The DS90UB934-Q1 is an FPD-Link III deserializer that converts a serialized camera data input to parallel LVCMOS output. When coupled with DS90UB913A/933 serializers, the DS90UB934-Q1 receives data from 1-Megapixel image sensors supporting 720p/800p/960p resolution at 30-Hz or 60-Hz frame rates. There is a 2:1 mux on the input that allows two cameras to be connected, with pin or register control of whichever camera is active. The EVM has two Rosenberger FAKRA connectors and configurable power-over-coax (POC) voltage for connecting the camera modules (not included). There is an onboard MSP430 which functions as a USB2ANY bridge for connecting a PC. This works with the Analog LaunchPAD GUI tool.

NOTE: The demo board is not intended for EMI testing. The demo board was designed for easy accessibility to device pins with tap points for monitoring or applying signals, additional pads for termination, and multiple connector options.

Contents
1 General Description .. 3
2 Quick Start Guide ... 4
3 Demo Board Connections ... 5
4 ALP Software Setup ... 8
5 Troubleshooting ALP Software .. 15
6 Equipment References ... 20
7 PCB Schematics .. 21
8 Board Layout .. 27

List of Figures
1 Applications Diagram ... 3
2 Interfacing to the EVM ... 4
3 Power-Over-Coax Network ... 5
4 Launching ALP .. 9
5 Initial ALP Screen ... 10
6 Follow-up Screen .. 10
7 ALP Information Tab .. 11
8 ALP Registers Tab ... 11
9 ALP Device ID Selected .. 12
10 ALP Device ID Expanded .. 13
11 ALP Scripting Tab .. 14
12 USB2ANY Setup ... 15
13 Remove Incorrect Profile .. 16
14 Add Correct Profile .. 16
15 Finish Setup ... 17
16 ALP No Devices Error .. 18
17 Windows 7, ALP USB2ANY Driver .. 18
18 ALP in Demo Mode ... 19
19 ALP Preferences Menu ... 19
20 Top Overlay ... 27
21 Top Solder ... 27
22 Top Layer 1 ... 28
23 Layer 2 .. 28
24 Layer 3 .. 29
25 Layer 4 .. 29
26 Layer 5 .. 30
27 Bottom Layer 6 ... 30
28 Bottom Solder ... 31
29 Bottom Overlay ... 31

List of Tables

1 Power Supply .. 5
2 POC Power Supply Feed Configuration 6
3 Parallel LVCMOS Output Signals - J7 Pinout 6
4 FPD-Link III Signals ... 6
5 IDx I²C Device Address Select - J34 7
6 I²C Interface Header - J4 ... 7
7 VDDIO Interface Header - J1 7
8 GPIO Interface Header - J2 ... 7
9 CMLOUTP Output Signals .. 7
10 Mode SW-DIP4 - S1 .. 8
11 Control SW-DIP4 - SW1 .. 8
12 LEDs .. 8

Trademarks

Windows is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners.
1 General Description

1.1 Features

- Supports 1-Megapixel sensors with HD 720P/800P/960P resolution at 30-Hz/60-Hz frame rate (paired w/ DS90UB913A or DS90UB933)
- Parallel LVCMOS Video Output
- Supports Single-ended Coax cable and Power Over Coax
- Adaptive receive equalization
- Onboard USB2ANY Controller for I2C Access
- I²C with Fast-mode Plus up to 1 Mbps
- Flexible GPIOs for camera sync and functional safety
- Single 12-V power supply for EVM

1.2 System Requirements

The major components of the DS90UB934-Q1EVM are:
- DS90UB934-Q1
- On-board POC interface
- Two Fakra coax connectors for digital video, power, control, and diagnostics
- On-board I²C programming interface

In order to demonstrate, the following is required (not included):
1. One Omnivision sensor board with DS90UB913A/DS90UB933 Serializer board
 (a) TI DS90UB913A-CXEVM OR TI SAT0088 ‘MiniSer’, and
 (b) OV10635 P/N: OV10635-EAAE-AA0A OR OV10640 P/N: OV10640-EAAA-AA0A (DVP)
2. One DACAR/FAKRA coax cables
3. Power supply for 12 V at 1 A

1.3 Contents of the Demo Evaluation Kit

- One EVM board with the DS90UB934-Q1 (serializer board and cable not included)

1.4 Applications Diagram

![Applications Diagram](image-url)
Quick Start Guide

1. Connect mini USB J5 to USB port for register programming
2. Optional: Connect an external I²C host adapter I²C signals on J4 port for register programming
3. Configure switches S1 and SW1 to set operating modes of the device
4. Configure VFEED power supply for each channel on J14, J16, J32, J33, and J35 headers
5. Plug a sensor into the DS90UB913A/DS90UB933 serializer boards to create four camera modules
6. Connect the camera module to channels 1 or 2 using coax cables on CN1 or CN2
7. Interface parallel LVCMOS output signals (J2) to application processor
8. Provide power to board on J24 (+12VDC)
 (a) Optional 5-V DC power supply on J11 (remove jumper on J12 if +5VDC applied to J11)
 (b) Optional 1.8-V DC power supply on J28
 (c) Optional 3.3-V DC power supply on J29
9. For details of pin-names and pin-functions, refer to the DS90UB934-Q1 data sheet.

Figure 2. Interfacing to the EVM
3 Demo Board Connections

3.1 Power Supply

Table 1. Power Supply

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>SIGNAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J24.1</td>
<td>12 V</td>
<td>Main Power Single 12-V DC (nominal) power connector that supplies power to the entire board.</td>
</tr>
<tr>
<td>J11.1 (Optional)</td>
<td>5 V</td>
<td>5 V ±5% Alternative to main power</td>
</tr>
<tr>
<td>J28.2 (Optional)</td>
<td>1.8 V</td>
<td>1.8 V ±5% Alternative to main power</td>
</tr>
<tr>
<td>J29.2 (Optional)</td>
<td>3.3 V</td>
<td>3.3 V ±5% Alternative to main power</td>
</tr>
</tbody>
</table>

3.2 Power-Over-Coax Interface

The DS90UB934-Q1EVM offers two power-over-coax (POC) interfaces to connect cameras through a coaxial cable with FAKRA connectors. Power is delivered on the same conductor that is used to transmit video and control channel between the host and the camera. By default, 9-V power supply is applied over the coax cable. Refer Table 2 to for other POC configurations.

For POC on the EVM, the circuit uses a filter network as shown in Figure 3. The POC network frequency response corresponds to the bandwidth compatible with DS90UB913A / DS90UB933 chipsets.

![Figure 3. Power-Over-Coax Network](image)

WARNING

Verify that the power voltage is properly set before plugging into CN1 or CN2. Power supply is not fused. Overvoltage causes damage to boards directly connected due to incorrect input power supplies.
Table 2. POC Power Supply Feed Configuration

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>SIGNAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J14</td>
<td>VFEED_POC1</td>
<td>POC Power Feed Selection 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short pins 1-2: 9-V power supply from VFEED_LDO1 (Default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short pins 2-3: 5-V power supply from 5V_SW</td>
</tr>
<tr>
<td>J16</td>
<td>VFEED_POC2</td>
<td>POC Power Feed Selection 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short pins 1-2: 9-V power supply from VFEED_LDO2 (Default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short pins 2-3: 5-V power supply from 5V_SW</td>
</tr>
<tr>
<td>J35</td>
<td>VDD_EXT</td>
<td>POC Power Feed using 12-V Main Power (J24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: J16 and J14 must to left OPEN if using this configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short pins 1-2: 12-V power supply to VFEED_POC1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short pins 2-3: 12-V power supply to VFEED_POC2</td>
</tr>
<tr>
<td>J32.1</td>
<td>VFEED1</td>
<td>Remote power supply connection to CN1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short J32.1-2: VFEED_POC1 (Default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short J32.1 and J33.1: VFEED_POC2</td>
</tr>
<tr>
<td>J32.3</td>
<td>VFEED2</td>
<td>Remote power supply connection to CN2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short J32.3-4: VFEED_POC1 (Default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short J32.3 and J33.2: VFEED_POC2</td>
</tr>
</tbody>
</table>

Table 3. Parallel LVCMOS Output Signals - J7 Pinout

<table>
<thead>
<tr>
<th>PIN NUMBER</th>
<th>SIGNAL NAME</th>
<th>PIN NUMBER</th>
<th>SIGNAL NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ROUT0</td>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>ROUT1</td>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>ROUT2</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>ROUT3</td>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>ROUT4</td>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>ROUT5</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>ROUT6</td>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>ROUT7</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>ROUT8</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>ROUT9</td>
<td>20</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>ROUT10</td>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>23</td>
<td>ROUT11</td>
<td>24</td>
<td>GND</td>
</tr>
<tr>
<td>25</td>
<td>HSYNC</td>
<td>26</td>
<td>GND</td>
</tr>
<tr>
<td>27</td>
<td>VSYNC</td>
<td>28</td>
<td>GND</td>
</tr>
<tr>
<td>29</td>
<td>PCLK</td>
<td>30</td>
<td>GND</td>
</tr>
</tbody>
</table>

3.3 **FPD-Link III Signals**

Table 4. FPD-Link III Signals

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>SIGNAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>RIN0+</td>
<td>FAKRA connector</td>
</tr>
<tr>
<td>CN2</td>
<td>RIN1+</td>
<td>FAKRA connector</td>
</tr>
</tbody>
</table>
3.4 I²C Interface

A standalone external I²C host can connect via J4 for programming purposes. Examples of external I²C host controllers are Texas Instruments USB2ANY and Total Phase Aardvark I²C/SPI host adapter (Total Phase Part#: TP240141).

I²C signal levels match VDDIO which can be configured through J1 to be at 1.8 V or 3.3 V when the I²C interface is accessed through connectors J4.

| Table 5. IDX I²C Device Address Select - J34 |
|-----------------|-----------------|-----------------|
| REFERENCE | SIGNAL | DESCRIPTION |
| J34 | IDX | Selects I²C Device Address |
| | | Open: 0x30 (7'b) or 0x60 (8'b) |
| | | Short: 0x3D (7'b) or 0x7A (8'b)(Default) |

| Table 6. I²C Interface Header - J4 |
|-----------------|-----------------|-----------------|
| REFERENCE | SIGNAL | DESCRIPTION |
| J4.1 | VDDIO | I²C bus voltage (tied to VDDIO) |
| J4.2 | I2C_SCL | I²C Clock Interface for primary I²C bus |
| J4.3 | I2C_SDA | I²C Data Interface for primary I²C bus |
| J4.4 | GND | Ground |

3.5 Control Interface

| Table 7. VDDIO Interface Header - J1 |
|-----------------|-----------------|-----------------|
| REFERENCE | SIGNAL | DESCRIPTION |
| J1 | VDDIO | Selects VDDIO bus voltage |
| | | Short pins 1-2: 3.3-V IO (Default) |
| | | Short pins 2-3: 1.8-V IO |

| Table 8. GPIO Interface Header - J2 |
|-----------------|-----------------|-----------------|
| REFERENCE | SIGNAL | DESCRIPTION |
| J2.1 | GPIO0 | General Purpose Input/Output 0 |
| J2.3 | GPIO1 | General Purpose Input/Output 1 |
| J2.5 | GPIO2 | General Purpose Input/Output 2 |
| J2.7 | GPIO3 | General Purpose Input/Output 3 |
| J2.9 | NC | Not connected |
| J2.11 | NC | Not connected |
| J2.13 | NC | Not connected |
| J2.15 | NC | Not connected |

| Table 9. CMLOUTP Output Signals |
|-----------------|-----------------|-----------------|
| REFERENCE | SIGNAL | DESCRIPTION |
| TP16 | CMLOUTP | Test Pad for Channel Monitor Loop-through Driver |
| TP17 | CMLOUTN | Test Pad for Channel Monitor Loop-through Driver |
Table 10. Mode SW-DIP4 - S1(1)

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>MODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1.1</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>S1.2</td>
<td>2</td>
<td>RAW12 / LF</td>
</tr>
<tr>
<td>S1.3</td>
<td>3</td>
<td>RAW12 / HF</td>
</tr>
<tr>
<td>S1.4</td>
<td>4</td>
<td>RAW10 (Default)</td>
</tr>
</tbody>
</table>

(1) Only set one ON.

Table 11. Control SW-DIP4 - SW1

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>SIGNAL</th>
<th>INPUT = L</th>
<th>INPUT = H</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1.1</td>
<td>BISTEN</td>
<td>For Normal operation (Default)</td>
<td>BIST Mode enable</td>
<td>Test Mode</td>
</tr>
<tr>
<td>SW1.2</td>
<td>RES</td>
<td>Tied to GND (Default)</td>
<td>N/A</td>
<td>Reserved</td>
</tr>
<tr>
<td>SW1.3</td>
<td>SEL</td>
<td>FPD-Link III on Port 0 (CN1) (Default)</td>
<td>FPD-Link III on Port 1 (CN2)</td>
<td>Port Select</td>
</tr>
<tr>
<td>SW1.4</td>
<td>PDB</td>
<td>Device is powered down</td>
<td>Device is enabled (Default)</td>
<td>Power-down Mode</td>
</tr>
</tbody>
</table>

Table 12. LEDs

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>LED NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>GPIO0</td>
<td>Illuminates if GPIO0 is ON</td>
</tr>
<tr>
<td>D3</td>
<td>GPIO1</td>
<td>Illuminates if GPIO1 is ON</td>
</tr>
<tr>
<td>D4</td>
<td>GPIO2</td>
<td>Illuminates if GPIO2 is ON</td>
</tr>
<tr>
<td>D1</td>
<td>GPIO3/INTB</td>
<td>Illuminates if GPIO3 is ON</td>
</tr>
<tr>
<td>D9</td>
<td>LOCK</td>
<td>Illuminates if device is Locked to a serializer</td>
</tr>
<tr>
<td>D15</td>
<td>PASS</td>
<td>Illuminates if device is receiving error free data</td>
</tr>
<tr>
<td>D11</td>
<td>VDD_EXT</td>
<td>Illuminates if 12V Power is applied to DC-IN J24</td>
</tr>
<tr>
<td>D12</td>
<td>VDD5V</td>
<td>Illuminates on +5V</td>
</tr>
<tr>
<td>D13</td>
<td>VFEED_POC</td>
<td>Illuminates if VFEED_POC Power is ON</td>
</tr>
<tr>
<td>D14</td>
<td>VDDIO</td>
<td>Illuminates on VDDIO Power</td>
</tr>
</tbody>
</table>

3.6 Enable and Reset

There are two device enable and reset/power-down options for the EVM.

- RC timing option: The C3 external capacitor and R17 pullup resistor connected to the PDB pin ramp time after the device is powered on.
- External control option: A push-button (S2) or SW1 position 4 is available for the manual control of the PBD signal.

4 ALP Software Setup

4.1 System Requirements

- **Operating System:** Windows® 7 64-bit
- **USB:** USB2ANY
- **USB2ANY Firmware Version:** 2.5.2.0
- **USB:** Aardvark I²C/SPI host adapter p/n TP240141
4.2 Download Contents

Latest TI Analog LaunchPAD can be downloaded from: http://www.ti.com/tool/alp.

Download and extract the zip file to a temporary location that can be deleted later.

The following installation instructions are for a PC running Windows 7 64-bit operating system.

4.3 Installation of the ALP Software

Execute the ALP Setup Wizard program called “ALPF_setup_v_x_x_x.exe” that was extracted to a temporary location on the local drive of your PC.

There are 7 steps to the installation once the setup wizard is started:

1. Select the “Next” button.
2. Select “I accept the agreement” and then select the “Next” button.
3. Select the location to install the ALP software and then select the “Next” button.
4. Select the location for the start menu shortcut and then select the “Next” button.
5. There will then be a screen that allows the creation of a desktop icon. After selecting the desired choices select the “Next” button.
6. Select the “Install” button, and the software will then be installed to the selected location.
7. Uncheck “Launch Analog LaunchPAD” and select the “Finish” button. The ALP software will start if “Launch Analog LaunchPAD” is checked, but it will not be useful until the USB driver is installed and board is attached.

Power the DS90UB934-Q1 EVM board with a 12 VDC power supply.

4.4 Start-up - Software Description

Make sure all the software has been installed and the hardware is powered on and connected to the PC. Execute “Analog LaunchPAD” shortcut from the start menu. The default start menu location is under All Programs > Texas Instruments > Analog LaunchPAD vx.x.x > Analog LaunchPAD to start MainGUI.exe.

![Analog LaunchPAD](image_url)

Figure 4. Launching ALP

The application should come up in the state shown in the figure below. If it does not, see Section 5, “Troubleshooting ALP Software”.

Under the Devices tab click on “DS90UB934” to select the device and open up the device profile and its associated tabs.
After selecting the DS90UB934, the following screen shown in Figure 6 should appear.
4.5 Information Tab

The Information tab is shown in Figure 7.

![Figure 7. ALP Information Tab](image)

4.6 Registers Tab

The Register tab is shown in Figure 8.

![Figure 8. ALP Registers Tab](image)
4.7 Registers Tab - Address 0x00 Selected

Address 0x00 is selected as shown in Figure 9. Note that the “Value:” box, now shows the hex value of that register.

Figure 9. ALP Device ID Selected
4.8 Registers Tab - Address 0x00 Expanded

By double clicking on the Address bar

or a single click on 0x00 expanded reveals contents by bits. Any register address displayed can be expanded.

Figure 10. ALP Device ID Expanded

Any RW Type register, \(RW \), can be written into by writing the hex value into the “Value:” box, or putting the pointer into the individual register bit(s) box by a left mouse click to put a check mark (indicating a 1) or unchecking to remove the check mark (indicating a 0). Click the “Apply” button to write to the register, and “refresh” to see the new value of the selected (highlighted) register.

The box toggles on every mouse click.
4.9 **Scripting Tab**

The Scripting tab is shown below.

![Figure 11. ALP Scripting Tab](image)

The script window provides a full Python scripting environment which can be for running scripts and interacting with the device in an interactive or automated fashion.

WARNING

Directly interacting with devices either through register modifications or calling device support library functions can effect the performance and/or functionality of the user interface and may even crash the ALP Framework application.

4.10 **Sample ALP Python Script**

4.10.1 **Initialization**

```python
board.WriteI2C(0x7A, 0x4C, 0x01) # enable to write to PORT0 registers
board.WriteI2C(0x7A, 0x58, 0x58) # enable I2C pass-through
board.WriteI2C(0x7A, 0x5D, 0x60) # set slave ID to 0x62
board.WriteI2C(0x7A, 0x65, 0x68) # set slave alias to 0x62
```
5 Troubleshooting ALP Software

5.1 ALP Loads the Incorrect Profile

If ALP opens with the incorrect profile loaded the correct profile can be loaded from the USB2ANY/Aardvark Setup found under the tools menu.

![USB2ANY Setup](image)

Figure 12. USB2ANY Setup

Highlight the incorrect profile in the Defined ALP Devices list and press the remove button.
Find the correct profile under the Select a Daughter Board list, highlight the profile and press Add.

Select Ok and the correct profile should now be loaded.
Figure 15. Finish Setup
5.2 What to do if ALP Does Not Detect the EVM

If the following window opens after starting the ALP software, double check the hardware setup.

![No Devices Detected](image)

Figure 16. ALP No Devices Error

It may also be that the USB2ANY driver is not installed. Check the device manager. There should be a “HID-compliant device” under the “Human Interface Devices” as shown below.

![Device Manager](image)

Figure 17. Windows 7, ALP USB2ANY Driver

The software should start with only “DS90UB96X” in the “Devices” pulldown menu. If there are more devices then the software is most likely in demo mode. When the ALP is operating in demo mode there is a “(Demo Mode)” indication in the lower left of the application status bar as shown below.
Disable the demo mode by selecting the “Preferences” pull down menu and un-checking “Enable Demo Mode”.

After demo mode is disabled, the ALP software polls the ALP hardware. The ALP software updates and have only “DS90UB96X” under the “Devices” pulldown menu.
6 Equipment References

NOTE: The following references are supplied only as a courtesy to our valued customers. It is not intended to be an endorsement of any particular equipment or supplier.

Logic Analyzer:
Keysight Technologies
www.keysight.com

Aardvark I²C/SPI Host Adapter Part Number: TP240141
www.totalphase.com/products/aardvark_i2cspi

6.1 Cable References

FAKRA coaxial cable:
www.leoni-automotive-cables.com

Rosenberger FAKRA connector:
AC coupling capacitors should be 0.33µF and 0.015µF @ back channel rates of >= 10 Mbps over coax. (DS90UB953)

Layout Note: Arrange headers as 3x2 block.

Assembly Note: Place jumper on pins 3 and 4 for J32

Assembly Note: Place jumper on pins 1 and 2 for J32
Figure 20. Top Overlay

Figure 21. Top Solder
Figure 22. Top Layer 1

Figure 23. Layer 2
Figure 24. Layer 3

Figure 25. Layer 4
Figure 26. Layer 5

Figure 27. Bottom Layer 6
Figure 28. Bottom Solder

Figure 29. Bottom Overlay
STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES

1. **Delivery:** TI delivers TI evaluation boards, kits, or modules, including demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 **Limited Warranty and Related Remedies/Disclaimers:**

2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI’s published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as mandated by government requirements. TI does not test all parameters of each EVM.

2.3 If any EVM fails to conform to the warranty set forth above, TI's sole liability shall be at its option to repair or replace such EVM, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

3 **Regulatory Notices:**

3.1 **United States**

3.1.1 **Notice applicable to EVMs not FCC-Approved:**

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 **For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:**

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210

Concerning EVMs Including Radio Transmitters:
This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:
1. this device may not cause interference, and
2. this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/sds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。http://www.tij.co.jp/sds/ti_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,

2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or

3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けていないものがあります。技術基準適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ct_ja/general/eStore/notice_02.page

電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ct_ja/general/eStore/notice_02.page

4 EVM Use Restrictions and Warnings:

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
6. **Disclaimers:**

6.1 **EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 **EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFESSION ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSES OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE EVM.

7. **USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS:** USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

8. **Limitations on Damages and Liability:**

8.1 **General Limitations.** IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS AND CONDITIONS OR THE USE OF THE EVMS PROVIDED HEREUNDER, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED.

8.2 **Specific Limitations.** IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY TI EVM PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO TI FOR THE PARTICULAR UNITS SOLD UNDER THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. **Return Policy.** Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. **Governing Law:** These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated