k</td>
<td>RES, 3.60k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-073K6L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5, R56, R63</td>
<td>3</td>
<td>1.00k</td>
<td>RES, 1.00k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0710KL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6, R7</td>
<td>2</td>
<td>150k</td>
<td>RES, 150k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-07150KL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8, R9, R19, R20, R21, R30, R53, R57, R58, R61</td>
<td>10</td>
<td>10.0</td>
<td>RES, 10.0 ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0710RL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>1</td>
<td>1.00</td>
<td>RES, 1.00 ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-071RL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>1</td>
<td>0.04</td>
<td>RES, 0.04 ohm, 1%, 1W, 2010</td>
<td>2010</td>
<td>CSRN2010FK40L</td>
<td>Stadpole Electronics Inc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R12, R13, R14</td>
<td>3</td>
<td>100</td>
<td>RES, 100 ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>CRCW0603100RFK8EA</td>
<td>Vishay-Dale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R16, R54, R59</td>
<td>3</td>
<td>200k</td>
<td>RES, 200k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-07200KL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R18, R55, R60</td>
<td>3</td>
<td>23.2k</td>
<td>RES, 23.2k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0723K2L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R22</td>
<td>1</td>
<td>3.01Meg</td>
<td>RES, 3.01Meg ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-073M01L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R23, R24, R25, R26</td>
<td>4</td>
<td>475</td>
<td>RES, 475 ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-07475KL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R27, R28, R74</td>
<td>3</td>
<td>523k</td>
<td>RES, 523k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-07523KL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R29</td>
<td>1</td>
<td>22.0</td>
<td>RES, 22.0 ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0722RL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R32</td>
<td>1</td>
<td>42.2k</td>
<td>RES, 42.2k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0742K2L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R34</td>
<td>1</td>
<td>86.6k</td>
<td>RES, 86.6k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0786K6L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R35</td>
<td>1</td>
<td>133k</td>
<td>RES, 133k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0713K3L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R48, R49</td>
<td>2</td>
<td>1.0Meg</td>
<td>RES, 1.0Meg ohm, 5%, 0.1W, 0603</td>
<td>0603</td>
<td>CRCW0603100JMEA</td>
<td>Vishay-Dale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R50</td>
<td>1</td>
<td>18.2k</td>
<td>RES, 18.2k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0718K2L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R51</td>
<td>1</td>
<td>158k</td>
<td>RES, 158k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-07158KL</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R52</td>
<td>1</td>
<td>16.2k</td>
<td>RES, 16.2k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0716K2L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R64</td>
<td>1</td>
<td>2.00Meg</td>
<td>RES, 2.00Meg ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0728M2L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R65</td>
<td>1</td>
<td>392k</td>
<td>RES, 392k ohm, 1%, 0.1W, 0603</td>
<td>0603</td>
<td>RC0603FR-0739K2L</td>
<td>Yageo America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>BG500412RGZ</td>
<td>IC, Qi Compliant Wireless Power Transmitter Manager</td>
<td>VQFN</td>
<td>BG500412RGZ</td>
<td>TI</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>1</td>
<td>CSD97374C04M</td>
<td>IC, Synchronous Buck NexFETPowerStage</td>
<td>QFN</td>
<td>CSD97374C04M</td>
<td>TI</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>1</td>
<td>Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series Current-Shunt Monitor, DCK0006A</td>
<td>DCK0006A</td>
<td>INA199AD0CK</td>
<td>TI</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U4</td>
<td>1</td>
<td>Buck Step Down Regulator with 3.5 to 28 V input and 0.8 to 25 V Output, -40 to 150 degC, 8-Pin SOIC (D), Green (RoHS & no Sb/Br)</td>
<td>D0008A</td>
<td>TPS54231D</td>
<td>TI</td>
<td>Equivalent</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Designator</td>
<td>Qty</td>
<td>Value</td>
<td>Description</td>
<td>Package Reference</td>
<td>Part Number</td>
<td>Manufacturer</td>
<td>Alternate Part Number</td>
<td>Alternate Manufacturer</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>U5</td>
<td>1</td>
<td>TPS61087DSC</td>
<td>IC, 600kHz/1.2MHz Step-Up DC-Dc Converter</td>
<td>SON-10</td>
<td>TPS61087DSC</td>
<td>TI</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>U6, U7, U8</td>
<td>3</td>
<td>SN74LVC1G3157DCKR</td>
<td>IC, SPDT Analog Switch</td>
<td>SC-70</td>
<td>SN74LVC1G3157DCKR</td>
<td>TI</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>C41, C47</td>
<td>0</td>
<td>NoPop</td>
<td>CAP, CERM,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R72</td>
<td>0</td>
<td>NoPop</td>
<td>RES,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Test Setup

6.1 Equipment

6.1.1 bqTESLA™ Receiver
Use the bq51013BEVM-764 or a Qi-compliant receiver to work with this EVM.

6.1.2 Voltage Source
The input voltage source must provide a regulated DC voltage of 12 V and deliver at least 1-A continuous load current; current limit must be set to 2 A. If 5 V is used, the current should be 2.5 A with a current limit of 3 A.

CAUTION
To help assure safety and integrity of the system and minimize risk of electrical shock hazard, always use a power supply providing suitable isolation and supplemental insulation (double insulated). Compliance to IEC 61010-1, Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, Part 1, General Requirements, or its equivalent is strongly suggested, including any required regional regulatory compliance certification approvals. Always select a power source that is suitably rated for use with this EVM as referenced in this user manual.

External Power Supply Requirements:
Nom Voltage: 12.0 VDC
Max Current: 2.0 A
Efficiency Level V

Or:
Nom Voltage: 5.0 VDC
Max Current: 3.0 A
Efficiency Level V

External Power Supply Regulatory Compliance Certifications: Recommend selection and use of an external a power supply which meets TI's required minimum electrical ratings in addition to complying with applicable regional product regulatory and safety certification requirements such as (by example) UL, CSA, VDE, CCC, PSE, and so forth.

6.1.3 Meters
Monitor the output voltage at the bq51013BEVM-764 test point TP7 with a voltmeter. Monitor the input current into the load with an appropriate ammeter. The transmitter input current and voltage can be monitored, but the meter must use the averaging function for reducing error, due to communications packets.

6.1.4 Loads
A single load is required at 5 V with a maximum current of 1 A. The load can be resistive or electronic.

6.1.5 Oscilloscope
Use a dual-channel oscilloscope with appropriate probes to observe the COMM_DRV signal at bq51013BEVM-764 TP3 and other signals.
6.1.6 Recommended Wire Gauge

For proper operation, use 22-AWG wire when connecting the EVM to the input supply and the bq51013BEVM-764 to the load.

6.2 Equipment Setup

- With the power supply OFF, connect the supply to the bqTESLA™ transmitter.
- Connect the \(V_{IN} \) positive power source to J1, and connect the negative terminal of the \(V_{IN} \) source to J2.
- Do not place the bqTESLA™ receiver on the transmitter. Connect a load to J3 with a return to J4, monitor current through the load with the ammeter, and monitor the current to the load at TP7. All voltmeters must be Kelvin connected (at the pin) to the point of interest.

6.2.1 Equipment Setup Diagram

The diagram in Figure 3 shows the test setup.

6.2.2 EVM Procedures

This section is provided as a guide through a few general test procedures to exercise the functionality of the presented hardware. Some key notes follow:

6.2.2.1 Start-Up No Receiver

Turn on \(V_{IN} \), and observe that the green power LED, D3, illuminates. Status LEDs D7, D9 and D5 are OFF until the power transfer starts.
Apply the scope probe to test point, TP1, and observe single-pulse bursts approximately every 500 ms. This is a digital ping to begin communications with a receiver placed on the TX coil.

6.2.2.2 Apply Receivers

Place the bq51013BEVM-764 EVM on the top of the transmitting coil. Align the centers of the receiving and transmitting coils across each other. In the next few seconds, observe that the status LED, D6, flashes green, indicating that communication between the transmitter and the receiver is established and that power transfer has started.

- The status LED, D6, flashes a green light during power transfer.
- Typical output voltage is 5 V, and the output current range is 0 mA to 1 A.

6.2.2.3 Efficiency

To measure system efficiency, measure the output voltage, output current, input voltage, and input current and calculate efficiency as the ratio of the output power to the input power. Connect voltage meters at the input and output of TX and RX (see Figure 3). Average the input current; the comm pulses modulate the input current, distorting the reading. See Figure 4 for efficiency. Figure 4 shows efficiency with standard EVM.

![Efficiency versus Power, bq500412EVM-584 Transmitter and HPA764 Receiver](image)

6.2.2.4 Efficiency

Efficiency is affected by changes in the power section. Higher $R_{\text{DS(on)}}$ MOSFET increases loss. This is a design decision and a trade off between cost and performance.

Parts selected for the EVM design are optimized for efficiency.

Note that changing the efficiency of the unit and reducing loss (or increasing loss) changes the FOD performance and may require re-calibration. This would require FOD_CAL resistor, R33 to change along with FOD_Threshold resistor, R34. The FOD calibration procedure would need to be repeated.

6.2.2.5 Dynamic Power Limiting

Dynamic Power Limiting (DPL) allows operation from a 5-V supply with limited current capability. Input voltage is monitored at pin 46 though a voltage divider network. When input voltage decreases to 4.2 V, the operating point is adjusted to reduce load and increase input voltage to 4.5 V.
6.2.2.6 Thermal Protection, NTC

Thermal protection is provided by an NTC resistor network connected to pin 2. At 1 V on the sense side (U1-2), the thermal fault is set, and the unit is shut down. The status LED, D5, illuminates red. The system tries to restart in 5 minutes.

6.2.2.7 Foreign Object Detection

The bq500412 EVM incorporated the Foreign Object Detection (FOD) call in WPC 1.1. Power loss is calculated by comparing the power sent to the receiver (RX) with the power the RX reported receiving, less known loss. The transmitter determines the power sent to the RX by measuring input power and calculating internal losses. The RX measures the power it received and also calculates losses. The RX sends this information to the driver (TX) in a digital word, message packet. Unaccounted for power loss is assumed to be a foreign object on the charging pad. Should this lost power exceed the threshold set by R34, a FOD fault is set and power transfer is stopped.

Three key measurements for the TX FOD calculation:

• **Input Power** – Product of input voltage and current. Input voltage is measured at pin 45 through R69 and R70. Input current is measured using sense resistor R11 and current sense amp U3. Both measurements must be very accurate.

• **Power Loss in Transmitter** – This is an internal calculation based on the operating point of the transmitter. The calculation is adjusted using FOD_Cal resistor, R33. This calculation changes with external component changes in the power path such as MOSFETs, resonate capacitors, and TX coil. Recalculation of R33 and R34 is required.

• **Receiver Reported Power** – The receiver calculates and reports power it receives in the message packet “Received Power Packet (0X04)”. The FOD threshold on the EVM is set to 550 mW, R34 is set to 86.6 kΩ. Increasing R34 increases the threshold and reduces the sensitivity to foreign objects.

This loss threshold is determined after making a measurement of transmitter performance using a FOD calibration receiver similar to the unit manufactured by Avid® Technology. Contact Texas Instruments for the FOD calibration procedure for bq500412.

6.2.2.8 WPC Certification

The bq500412EVM-584 was tested and certified to WPC version 1.2.
Figure 5 through Figure 10 show the design of the bq500412EVM PCB. The EVM has been designed using a 4-layer, 2-oz, copper-clad circuit board 14 cm × 13 cm, but components fit into an 8-cm × 5.0-cm area on the top side. All parts are easy to view, probe, and evaluate the bq500412 control IC in a practical application. Moving components to both sides of the PCB or using additional internal layers offers additional size reduction for space-constrained systems. Gerber files are available for download from the EVM product folder.

A 4-layer PCB design is recommended to provide a good low-noise ground plane for all circuits. A 2-layer PCB presents a high risk of poor performance. Grounding between the bq500412 GND pin 47, 36, and 32 and filter capacitor returns C15, C16, C9, and C14 should be a good low-impedance path.

Coil Grounding – A ground plane area under the coil is recommended to reduce noise coupling into the receiver. The ground plane for the EVM is slightly larger than the coil footprint and grounded at one point back to the circuit area.

Note: The clear plastic cover thickness (0.093 in or 2.4 mm) is the z-gap thickness for the transmitter.
Figure 6. Top Silk
Figure 7. Top Layer
Figure 9. Layer 3
Figure 10. Bottom Layer

8 Reference
For additional information about the bq500412EVM-584 low-power, wireless, power evaluation kit from Texas Instruments, visit the product folder on the TI Web site at http://www.ti.com/product/bq500412
REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM is subject to the Federal Communications Commission (FCC), Industry Canada (IC) and European Union CE Mark rules.

FCC – FEDERAL COMMUNICATIONS COMMISSION Part 18 Compliant

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 18 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:—Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

Note: There is no required maintenance of this device from a FCC compliance perspective.

IC – INDUSTRY CANADA ICES-001 Compliant

This ISM device complies with Canadian ICES-001.
Cet appareil ISM est conforme à la norme NMB-001 du Canada.
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables
Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention d’autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
【Important Notice for Users of EVMs for RF Products in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio: www.ti.com/audio
Amplifiers: amplifier.ti.com
Data Converters: dataconverter.ti.com
DLP® Products: www.dlp.com
DSP: dsp.ti.com
Clocks and Timers: www.ti.com/clocks
Interface: interface.ti.com
Logic: logic.ti.com
Power Mgmt: power.ti.com
Microcontrollers: microcontroller.ti.com
RFID: www.ti-rfid.com
OMAP Applications Processors: www.ti.com/omap
Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation: www.ti.com/automotive
Communications and Telecom: www.ti.com/communications
Computers and Peripherals: www.ti.com/computers
Consumer Electronics: www.ti.com/consumer-apps
Energy and Lighting: www.ti.com/energy
Industrial: www.ti.com/industrial
Medical: www.ti.com/medical
Security: www.ti.com/security
Space, Avionics and Defense: www.ti.com/space-avionics-defense
Video and Imaging: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated