Medium Voltage Digital Motor Control Kit for Stellaris® Microcontrollers (DK-LM3S-DRV8312)

The Medium Voltage Digital Motor Control (DMC) kit (DK-LM3S-DRV8312), shown in Figure 1, provides a great way to learn and experiment with digital control of medium voltage brushless motors to increase efficiency of operation. This document describes the DRV8312 hardware, and explains the functions and locations of jumpers and connectors present on the board.

WARNING

This EVM is meant to be operated in a lab environment only and is not considered by Texas Instruments to be a finished end-product fit for general consumer use

This EVM must be used only by qualified engineers and technicians familiar with risks associated with handling high-voltage electrical and mechanical components, systems, and subsystems.

This equipment may be operated at voltages and currents that can result in electrical shock, fire hazard and/or personal injury if not properly handled or applied. Equipment must be used with necessary caution and appropriate safeguards employed to avoid personal injury or property damage.

It is the user’s responsibility to confirm that the voltages and isolation requirements are identified and understood, prior to powering the board and or simulation. If powered with a supply other than the one included in the kit, do not touch the EVM or components connected to the EVM.
Kit Features

The kit has the following features:

- Three-Phase Power Stage, DRV8312 capable of driving three-phase brushless DC motors and Permanent Magnet Synchronous Motors
 - 52.5 V DC max input voltage
 - 6.5 A peak with a 3.5 A max continuous output current per phase
 - Up to 500 kHz driver switching frequency
- 24 V switching power supply with on-board regulation for powering other analog and digital circuitry
- Isolated CAN and SPI communication (controlCARD support-dependent)
- Closed-loop digital control with feedback using the Stellaris microcontroller’s on-chip PWM and ADC peripherals
DK-LM3S_DRV8312_BASEBOARD
HARDWARE REFERENCE GUIDE

- JTAG connector for external emulators (not used with Stellaris microcontrollers)
- Quadrature Encoder Interface (QEI) available for speed and position measurement
- Hall-Sensor Interface for sensored three-phase motor control
- High precision, low-side current sensing using the Stellaris microcontroller’s high-performance ADC, Texas Instruments’ OPA365A high-speed op-amps, and Texas Instruments’ REF3025 high precision voltage reference chip
- Three PWM DACs generated by low-pass filtering the PWM signals to observe the system variables on an oscilloscope to enable easy debug of control algorithms
- Over-current protection on the inverter stage, DRV8312

The software available with the kit is pre-optimized for the motors that are available with the kit. The software is open source, and therefore, can be easily modified to tune and run a different motor. The following motor is available with the kit:

<table>
<thead>
<tr>
<th>Nema Size 17 BLDC Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11A peak current, 4000RPM)</td>
</tr>
</tbody>
</table>

WARNING: Low-Switching Frequencies on the DRV8312

When the DRV8312 runs at a low switching frequency (for example, less than 20 kHz with 47 nF bootstrap capacitor), the bootstrap capacitor voltage might not be able to maintain a proper voltage level for the high-side gate driver. A bootstrap capacitor under voltage protection circuit (BST_UVP) will start under this circumstance to prevent the potential failure of the high-side MOSFET.

In this circumstance, both the FAULT and OTW pins should pull low and the device should self-protect itself. The motor’s inductance and the inverter’s bootstrap capacitance will allow the DRV8312 to run efficiently until approximately 10 kHz (with margin). Setting the PWM switching frequency below 10 kHz may cause issues on the inverter output and is not recommended. See the DRV8312 data sheet for more information.

Hardware Overview

Figure 3 shows a typical motor drive system running from either a laboratory power supply or the 24 V supply delivered with the kit. The DRV8312-C2-KIT’s motor control board has all the power and control blocks that constitute a typical motor drive system for a step motor or two brushed DC motors (Figure 5).
Macro Blocks

The motor control board is divided into functional groups that enable a complete motor drive system. These functional groups are called macro blocks. This list describes the macro blocks that are present on the board and their functions:

- ISO controlCARD socket – Socket for a Stellaris or C2000 MCU-based controlCARD
- DC Bus Connection
 - J9 power entry jack - Connect the supplied +24 V power supply here
 - “PVDD/GND” Terminals – Connect an external lab supply here making sure to observe correct polarity
- Aux-12 V Control Power Entry – Connectors to optionally provide an external 12 V supply for logic and gate drive power. The 12 V supply can also be regulated on-board from the DC bus depending on the setting of JP1. Set to the “VR1” position to use the on-board regulator. Set to position “+12 V” to use the external regulator.
- DRV8312 – This module includes the DRV8312 Three-Phase PWM Motor Driver and all of the necessary external passive components.
- Current Sense – Low-side shunt current sensing on each half-bridge.
- Reset Switch – Individual reset for each half-bridge. Reset can be forced manually from the three-position switch or through a GPIO from the MCU. Setting switch in the down position, “RESET” disables the half-bridge outputs. Setting the switch in the middle position will allow control through a GPIO on the MCU. Setting the switch in the up position, “NORMAL OP” disables control from the MCU and enables the half-bridge outputs.
- Mode Jumper “M1” – DRV8312 mode can be set to select between cycle-by-cycle current limit or latched over-current.
- Quadrature Encoder Connections – Connections are available for an optional shaft encoder to interface to the MCU’s QEP peripheral.
- Hall Effect Sensor Connections – Connections are available for optional Hall Effect Sensors.

Figure 4 shows the position of the macro blocks on the board. All the PWMs and ADC signals which are the actuation and sense signals have designated test points on the board, which makes it easy for an application developer to try out new algorithms and strategies.
Board Power

The board is separated into two power domains*: (1) the low voltage Controller Power domain powers the controller and the logic circuit present on the board, and (2) the medium voltage power delivery line that is used to carry the medium voltage and current such as the DC power for the Inverter (also referred to as DC Bus).

1) **Controller Power** comprised of the 12 V, 5 V, and 3.3 V that the board uses to power the controller and the logic and sensing circuit present on the board. This power can be sourced from two places (Jumper JP1 selects between the two):

- **+12V DC control power entry**: Connect an external bench supply with 1A current limit here
- **On board regulator, VR1**: +12V is regulated from DC bus power via an on-board buck regulator

2) **DC Bus Power** is the medium voltage line – up to 52.5V - that provides the voltage to the inverter stage to generate three phases to control the motor(s). Connect supplied 24 V regulator to J9.

For step-by-step instructions on configuring the DRV8312 baseboard for use with a Stellaris controlCARD, see the *DK-LM3S-DRV8312 Read Me First* document.

DRV8312 Functional Block Diagram

![Figure 5. DRV8312 Functional Diagram](image)
References
In addition to this document, the following references are included on the Stellaris controlCARD Development Kit CD and are also available for download at www.ti.com/stellaris:

- Stellaris® LM3S818 controlCARD Module (MDL-LM3S818CNCD) README First, publication MDL-LM3S818CNCD-RMF
- Stellaris® Development and Evaluation Kits for Code Composer Studio™ Quickstart Guide
- Stellaris® LM3S818 Microcontroller Data Sheet, publication DS-LM3S818
- StellarisWare Driver Library
- StellarisWare Driver Library User’s Manual, publication SW-DRL-UG
- Stellaris® DK-LM3S-DRV8312 InstaSPIN™-BLDC README First, publication DK-LM3S-DRV8312-RMF
- Three-Phase PWM Motor Driver (DRV8312) Data Sheet, publication SLES256
- Sensorless Trapezoidal Control of BLDC Motors Using BEMF Integration (InstaSPIN™-BLDC) on Stellaris® Microcontrollers Application Note, publication AN01289

Additional references include:
- The GUI and corresponding Stellaris code were developed by D3 Engineering. The GUI was created using Crosshairs Interface Designer from Crosshairs Embedded. There are links to each of the companies’ web sites within the GUI. There is also information for downloading Crosshairs Interface Designer so that you can modify the GUI that comes with this kit. The More… tab gives a brief overview of the Interface Designer software.
 - Crosshairs Embedded: www.crosshairse embedded.com
 - D3 Engineering: www.d3engineering.com

Schematics
This section contains the schematics for the DK-LM3S-DRV8312 evaluation board:

- DRV8312 Evaluation Board (sheets 1 and 2)
- Power Inputs and Supplies (sheet 3)
- Isolation Circuit (sheet 4)
- Revision History (sheet 5)
DRV8312 EVALUATION BOARD

REVISION HISTORY

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>INITIAL RELEASE</td>
<td>MAY 4, 2010</td>
<td>ML</td>
</tr>
</tbody>
</table>
| B | 1. DELETED OUTA, OUTB, OUTC.
2. ADDED OUTPUT CONNECTOR, TITLED MOTOR.
3. CONNECTED L2-2, L3-2 AND L4-2 TO MOTOR-1,2 AND 3, RESPECTIVELY.
4. DELETED PVDD, GND, +12V AND GND(GND2).
5. ADDED POWER CONNECTOR, VIN.
6. CONNECTED VIN-4 TO C1-1.
7. CONNECTED VIN-2,3 TO GND.
8. CONNECTED VIN-1 TO +12V.
9. ADDED TESTPOINTS TO IA-FB, IB-FB, IC-FB AND I-TOTAL.
10. ADDED 2 PIN HEADERS J2 AND J3 FOR USER POWER ACCESS.
11. CONNECTED J2-1,2 TO +5V AND GND.
12. CONNECTED J3-1,2 TO +3.3V AND GND.
14. ADDED 3 PIN HEADER, JP3, LABELED TACH/SPEED INPUT.
15. CONNECTED JP3-1,2,3 TO +3.3V, J1-7 AND GND, RESPECTIVELY.
16. RENAMED S1 TO RSTA.
17. SWAPPED U1-29 AND U1-30.
18. ADDED 40 PIN HEADER, J5 AND CONNECTED PINS TO ACTIVE PINS OF J1.
19. ADDED SWITCHES, S1 AND S2 TO U1-76 AND U1-78.
20. COPIED DAC1 CIRCUIT, CALLED DAC3, AND CONNECTED TO J1-28.
21. CHANGED R24-R27 TO 33.0K OHMS.
22. CHANGED R28-R35, R56-R61 TO 1.00K OHMS.
23. CHANGED R48, R49, R54 AND R55 TO 49.9K OHMS.
24. ADDED ISOLATION CIRCUITS.
25. ADDED 12V CONNECTOR, J9.
26. CHANGED C4 TO 22UFD/100V.
27. CHANGED C5 AND C6 TO 100V. | MARCH 23, 2011 | RK |
SCHEMATIC DISCLAIMER AND WARNINGS

TI provides the schematic drawings to help users develop DRV8312 & Stellaris MCU based reference design products. Application safety, safety of the Medium Voltage DMC kit and design integrity of such reference designs are solely responsibility of the user. Any reference designs generated off these schematics must take into account necessary product safety design requirements, including interface components and load motors in order to avoid user risks including potential for fire hazard, electrical shock hazard and personal injury, including considerations for anticipated agency certification compliance requirements.

Such product safety design criteria shall include but not be limited to critical circuit creepages and clearances, component selection, ratings compatibility of controlled motor loads, and required protective means (i.e., output fusing) depending on the specific loads being controlled.

TI accepts no responsibility for design integrity of any reference designs based on supplied schematic drawings and the schematics are strictly for development purposes.

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions: This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.
TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2010, Texas Instruments Incorporated

FCC Warning
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
【Important Notice for Users of this Product in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル

http://www.tij.co.jp
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www.dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications</td>
<td>www.ti.comomap</td>
</tr>
<tr>
<td>Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated