Test Report – 24VACin/15VDCCout
Isolated Forward Converter Power Supply

Prepared by:

Dongbing Zhang
Texas Instruments, Inc.
Project Number: PMP7806

March 26, 2012
Contents

Summary .. 3
Picture of Assembled Board .. 4
Efficiency .. 5
Steady State Operation ... 6
 High-Line Full-Load Waveforms ... 6
 High-Line Light-Load Waveforms .. 8
 Low-Line Light-Load Waveforms .. 10
 Low-Line Heavy-Load Waveforms ... 12
Startup ... 14
 Starting into No Load (Low Line) ... 14
 Starting into 41Ω of Resistive Load (Low Line) .. 14
 Starting into 12Ω of Resistive Load (Low Line) .. 15
 Starting into 12Ω of Resistive Load (High Line) ... 15
 Starting into 41Ω of Resistive Load (High Line) ... 16
Thermal .. 17
 Diode Bridge under Low Line and Full Load ... 17
 D1 Diode under Full Load .. 18
 Transformer under Low Line and Full Load ... 19
 LM5025A and MOSFETs under Low Line and Full Load .. 20
Snubber of Diode D1 under Low Line Full Load .. 21
Summary

The board works well over the entire range of load (0 to 3A) and line (16 to 32VAC). Switching frequency is around 250KHz. When load is lighter than 0.7A, the converter enters Discontinuous Conduction Mode when the duty cycle decreases with load.

Soft start works reasonably well except that there is a small overshoot (about 1.5V) when starting into heavy load under high line condition. This behavior may be corrected by tweaking the compensation network.

The converter survived short-circuit test without being damaged. Overall efficiency is around 82% when the load is above 1.5A over the complete Vin range. The input diode bridge may need more heat sinking due to the heavy power loss under low line full load condition. If lower loss is desirable for the input bridge rectifier, consider discrete Schottky diodes.

Snubber resistor for the freewheeling diode D1 can dissipate some power, especially under high line condition so use two or three 1210 size resistors to help lower the temperature. Currently the board is using two 220 ohm resistors in parallel.

The custom transformer is rated for 3KV based on previous estimate. It should be reasonably effortless to upgrade it to 4KV without worrying about changes in the converter behavior. During the test, we see about 40°C rise under room temperature, at full load.

The preliminary report consists mainly of scopeshots and thermal images.
Picture of Assembled Board
Efficiency

Input power is measured on the AC side using an oscilloscope. See oscilloscope image below.

Efficiency Plot

![Efficiency Plot](image-url)
Steady State Operation

High-Line Full-Load Waveforms

Vin_{dc}=44.4V, \ Vo=14.9V, \ Io=3A

\textbf{V_{q1}_drain}

\textbf{V_{d1}_cathode}

\textbf{l_{transformer_secondary}}

Vin_{dc}=44.2V, \ Vo=14.9V, \ Io=3A

\textbf{V_{q1}_drain}

\textbf{l_{transformer_primary}}
Vin_ac _rms=32V, I_o=3A

Vin_ac

lin_ac
High-Line Light-Load Waveforms

Vin_{dc}=42.5V, Vo=14.9V, Io=0.1A

V_{q1}_drain

V_{d1}_cathode

I_{transformer_secondary}

Vin_{dc}=42.5V, Vo=14.9V, Io=0.1A

V_{q1}_drain

I_{transformer_primary}
Vin_ac rms=33V, I_o=0.1A
Low-Line Light-Load Waveforms
Vin_ac rms = 16V, Io = 0.1A
Low-Line Heavy-Load Waveforms

Vin_dc=21V, Vo=14.9V, Io=3A
V_q1_drain

Vin_dc=19.1V, Vo=14.9V, Io=3A
V_q1_drain

I_transformer_primary

I_transformer_primary
Startup

Starting into No Load (Low Line)

Starting into 41Ω of Resistive Load (Low Line)
Starting into 12Ω of Resistive Load (Low Line)

Starting into 12Ω of Resistive Load (High Line)
Starting into 41Ω of Resistive Load (High Line)
Thermal

Diode Bridge under Low Line and Full Load
(Vin_{dc}=18.4V, Io=3A, after 40 minutes, room temperature, no air flow)
D1 Diode under Full Load
(Vin_{dc}=21V, Io=3A, after 40 minutes, room temperature, no air flow)
Transformer under Low Line and Full Load
(Vin_dc=21V, Io=3A, room temp, no air flow)
LM5025A and MOSFETs under Low Line and Full Load
(Vin dc=21V, Io=3A, room temp, no air flow)

Note: the LM5025A = 53°C, Sense Resistor R6= 73.6°C, Q1 FET=57.9°C, Q2 PFET=57.3°C.
Snubber of Diode D1 under Low Line Full Load
(Vin_dc=21V, Io=3A, room temp, no air flow, snubber resistor R1=two 1206 100ohm in parallel)

Note: the two snubber resistors = 55.1°C.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products

- **Audio**
 - www.ti.com/audio
- **Amplifiers**
 - amplifier.ti.com
- **Data Converters**
 - dataconverter.ti.com
- **DLP® Products**
 - www.dlp.com
- **DSP**
 - dsp.ti.com
- **Clocks and Timers**
 - www.ti.com/clocks
- **Interface**
 - interface.ti.com
- **Logic**
 - logic.ti.com
- **Power Mgmt**
 - power.ti.com
- **Microcontrollers**
 - microcontroller.ti.com
- **RFID**
 - www.ti-rfid.com
- **OMAP Applications Processors**
 - www.ti.com OMAP
- **Wireless Connectivity**
 - www.ti.com/wirelessconnectivity

Applications

- **Automotive and Transportation**
 - www.ti.com/automotive
- **Communications and Telecom**
 - www.ti.com/communications
- **Consumer Electronics**
 - www.ti.com/consumer-apps
- **Energy and Lighting**
 - www.ti.com/energy
- **Industrial**
 - www.ti.com/industrial
- **Medical**
 - www.ti.com/medical
- **Security**
 - www.ti.com/security
- **Space, Avionics and Defense**
 - www.ti.com/space-avionics-defense
- **Video and Imaging**
 - www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated