The LMX2572LPEVM is designed to evaluate the performance of LMX2572LP. This board consists of a LMX2572LP device.

The LMX2572LP is a low-power, high-performance wideband synthesizer that can generate any frequency from 12.5 MHz to 2 GHz without using an internal VCO doubler. The PLL delivers excellent performance while consuming just 70 mA from a single 3.3-V supply.

Contents
1 LMX2572LPEVM Evaluation Module ... 3
2 Setup ... 3
3 Typical Measurement .. 6
4 Schematic .. 13
5 PCB Layout and Layer Stack-Up ... 15
6 Bill of Materials .. 18
7 Troubleshooting Guide .. 19
Appendix A Using Different Reference Clock .. 20
Appendix B Reference PRO .. 21

List of Figures
1 EVM Connection Diagram ... 3
2 Select Device in TICS Pro .. 5
3 Default Mode ... 5
4 MUXout_SW Switch .. 5
5 Loop Filter ... 6
6 Default Output .. 7
7 Phase Adjustment Setting .. 7
8 Phase Adjustment ... 8
9 Calibration-Free Automatic Ramp Setting .. 9
10 Calibration-Free Automatic Ramp (CHDIV = 4) ... 9
11 Automatic Ramp Setting .. 10
12 Automatic Ramp (CHDIV = 4) .. 10
13 FSK SPI FAST Mode Setting .. 11
14 FSK SPI FAST Mode .. 11
15 Readback Setting ... 12
16 Register Readback .. 12
17 LMX2572LPEVM Schematic (Page 1) .. 13
18 LMX2572LPEVM Schematic (Page 2) .. 14
19 PCB Layer Stack-Up ... 15
20 Top Layer .. 15
21 GND Layer ... 16
22 Power Layer ... 16
23 Bottom Layer ... 17
24 Troubleshooting Guide .. 19
25 Output Termination Schematic ... 22
26 Default Output Phase Noise .. 23
27 Default Output Waveform .. 23
28 Firmware Requirement ... 23
29 Firmware Loader ... 24
30 BSL Button ... 24
31 Update Firmware ... 25
32 Firmware Update Complete ... 25
33 USB Communications .. 26

List of Tables
1 Loop Filter Configuration ... 6
2 Phase Adjustment Setting .. 7
3 Calibration-free Automatic Ramp Example ... 8
4 Automatic Ramp Example .. 9
5 FSK SPI FAST Mode Example .. 10
6 Bill of Materials .. 18
7 Reference Clock Input Configuration .. 20
8 Reference PRO Output Frequency Selection .. 21
9 Reference PRO Output Format Selection .. 22
10 Output Termination Configuration ... 22

Trademarks
All trademarks are the property of their respective owners.
1 LMX2572LPEVM Evaluation Module

1.1 Evaluation Module Contents

In the box, there is:

- One LMX2572LPEVM board (SV601308-004)
- One Reference PRO board (SV601349)
- Two SMA Male-to-Male adaptors (132168)
- One USB cable
- One 10-pin ribbon cable

1.2 Evaluation Setup Requirement

The evaluation requires the following hardware and software:

- A DC power supply
- A spectrum analyzer or a signal analyzer
- A PC running Windows 7 or more recent version
- An oscilloscope (optional)
- A high quality signal generator (optional)
- Texas Instruments Clocks and Synthesizers TICS Pro software
- Texas Instruments PLLatinum Simulator Tool (optional)

1.3 Resources

Related evaluation and development resources are as follows:

- LMX2572LP data sheet
- TICS Pro software
- PLLatinum Simulator Tool (PLL Sim)

2 Setup

2.1 Connection Diagram
2.2 **Power Supply**

Apply 3.3 V to the V_{cc} SMA connector. The acceptable supply voltage range is 3 V to 3.6 V. The maximum current consumption in the most extreme configuration must not exceed 150 mA.

By default, the onboard DC/DC converter is not used.

2.3 **Reference Clock**

Use the SMA Male-to-male adopter to connect the OSCinP SMA connector with one of the outputs from the Reference PRO. The OSCinM SMA connector is not connected to LMX2572LP, so this connector can be left open.

The EVM is configured for single-ended input with the OSCin pin connected to the OSCinP SMA connector and the OSCinM pin 50-Ω terminated onboard. If required, the EVM can be modified to operate with a different clock source in a different configuration. See Appendix A for more details.

Terminate the unused output of the Reference PRO board with a 50-Ω resistor or SMA load. By default, the output clock from the Reference PRO is a 100-MHz LVPECL clock. Appendix B has the details of the Reference PRO.

2.4 **RF Output**

Connect either the RFoutAP or RFoutAM SMA connector to a signal analyzer. The unused connector must be terminated with a 50-Ω resistor or SMA load. Output frequency is 1.5 GHz and the amplitude is about +0.5 dBm.

By default, the TICS Pro evaluation software has RFoutB power down. These SMA connectors can be left open.

2.5 **Programming**

Connect the ribbon cable from the Reference PRO to the LMX2572LPEVM.

Connect the USB cable from a PC to USB port in the Reference PRO. This provides power supply to the Reference PRO board and communication with the TICS Pro. A firmware update may be required. See Appendix B for more details.
2.6 **Evaluation Software**

Download and install TICS Pro to a PC.

Run the software and follow these steps to start the program.

1. Go to "Select Device" → "PLL + VCO" → "LMX2572" → "LMX2572LP".

![Select Device in TICS Pro](image)

2. Go to "Default Configuration" → "Default Mode YYYY-MM-DD".

![Default Mode](image)

2.7 **EVM Strap Options**

2.7.1 **MUXout_SW**

There are two switches in MUXout_SW. Switch 1 is used for register readback, while Switch 2 is used to provide a visual PLL lock status through the LED D1. By default, both switches are in the Make position. To read back register in TICS Pro, set Switch 2 to the Break position.

![MUXout_SW Switch](image)
3 Typical Measurement

3.1 Default Configuration

3.1.1 Loop Filter

The parameters for the loop filter are listed in Table 1.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCO frequency</td>
<td>Designed for 6 GHz, but works over the whole frequency range</td>
</tr>
<tr>
<td>VCO gain</td>
<td>66 MHz/V</td>
</tr>
<tr>
<td>Effective charge pump gain</td>
<td>2500 µA</td>
</tr>
<tr>
<td>Phase detector frequency</td>
<td>100 MHz</td>
</tr>
<tr>
<td>Loop bandwidth</td>
<td>115 kHz</td>
</tr>
<tr>
<td>Phase margin</td>
<td>48 degrees</td>
</tr>
<tr>
<td>C1_LF, C3_LF</td>
<td>Open</td>
</tr>
<tr>
<td>C2_LF</td>
<td>15 nF</td>
</tr>
<tr>
<td>C4_LF</td>
<td>2.2 nF</td>
</tr>
<tr>
<td>R2_LF</td>
<td>330 Ω</td>
</tr>
<tr>
<td>R3_LF, R4_LF</td>
<td>0 Ω</td>
</tr>
</tbody>
</table>

3.1.2 Typical Output

1. Follow Section 2 to set up the evaluation.
2. Click "Write All Registers" to write all the registers to LMX2572LP.

The default output is 1.5 GHz.
3.2 Additional Tests

3.2.1 Phase Adjustment

Use Equation 1 to adjust the phase of the RF output signal.

\[
\text{Phase shift in degree} = 360° \times \left(\frac{\text{MASH_SEED}}{\text{PLL_DEN}}\right) \times \left(\frac{P}{\text{CHDIV}}\right)
\]

where

- \(P = 2 \) when \(\text{VCO_PHASE_SYNC_EN} = 1 \), otherwise \(P = 1 \) \hspace{1cm} (1)

Table 2 and Equation 2 show an example.

Table 2. Phase Adjustment Setting

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASH_SEED</td>
<td>800</td>
</tr>
<tr>
<td>PLL_DEN</td>
<td>1000</td>
</tr>
<tr>
<td>CHDIV</td>
<td>32</td>
</tr>
<tr>
<td>VCO_PHASE_SYNC_EN</td>
<td>0</td>
</tr>
</tbody>
</table>

Phase shift = \(360° \times \left(\frac{800}{1000}\right) \times \left(\frac{1}{32}\right) = 9° \) \hspace{1cm} (2)

The user can write 800 to MASH_SEED 40 times to get the 360° phase shift.

![Figure 7. Phase Adjustment Setting](image-url)
3.2.2 Calibration-Free Automatic Ramping

The LMX2572LP supports linear frequency ramp without the need of VCO calibration in the middle of the ramp. The output waveform is a continuous frequency sweep between the start and the end frequencies. However, the frequency ramp range is limited. When using ramp, these parameters must be set accordingly:

- \(\text{OUT_FORCE} = 1\)
- \(\text{LD_DLY} = 0\)
- \(\text{PLL_DEN} = 2^{32} - 1\)

![Figure 8. Phase Adjustment](image)

Table 3. Calibration-free Automatic Ramp Example

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramping start frequency</td>
<td>4795 MHz</td>
</tr>
<tr>
<td>Ramping stop frequency</td>
<td>4805 MHz</td>
</tr>
<tr>
<td>Phase detector frequency</td>
<td>50 MHz</td>
</tr>
<tr>
<td>Ramp up / down time</td>
<td>200 (\mu)s</td>
</tr>
<tr>
<td>RAMP_LIMIT_HIGH</td>
<td>4995 MHz</td>
</tr>
<tr>
<td>RAMP_LIMIT_LOW</td>
<td>4595 MHz</td>
</tr>
</tbody>
</table>

This is a triangular ramp example. Ramp up is defined by RAMP0 while ramp down is defined by RAMP1. RAMP_THRESH, RAMP_DLY_CNT, and RAMP_SCALE_COUNT are set to "don't care" because there is no plan to trigger VCO calibration. RAMP_MANUAL = 0 means Automatic Ramping mode.

Set RAMP_EN = 1 to start ramping. Set RAMP_EN = 0 to turn off ramping.
3.2.3 Automatic Ramping

This ramping mode supports wider ramp frequency, but there are glitches in the middle of the ramp because of the VCO calibrations that are required to ensure the continuity of the ramp.

Table 4. Automatic Ramp Example

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramping start frequency</td>
<td>4740 MHz</td>
</tr>
<tr>
<td>Ramping stop frequency</td>
<td>4860 MHz</td>
</tr>
<tr>
<td>Phase detector frequency</td>
<td>50 MHz</td>
</tr>
<tr>
<td>Ramp up / down time</td>
<td>1000 µs</td>
</tr>
<tr>
<td>RAMP_LIMIT_HIGH</td>
<td>5060 MHz</td>
</tr>
<tr>
<td>RAMP_LIMIT_LOW</td>
<td>4540 MHz</td>
</tr>
<tr>
<td>fOSCin</td>
<td>100 MHz</td>
</tr>
<tr>
<td>CAL_CLK_DIV</td>
<td>0</td>
</tr>
<tr>
<td>RAMP_THRESH</td>
<td>40 MHz</td>
</tr>
<tr>
<td>Pause time for VCO calibration</td>
<td>500 µs</td>
</tr>
</tbody>
</table>
3.2.4 FSK Modulation

The LMX2572LP supports direct digital FSK modulation. The FSK SPI mode supports discrete 2-, 4-, or 8-level FSK modulation while the FSK SPI FAST and FSK I2S modes support arbitrary level FSK modulation. Table 5 shows a FSK SPI FAST mode example.

Table 5. FSK SPI FAST Mode Example

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase detector frequency</td>
<td>100 MHz</td>
</tr>
<tr>
<td>CHDIV</td>
<td>8</td>
</tr>
<tr>
<td>PLL_DEN</td>
<td>8000000</td>
</tr>
<tr>
<td>FSK_DEV_SCALE</td>
<td>1</td>
</tr>
<tr>
<td>Frequency deviation</td>
<td>±648 Hz; ±1944 Hz</td>
</tr>
</tbody>
</table>
Write the correct values to the FSK_SPI_FAST_DEV register field. The output of LMX2572LP is a discrete 4-level FSK modulation signal.

Figure 13. FSK SPI FAST Mode Setting

Figure 14. FSK SPI FAST Mode
3.2.5 Register Readback

To read back the written register values, follow these steps:

1. Set MUXout_SW Switch 2 to Break position. See Section 2.7.1 for details.
2. Set MUXOUT_LD_SEL to Readback in TICS Pro.

![Figure 15. Readback Setting](image)

3. Click on the Register Name that you want to read back.
4. Click the Read Register button to read back the register value.

![Figure 16. Register Readback](image)
Figure 17. LMX2572LPEVM Schematic (Page 1)
Figure 18. LMX2572LPEVM Schematic (Page 2)
5 PCB Layout and Layer Stack-Up

5.1 PCB Layer Stack-Up

The top layer is 1-oz. copper.

![Layer Stack-Up Diagram](image)

Figure 19. PCB Layer Stack-Up

5.2 PCB Layout

![Top Layer Diagram](image)

Figure 20. Top Layer
Figure 21. GND Layer

Figure 22. Power Layer
Figure 23. Bottom Layer
Table 6. Bill of Materials

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C3, C9, C14, C15, C17, C19, C30</td>
<td>8</td>
<td>CAP, CERM, 0.1 µF, 16 V, ±5%, X7R, 0603</td>
<td>0603YC104JAT2A</td>
<td>AVX</td>
</tr>
<tr>
<td>C2, C4, C8, C16</td>
<td>4</td>
<td>CAP, CERM, 10 µF, 10 V, ±10%, X5R, 0805</td>
<td>C0805C106K8PACTU</td>
<td>Kemet</td>
</tr>
<tr>
<td>C2_LF</td>
<td>1</td>
<td>CAP, CERM, 0.015 µF, 50 V, ±5%, X7R, 0603</td>
<td>GRM188R71H153KA01D</td>
<td>MuRata</td>
</tr>
<tr>
<td>C4_LF</td>
<td>1</td>
<td>CAP, CERM, 2200 pF, 50 V, ±5%, C0G/NP0, 0603</td>
<td>GRM188S1H222JA01D</td>
<td>MuRata</td>
</tr>
<tr>
<td>C5, C7, C10, C12</td>
<td>4</td>
<td>CAP, CERM, 0.01 µF, 16 V, ±10%, X7R, 0602</td>
<td>520L103KT16T</td>
<td>AT Ceramics</td>
</tr>
<tr>
<td>C18, C23, C26, C27, C28, C29</td>
<td>6</td>
<td>CAP, CERM, 1 µF, 16 V, ±10%, X7R, 0603</td>
<td>C1608X7R1C105K080AC</td>
<td>TDK</td>
</tr>
<tr>
<td>C20, C21, C22</td>
<td>3</td>
<td>CAP, CERM, 10 µF, 10 V, ±20%, X5R, 0603</td>
<td>C1608X5R1A106M080AC</td>
<td>TDK</td>
</tr>
<tr>
<td>C24</td>
<td>1</td>
<td>CAP, CERM, 0.01 µF, 50 V, ±5%, X7R, 0603</td>
<td>C0603C103J5RACTU</td>
<td>MuRata</td>
</tr>
<tr>
<td>C25</td>
<td>1</td>
<td>CAP, CERM, 0.47 µF, 25 V, ±10%, X7R, 0603</td>
<td>GRM188R71E474KA12D</td>
<td>MuRata</td>
</tr>
<tr>
<td>CE_TP, CSB_TP, GND_TP, MUXout_TP, RampCLK_TP, RampDiR_TP, SCK_TP, SDI_TP, SYNC_TP, SysRefReq_TP, Vcc_TP, VccRF_TP, Vtune_TP</td>
<td>13</td>
<td>Test Point, Compact, White, TH</td>
<td>5007</td>
<td>Keystone</td>
</tr>
<tr>
<td>Cin_0</td>
<td>1</td>
<td>CAP, CERM, 10 µF, 25 V, ±10%, X5R, 0805</td>
<td>GRM219R61E106KA12D</td>
<td>MuRata</td>
</tr>
<tr>
<td>Cout0</td>
<td>1</td>
<td>CAP, CERM, 22 µF, 16 V, ±10%, X5R, 0805</td>
<td>C2012X9R1C226K125AC</td>
<td>TDK</td>
</tr>
<tr>
<td>Css</td>
<td>1</td>
<td>CAP, CERM, 3300 pF, 50 V, ±5%, C0G/NP0, 0603</td>
<td>GRM188S1H323JA01D</td>
<td>MuRata</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>LED, Green, SMD</td>
<td>LTST-C190GTK</td>
<td>Lite-On</td>
</tr>
<tr>
<td>L1_TPS</td>
<td>1</td>
<td>Inductor, Shielded, Composite, 2.2 μH, 3.7 A, 0.02 Ω, SMD</td>
<td>XFL4020-222MEB</td>
<td>Coilcraft</td>
</tr>
<tr>
<td>MUXout_SW</td>
<td>1</td>
<td>Switch, SPST, Slide, Off-On, 2 Pos, 0.1 A, 20 V, SMD</td>
<td>2119-2MST</td>
<td>CTS Electrocomponents</td>
</tr>
<tr>
<td>OSCinM, OSCinP, SYNC, SysRef, Vcc</td>
<td>5</td>
<td>Connector, SMT, End launch SMA 50 Ω</td>
<td>142-0701-851</td>
<td>Emerson Network Power Connectivity</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>RES, 330 Ω, 5%, 0.1 W, 0603</td>
<td>RC0603JR-07330RL</td>
<td>Yageo America</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>RES, 100 kΩ, 5%, 0.1 W, 0603</td>
<td>CRCW0603100KJNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>R2_LF</td>
<td>1</td>
<td>RES, 330 Ω, 5%, 0.1 W, 0603</td>
<td>CRCW06033330RJNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>R3_LF, R4_LF, R12, R15, R24, R26, R31</td>
<td>7</td>
<td>RES, 0 Ω, 0.1 W, 0603</td>
<td>CRCW06030000Z0EA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>R5, R7, R8, R9, R16, R19, R20, R22</td>
<td>8</td>
<td>RES, 12 kΩ, 5%, 0.1 W, 0603</td>
<td>CRCW060312K0JNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>R25, R30</td>
<td>2</td>
<td>RES, 51 Ω, 0.1 W, 0603</td>
<td>CRCW060351RJNEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>R34, R35, R36, R41, R42, R43, R44, R45</td>
<td>8</td>
<td>RES, 0 Ω, 0.1 W, 0603</td>
<td>CRCW06030000Z0EA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>Rfb1</td>
<td>1</td>
<td>RES, 180 kΩ, 0.1%, 0.1 W, 0603</td>
<td>RT0603BRD07180KL</td>
<td>Yageo America</td>
</tr>
<tr>
<td>Rfb2</td>
<td>1</td>
<td>RES, 562 kΩ, 1%, 0.1 W, 0603</td>
<td>CRCW0603562KFKEA</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>RFoutAM, RFoutAP, RFoutBM, RFoutBP</td>
<td>4</td>
<td>JACK, SMA, 50 Ω, Gold, Edge Mount</td>
<td>142-0771-831</td>
<td>Johnson</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>High Performance, Wideband PLLatinum RF Synthesizer</td>
<td>LMX2572LPRHAR</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>uWire</td>
<td>1</td>
<td>Header (shrouded), 100 mil, 5x2, Gold plated, SMD</td>
<td>52601-S10-8LF</td>
<td>FCI</td>
</tr>
</tbody>
</table>
7 Troubleshooting Guide

If the EVM does not work as expected, use Figure 24 to identify potential root causes. Consider the following:

- Do not make modifications to the EVM or change the default settings until AFTER it is verified to be working.
- Register readback requires the correct hardware and software setup. See Section 3.2.5 for details.
- The POR current of the LMX2572LPEVM is approximately 30 mA.
- The power-down current of the LMX2572LPEVM is approximately 2.5 mA.

Figure 24. Troubleshooting Guide
These are the different options to provide a reference clock to LMX2572LPEVM. By default, the EVM is configured for an external single-ended clock.

Table 7. Reference Clock Input Configuration

<table>
<thead>
<tr>
<th>INPUT</th>
<th>EXTERNAL CLOCK</th>
<th>CRYSTAL OSCILLATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-ended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential (LVDS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Reference PRO board is used to program the LMX2572LPEVM and provide a clean reference clock to LMX2572LPEVM at the same time. The board has several control pins dedicated for control of output format, output frequency, and output enable control. These control pins are configurable through the jumpers by strapping the center pin to Vdd position or GND position. Connections from the Vdd position to the device supply or from the GND position to the ground plane are connected by 1.5-kΩ resistors. By default, the board is configured for 100-MHz LVPECL output. Connect the Reference PRO to the PC through the USB interface to provide the Reference PRO a steady power supply.

B.1 Output Frequency Selection

Jumpers FS1 and FS0 are used to set the output frequency.

<table>
<thead>
<tr>
<th>FS1</th>
<th>FS0</th>
<th>OUTPUT FREQUENCY (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>GND</td>
<td>100</td>
</tr>
<tr>
<td>GND</td>
<td>NC</td>
<td>312.5</td>
</tr>
<tr>
<td>GND</td>
<td>Vdd</td>
<td>125</td>
</tr>
<tr>
<td>NC</td>
<td>GND</td>
<td>106.25</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>156.25</td>
</tr>
<tr>
<td>NC</td>
<td>Vdd</td>
<td>212.5</td>
</tr>
<tr>
<td>Vdd</td>
<td>GND</td>
<td>62.5</td>
</tr>
</tbody>
</table>
B.2 Output Format Selection

The OE pin is used to enable or disable the output.

The OS pin is used to bias internal drivers and change the output format.

<table>
<thead>
<tr>
<th>OE</th>
<th>OS</th>
<th>OUTPUT FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Don't Care</td>
<td>Disabled</td>
</tr>
<tr>
<td>Vdd</td>
<td>GND</td>
<td>LVPECL</td>
</tr>
<tr>
<td>Vdd</td>
<td>NC</td>
<td>LVDS</td>
</tr>
<tr>
<td>Vdd</td>
<td>Vdd</td>
<td>HCSL</td>
</tr>
</tbody>
</table>

It is imperative to match the output termination passive components as shown in Table 10.

<table>
<thead>
<tr>
<th>OUTPUT FORMAT</th>
<th>COUPLING</th>
<th>COMPONENT</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVPECL</td>
<td>AC (Default configuration)</td>
<td>R15, R28</td>
<td>0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R26, R29</td>
<td>150 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C24, C25</td>
<td>0.01 µF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R27, R30, R31</td>
<td>DNP</td>
</tr>
<tr>
<td></td>
<td>DC(1)</td>
<td>R15, R28, C24, C25</td>
<td>0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R26, R27, R29, R30, R31</td>
<td>DNP</td>
</tr>
<tr>
<td>LVDS(2)</td>
<td>AC</td>
<td>R25, R27, R28, R30</td>
<td>0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R31</td>
<td>100 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C24, C25</td>
<td>0.01 µF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R26, R29</td>
<td>DNP</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>R25, R27, R28, R30, C24, C25</td>
<td>0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R31</td>
<td>100 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R26, R29</td>
<td>DNP</td>
</tr>
<tr>
<td>HCSL</td>
<td>AC</td>
<td>R25, R28</td>
<td>0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R26, R29</td>
<td>50 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C24, C25</td>
<td>0.01 µF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R27, R30, R31</td>
<td>DNP</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>R25, R28, C24, C25</td>
<td>0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R26, R29</td>
<td>50 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R27, R30, R31</td>
<td>DNP</td>
</tr>
</tbody>
</table>

(1) 50-Ω to VCC – 2-V termination is required on receiver.
(2) 100-Ω differential termination (R31) is provided onboard. Removing this termination is possible if the differential termination is available on the receiver.

Figure 25. Output Termination Schematic
B.3 Typical Output Characteristics

Figure 26. Default Output Phase Noise

Figure 27. Default Output Waveform

B.4 Firmware Update

Usually when the Reference PRO board is used at the first time, TICS Pro will request a firmware update. Follow the pop-up instructions to complete the update. This update is necessary to ensure that the USB connection between the PC and the Reference PRO board is properly set up, otherwise the programming to LMX2572LPEVM will not be successful.

1. When you see this message, click the “OK” button.

Figure 28. Firmware Requirement
2. Next, follow the on-screen procedure.

![Figure 29. Firmware Loader](image)

3. The BSL button is located next to the USB connector.

![Figure 30. BSL Button](image)
4. Follow the on-screen procedure until the "Update Firmware" button pops up.

5. Click the "Upgrade Firmware" button to start the upgrade and click the "Close" button after the upgrade is complete.
6. Check the USB connection in TICS Pro by clicking “USB communications” → “Interface”. Make sure that the "USB Connected" button is green.

![Figure 33. USB Communications](image)
STANDARD TERMS FOR EVALUATION MODULES

1. **Delivery:** TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 **Limited Warranty and Related Remedies/Disclaimers:**

2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

3 **Regulatory Notices:**

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lds/ltJa/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.tij.co.jp/lds/ltJa/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan.

2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or

3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けていないものがあります。技術基準適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただくことが必要となりますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lads/ti_ja/general/eStore/notice_02.page

電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lads/ti_ja/general/eStore/notice_02.page

3.4 European Union

3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):
This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 EVM Use Restrictions and Warnings:

4.1 EVMs are not for use in functional safety and/or safety critical evaluations, including but not limited to evaluations of life support applications.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
6. **Disclaimers:**

6.1 **EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED “AS IS” AND “WITH ALL FAULTS.” TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 **EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

7. **USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS.** USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, “CLAIMS”) ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

8. **Limitations on Damages and Liability:**

8.1 **General Limitations.** IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 **Specific Limitations.** IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. **Return Policy:** Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the component(s), excluding any postage or packaging costs.

10. **Governing Law:** These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated