The LMZ35003EVM-001 evaluation module is designed as an easy-to-use platform for evaluating the features and performance of the Simple Switcher® power module. This user’s guide provides information on the correct usage of the LMZ35003EVM-001 and an explanation of the test points on the board.

1 Description

The LMZ35003EVM-001 evaluation module (EVM) features a LMZ35003 device configured for operation from a 7-V to 50-V input supply. The output voltage can be set to one-of-five popular values by using a simple configuration jumper. Similarly, the switching frequency can be set to one-of-four values by use of a jumper. The full, 2.5-A-rated output current can be supplied by the EVM. A minimal amount of input and output capacitance is used on the board. Component pads are provided for additional input and output capacitors if desired. A simple 5-V pull-up supply for the PWRGD pin is provided on the EVM. It is powered from the input voltage supply. Test points are provided that allow measurement of efficiency, power dissipation, input ripple, output ripple, line and load regulation, soft-start behavior, transient response, and undervoltage lockout (UVLO) behavior. The EVM uses a recommended printed-circuit board (PCB) layout that maximizes thermal performance and minimizes output ripple and noise.

2 Getting Started

The host power supply is connected to the EVM at terminal block TB1. The Vin and GND terminals are clearly marked. The terminal block can accept up to 16 AWG wire. For a complete evaluation, the host supply must be adjustable up to 50 V and be capable of delivering at least 3 A of current. The output of the EVM is presented to terminal block TB2. An electronic or resistive load can be connected to the block. Input and output voltage test points are provided near the terminal blocks. These test points are intended to be used as voltage monitoring points where voltmeters can be connected to measure Vin and Vout. Do not use these test points as the input supply or output load connection points. The PCB traces connecting to the test points are not designed to support high currents.

Before applying power, ensure that the Fsw select (J3) and Vout select (J4) jumpers are present and properly positioned for the intended output voltage. See Table 1 for the recommended jumper setting. Always remove power before changing the jumper settings.

Once the jumper settings have been confirmed, set the host input supply to a voltage level at least 3 volts higher than the selected output voltage or 7 V, whichever is greater. (The minimum input voltage specification for the LMZ35003 is (Vout + 3) or 7 V, whichever is greater.) Turn the host supply on, and then confirm that the selected output voltage is obtained.

<table>
<thead>
<tr>
<th>Vout Select, J2 (V)</th>
<th>Fsw Select, J1</th>
<th>Minimum Vin (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>400 kHz</td>
<td>7</td>
</tr>
<tr>
<td>3.3</td>
<td>400 kHz</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>500 kHz</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>800 kHz</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>1 MHz</td>
<td>18</td>
</tr>
</tbody>
</table>
Figure 1. LMZ35003EVM-001 Schematic
4 Test Point Descriptions

Wire-loop test points have been provided as convenient connection points for digital voltmeters (DVM) or oscilloscope probes to aid in the evaluation of this device. A description of each test point follows.

VIN
Input voltage monitoring point. Connect a DVM to this point for measuring efficiency.

VOUT
Output voltage monitoring point. Connect a DVM to this point for measuring efficiency, line regulation, and load regulation.

TB3 VIN
Connect an oscilloscope probe with a short grounding tip to this pair of holes to measure input ripple voltage.

TB4 VOUT
Connect an oscilloscope probe with a short grounding tip to this pair of holes to measure output ripple voltage and transient response.

SS/TR
Monitor the voltage on the soft-start capacitor here. Also use it as an input for the Tracking function.

INH/UVLO
Ground this terminal to inhibit power conversion. When open, the voltage on this pin is the voltage of the UVLO resistor divider network.

RT/CLK
Monitors the RT pin (timing resistor) of the device. Adding resistance to ground to this pin raises the switching frequency. The pin also can be driven by a 3.3-V, logic-level clock signal to set the switching frequency. A frequency range of 400 kHz to 1 MHz is supported.

PWRGD
Monitors the Power Good pin. A weak pullup to 5.1 V is provided on the EVM. PWRGD is high when the output voltage is within ±8% of its nominal value.

GND
Ground points for meters of oscilloscope probes.

PH
Via test point for monitoring the Phase pin (switching node) of the device with an oscilloscope. This test point can be used to measure the switching frequency of the regulator. Use only a x10 oscilloscope probe to monitor this point. The operation of the device can be affected by the stray capacitance of conventional cables or x1 probes.

VS+
This signal monitors the point where the feedback-loop monitors the output voltage. This point can be used to remote sense the output voltage at an external load. It also can be used as an injection point for a frequency-response loop analyzer. The injection signal can be applied across the SENSE+ and VOUT test points.
5 **Operation Notes**

The UVLO threshold of the factory-stock EVM is approximately 6.5 V with a 0.5-V hysteresis. The input voltage must be above the UVLO threshold before power conversion will begin. The UVLO threshold is set by resistors R10 and R11. See the data sheet for information on setting the UVLO voltage.

Once the input voltage rises above the UVLO threshold, power conversion begins and the output voltage ramps to its final value in approximately 10 ms. If desired, this soft-start interval can be increased by adding capacitance at location C4 on the bottom side of the EVM. This location is not populated on the factory-stock EVM.

The LMZ35003 is a nonsynchronous buck regulator. This means that the power stage can only source current and does not sink current. This also means at lighter loads, the waveform observed on the PH test node exhibits considerable ringing as shown in **Figure 2**. This is normal behavior. At heavier loads, the PH waveform becomes rectangular, as shown in **Figure 3**. When attempting to measure switching frequency, it is recommended that a load of 1 A or greater be applied to ensure that an accurate reading is obtained.

The LMZ35003 is not designed to endure a sustained short circuit on its output. It can survive momentary shorts (< 5 seconds), but sustained short circuits may cause permanent damage to the device.

Figure 2. PH Node at 300-mA Load

Scope Measurements: Vin = 12 V, Vout = 5 V, Iout = 300 mA
Ch.3> PH Node

Figure 3. PH Node at 1-A Load

Scope Measurements: Vin = 12 V, Vout = 5 V, Iout = 1.0 A
Ch.3> PH Node
6 EVM Assembly Drawings and PCB Layout

Figure 4 through 9 show the design of the LMZ35003EVM-001 printed circuit board.

Figure 4. Top Layer

Figure 5. Layer 1
Figure 6. Layer 2

Figure 7. Layer 3
Figure 8. Layer 4

Figure 9. Bottom Layer
Table 2. EVM List of Material\(^{(1)\!(2)\!(3)\!(4)}\)

<table>
<thead>
<tr>
<th>COUNT</th>
<th>REF DES</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C10</td>
<td>Capacitor, aluminum, 35 V(_{DC}), ±20%, 100 µF, 6.3 mm x 11 mm</td>
<td>ESMG350ELL101MF11D</td>
<td>United ChemiCon</td>
</tr>
<tr>
<td>1</td>
<td>C11</td>
<td>Capacitor, ceramic, 100 V, 5%, NP0, 100 pF, 0603</td>
<td>C1608C0G2A101F</td>
<td>TDK</td>
</tr>
<tr>
<td>3</td>
<td>C1-3</td>
<td>Capacitor, ceramic, 100 V, 5%, X7R, 2.2 µF, 1210</td>
<td>C3225X7R2A225K</td>
<td>TDK</td>
</tr>
<tr>
<td>0</td>
<td>C4</td>
<td>Capacitor, ceramic, 100 V, 10%, X7R, 2200 pF, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
<td>Capacitor, aluminum, 100 V, 20%, 22 µF, 0.200 inch Dia.</td>
<td>EKZE101ELL270MHB5D</td>
<td>United ChemiCon</td>
</tr>
<tr>
<td>4</td>
<td>C6-9</td>
<td>Capacitor, ceramic, 25 V, 10%, X7R, 22 µF, 1210</td>
<td>GRM32ER71E226KE15L</td>
<td>MuRata</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Diode, Zener, 5.1 V, 500 mW, SOD-123</td>
<td>DDZ9689-7</td>
<td>Diodes Inc</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>Header, male 2x4 pin, 100-mil spacing, 0.20 inch x 0.40 inch</td>
<td>PEC04DAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>Header, male 2x5 pin, 100-mil spacing, 0.100 inch x 5 inch x 2 inch</td>
<td>PEC05DAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>Resistor, chip, 1/10 W, 1%, 10 Ω, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R10</td>
<td>Resistor, chip, 1/10 W, 1%, 174 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R11</td>
<td>Resistor, chip, 1/10 W, 1%, 40.2 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R12</td>
<td>Resistor, chip, 1/10 W, 1%, 49.9 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R13</td>
<td>Resistor, chip, 1/10 W, 1%, 24.9 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>Resistor, chip, 1/10 W, 1%, 36.5 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>Resistor, chip, 1/10 W, 1%, 88.7 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>2</td>
<td>R4 R6</td>
<td>Resistor, chip, 1/10 W, 1%, 21.5 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>Resistor, chip, 1/10 W, 1%, 9.76 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R7</td>
<td>Resistor, chip, 1/10 W, 1%, 1.13 M, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R8</td>
<td>Resistor, chip, 1/10 W, 1%, 267 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>R9</td>
<td>Resistor, chip, 1/10 W, 1%, 178 kΩ, 0603</td>
<td>STD</td>
<td>STD</td>
</tr>
</tbody>
</table>

\(^{(1)}\) These assemblies are ESD sensitive. ESD precautions shall be observed. Use of no clean flux is not acceptable.

\(^{(2)}\) These assemblies must comply with workmanship standards IPC-A-610 Class 2.

\(^{(3)}\) Ref designators marked with an asterisk (‘*’) cannot be substituted. All other components can be substituted with equivalent MFG’s components.

\(^{(4)}\) Install label after final wash. Text shall be 8 pt font. Text shall be per Table 3.
Table 2. EVM List of Material(1)(2)(3)(4) (continued)

<table>
<thead>
<tr>
<th>COUNT</th>
<th>REF DES</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>TB1-2</td>
<td>Terminal block, 2 pin, 15 A, 5.1 mm, 0.40 inch x 0.35 inch</td>
<td>ED1202DS</td>
<td>OST</td>
</tr>
<tr>
<td>0</td>
<td>TB3-4</td>
<td>Header, male 2 pin, 100-mil spacing, 0.100 inch x 2 inch</td>
<td>PEC02SAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>7</td>
<td>TP1-2 TP7-8 TP10-11 TP13</td>
<td>Test point, white, thru hole, 5012, 0.125 inch x 0.125 inch</td>
<td>5012</td>
<td>Keystone</td>
</tr>
<tr>
<td>6</td>
<td>TP3-6 TP9 TP14</td>
<td>Test point, black, thru hole, 5011, 0.125 inch x 0.125 inch</td>
<td>5011</td>
<td>Keystone</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>7 V to 50 V Input, 2.5-A Non-synchronous Buck, QFN</td>
<td>LMZ35003RKG</td>
<td>TI</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>PCB, FR4, 0.062 inch, 1 oz copper all layers, 4.0 inch x 2.0 inch</td>
<td>PWR087</td>
<td>TI</td>
</tr>
<tr>
<td>2</td>
<td>Shunt(5)</td>
<td>Connector, jumper, shorting, gold flash, 2 (1 x 2) x 100 mil</td>
<td>SPC02SYAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>4</td>
<td>Standoff</td>
<td>Bumpon hemisphere 0.44 inch x 0.20 inch clear, 0.440 inch x 0.200 inch</td>
<td>SJ-5303</td>
<td>3M</td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>Label, 1.25 inch x 0.25 inch</td>
<td>THT-13-457-10</td>
<td>Brady</td>
</tr>
</tbody>
</table>

(5) Place in position over pins 1 and 2 on both J1 and J2

Table 3. Label Text

<table>
<thead>
<tr>
<th>ASSEMBLY NUMBER</th>
<th>TEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR087-001</td>
<td>LMZ35003EVM-001</td>
</tr>
</tbody>
</table>
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables
Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
【Important Notice for Users of EVMs for RF Products in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,

2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or

3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】

本開発キットは技術基準適合証明を受けておりません。本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。

2. 実験局の免許を取得後ご使用いただく。

3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
【Important Notice for Users of EVMs for RF Products in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
http://www.tij.co.jp
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Replication of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio www.ti.com/audio
Amplifiers amplifier.ti.com
Data Converters dataconverter.ti.com
DLP® Products www.dlp.com
DSP dsp.ti.com
Clocks and Timers www.ti.com/clocks
Interface interface.ti.com
Logic logic.ti.com
Power Mgmt power.ti.com
Microcontrollers microcontroller.ti.com
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation www.ti.com/automotive
Communications and Telecom www.ti.com/communications
Computers and Peripherals www.ti.com/computers
Consumer Electronics www.ti.com/consumer-electronics
Energy and Lighting www.ti.com/energy
Industrial www.ti.com/industrial
Medical www.ti.com/medical
Security www.ti.com/security
Space, Avionics and Defense www.ti.com/space-avionics-defense
Video and Imaging www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated