## LDC1000/LDC1001/LDC1041/LDC1051 Evaluation Module

# **User's Guide**



Literature Number: SNAU150B September 2013–Revised November 2019



## LDC1000/LDC1001/LDC1041/LDC1051 Evaluation Module

## 1.1 Overview

The LDC10xx Evaluation Module is designed to provide an example LC tank and coil structure application which interfaces to a host computer. The module can be used independently of the GUI by the on-board embedded LED, which demonstrates threshold detection.



## Figure 1-1. Evaluation Module

The EVM includes an example PCB sensor which is a 2 layer, 23 turn, 14mm diameter inductor with a 100pF 1% NP0 capacitor connected in parallel to form an LC tank.

The EVM is perforated at two locations to provide the option to interface to various system configurations. The first perforation, between the coil and the LDC10xx, can be used to snap off the PCB coil and connect a custom coil. The second perforation is between the LDC10xx and the MSP430, and provides the option to connect the LDC10xx and the sensor to a different system or to use multiple sensors in one system for prototyping.



## Figure 1-2. LDC1000+Sensor

When the evaluation module first powers up from the USB port, it will flash a series of green and red LED lights to indicate self-test. When the self-test is finished, the green LED indicates the status of the LDC10xx INTB pin. When the INTB pin is asserted, the green LED is lit. By default, INTB is configured for threshold detection.

## 1.2 Sensing Solutions EVM GUI

2

The Sensing Solutions EVM GUI provides direct device register access, user-friendly configuration, and data streaming.



## 1.2.1 System Requirements

The host machine is required for device configuration and data streaming. The following steps are necessary to prepare the EVM for the GUI:

- · The GUI and EVM driver must be installed on a host computer
- The EVM must be connected to a full speed USB port (USB 1.0 or above)

The Sensing Solutions EVM GUI supports the following operating systems (both 32-bit and 64-bit):

- Windows XP
- Windows 7
- Windows 8 and 8.1
- Windows 10

## 1.2.2 Installation Instructions

The Sensing Solutions GUI and EVM driver installer is packaged in a zip file. Follow these steps to install the software:

- 1. Download the software ZIP file from the EVM tool page
- 2. Extract the downloaded ZIP file
- 3. Run the included executable
- 4. If prompted by the User Account Control about making changes to the computer, click "Yes"

| 😗 User Ad                                                                    | ccount (          | Control                                              |                                                                                                           |
|------------------------------------------------------------------------------|-------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Do you want to allow the following program to make changes to this computer? |                   |                                                      | 01 0                                                                                                      |
| Ą                                                                            |                   | Program name:<br>Verified publisher:<br>File origin: | SensingSolutionsGUI-1.8.8-windows-instal<br><b>Texas Instruments, Inc.</b><br>Hard drive on this computer |
| Shov                                                                         | w <u>d</u> etails | ;                                                    | Yes No                                                                                                    |
|                                                                              |                   |                                                      | Change when these notifications appear                                                                    |

Figure 1-3. User Account Control Prompt

5. After the setup wizard starts, click "Next"

3



| 👺 Setup |                                                        |
|---------|--------------------------------------------------------|
|         | Setup - Sensing Solutions EVM GUI                      |
|         | Welcome to the Sensing Solutions EVM GUI Setup Wizard. |
|         |                                                        |
|         |                                                        |
|         |                                                        |
|         | < Back Next > Cancel                                   |

Figure 1-4. Software Installer Wizard

6. Read the license agreement, select "I accept the agreement", and click "Next"

| Setup                                                                                                                                                                                                                                                                      | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| License Agreement                                                                                                                                                                                                                                                          |   |
| Please read the following License Agreement. You must accept the terms of this agreement before continuing with the installation.                                                                                                                                          |   |
| Source and Binary Code Internal Use License Agreement                                                                                                                                                                                                                      | Â |
| IMPORTANT PLEASE CAREFULLY READ THE FOLLOWING LICENSE AGREEMENT,<br>WHICH IS LEGALLY BINDING. AFTER YOU READ IT, YOU WILL BE ASKED<br>WHETHER YOU ACCEPT AND AGREE TO ITS TERMS. DO NOT CLICK I HAVE<br>READ AND AGREE UNLESS: (1) YOU WILL USE THE LICENSED MATERIALS FOR |   |
| YOUR OWN BENEFIT AND PERSONALLY ACCEPT, AGREE TO AND INTEND TO BE<br>BOUND BY THESE TERMS; OR (2) YOU ARE AUTHORIZED TO. AND INTEND TO                                                                                                                                     | Ŧ |
| Do you accept this license? <ul> <li>I accept the agreement</li> <li>I do not accept the agreement</li> </ul>                                                                                                                                                              |   |
| BitRock Installer                                                                                                                                                                                                                                                          | _ |
| < Back Next > Cancel                                                                                                                                                                                                                                                       |   |

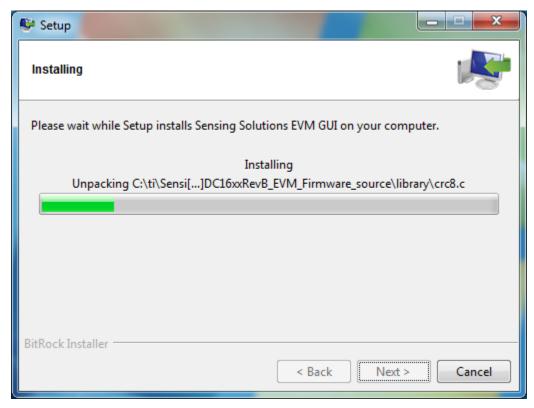
Figure 1-5. Software Installer License Agreement



7. Use the preselected installation directory and click "Next"

| Setup                                                                   | ×        |
|-------------------------------------------------------------------------|----------|
| Installation Directory                                                  | <b>N</b> |
| Please specify the directory where Sensing Solutions EVM GUI will be in | stalled. |
| Installation Directory C:\ti\Sensing Solutions EVM GUI-1.8.8            | 6        |
|                                                                         |          |
|                                                                         |          |
|                                                                         |          |
| BitRock Installer                                                       |          |
| < Back Next :                                                           | > Cancel |

Figure 1-6. Software Installation Directory


8. Start the installation by clicking "Next"



| 👺 Setup                                                          |                   |
|------------------------------------------------------------------|-------------------|
| Ready to Install                                                 | <b>*</b>          |
| Setup is now ready to begin installing Sensing Solutions EVM GUI | on your computer. |
|                                                                  |                   |
|                                                                  |                   |
|                                                                  |                   |
|                                                                  |                   |
|                                                                  |                   |
| BitRock Installer                                                | Next > Cancel     |

Figure 1-7. Software Installer Ready

9. Wait for the installation to complete



## Figure 1-8. Software Installer In Progress



10. When the "Device Driver Installation Wizard" appears, click "Next" to install the EVM driver

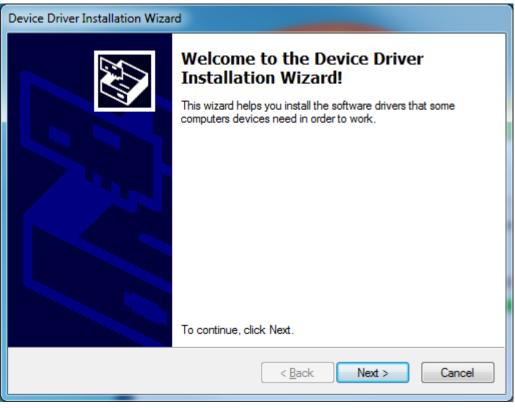



Figure 1-9. Device Driver Installer Wizard

11. Wait for the driver installation to complete



8

| Device Driver Installation Wizard                                           |  |
|-----------------------------------------------------------------------------|--|
| The drivers are now installing                                              |  |
| Please wait while the drivers install. This may take some time to complete. |  |
| < <u>B</u> ack <u>N</u> ext > Cancel                                        |  |

Figure 1-10. Device Driver Installer In Progress

12. After the driver installation is completed, click "Finish"

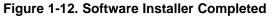





Figure 1-11. Device Driver Installer Completed

13. Click "Finish" to complete the installation

| 😌 Setup |                                                                                                                                          |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|
|         | Completing the Sensing Solutions EVM GUI Setup<br>Wizard<br>Setup has finished installing Sensing Solutions EVM GUI on<br>your computer. |
|         | < Back Finish Cancel                                                                                                                     |





#### 1.2.3 Starting the GUI

Follow these steps to start the GUI:

- 1. Select the Windows start menu
- 2. Select "All programs"
- 3. Select "Texas Instruments"
- 4. Select "Sensing Solutions EVM GUI"
- 5. Click "Sensing Solutions EVM GUI"
- 6. Splash screen will appear for at least two seconds

| Server OneUI: Server |                                                                      |
|----------------------|----------------------------------------------------------------------|
|                      |                                                                      |
|                      | Sensing Solutions                                                    |
|                      | EVM GUI Tool                                                         |
|                      |                                                                      |
|                      |                                                                      |
|                      | ✓ INSTRUMENTS                                                        |
|                      |                                                                      |
|                      |                                                                      |
|                      | Copyright 2015. Texas Instruments Incorporated. All rights reserved. |

Figure 1-13. Splash Screen

7. After the splash screen is displayed the main window will open



| 0 🔝 | DneUI Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | MENU Sensing Solutions EVM GUI v1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.8   |
|     | Introduction to Inductive Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Î     |
|     | Inductive sensing is a highly reliable solution for detecting the position of conductive materials using a simple wire wound coil, PCB coil, or spring. By configuring the coil and target shape, inductive sensing can be applied to many different applications that require proximity measurement, rotational and linear position sensing, as well as simple event counting.                                                                                                                                                                                                                                                                                                                                                                                                                    | 2     |
|     | Overall reliability is improved and system cost is reduced with the integration of multiple channels making this an attractive solution for metal buttons, motor position, bill counting, lens position, and many other applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i     |
|     | Introduction to Capacitive Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     | Capacitive sensing is a high-resolution, low-cost contactless sensing technique that can be applied to a variety of applications such as liquid level sensing, proximity sensing, gesture recognition, ice/rain detection and collision avoidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     | The sensor in a capacitive sensing system is any conductor, such as copper on PCB, conductive ink or a piece of metal, allowing for low cost and highly flexible system design. This conductor acts a proximity sensor or liquid level sensor depending on the use case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | as    |
|     | Introduction to Humidity Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|     | Humidity affects many properties of air, and of materials in contact with air. Water vapor is a key agent in both weather and climate, and it is an important atmospheric greenhouse gas. Humidity measurements are used wherever there is a need to prevent condensation, corrosion, mold, warping or other spoilage of products. This is highly relevant for foods, pharmaceuticals, chemicals, fuels, wood, paper, and many other products. Air-conditioning systems in buildings often control humidity, and significant energy goes into cooling the air to remove water vapor. Humidity measurements are necessary to maintain comfortable environmental conditions. An accurate humidity sensor can work in synergy with heating and cooling systems to reduce a building energy footprint. |       |
|     | Benefits of TI technology and the FDC2x14 and FDC2x12 Families                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|     | Not connected SSP EVM disconnected TEXAS INSTRUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MENTS |

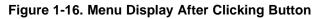
Figure 1-14. Introduction Page

## 1.2.4 Navigating the GUI

To navigate to different pages of the GUI follow these steps:

1. Click "Menu" in the upper left corner




www.ti.com

| OneUI Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ENU Sensing Solutions EVM GUI v1.8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Introduction to Inductive Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Î  |
| Inductive sensing is a highly reliable solution for detecting the position of conductive materials using a simple wire wound coil, PCB coil, or spring. By configuring the coil and target shape, inductive sensing can be applied to many different applications that require proximity measurement, rotational and linear position sensing, as well as simple event counting.                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Overall reliability is improved and system cost is reduced with the integration of multiple channels making this an attractive solution for metal buttons, motor position, bill counting, lens position, and many other applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| La Introduction to Capacitive Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Capacitive sensing is a high-resolution, low-cost contactless sensing technique that can be applied to a variety of applications such as liquid level sensing, proximity sensing, gesture recognition, ice/rain detection and collision avoidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| The sensor in a capacitive sensing system is any conductor, such as copper on PCB, conductive ink or a piece of metal, allowing for low cost and highly flexible system design. This conductor acts as a proximity sensor or liquid level sensor depending on the use case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Introduction to Humidity Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Humidity affects many properties of air, and of materials in contact with air. Water vapor is a key agent in both weather and climate, and it is an important atmospheric greenhouse gas. Humidity measurements are used wherever there is a need to prevent condensation, corrosion, mold, warping or other spoilage of products. This is highly relevant for foods, pharmaceuticals, chemicals, fuels, wood, paper, and many other products. Air-conditioning systems in buildings often control humidity, and significant energy goes into cooling the air to remove water vapor. Humidity measurements are necessary to maintain comfortable environmental conditions. An accurate humidity sensor can work in synergy with heating and cooling systems to reduce a building energy footprint. |    |
| Benefits of TI technology and the FDC2x14 and FDC2x12 Families                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Not connected SSP EVM disconnected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs |

## Figure 1-15. Mouse Hovered Over Menu Button

#### 2. Select the desired page from the menu shown on the left

| Sea OneUI Application   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                         | Sensing Solutions EVM GUI v1.8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Introduction            | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 |
| Device                  | ble solution for detecting the position of conductive materials using a simple wire wound coil, PCB coil, or spring. By configuring the coil and target shape, inductive ifferent applications that require proximity measurement, rotational and linear position sensing, as well as simple event counting.                                                                                                                                                                                                                                                                                                                                                           |   |
| EVM                     | system cost is reduced with the integration of multiple channels making this an attractive solution for metal buttons, motor position, bill counting, lens position, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Configuration           | nsing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 🗠 Data Streaming        | lution, low-cost contactless sensing technique that can be applied to a variety of applications such as liquid level sensing, proximity sensing, gesture recognition, oldance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 1. Firmware             | g system is any conductor, such as copper on PCB, conductive ink or a piece of metal, allowing for low cost and highly flexible system design. This conductor acts as sensor depending on the use case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|                         | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|                         | of air, and of materials in contact with air. Water vapor is a key agent in both weather and climate, and it is an important atmospheric greenhouse gas. Humidity<br>er there is a need to prevent condensation, corrosion, mold, warping or other spoilage of products. This is highly relevant for foods, pharmaceuticals, chemicals,<br>her products. Air-conditioning systems in buildings often control humidity, and significant energy goes into cooling the air to remove water vapor. Humidity<br>maintain comfortable environmental conditions. An accurate humidity sensor can work in synergy with heating and cooling systems to reduce a building energy |   |
|                         | the FDC2x14 and FDC2x12 Families                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŧ |
| Not connected SSP EVM d | isconnected 🐺 TEXAS INSTRUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |



#### 1.2.5 Connecting the EVM

Follow these steps to connect the EVM to the GUI:

- 1. Attach the EVM to the computer via USB
- 2. The GUI always shows the connection status on the bottom left corner of the GUI

| S 🛯 | Det/I Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| E   | MENU Sensing Solutions EVM GUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v1.8.8   |
|     | Introduction to Inductive Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        |
|     | Inductive sensing is a highly reliable solution for detecting the position of conductive materials using a simple wire wound coil, PCB coil, or spring. By configuring the coil and target shape, in sensing can be applied to many different applications that require proximity measurement, rotational and linear position sensing, as well as simple event counting.                                                                                                                                                                                                                                                                                                                                                                                                                 | iductive |
|     | Overall reliability is improved and system cost is reduced with the integration of multiple channels making this an attractive solution for metal buttons, motor position, bill counting, lens position many other applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on, and  |
|     | Introduction to Capacitive Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|     | Capacitive sensing is a high-resolution, low-cost contactless sensing technique that can be applied to a variety of applications such as liquid level sensing, proximity sensing, gesture recogn ice/rain detection and collision avoidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iition,  |
|     | The sensor in a capacitive sensing system is any conductor, such as copper on PCB, conductive ink or a piece of metal, allowing for low cost and highly flexible system design. This conduct as a proximity sensor or liquid level sensor depending on the use case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or acts  |
|     | Introduction to Humidity Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|     | Humidity affects many properties of air, and of materials in contact with air. Water vapor is a key agent in both weather and climate, and it is an important atmospheric greenhouse gas. Hun measurements are used wherever there is a need to prevent condensation, corrosion, mold, warping or other spoilage of products. This is highly relevant for foods, pharmaceuticals, chemi fuels, wood, paper, and many other products. Air-conditioning systems in buildings often control humidity, and significant energy goes into cooling the air to remove water vapor. Humidity measurements are necessary to maintain comfortable environmental conditions. An accurate humidity sensor can work in synergy with heating and cooling systems to reduce a building energy footprint. | icals,   |
|     | Benefits of TI technology and the FDC2x14 and FDC2x12 Families                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|     | <ul> <li>EMI resistant solution: Narrow band architecture eliminates unwanted noise and interferences enabling EMI-resistant proximity sensor and gesture recognition applications.</li> <li>Fast sensor excitation rate with wide frequency range; Allows sensing of all liquids including conductive ones such as detergent, soap, and ink and allows flexibility in sensor desisted.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | an. 👻    |
|     | Connected SSP EVM connected - LDC1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RUMENTS  |

Figure 1-17. EVM Connected to GUI

## 1.2.6 Configuring the EVM Using the Register Page

The register page allows users to control the device directly with the register values. The user may also use this page to read the currect register values on the device.

## 1.2.6.1 Automatically Update GUI Register Values Using Auto-Read

Autoread will periodically request the register values on the device. Click the dropdown box next to "Auto Read" to select the update interval.



| IENU Sensing Solutions EV                                                                                                                     | M GUI   |               |   |   |   |   |      |   | , | v1.8.8 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|---|---|---|---|------|---|---|--------|
| sters                                                                                                                                         |         |               |   |   |   |   |      |   |   |        |
| to Read Off<br>Every 1/4 sec<br>Every 1/2 sec<br>Every 12 sec<br>Every 15 sec<br>Every 10 sec<br>Every 10 sec<br>Every 10 sec<br>Every 10 sec | 3       |               |   |   |   |   |      |   |   |        |
| Every 20 sec                                                                                                                                  | Address | Current Value |   |   |   | E | Bits |   |   |        |
|                                                                                                                                               |         |               | 7 | 6 | 5 | 4 | 3    | 2 | 1 | 0      |
| /ICE_ID                                                                                                                                       | 0x00    | 0x80          | 1 | 0 | 0 | 0 | 0    | 0 | 0 | 0      |
| MAX                                                                                                                                           | 0x01    | 0x0e          | 0 | 0 | 0 | 0 | 1    | 1 | 1 | 0      |
| MIN                                                                                                                                           | 0x02    | 0x3a          | 0 | 0 | 1 | 1 | 1    | 0 | 1 | 0      |
| TCHDOG_TIMER_FREQ                                                                                                                             | 0x03    | 0x94          | 1 | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| C_CONFIG                                                                                                                                      | 0x04    | 0x17          | 0 | 0 | 0 | 1 | 0    | 1 | 1 | 1      |
| DCK_CONFIG                                                                                                                                    | 0x05    | 0x02          | 0 | 0 | 0 | 0 | 0    | 0 | 1 | 0      |
| MPARATOR_THRESH_HIGH_LSB                                                                                                                      | 0x06    | 0x50          | 0 | 1 | 0 | 1 | 0    | 0 | 0 | 0      |
| MPARATOR_THRESH_HIGH_MSB                                                                                                                      | 0x07    | 0x14          | 0 | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| MPARATOR_THRESH_LOW_LSB                                                                                                                       | 0x08    | 0xc0          | 1 | 1 | 0 | 0 | 0    | 0 | 0 | 0      |
| MPARATOR_THRESH_LOW_MSB                                                                                                                       | 0x09    | 0x12          | 0 | 0 | 0 | 1 | 0    | 0 | 1 | 0      |
| B_PIN_CONFIG                                                                                                                                  | 0x0A    | 0x04          | 0 | 0 | 0 | 0 | 0    | 1 | 0 | 0      |
| WER_CONFIG                                                                                                                                    | 0x0B    | 0x01          | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 1      |
| ATUS                                                                                                                                          | 0x20    | 0x60          | 0 | 1 | 1 | 0 | 0    | 0 | 0 | 0      |
| ATUS                                                                                                                                          | 0x20    | 0x60          | 0 | 1 | 1 | 0 | 0    | - |   |        |

Figure 1-18. Selecting Auto-Read Interval on Register Page

## 1.2.6.2 Manually Update Device Register Values

There are two methods to change register values: update the entire register value or change a single bit within the register. The recommended update mode is always "Immediate" and not "Deferred". To update register values, follow these steps.

1. Double-click the current value of the register that needs to be changed. The text will turn into an editable text box

|                            | lutions EVM GUI |               |   |   |   |   |     |   | ۷ | 1.8.8 |
|----------------------------|-----------------|---------------|---|---|---|---|-----|---|---|-------|
|                            | e: Immediate •  |               |   |   |   |   |     |   |   |       |
| Register                   | Address         | Current Value |   |   |   | В | its |   |   |       |
|                            |                 |               | 7 | 6 | 5 | 4 | 3   | 2 | 1 | 0     |
| DEVICE_ID                  | 0x00            | 0x80          | 1 | 0 | 0 | 0 | 0   | 0 | 0 | 0     |
| RP_MAX                     | 0x01            | 0x0e I        | 0 | 0 | 0 | 0 | 1   | 1 | 1 | 0     |
| RP_MIN                     | 0x02            | 0x3a          | 0 | 0 | 1 | 1 | 1   | 0 | 1 | 0     |
| WATCHDOG_TIMER_FREQ        | 0x03            | 0x94          | 1 | 0 | 0 | 1 | 0   | 1 | 0 | 0     |
| LDC_CONFIG                 | 0x04            | 0x17          | 0 | 0 | 0 | 1 | 0   | 1 | 1 | 1     |
| CLOCK_CONFIG               | 0x05            | 0x02          | 0 | 0 | 0 | 0 | 0   | 0 | 1 | 0     |
| COMPARATOR_THRESH_HIGH_LSB | 0x06            | 0x50          | 0 | 1 | 0 | 1 | 0   | 0 | 0 | 0     |
| COMPARATOR_THRESH_HIGH_MSB | 0x07            | 0x14          | 0 | 0 | 0 | 1 | 0   | 1 | 0 | 0     |
| COMPARATOR_THRESH_LOW_LSB  | 0x08            | 0xc0          | 1 | 1 | 0 | 0 | 0   | 0 | 0 | 0     |
| COMPARATOR_THRESH_LOW_MSB  | 0x09            | 0x12          | 0 | 0 | 0 | 1 | 0   | 0 | 1 | 0     |
| INTB_PIN_CONFIG            | 0x0A            | 0x04          | 0 | 0 | 0 | 0 | 0   | 1 | 0 | 0     |
| POWER_CONFIG               | 0x0B            | 0x01          | 0 | 0 | 0 | 0 | 0   | 0 | 0 | 1     |
| STATUS                     | 0x20            | 0x60          | 0 | 1 | 1 | 0 | 0   | 0 | 0 | 0     |
| PROXIMITY_LSB              | 0x21            | 0xd8          | 1 | 1 | 0 | 1 | 1   | 0 | 0 | 0     |
| PROXIMITY_MSB              | 0x22            | 0x22          | 0 | 0 | 1 | 0 | 0   | 0 | 1 | 0     |
| FREQ_COUNT_LSB             | 0x23            | 0x48          | 0 | 1 | 0 | 0 | 1   | 0 | 0 | 0     |
| FREQ_COUNT_MID_BYTE        | 0x24            | 0x0d          | 0 | 0 | 0 | 0 | 1   | 1 | 0 | 1     |
| FREQ_COUNT_MSB             | 0x25            | 0x0           | 0 | 0 | 0 | 0 | 0   | 0 | 0 | 0     |

## Figure 1-19. Selecting a Register's Current Value for Editting on Register Page

2. Type the new hexadecimal value into the box and click enter. The text box changes to normal text and the GUI will send a command to the EVM to update the device register

To change individual bit values rather that entire register values follow these steps.

1. Hover the mouse over the desired bit to change



www.ti.com

| MENU Sensing Solution             | ons EVM GUI |               |         |   |   |   |      |        |        | v1.8.8 |   |
|-----------------------------------|-------------|---------------|---------|---|---|---|------|--------|--------|--------|---|
|                                   | nediate •   |               |         |   |   |   |      |        |        |        |   |
| Register                          | Address     | Current Value |         |   |   | E | Bits |        | 1      |        | Ē |
|                                   |             |               | 7       | 6 | 5 | 4 | 3    | 2      | 1      | 0      |   |
| DEVICE_ID                         | 0x00        | 0x80          | 1       | 0 | 0 | 0 | 0    | 0      | 0      | 0      |   |
| RP_MAX                            | 0x01        | 0x8e          | 1       | 0 | 0 | 0 | 1    | 1      | 1      | 0      |   |
| RP_MIN                            | 0x02        | 0x3a          | 0<br>Ch | 0 | 1 | 1 | 1    | 0      | 1      | 0      | ] |
| WATCHDOG_TIMER_FREQ               | 0x03        | 0x94          | 1       | 0 | 0 | 1 | 0    | 1      | 0      | 0      | 1 |
| LDC_CONFIG                        | 0x04        | 0x17          | 0       | 0 | 0 | 1 | 0    | 1      | 1      | 1      |   |
| CLOCK_CONFIG                      | 0x05        | 0x02          | 0       | 0 | 0 | 0 | 0    | 0      | 1      | 0      | 1 |
| COMPARATOR_THRESH_HIGH_LSB        | 0x06        | 0x50          | 0       | 1 | 0 | 1 | 0    | 0      | 0      | 0      | 1 |
| COMPARATOR_THRESH_HIGH_MSB        | 0x07        | 0x14          | 0       | 0 | 0 | 1 | 0    | 1      | 0      | 0      | 1 |
| COMPARATOR_THRESH_LOW_LSB         | 0x08        | 0xc0          | 1       | 1 | 0 | 0 | 0    | 0      | 0      | 0      | 1 |
| COMPARATOR_THRESH_LOW_MSB         | 0x09        | 0x12          | 0       | 0 | 0 | 1 | 0    | 0      | 1      | 0      | 1 |
| INTB_PIN_CONFIG                   | 0x0A        | 0x04          | 0       | 0 | 0 | 0 | 0    | 1      | 0      | 0      |   |
| POWER_CONFIG                      | 0x0B        | 0x01          | 0       | 0 | 0 | 0 | 0    | 0      | 0      | 1      |   |
| STATUS                            | 0x20        | 0x60          | 0       | 1 | 1 | 0 | 0    | 0      | 0      | 0      |   |
| PROXIMITY_LSB                     | 0x21        | 0xd8          | 1       | 1 | 0 | 1 | 1    | 0      | 0      | 0      |   |
| PROXIMITY_MSB                     | 0x22        | 0x22          | 0       | 0 | 1 | 0 | 0    | 0      | 1      | 0      |   |
| FREQ_COUNT_LSB                    | 0x23        | 0x48          | 0       | 1 | 0 | 0 | 1    | 0      | 0      | 0      |   |
| FREQ_COUNT_MID_BYTE               | 0x24        | 0x0d          | 0       | 0 | 0 | 0 | 1    | 1      | 0      | 1      |   |
| FREQ_COUNT_MSB                    | 0x25        | 0x0           | 0       | 0 | 0 | 0 | 0    | 0      | 0      | 0      |   |
| Connected Wrote registers: RP MAX |             |               |         |   |   |   | - Ü  | Terrer | s Inst |        |   |

## Figure 1-20. Hovering Mouse Over Register Bit Value on Register Page

2. Double-click the bit to toggle its value and the register's current value will update automatically

#### 1.2.6.3 Reading Register Values without Auto-Read

To read register values follow these steps.

1. Select the register to update by clicking any column of the register row in the table

| MENU Sensing Solutions E                              | VM GUI     |               |   |   |   |   |     |   |   | v1.8.8 |
|-------------------------------------------------------|------------|---------------|---|---|---|---|-----|---|---|--------|
| Write Register Y Read Register Update Mode: Immediate | ÷ <b>T</b> |               |   |   |   |   |     |   |   |        |
| Register                                              | Address    | Current Value |   |   | 1 | B | its |   |   |        |
|                                                       |            |               | 7 | 6 | 5 | 4 | 3   | 2 | 1 | 0      |
| DEVICE_ID                                             | 0x00       | 0x80          | 1 | 0 | 0 | 0 | 0   | 0 | 0 | 0      |
| RP_MAX                                                | 0x01       | 0x0e          | 0 | 0 | 0 | 0 | 1   | 1 | 1 | 0      |
| RP_MIN                                                | 0x02       | 0x3a          | 0 | 0 | 1 | 1 | 1   | 0 | 1 | 0      |
| WATCHDOG_TIMER_FREQ                                   | 0x03       | 0x94          | 1 | 0 | 0 | 1 | 0   | 1 | 0 | 0      |
| LDC_CONFIG                                            | 0x04       | 0x17          | 0 | 0 | 0 | 1 | 0   | 1 | 1 | 1      |
| CLOCK_CONFIG                                          | 0x05       | 0x02          | 0 | 0 | 0 | 0 | 0   | 0 | 1 | 0      |
| COMPARATOR_THRESH_HIGH_LSB                            | 0x06       | 0x50          | 0 | 1 | 0 | 1 | 0   | 0 | 0 | 0      |
| COMPARATOR_THRESH_HIGH_MSB                            | 0x07       | 0x14          | 0 | 0 | 0 | 1 | 0   | 1 | 0 | 0      |
| COMPARATOR_THRESH_LOW_LSB                             | 0x08       | 0xc0          | 1 | 1 | 0 | 0 | 0   | 0 | 0 | 0      |
| COMPARATOR_THRESH_LOW_MSB                             | 0x09       | 0x12          | 0 | 0 | 0 | 1 | 0   | 0 | 1 | 0      |
| INTB_PIN_CONFIG                                       | 0x0A       | 0x04          | 0 | 0 | 0 | 0 | 0   | 1 | 0 | 0      |
| POWER_CONFIG                                          | 0x0B       | 0x01          | 0 | 0 | 0 | 0 | 0   | 0 | 0 | 1      |
| STATUS                                                | 0x20       | 0x60          | 0 | 1 | 1 | 0 | 0   | 0 | 0 | 0      |
| PROXIMITY_LSB                                         | 0x21       | 0xd8          | 1 | 1 | 0 | 1 | 1   | 0 | 0 | 0      |
|                                                       | 0x22       | 0x22          | 0 | 0 | 1 | 0 | 0   | 0 | 1 | 0      |
| FREQ_COUNT_LSB                                        | 0x23       | 0x48          | 0 | 1 | 0 | 0 | 1   | 0 | 0 | 0      |
| FREQ_COUNT_MID_BYTE                                   | 0x24       | 0x0d          | 0 | 0 | 0 | 0 | 1   | 1 | 0 | 1      |
| FREQ_COUNT_MSB                                        | 0x25       | 0x0           | 0 | 0 | 0 | 0 | 0   | 0 | 0 | 0      |

Figure 1-21. Selecting a Register on Register Page

2. Click the "Read Register" button to update the selected register's current value and bit values in the table



www.ti.com

| MENU Sensing Solution      |         |               |   |   |   |   |      |   |   | v1.8.8 |
|----------------------------|---------|---------------|---|---|---|---|------|---|---|--------|
| Register                   | Address | Current ∨alue |   |   |   | E | Bits |   |   |        |
|                            |         |               | 7 | 6 | 5 | 4 | 3    | 2 | 1 | 0      |
| DEVICE_ID                  | 0x00    | 0x80          | 1 | 0 | 0 | 0 | 0    | 0 | 0 | 0      |
| RP_MAX                     | 0x01    | 0x0e          | 0 | 0 | 0 | 0 | 1    | 1 | 1 | 0      |
| RP_MIN                     | 0x02    | 0x3a          | 0 | 0 | 1 | 1 | 1    | 0 | 1 | 0      |
| WATCHDOG_TIMER_FREQ        | 0x03    | 0x94          | 1 | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| LDC_CONFIG                 | 0x04    | 0x17          | 0 | 0 | 0 | 1 | 0    | 1 | 1 | 1      |
| CLOCK_CONFIG               | 0x05    | 0x02          | 0 | 0 | 0 | 0 | 0    | 0 | 1 | 0      |
| COMPARATOR_THRESH_HIGH_LSB | 0x06    | 0x50          | 0 | 1 | 0 | 1 | 0    | 0 | 0 | 0      |
| COMPARATOR_THRESH_HIGH_MSB | 0x07    | 0x14          | 0 | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| COMPARATOR_THRESH_LOW_LSB  | 0x08    | 0xc0          | 1 | 1 | 0 | 0 | 0    | 0 | 0 | 0      |
| COMPARATOR_THRESH_LOW_MSB  | 0x09    | 0x12          | 0 | 0 | 0 | 1 | 0    | 0 | 1 | 0      |
| INTB_PIN_CONFIG            | 0x0A    | 0x04          | 0 | 0 | 0 | 0 | 0    | 1 | 0 | 0      |
| POWER_CONFIG               | 0x0B    | 0x01          | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 1      |
| STATUS                     | 0x20    | 0x60          | 0 | 1 | 1 | 0 | 0    | 0 | 0 | 0      |
| PROXIMITY_LSB              | 0x21    | 0xd8          | 1 | 1 | 0 | 1 | 1    | 0 | 0 | 0      |
| PROXIMITY_MSB              | 0x22    | 0x80          | 1 | 0 | 0 | 0 | 0    | 0 | 0 | 0      |
| FREQ_COUNT_LSB             | 0x23    | 0x48          | 0 | 1 | 0 | 0 | 1    | 0 | 0 | 0      |
| FREQ_COUNT_MID_BYTE        | 0x24    | 0x0d          | 0 | 0 | 0 | 0 | 1    | 1 | 0 | 1      |
| FREQ_COUNT_MSB             | 0x25    | 0x0           | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0      |

Figure 1-22. Reading the Current Device Register Value on Register Page

## 1.2.6.4 Saving Device Configurations

To save the current register settings of the device follow these steps.

1. Click the button immediately right to the "Auto-Read" selection dropdown



19

| MENU Sensing Solution                                   | ons EVM GUI |               |   |   |   |   |      |   |   | v1.8.8 |
|---------------------------------------------------------|-------------|---------------|---|---|---|---|------|---|---|--------|
| egisters                                                |             |               |   |   |   |   |      |   |   |        |
| Auto Read Off                                           |             |               |   |   |   |   |      |   |   |        |
| Write Register Y Read Register Update Mode: Im Register | Address     | Current Value |   |   |   | B | iits |   |   |        |
|                                                         |             |               | 7 | 6 | 5 | 4 | 3    | 2 | 1 | 0      |
| DEVICE_ID                                               | 0x00        | 0x80          | 1 | 0 | 0 | 0 | 0    | 0 | 0 | 0      |
| RP_MAX                                                  | 0x01        | 0x0e          | 0 | 0 | 0 | 0 | 1    | 1 | 1 | 0      |
| RP_MIN                                                  | 0x02        | 0x3a          | 0 | 0 | 1 | 1 | 1    | 0 | 1 | 0      |
| WATCHDOG_TIMER_FREQ                                     | 0x03        | 0x94          | 1 | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| LDC_CONFIG                                              | 0x04        | 0x17          | 0 | 0 | 0 | 1 | 0    | 1 | 1 | 1      |
| CLOCK_CONFIG                                            | 0x05        | 0x02          | 0 | 0 | 0 | 0 | 0    | 0 | 1 | 0      |
| COMPARATOR_THRESH_HIGH_LSB                              | 0x06        | 0x50          | 0 | 1 | 0 | 1 | 0    | 0 | 0 | 0      |
| COMPARATOR_THRESH_HIGH_MSB                              | 0x07        | 0x14          | 0 | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| COMPARATOR_THRESH_LOW_LSB                               | 0x08        | 0xc0          | 1 | 1 | 0 | 0 | 0    | 0 | 0 | 0      |
| COMPARATOR_THRESH_LOW_MSB                               | 0x09        | 0x12          | 0 | 0 | 0 | 1 | 0    | 0 | 1 | 0      |
| INTB_PIN_CONFIG                                         | 0x0A        | 0x04          | 0 | 0 | 0 | 0 | 0    | 1 | 0 | 0      |
|                                                         | 0x0B        | 0x01          | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 1      |
| POWER_CONFIG                                            |             |               |   |   |   |   |      |   |   |        |

#### Figure 1-23. Save Register Values to File on Register Page

2. Choose a name for the JSON file and the directory to save it within. Then click "Save"

## 1.2.6.5 Loading Previously Saved Configurations

- To load previously saved register settings from a JSON file follow these steps.
- 1. Click the button furthest right from the "Auto-Read" selection dropdown



| MENU Sensing Solution           | ons EVM GUI |               |     |   |   |   |      |   |   | v1.8.8 |
|---------------------------------|-------------|---------------|-----|---|---|---|------|---|---|--------|
| legisters                       |             |               |     |   |   |   |      |   |   |        |
| Auto Read Off                   | mediate V   |               |     |   |   |   |      |   |   |        |
| Register                        | Address     | Current Value |     |   |   | E | Bits |   |   |        |
|                                 |             |               | 7   | 6 | 5 | 4 | 3    | 2 | 1 | 0      |
| DEVICE_ID                       | 0x00        | 0x80          | 1   | 0 | 0 | 0 | 0    | 0 | 0 | 0      |
| RP_MAX                          | 0x01        | 0x0e          | 0   | 0 | 0 | 0 | 1    | 1 | 1 | 0      |
| RP_MIN                          | 0x02        | 0x3a          | 0   | 0 | 1 | 1 | 1    | 0 | 1 | 0      |
| WATCHDOG_TIMER_FREQ             | 0x03        | 0x94          | 1   | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| LDC_CONFIG                      | 0x04        | 0x17          | 0   | 0 | 0 | 1 | 0    | 1 | 1 | 1      |
| CLOCK_CONFIG                    | 0x05        | 0x02          | 0   | 0 | 0 | 0 | 0    | 0 | 1 | 0      |
| COMPARATOR_THRESH_HIGH_LSB      | 0x06        | 0x50          | 0   | 1 | 0 | 1 | 0    | 0 | 0 | 0      |
| COMPARATOR_THRESH_HIGH_MSB      | 0x07        | 0x14          | 0   | 0 | 0 | 1 | 0    | 1 | 0 | 0      |
| COMPARATOR_THRESH_LOW_LSB       | 0x08        | 0xc0          | 1   | 1 | 0 | 0 | 0    | 0 | 0 | 0      |
| COMPARATOR_THRESH_LOW_MSB       | 0x09        | 0x12          | 0   | 0 | 0 | 1 | 0    | 0 | 1 | 0      |
|                                 | 0x0A        | 0x04          | 0   | 0 | 0 | 0 | 0    | 1 | 0 | 0      |
| INTB_PIN_CONFIG                 |             | 0x01          | 0   | 0 | 0 | 0 | 0    | 0 | 0 | 1      |
| INTB_PIN_CONFIG<br>POWER_CONFIG | 0x0B        | 0.01          | · · |   |   |   |      |   |   |        |

## Figure 1-24. Loading Previously Saved Register Values from File on Register Page

2. Select the JSON file with the desired settings and click "Open"

## 1.2.7 Configuring the EVM Using the Configuration Page

The Sensing Solutions GUI is capable on configuring the device more intuitively than the direct register values. The "Configuration" page provides an easy-to-use tool for updating the device configuration and provides additional information about how the device will perform.



| OneUI Appl     | ication                                          |                     |                     |                    |                    |                    |                                  |              |                                |
|----------------|--------------------------------------------------|---------------------|---------------------|--------------------|--------------------|--------------------|----------------------------------|--------------|--------------------------------|
|                | NU                                               | Sensing S           | olutions            | EVM GU             |                    |                    |                                  |              |                                |
| Current        | Status and Measur                                | rements             |                     |                    |                    |                    |                                  |              |                                |
| Status         |                                                  | Measuremer          | ts                  |                    |                    |                    |                                  |              |                                |
| Active<br>Mode | Sensor Oscillator<br>Timeout                     | Proximity Code      | R <sub>p</sub> (kΩ) | Frequency<br>Count | Frequency<br>(MHz) | Inductance<br>(uH) | Sampling Rate<br>(Hz)            |              |                                |
| ۲              | ۲                                                | 8811                | 0.000000            | 3395               | 3.619440           | 19.335589          | 1767.3                           | ]            |                                |
| -              | ire R <sub>p</sub> Measuremen                    | ts and Comparate    |                     | ator Thre          | sholds             |                    |                                  |              |                                |
| Sensor         |                                                  | Register Code       | · · ·               | Proximity          |                    | 2                  | Comparator Status                | 5            | Store Current Measurement      |
| Minimu         | m 🔽 🔻                                            | 58                  | Low                 | 4800               | D 0.00             | 00 😑 Meau          | isered R <sub>p</sub> (kΩ) below | w threshold  | Set Low Threshold              |
| Maximu         | m 83.111 kΩ ▼                                    | 14                  | High                | 5200               | D 0.00             | 00 🕘 Meau          | sered $R_p(k\Omega)$ above       | e threshold  | Set High Threshold             |
|                |                                                  |                     |                     |                    |                    |                    |                                  |              |                                |
| onfigu         | ire Inductance Mea                               | surements           |                     |                    |                    |                    |                                  |              |                                |
| Clock          | Configuration                                    | Sens                | or Param            | neters             |                    | Fre                | quency Coun                      | ter Conf     | figuration                     |
| Extern         | al Clock Signal on XIN                           |                     | im Sensor Fre       | equency            | 0.350537           | MHz 🗹 En           | able Frequency Co                | unter (requi | ired for inductance measuremer |
|                | al Crystal across XIN/X<br>/stal Frequency (MHz) | OUT Paralle         | I Sensor Capa       | acitance           | 100                | pF Resp            | onse Time 6144                   | •            |                                |
|                |                                                  |                     |                     |                    |                    |                    |                                  |              |                                |
| Connec         | ted Registers                                    | exported successful | у.                  |                    |                    |                    |                                  |              |                                |

Figure 1-25. Sensor Properties and Input Adjustments on Configuration Page

## 1.2.8 Streaming Measurement Data

The Sensing Solutions GUI and EVM provide a tool to capture, display, and log measurement data. The section describes how to use the data measurement tools from the "Data Streaming" page accessible from the GUI menu.

## 1.2.8.1 Choosing the Graph and Visible Channels

Select the drop down menu on top of the y-axis to choose the graph to display.



www.ti.com

| Sea OneUI Application                  |                                  |         |     |     |                   |                  |                |
|----------------------------------------|----------------------------------|---------|-----|-----|-------------------|------------------|----------------|
| ■ MENU                                 | Sensing Solutions E              | VM GUI  |     |     |                   |                  | v1.8.8         |
| Data Streaming:                        | Start Stop                       |         |     |     | Show Graph Config | uration (C) Show | Statistics (I) |
| Data Codes<br>Data Codes<br>Rp (kOhms) | Show: PROXIMITY & FREQ_COUNT &   |         |     |     | Selec             | t Log File: 🛓 🕬  | data\data.csv  |
| Frequnecy (MHz)<br>Inductance (uH)     |                                  |         |     |     |                   |                  |                |
| 0.8                                    |                                  |         |     |     |                   |                  |                |
| 0.7                                    |                                  |         |     |     |                   |                  |                |
| 0.6                                    |                                  |         |     |     |                   |                  |                |
| 0.5                                    |                                  |         |     |     |                   |                  |                |
| 0.4                                    |                                  |         |     |     |                   |                  |                |
| 0.3                                    |                                  |         |     |     |                   |                  |                |
| 0.2                                    |                                  |         |     |     |                   |                  |                |
| 0.1                                    |                                  |         |     |     |                   |                  |                |
| 0.0                                    | 0.1 0.2                          | 0.3 0.4 | 0.5 | 0.6 | 0.7 0.8           | 0.9              | 1.0            |
|                                        | ROXIMITY 🔿 FREQ_COUNT            |         |     |     |                   |                  | 960 1024       |
| O                                      |                                  |         |     |     |                   |                  | Range: 64      |
|                                        |                                  |         |     |     |                   | _                |                |
| Connected                              | Registers exported successfully. |         |     |     |                   | 🤴 Texas Ins      | TRUMENTS       |

Figure 1-26. Select the Data Graph on Data Streaming Page

To select which channel measurements are displayed in the graph, check or uncheck the available channels shown next to the graph units. Selecting or not selecting the channels only affects the graph and not the data logged to a file. If a channel is not enabled in the Configuration page it will not appear on the Data Streaming page.

#### 1.2.8.2 Logging Data to a File

Follow these steps to log measurement data to a file.

1. Click the button in the upper right under next to "Click to Select Log File"



| Sea OneUI Application |                         |              |           |     |     |     |      |                 |              |               | X     |
|-----------------------|-------------------------|--------------|-----------|-----|-----|-----|------|-----------------|--------------|---------------|-------|
| ■ MENU                | Sens                    | ing Solution | s EVM GUI |     |     |     |      |                 |              | v1.8.8        | ;     |
| Data Streaming:       | Start Stop              |              |           |     |     |     | Show | Graph Configura | ation (C) Sh | ow Statistics | 6 (I) |
| Data Codes            | ▼ Show: PROXIMITY ✓     | FREQ_COUNT   |           |     |     |     |      | Select I        | .og File: 🛓  | C:\data\data  | .csv  |
| 1.0-                  |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.9                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.8                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.7                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.6                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.5                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.4                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.3                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.2                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.1                   |                         |              |           |     |     |     |      |                 |              |               |       |
| 0.0                   | 0.1                     | 0.2          | 0.3       | 0.4 | 0.5 | 0.6 | 0.7  | 0.8             | 0.9          | 1.0           |       |
|                       | PROXIMITY 😞 FREQ_COUNT  |              |           |     |     |     |      |                 |              | 980           | 1024  |
| 0                     |                         |              |           |     |     |     |      |                 |              | Range: 6      |       |
|                       |                         |              |           |     |     |     |      |                 |              |               |       |
| Connected             | Registers exported succ | cessfully.   |           |     |     |     |      |                 | Texas I      | NSTRUME       | ENTS  |

Figure 1-27. Select Log File Button on Data Streaming Page

- 2. Select a file name and directory to save the data to and then click the "Save" button
- 3. Whenever data streaming is running the data for all channels will be logged to this file. The selected file is shown next to the button.

## 1.2.8.3 Starting and Stopping Data Streaming

To start data streaming click the "Start" button.



#### Sensing Solutions EVM GUI

\_ - X Sa OneUI Application v1.8.8 MENU Sensing Solutions EVM GUI Data Streaming: Start Stop Show Graph Configuration (C) Show Statistics (I) ▼ Show: PROXIMITY FREQ\_COUNT Data Codes Select Log File: 📥 C:\data\ldc1000\_data.csv 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0+ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ROXIMITY 😞 FREQ\_COUNT 1024 Range: 64 TEXAS INSTRUMENTS Registers exported successfully. Connected

Figure 1-28. Start Button on Data Streaming Page

To stop data streaming click the "Stop" button.



25



Figure 1-29. Stop Button on Data Streaming Page

## 1.2.8.4 Data Statistics

Click the "Show Statistics" button to view the measurement statistics.



#### Sensing Solutions EVM GUI

\_ - X Sa OneUI Application v1.8.8 MENU Sensing Solutions EVM GUI Show Graph Configuration (C) Show Statistics Data Streaming: Start Stop ▼ Show: PROXIMITY S FREQ\_COUNT Data Codes Select Log File: 📥 C:\data\ldc1000\_data.csv 9,000 8,500 8,000 7,500 7,000 6,500 6,000 5,500 5,000 4,500 4,000 3,50 3,000 35,820 35,825 35,830 35,835 35,840 35,845 35,860 35,865 35,850 35,855 35,870 35,875 ROXIMITY 🔿 FREQ\_COUNT 1024 Range: 64 TEXAS INSTRUMENTS Data streaming started Connected

Figure 1-30. Show Statistics Button on Data Streaming Page

Click the "Hide Statistics" button to hide the measurement statistics.



27

| www | .ti.c | om |  |
|-----|-------|----|--|

Texas Instruments

| OneUI Application                                                               |              |         |        |           |          |           |                 | • ×   |
|---------------------------------------------------------------------------------|--------------|---------|--------|-----------|----------|-----------|-----------------|-------|
| MENU Sensing Solutions EVM GUI                                                  |              |         |        |           |          |           | v1.8.8          |       |
| Data Streaming: Start Stop                                                      |              | S       | Show G | raph Co   | onfigura | ation (C) | Hide Statistic: | s (I) |
| Data Codes   Show: PROXIMITY  FREQ_COUNT                                        | Statistics   |         | S      | elect Log | File:    |           | ta\ldc1000_data |       |
| s, 000-j                                                                        | Data Series  | Current | Min    | Max       | Delta    | Average   | Std. Deviation  | n     |
| <b>*************************************</b>                                    | ר ההוגסאיר י | 8666    | 8635   | 8697      | 62°      | •8677.3•  | ff:8            |       |
| 8,000                                                                           | FREQ_COUN    | IT 3399 | 3399   | 3400      | 1        | 3399.2    | 0.4             |       |
| 7,500                                                                           | Decimals     | 0       | 0      | 0         | 0        | 1         | 1               |       |
| 7,000                                                                           |              |         |        |           |          |           |                 |       |
| 6,500                                                                           |              |         |        |           |          |           |                 |       |
| 6,000                                                                           |              |         |        |           |          |           |                 |       |
| 5,500                                                                           |              |         |        |           |          |           |                 |       |
| 5,000                                                                           |              |         |        |           |          |           |                 |       |
| 4,500                                                                           |              |         |        |           |          |           |                 |       |
| 4,000                                                                           |              |         |        |           |          |           |                 |       |
| 3,500                                                                           |              |         |        |           |          |           |                 |       |
| 3,000-<br>36,740 26,745 26,750 26,755 26,760 26,765 36,770                      | 36,775       | 36,780  | 36,78  |           | 36,790   | 36,7      | 795 36,800      |       |
| ac, feu | 60,770       | 30,700  |        | ,         | 30,750   |           | 30 00,000       | ·     |
|                                                                                 |              |         |        |           |          |           | 980<br>Range: ( | 1024  |
|                                                                                 |              |         |        |           |          |           |                 |       |
|                                                                                 |              |         |        |           |          |           |                 |       |
| Connected Data streaming started                                                |              |         |        |           | Į,       | TEXAS     | 5 Instrume      | ENTS  |

Figure 1-31. Hide Statistics Button on Data Streaming Page

## 1.2.8.5 Configuring the Graph

To configure the graph, click the "Show Graph Configuration" button.



#### Sensing Solutions EVM GUI

\_ - X Sa OneUI Application v1.8.8 MENU Sensing Solutions EVM GUI Show Graph Configuration (C) Show Statistics (I) Data Streaming: Start Stop ▼ Show: PROXIMITY S FREQ\_COUNT Data Codes Select Log File: 🛃 C:\data\ldc1000\_data.csv 9,000 8,500 8,000 7,500 7,000 6,500 6,000 5,500 5,000 4,500 4,000 3,50 \_\_\_\_\_ 3,000 37,095 37,100 37,105 37,110 37,115 37,120 37,125 37,130 37,135 37,140 37,145 37,150 37,155 ROXIMITY 💀 FREQ\_COUNT 980 1024 Range: 64 TEXAS INSTRUMENTS Data streaming started Connected

Figure 1-32. Show Graph Configuration Button on Data Streaming Page



| Graph Configuration                                         |                          |                          |         |    |  |
|-------------------------------------------------------------|--------------------------|--------------------------|---------|----|--|
| Display Frame Rate<br>16.0 ms = 62.5 Hz                     |                          |                          |         |    |  |
| New Data Sa                                                 |                          |                          |         |    |  |
| EVM Outp                                                    | ut Rate (In              | finity ms = (            | 0.0 Hz) |    |  |
| Add sampl                                                   | e to graph               | every                    | 100     | ms |  |
| Vertical ScalingVertical Left Axis (Y1)Minimum:0Maximum:100 |                          |                          |         |    |  |
| Autoscale                                                   | Autoscale                | e & Lock                 |         |    |  |
| Sample Cour<br>Display:<br>Buffer:                          | n <b>ts</b><br>64<br>512 | ]≈ 0.000 s<br>]≈ 0.000 s |         |    |  |

Figure 1-33. Graph Configuration Button on Data Streaming Page

The configuration window displays the actual frame rate of the graph, the rate at which data is added to the graph, the vertical scaling, and the sample buffer size. The display rate is the rate at which the graph updates on the computer display and is not configurable. It is automatically optimized by the GUI.

The "New Data Sample Rate" allows the user to choose when new data is added to the graph. Selecting "EVM Output Rate" will display data on the graph as fast as is available from the EVM. This should not be confused with the actual sampling rate of the device on the EVM which could be different. The "Add sample to graph every ... ms" will add a new sample to the graph at the specified rate.

The "Verical Scaling" allows the user to either manually set the minimum and maximum values of the yaxis on the graph or use auto-scaling. The "Autoscale & Lock" button scales the graph based on the data of the current display and then locks those vertical scaling settings.

The "Sample Counts" allows the user to specify the number of samples displayed on the graph and the total number of samples stored in the buffer. Please note the buffer size does not affect data logging to a file.

To hide the configuration window, click the "Hide Graph Configuration" button.



www.ti.com

| MENU Sensing Solutions EVM GUI                                                                      | v1.8.8                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Streaming: Start Stop                                                                          | Hide Graph Configuration (C) Show Statistics (I)                                                                                                                                                                                                                                                                                                  |
| Data Codes   Show: PROXIMITY  FREQ_COUNT                                                            | Graph Configuration<br>Select Log File: 🛓 C:\data\ldc1000_data.csv                                                                                                                                                                                                                                                                                |
| 9,000-]                                                                                             | 40.3 ms = 24.8 Hz                                                                                                                                                                                                                                                                                                                                 |
| 8,500<br>8,000<br>7,500<br>6,500<br>6,000<br>8,500<br>8,000<br>4,000<br>4,500<br>4,500              | New Data Sample Rate         ● EVM Output Rate (3.15 ms = 317.3 Hz)         ● Add sample to graph every 50 ms         Vertical Scaling         Vertical Left Axis (Y1)         Minimum:       0         Maximum:       50         ● Autoscale & Lock         Sample Counts         Display:       64         ● 3.200 s         Buffer:       1024 |
| 2,000<br>37,845 27,850 27,855 27,860 27,865 27,870 27,875 27,880 27,885<br>🐼 FRONINITY 🚫 FREQ_COUNT | 27,890 27,898 27,900 27,905<br>900 1024                                                                                                                                                                                                                                                                                                           |
| Connected Data streaming started                                                                    | Range 04                                                                                                                                                                                                                                                                                                                                          |

Figure 1-34. Hide Graph Configuration Button on Data Streaming Page

#### 1.2.8.6 Navigating the Data Streaming Buffer

The Sensing Solutions EVM GUI stores a buffer of data samples and then displays a subset of those samples in the graph. The data buffer can be navigated using the horizontal slider below the graph. To adjust the samples displayed in the graph, click either the slider on the left or right side of the green bar and drag it closer or further from the other slider. The number of samples displayed is shown between the left and right sliders in the green bar.



Figure 1-35. Changing Number of Samples Displayed in Data Graph

By clicking on the green bar sliders and dragging the mouse left or right, the displayed region of buffered LDC data can be adjusted.



#### Sensing Solutions EVM GUI

\_ C \_X San OneUI Application v1.8.8 E MENU Sensing Solutions EVM GUI Data Streaming: Start Stop Show Graph Configuration (C) Show Statistics (I) ▼ Show: PROXIMITY S FREQ COUNT Data Codes Select Log File: 📥 C:\data\ldc1000\_data.csv 8,690 8,68 8,6 8,66 8,65 8,640 8,630 8,620 8,610 8,600 38,200 38,100 38,150 38,250 38,300 38,350 ROXIMITY COUR R *i* Texas Instruments Connected Data streaming stopped

Figure 1-36. Displaying Previous Data Samples on the Data Streaming Page

## 1.2.9 Updating the EVM Firmware

To upload new firmware to the EVM, navigate to the "Firmware" page from the GUI menu and follow these steps. The images below show uploading the FDC2214 EVM firmware, but the steps are identical for any LDC, FDC, or HDC EVM when using their respective firmware files.

1. Click the button to select a TI-TXT firmware file



| OneUI Application                     | - • ×    |
|---------------------------------------|----------|
| MENU Sensing Solutions EVM GUI        | v1.8.8   |
| Firmware Upgrade                      |          |
| Select TI-TXT firmware File:          |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
|                                       |          |
| Connected SSP EVM connected - FDC2214 | TRUMENTS |

Figure 1-37. Select TI-TXT File Button on Firmware Upload Page

2. Select the firmware file and click "Open"



www.ti.com

| 🗸 🧹 📕 🕨 Comput                                               | ter   OSDisk (C:)   ti   Sensing Solutions EVM GUI-1.8.8   EVM | I Firmware ►       |               | <b>▼</b> 49 | Search EVM  | Firmware |   |
|--------------------------------------------------------------|----------------------------------------------------------------|--------------------|---------------|-------------|-------------|----------|---|
| Organize 🔻 New fold                                          | ler                                                            |                    |               |             |             |          | ( |
| 🔆 Favorites                                                  | Name                                                           | Date modified      | Туре          | Size        |             |          |   |
| Conner, Blair                                                | FDC2x14_LDC13xxRevB_LDC16xxRevB_EVM_Firmware_so                | 11/5/2015 10:01 AM | File folder   |             |             |          |   |
| 📃 Desktop                                                    | HDC10x0_EVM_Firmware_source                                    | 11/5/2015 10:01 AM | File folder   |             |             |          |   |
| 📃 Recent Places                                              | FDC2x14_LDC13xxRevB_LDC16xxRevB_EVM_Firmware.txt               | 6/11/2015 3:34 PM  | Text Document | 101 KB      |             |          |   |
| 퉬 UserData                                                   | HDC10x0_EVM_Firmware.txt                                       | 6/15/2015 2:08 PM  | Text Document | 93 KB       |             |          |   |
| 鷆 GIT_Repositories                                           |                                                                |                    |               |             |             |          |   |
| 퉲 ti                                                         |                                                                |                    |               |             |             |          |   |
| 鷆 Downloads                                                  |                                                                |                    |               |             |             |          |   |
| 🔤 Box Sync                                                   |                                                                |                    |               |             |             |          |   |
| 🍌 Blair Conner (P)                                           |                                                                |                    |               |             |             |          |   |
| <ul> <li>Computer</li> <li>OSDisk (C:)</li> <li>P</li> </ul> |                                                                |                    |               |             |             |          |   |
| 🗣 Network                                                    |                                                                |                    |               |             |             |          |   |
|                                                              |                                                                |                    |               |             |             |          |   |
|                                                              |                                                                |                    |               |             |             |          |   |
|                                                              | ame: FDC2x14_LDC13xxRevB_LDC16xxRevB_EVM_Firmware.txt          |                    |               | <b>-</b>    | Notepad++ D |          |   |

Figure 1-38. Selecting TI-TXT Firmware File for Upload to EVM

3. Click the "Upload Firmware" button



| neUI Application                                                                                                                   | ×         |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|
| MENU Sensing Solutions EVM GUI                                                                                                     | v1.8.8    |
| irmware Upgrade                                                                                                                    |           |
| select TI-TXT firmware File: 🔹 C:\ti\Sensing Solutions EVM GUI-1.8.8\EVM Firmware\FDC2x14_LDC13xxRevB_LDC16xxRevB_EVM_Firmware.txt |           |
| Upload Firmware                                                                                                                    |           |
|                                                                                                                                    |           |
|                                                                                                                                    |           |
|                                                                                                                                    |           |
|                                                                                                                                    |           |
|                                                                                                                                    |           |
|                                                                                                                                    |           |
|                                                                                                                                    |           |
|                                                                                                                                    |           |
| Connected SSP EVM connected - FDC2214                                                                                              | STRUMENTS |

Figure 1-39. Upload Firmware Button on Firmware Upload Page

4. Wait for the firmware to upload. Do NOT disconnect the EVM from the PC at this time! Also note that the GUI will disconnect from the EVM. The upload process should not take more than one minute. If the upload fails or lasts longer than one minute, unplug the EVM and restart the GUI.

| CneUI Application                                                                                                                  |                   |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| MENU     Sensing Solutions EVM GUI                                                                                                 | v1.8.8            |
| Firmware Upgrade                                                                                                                   |                   |
| Select TI-TXT firmware File: 🔹 C:\ti\Sensing Solutions EVM GUI-1.8.8\EVM Firmware\FDC2x14_LDC13xxRevB_LDC16xxRevB_EVM_Firmware.txt |                   |
| Wait for upload to complete                                                                                                        |                   |
| Uploading firmware: Please do NOT disconnect the EVMI                                                                              |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
|                                                                                                                                    |                   |
| Not connected SSP EVM disconnected                                                                                                 | Texas Instruments |
| Figure 1-40. Firmware Upload in Progress                                                                                           |                   |



www.ti.com

| Sea OneUI Application | 1                |                                                                                                     |                   |
|-----------------------|------------------|-----------------------------------------------------------------------------------------------------|-------------------|
|                       |                  | Sensing Solutions EVM GUI                                                                           | v1.8.8            |
| Firmware Up           | grade            |                                                                                                     |                   |
|                       | firmware File: 1 | C:\ti\Sensing Solutions EVM GUI-1.8.8\EVM Firmware\FDC2x14_LDC13xxRevB_LDC16xxRevB_EVM_Firmware.txt |                   |
| Upload Firm           | vare             | Successi                                                                                            |                   |
| 1                     |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     |                   |
|                       |                  |                                                                                                     | lin management    |
| Not connecte          | ed Firmware s    | uccesssfully updated!                                                                               | Texas Instruments |

Figure 1-41. Firmware Upload Success



Chapter 2 SNAU150B–September 2013–Revised November 2019

## Schematics

## 2.1 LDC10xx EVM Schematics

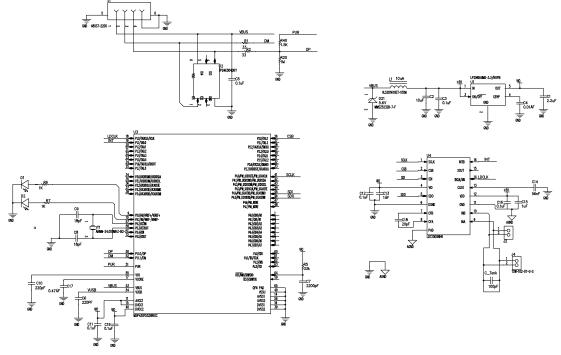



Figure 2-1. EVM Layout

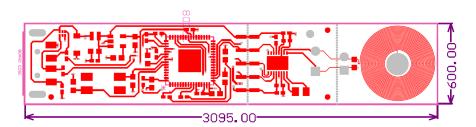



Figure 2-2. Top Layer

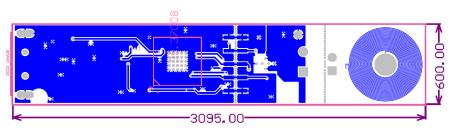



Figure 2-3. Bottom Layer



## **Bill of Materials**

| Designator                    | Quantity | Description                                        | Manufacturer                        | Part Number         |
|-------------------------------|----------|----------------------------------------------------|-------------------------------------|---------------------|
| C1                            | 1        | CAP, CERM, 2.2uF, 10V,<br>+/-10%, X5R, 0603        | Kemet                               | C0603C225K8PACTU    |
| C2                            | 1        | CAP CER 10UF 10V 10%<br>X5R 0603                   | TDK Corporation                     | C1608X5R1A106K080AC |
| C3, C5, C11, C12, C16,<br>C19 | 6        | CAP CER 0.1UF 16V 5%<br>X7R 0402                   | Murata Electronics North<br>America | GRM155R71C104JA88D  |
| C4                            | 1        | CAP, CERM, 0.01uF,<br>25V, +/-5%, C0G/NP0,<br>0603 | TDK                                 | C1608C0G1E103J      |
| C6                            | 1        | CAP CER 220PF 50V 1%<br>NP0 0402                   | TDK Corporation                     | C1005C0G1H221F050BA |
| C7                            | 1        | CAP, CERM, 2200pF,<br>50V, +/-10%, X7R, 0603       | Kemet                               | C0603X222K5RACTU    |
| C8, C9                        | 2        | CAP CER 18PF 100V 5%<br>NP0 0603                   | MuRata                              | GRM1885C2A180JA01D  |
| C10                           | 1        | CAP, CERM, 220pF, 50V,<br>+/-1%, C0G/NP0, 0603     | AVX                                 | 06035A221FAT2A      |
| C13, C15                      | 2        | CAP, CERM, 1uF, 10V,<br>+/-10%, X5R, 0402          | MuRata                              | GRM155R61A105KE15D  |
| C14                           | 1        | CAP CER 0.056UF 16V<br>5% X7R 0402                 | Kemet                               | C0402C563J4RACTU    |
| C17                           | 1        | CAP, CERM, 0.47uF,<br>10V, +/-10%, X7R, 0603       | Kemet                               | C0603C474K8RACTU    |
| C18                           | 1        | CAP CER 20PF 50V 5%<br>NP0 0805                    | Kemet                               | C0805C200J5GACTU    |
| C_Tank                        | 1        | CAP CER 100PF 50V 1%<br>NP0 0603                   | AVX Corporation                     | 06035A101FAT2A      |
| D1                            | 1        | LED SMARTLED GREEN<br>570NM 0603                   | OSRAM Opto<br>Semiconductors Inc    | LG L29K-G2J1-24-Z   |
| D2                            | 1        | LED 660NM SUPER RED<br>DIFF 0603SMD                | Lumex Opto/Components<br>Inc        | SML-LX0603SRW-TR    |
| D21                           | 1        | Diode, Zener, 5.6V,<br>500mW, SOD-123              | Diodes Inc.                         | MMSZ5232B-7-F       |
| FID1, FID2, FID3              | 3        | Fiducial mark. There is nothing to buy or mount.   | N/A                                 | N/A                 |
| J1                            | 1        | Connector, USB Type A,<br>4POS R/A, SMD            | Molex                               | 48037-2200          |
| L1                            | 1        | INDUCTOR POWER<br>10UH .45A SMD                    | TDK Corporation                     | VLS201610ET-100M    |
| R1, R2                        | 2        | RES, 33 ohm, 5%,<br>0.063W, 0402                   | Vishay-Dale                         | CRCW040233R0JNED    |
| R5                            | 1        | RES, 33k ohm, 5%,<br>0.063W, 0402                  | Vishay-Dale                         | CRCW040233K0JNED    |
| R6, R7                        | 2        | RES 1K OHM 1/10W 5%<br>0402 SMD                    | Panasonic Electronic<br>Components  | ERJ-2GEJ102X        |
| R20                           | 1        | RES,1M ohm, 5%,<br>0.063W, 0402                    | Yageo                               | RC0402JR-071ML      |



| Designator | Quantity | Description                                                                              | Manufacturer        | Part Number         |
|------------|----------|------------------------------------------------------------------------------------------|---------------------|---------------------|
| R40        | 1        | RES 1.5K OHM 1/16W<br>5% 0402 SMD                                                        | Vishay Dale         | CRCW04021K50JNED    |
| U1         | 1        | Micropower 150 mA Low-<br>Noise Ultra Low-Dropout<br>Regulator, 5-pin SOT-23,<br>Pb-Free | Texas Instruments   | LP2985AIM5-3.3/NOPB |
| U2         | 1        | 4-CHANNEL ESD-<br>PROTECTION ARRAY<br>FOR HIGH-SPEED DATA<br>INTERFACES, DRY006A         | Texas Instruments   | TPD4E004DRY         |
| U3         | 1        | MCU                                                                                      | Texas Instruments   | MSP430F5528IRGCR    |
| U4         | 1        | Inductance to Digital<br>Converter                                                       | Texas instruments   | LDC1000             |
| Y1         | 1        | CRYSTAL 24.000MHZ<br>18PF SMD                                                            | Abracon Corporation | ABMM-24.000MHZ-B2-T |
| J2         | 0        | TERM BLOCK 2POS<br>3.81MM PCB HORIZ                                                      | FCI                 | 20020327-D021B01LF  |
| J4         | 0        | Header, TH, 100mil, 2x1,<br>Gold plated, 230 mil<br>above insulator                      | Samtec, Inc.        | TSW-102-07-G-S      |



**Revision History** 

www.ti.com

## **Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| C | hanges from A Revision (March 2014) to B Revision       | Page |
|---|---------------------------------------------------------|------|
| • | Added new part number LDC1001                           | 2    |
| • | Updated GUI instructions to v1.8.8                      | 3    |
| • | Updated Choosing the Graph and Visible Channels section | . 21 |
|   |                                                         |      |

| CI | Changes from Original (September 2013) to A Revision Page      |      |  |  |
|----|----------------------------------------------------------------|------|--|--|
| •  | Added new part numbers LDC1041/LDC1051                         | 2    |  |  |
| •  | Changed Changed Schematic to Vector graphic for better display | . 37 |  |  |

#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated