This user’s guide contains information for the TPS54240EVM-VSON evaluation module. Included are the performance specifications, the schematic, and the bill of materials for the TPS54240EVM-VSON.

Contents

1 Introduction ... 3
2 Test Setup and Results .. 4
3 Schematic and Bill of Materials ... 13
4 Board Layout .. 15
5 Modifications .. 19

List of Figures

1 Top View of TPS54240EVM-VSON ... 5
2 TPS54240EVM-VSON Efficiency ... 6
3 TPS54240EVM-VSON Low Current Efficiency ... 6
4 TPS54240EVM-VSON Load Regulation .. 7
5 TPS54240EVM-VSON Transient Response .. 8
6 TPS54240EVM-VSON Output Voltage Ripple in CCM Mode at 2.5-A \(I_{\text{LOAD}}\) .. 9
7 TPS54240EVM-VSON Output Voltage Ripple in DCM Mode at 200-mA \(I_{\text{LOAD}}\) 9
8 TPS54240EVM-VSON Output Voltage Ripple in Eco-mode™ at 20-mA \(I_{\text{LOAD}}\) 9
9 TPS54240EVM-VSON Input Voltage Ripple in CCM mode at 2.5-A \(I_{\text{LOAD}}\) 10
10 TPS54240EVM-VSON Input Voltage Ripple in DCM Mode at 200 mA \(I_{\text{LOAD}}\) 10
11 TPS54240EVM-VSON Input Voltage Ripple in Eco-mode™ at 20 mA \(I_{\text{LOAD}}\) 10
12 TPS54240EVM-VSON Start-Up ... 11
13 TPS54240EVM-VSON Power-Good Output (pulled up to \(V_{\text{OUT}}\)) 11
14 TPS54240EVM-VSON Power-Good Output (Pulled up to external 3.3 V) 11
15 TPS54240EVM-VSON Loop Response .. 12
16 TPS54240EVM-VSON Schematic .. 13
17 TPS54240EVM-VSON Top-Side Assembly .. 15
18 TPS54240EVM-VSON Bottom-Side Assembly ... 16
19 TPS54240EVM-VSON Top-Side Layout ... 16
20 TPS54240EVM-VSON Mid-Layer 1 Layout .. 17
21 TPS54240EVM-VSON Mid-Layer 2 Layout .. 17
22 TPS54240EVM-VSON Bottom-Side Layout ... 18

List of Tables

1 Input Voltage and Output Current Summary .. 3
2 TPS54240EVM-VSON Performance Specification Summary ... 4
3 EVM Connectors and Test Points .. 5
4 Bill of Materials ... 14
5 Output Voltages Available .. 19
Trademarks

Eco-mode is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
1 Introduction

This user's guide contains background information for the TPS54240 as well as support documentation for the TPS54240EVM-VSON evaluation module, which is for the VSON package. Also included are the performance specifications, the schematic, and the bill of materials for the TPS54240EVM-VSON.

1.1 Background

The TPS54240 DC/DC converter is designed to provide up to a 2.5-A output from an input voltage source of 3.5 V to 42 V. Rated input voltage and output current range for the evaluation module are given in Table 1. This evaluation module is designed for VSON package. The switching frequency is internally set at a nominal 500 kHz. The high-side MOSFET is incorporated inside the TPS54240 package along with the gate-drive circuitry. The low drain-to-source on-resistance of the MOSFET allows the TPS54240 to achieve high efficiencies and helps keep the junction temperature low at high output currents. The compensation components are external to the integrated circuit (IC), and an external divider allows for an adjustable output voltage. Additionally, the TPS54240 provides adjustable slow start and undervoltage lockout inputs. The absolute maximum input voltage is 42 V for the TPS54240EVM-VSON.

Table 1. Input Voltage and Output Current Summary

<table>
<thead>
<tr>
<th>EVM</th>
<th>INPUT VOLTAGE RANGE</th>
<th>OUTPUT CURRENT RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS54240EVM-VSON</td>
<td>V_{IN} = 7 V to 24 V</td>
<td>0 A to 2.5 A</td>
</tr>
</tbody>
</table>

Note that EN has an absolute maximum rating of 5 V input and a 1.25-V typical threshold voltage, the selection of R_1 and R_4 limits input voltage range between 7 V and 24 V.

1.2 Performance Specification Summary

A summary of the TPS54240EVM-VSON performance specifications is provided in Table 2. Specifications are given for an input voltage of $V_{IN} = 12$ V and an output voltage of 3.3 V, unless otherwise specified. The TPS54240EVM-VSON is designed and tested for $V_{IN} = 7$ V to 24 V. The ambient temperature is 25°C for all measurements, unless otherwise noted. The EVM may be modified by the user to operate from input voltages up to the 42 V operating limit of the TPS54240.

CAUTION

Risk of electric shock for voltages exceeding 50 VDC.
Table 2. TPS54240EVM-VSON Performance Specification Summary

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN} voltage range</td>
<td></td>
<td>7</td>
<td>12</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage set point</td>
<td></td>
<td>3.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current range</td>
<td>$V_{IN} = 10 \text{ V to } 20 \text{ V}$</td>
<td>0</td>
<td>2.5</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>$V_{IN} = 12 \text{ V}, I_{OUT} = 0.001 \text{ A to } 2.5 \text{ A}$</td>
<td>±0.06%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load transient response</td>
<td>$I_{OUT} = 0.5 \text{ A to } 2.5 \text{ A}$</td>
<td>Voltage change</td>
<td>−30</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery time</td>
<td>1</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OUT} = 2.5 \text{ A to } 0.5 \text{ A}$</td>
<td>Voltage change</td>
<td>40</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery time</td>
<td>1</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Loop bandwidth</td>
<td>$V_{IN} = 12 \text{ V}, I_{OUT} = 2.5 \text{ A}$</td>
<td>36.9</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase margin</td>
<td>$V_{IN} = 12 \text{ V}, I_{OUT} = 2.5 \text{ A}$</td>
<td>64</td>
<td>°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input ripple voltage</td>
<td>$I_{OUT} = 2.5 \text{ A}$</td>
<td>320</td>
<td>mVpp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ripple voltage</td>
<td>$I_{OUT} = 2.5 \text{ A}$</td>
<td>20</td>
<td>mVpp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow start time</td>
<td></td>
<td>3</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating frequency</td>
<td></td>
<td>500</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak efficiency</td>
<td>TPS54240EVM-VSON, $V_{IN} = 12 \text{ V}, I_{OUT} = 0.7 \text{ A}$</td>
<td>87.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCM/DCM boundary</td>
<td>$V_{IN} = 12 \text{ V}$</td>
<td>0.4</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco-mode™ threshold</td>
<td>$V_{IN} = 12 \text{ V}$</td>
<td>45</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Test Setup and Results

This section describes how to properly connect, set up, and use the TPS54240EVM-VSON evaluation module. The section also includes test results typical for the evaluation module and covers efficiency, output voltage regulation, load transients, loop response, output ripple, input ripple, and start-up.

2.1 Input/Output Connections

The TPS54240EVM-VSON is provided with input/output connectors and test points as shown in Table 3. See Figure 1 for the location of the connectors. A power supply capable of supplying 2.5 A must be connected to J1 and J3 through a pair of 20 AWG wires. The load must be connected to J2 and J3 through a pair of 20 AWG wires. The maximum load current capability must be 2.5 A. Wire lengths must be minimized to reduce losses in the wires. Test-point TP1 provides a place to monitor the V_{IN} input voltages with TP3 providing a convenient ground reference. TP2 is used to monitor the output voltage with TP4 as the ground reference.
Figure 1. Top View of TPS54240EVM-VSON

Table 3. EVM Connectors and Test Points

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>V_{IN} (see Table 1 for V_{IN} range)</td>
</tr>
<tr>
<td>J2</td>
<td>V_{OUT}, 3.3 V at 2.5 A maximum</td>
</tr>
<tr>
<td>J3</td>
<td>Input and output GND</td>
</tr>
<tr>
<td>TP1</td>
<td>V_{IN} test point at V_{IN} connector</td>
</tr>
<tr>
<td>TP2</td>
<td>Output voltage test point at OUT connector</td>
</tr>
<tr>
<td>TP5</td>
<td>Test point between voltage divider network and output. Used for loop response measurements.</td>
</tr>
<tr>
<td>TP6</td>
<td>EN test point. Connect EN to ground to disable, open to enable.</td>
</tr>
<tr>
<td>TP7</td>
<td>Slow start monitor test point</td>
</tr>
<tr>
<td>TP8</td>
<td>RT test point.</td>
</tr>
<tr>
<td>TP11</td>
<td>PWRGD test point</td>
</tr>
<tr>
<td>TP12</td>
<td>PH test point</td>
</tr>
<tr>
<td>TP3,TP4,TP9,TP10</td>
<td>GND test point</td>
</tr>
</tbody>
</table>
2.2 Efficiency

The efficiency of this EVM peaks at a load current of about 0.7 A with $V_{IN} = 12$ V, 18 V, and 24 V. And then decreases as the load current increases towards full load. Figure 2 shows the efficiency for the TPS54240EVM-VSON at an ambient temperature of 25°C.

![Figure 2. TPS54240EVM-VSON Efficiency](image)

Figure 3 shows the efficiency for the TPS54240EVM-VSON at lower output currents between 0.001 A and 0.5 A at an ambient temperature of 25°C.

![Figure 3. TPS54240EVM-VSON Low Current Efficiency](image)

The efficiency may be lower at higher ambient temperatures, due to temperature variation in the drain-to-source resistance of the internal MOSFET.
2.3 Output Voltage Load Regulation

The load regulation for the TPS54240EVM-VSON is shown in Figure 4.

![Figure 4. TPS54240EVM-VSON Load Regulation](image)

Measurements are given for an ambient temperature of 25°C.
2.4 Load Transients

The TPS54240EVM-VSON response to load transients is shown in Figure 5. The current step is from 0.5 A to 2.5 A. The input voltage is 12 V. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output.

Figure 5. TPS54240EVM-VSON Transient Response
2.5 **Output Voltage Ripple**

The output current is the rated full load of 2.5 A and $V_{\text{IN}} = 12$ V. The ripple voltage is measured directly across the output capacitors.

When the output current is greater than one half the peak-to-peak inductor current, the circuit is operating in continuous conduction mode (CCM). The TPS54240EVM-VSON output voltage ripple in CCM mode is shown in Figure 6. The ripple voltage is measured directly across the input capacitors.

When the output current is less than one half the peak to peak inductor current, the circuit is operating in discontinuous conduction mode (DCM). The circuit enters DCM when the nominal output current falls below 400 mA. The TPS54240EVM-VSON output voltage ripple in DCM mode is shown in Figure 7.

At light load currents, the TPS54240 is designed to operate in the pulse-skipping Eco-mode™ operation. When the nominal output current falls below 45 mA, typical, the device enters the Eco-mode™ operation. The TPS54240EVM-VSON output voltage ripple in Eco-mode is shown in Figure 8.

![Image of waveforms](image_url)

Figure 6. TPS54240EVM-VSON Output Voltage Ripple in CCM Mode at 2.5-A I_{LOAD}

Figure 7. TPS54240EVM-VSON Output Voltage Ripple in DCM Mode at 200-mA I_{LOAD}

Figure 8. TPS54240EVM-VSON Output Voltage Ripple in Eco-mode™ at 20-mA I_{LOAD}
2.6 Input Voltage Ripple

The TPS54240EVM-VSON input voltage ripple in CCM mode is shown in Figure 9. The output current is the rated full load of 2.5 A and \(V_{IN} = 12 \) V. The ripple voltage is measured directly across the input capacitors. The TPS54240EVM-VSON input voltage ripple in DCM mode is shown in Figure 10. The output current is 200 mA. The TPS54240EVM-VSON input voltage ripple in Eco-mode is shown in Figure 11. The output current is 20 mA.

Figure 9. TPS54240EVM-VSON Input Voltage Ripple in CCM mode at 2.5-A \(I_{LOAD} \)

Figure 10. TPS54240EVM-VSON Input Voltage Ripple in DCM Mode at 200 mA \(I_{LOAD} \)

Figure 11. TPS54240EVM-VSON Input Voltage Ripple in Eco-mode™ at 20 mA \(I_{LOAD} \)
2.7 Powering Up

The start-up waveforms are shown in Figure 12. Start-up is relative to \(V_{IN} \) rising. The input voltage is initially applied, and when the input reaches the undervoltage lockout threshold, the start-up sequence begins, and the output ramps up at the externally set rate toward the set value of 3.3 V.

![Start-up waveforms](image)

Figure 12. TPS54240EVM-VSON Start-Up

2.8 Power Good Output

The power-good (PWRGD) pin can be pulled up by a 10-k\(\Omega \) resistor to \(V_{OUT} \) or an external voltage source. When connected to \(V_{OUT} \), the power good output waveforms are shown in Figure 13. When connected to an external 3.3 V, the power-good output waveforms are shown in Figure 14.

![Power Good waveforms](image)

Figure 13. TPS54240EVM-VSON Power-Good Output (pulled up to \(V_{OUT} \))

Figure 14. TPS54240EVM-VSON Power-Good Output (Pulled up to external 3.3 V)
2.9 Loop Characteristics

The TPS54240EVM-VSON loop-response characteristics are shown in Figure 15. Gain and phase plots are shown for V_{IN} voltage of 12V. Load current for the measurement is 2.5 A.

![Closed Loop Response](image_url)

Figure 15. TPS54240EVM-VSON Loop Response
3 Schematic and Bill of Materials

This section presents the TPS54240EVM-VSON schematic and bill of materials.

3.1 Schematic

Figure 16 is the schematic for the TPS54240EVM-VSON.

![Schematic Diagram]

Figure 16. TPS54240EVM-VSON Schematic
###Bill of Materials

Table 4 presents the bill of materials for the TPS54240EVM-VSON.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Designator</th>
<th>Value</th>
<th>Description</th>
<th>Package</th>
<th>PartNumber</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C1, C2</td>
<td>2.2uF</td>
<td>CAP, CERM, 2.2 uF, 100 V, +/- 10%, X5R,</td>
<td>1210</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>C11</td>
<td>0.01uF</td>
<td>CAP, CERM, 0.01 uF, 25 V, +/- 10%, X7R, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>0</td>
<td>C12</td>
<td>10pF</td>
<td>CAP, CERM, 10 pF, 50 V, +/- 5%, C0G/NP0, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>C13</td>
<td>3300pF</td>
<td>CAP, CERM, 3300 pF, 50 V, +/- 10%, X7R, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>0</td>
<td>C14</td>
<td>68uF</td>
<td>CAP, AL, 68 uF, 63 V, +/- 20%, SMD</td>
<td>JA0</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>3</td>
<td>C3, C5, C10</td>
<td>1uF</td>
<td>CAP, CERM, 1 uF, 25 V, +/- 10%, X7R, 0805</td>
<td>0805</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>C4</td>
<td>0.1uF</td>
<td>CAP, CERM, 0.1 uF, 10 V, +/- 10%, X7R, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>C6, C7</td>
<td>47uF</td>
<td>CAP, CERM, 47 uF, 10 V, +/- 20%, X5R, 1210</td>
<td>1210</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>0</td>
<td>C8, C9</td>
<td>47uF</td>
<td>CAP, CERM, 47 uF, 10 V, +/- 20%, X5R, 1210</td>
<td>1210</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>40V</td>
<td>Diode, Schottky, 40 V, 3 A, SMB</td>
<td>SMB</td>
<td>B340B-13-F</td>
<td>Diodes Inc.</td>
</tr>
<tr>
<td>3</td>
<td>J1, J2, J3</td>
<td></td>
<td>Standard Banana Jack, Uninsulated, 8.9mm</td>
<td>Keystone</td>
<td>575-8</td>
<td>Keystone</td>
</tr>
<tr>
<td>1</td>
<td>J4</td>
<td></td>
<td>Header, 100mil, 3x1, Gold, TH</td>
<td>Header</td>
<td>HTSW-103-07-G-S</td>
<td>Samtec</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>10uH</td>
<td>Inductor, Shielded Drum Core, Ferrite, 10 uH, 4.09 A, 0.021 ohm, SMD</td>
<td>SMD</td>
<td>74477110</td>
<td>Wurth Elektronik</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>124k</td>
<td>RES, 124 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>51</td>
<td>RES, 51, 0.1%, 0.1 W, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>31.6k</td>
<td>RES, 31.6 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>30.1k</td>
<td>RES, 30.1 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>237k</td>
<td>RES, 237 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>R6, R8</td>
<td>10.0k</td>
<td>RES, 10.0 k, 1%, 0.1 W, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R7</td>
<td>16.5k</td>
<td>RES, 16.5 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>7</td>
<td>TP1, TP2, TP5, TP6, TP7, TP8, TP12</td>
<td>Test Point, Multipurpose, Red, TH</td>
<td>Red Multipurpose Testpoint</td>
<td>5010</td>
<td>Keystone</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TP3, TP4, TP9, TP10, TP11</td>
<td>Test Point, Multipurpose, Black, TH</td>
<td>Black Multipurpose Testpoint</td>
<td>5011</td>
<td>Keystone</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>3.5V to 42V Input, 2.5A Step-Down Converter with Eco-Mode, DRC0010J (VSON-10)</td>
<td>DRC0010J</td>
<td>TPS54240DRC</td>
<td>Texas Instruments</td>
<td></td>
</tr>
</tbody>
</table>
4 Board Layout

This section provides a description of the TPS54240EVM-VSON, board layout, and layer illustrations.

4.1 Layout

The board layout for the TPS54240EVM-VSON is shown in Figure 17 through Figure 18. The EVM offers resistors, capacitors and test points to configure the output voltage, enable (EN) pin, set frequency, and external clock synchronization.

The VSON package offers an exposed thermal pad, which must be soldered to the copper landing on the PCB for optimal thermal performance. The PCB consists of a 4-layer design. There are 2-oz copper planes on the top and bottom and 1-oz copper mid-layer planes to dissipate heat with an array of thermal vias under the thermal pad to connect to all four layers.

Test points have been provided for ease of use to connect the power supply, required load and to monitor critical signals. The 12-pin edge connector can also be used to facilitate the use of a cable harness if one is required.
Figure 18. TPS54240EVM-VSON Bottom-Side Assembly

Figure 19. TPS54240EVM-VSON Top-Side Layout
Figure 20. TPS54240EVM-VSON Mid-Layer 1 Layout

Figure 21. TPS54240EVM-VSON Mid-Layer 2 Layout
4.2 Estimated Circuit Area

The estimated printed-circuit board area for the components used in this design is about 1.5 in\(^2\). This area does not include test points or connectors.
5 Modifications

These evaluation modules are designed to provide access to the features of the TPS54240. Some modifications can be made to this module.

5.1 Output Voltage Setpoint

The voltage divider of R_3 and R_6 is used to set the output voltage of the EVM. The 51-Ω resistor R_3 is provided as an aid to check the loop response of the circuit. To change the output voltage of the EVM, it is necessary to change the value of resistor R_3. Changing the value of R_3 can change the output voltage above 0.8 V or 90% V_{IN}. The value of R_3 for a specific output voltage can be calculated using Equation 1.

$$R_3 = 10 \text{k} \Omega \times \frac{(V_{OUT} - 0.8 \text{ V})}{0.8 \text{ V}}$$ (1)

Table 5 lists the R_3 values for some common output voltages. Note that V_{IN} must be in a range so that the minimum on-time is greater than 130 ns, and the maximum duty cycle is less than 90%. Higher duty cycles are possible, but may result in uneven switching behavior. The values given in Table 5 are standard values, not the exact value calculated using Equation 1.

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGE (V)</th>
<th>R_3 VALUE (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>12.4</td>
</tr>
<tr>
<td>2.5</td>
<td>21.5</td>
</tr>
<tr>
<td>3.3</td>
<td>31.6</td>
</tr>
<tr>
<td>5</td>
<td>52.3</td>
</tr>
</tbody>
</table>

Be aware that changing the output voltage can affect the loop response. It may be necessary to modify the compensation components. Also, changing output voltage may need to change L_{OUT} and C_{OUT} as well. Check C_{OUT} voltage rating if higher V_{OUT} is used. See the device data sheet for details.

5.2 Operating Frequency, Soft Start, and UVLO

The operating frequency, soft-start time, and UVLO voltage may also be adjusted. R_5 sets the operating frequency, C_{11} sets the soft-start time and the resistor divider of R_1 and R_2 sets the UVLO start and stop voltages. See the TPS54240 device data sheet for details on adjusting these parameters.
STANDARD TERMS FOR EVALUATION MODULES

1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstarnation software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subsystem in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 Limited Warranty and Related Remedies/Disclaimers:

2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI’s recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI’s instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:
EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGRADATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.
3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Concernant les EVMs avec antennes détachables

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l'émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/jsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.tij.co.jp/jsds/ti_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/jsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/jsds/ti_ja/general/eStore/notice_02.page

3.4 European Union

3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
EVM Use Restrictions and Warnings:

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED “AS IS” AND “WITH ALL FAULTS.” TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

7. USER’S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, “CLAIMS”) ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
8. **Limitations on Damages and Liability:**

8.1 **General Limitations.** IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMs, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 **Specific Limitations.** IN NO EVENT SHALL TI’S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. **Return Policy.** Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. **Governing Law:** These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated