

TMS320x281x DSP
Boot ROM

Reference Guide

Literature Number: SPRU095C
May 2003 − Revised December 2006

3

Contents

Contents

1 Boot ROM Overview . 8
 1.1 Effect of XMPNMC on the Boot ROM . 8
 1.2 On-Chip ROM Description . 8

2 Boot ROM Version and Checksum Information . 11

3 CPU Vector Table . 12

4 Bootloader Features . 14
 4.1 Bootloader Functional Operation . 14
 4.2 Bootloader Device Configuration . 16
 4.2.1 PLL Multiplier Selection . 17
 4.2.2 Watchdog Module . 17
 4.2.3 PIE Configuration . 17
 4.2.4 Reserved Memory . 17
 4.3 Bootloader Modes . 17
 4.4 Bootloader Data Stream Structure . 21
 4.5 General Structure of Source Program Data Stream in 8-Bit Mode 25
 4.6 Basic Transfer Procedure . 28
 4.7 InitBoot Assembly Routine . 30
 4.8 SelectBootMode Function . 30
 4.9 SCI_Boot Function . 34
 4.10 Parallel_Boot Function (GPIO) . 37
 4.11 SPI_Boot Function . 43
 4.12 ExitBoot Assembly Routine . 47

5 Building the Boot Table . 50

6 Bootloader Code Listing . 52

4

Figures

Figures

1. Memory Map of On-Chip ROM .. 10
2. Vector Table Map ... 12
3. Bootloader Flow Diagram .. 15
4. Boot ROM Function Overview ... 19
5. Jump to Flash Flow Diagram ... 20
6. Flow Diagram of Jump to H0 SARAM ... 20
7. Flow Diagram of Jump to OTP Memory .. 20
8. F2810/12 Boot Loader Basic Transfer Procedure ... 29
9. Overview of InitBoot Assembly Function ... 30
10. Overview of the SelectBootMode Function.. 33
11. Overview of SCI Boot Loader Operation ... 34
12. Overview of SCI_Boot Function ... 35
13. Overview of SCIA_CopyData Function.. 36
14. Overview of SCI_GetWordData Function .. 37
15. Overview of Parallel GPIO Boot Loader Operation ... 37
16. Parallel GPIO Boot loader Handshake Protocol .. 38
17. Parallel GPIO Mode Overview ... 39
18. Parallel GPIO Mode − Host Transfer Flow
19. Overview of Parallel_CopyData Function

. 40
. 41

20. Parallel GPIO Boot Loader Word Fetch ... 42
21. SPI Loader ... 43
22. Data Transfer From EEPROM Flow .. 45
23. Overview of SPIA_CopyData Function .. 46
24. Overview of SPIA_GetWordData Function .. 47
25. ExitBoot Procedure Flow ... 48

Contents 5

Tables

Tables

1. Memory Addresses .. 11
2. Vector Locations ... 13
3. Configuration for Device Modes ... 17
4. Boot Mode Selection .. 18
5. General Structure Of Source Program Data Stream In 16-Bit Mode ... 22
6. LSB/MSB Loading Sequence in 8-Bit Data Stream ... 25
7. GPIO Pin Status ... 31
8. SPI 8-Bit Data Stream .. 43
9. CPU Register Values ... 49
10. Boot-Loader Options .. 51

6

This page intentionally left blank.

7

Boot ROM

This reference guide is applicable for the Boot ROM found on the
TMS320x281x generation of processors in the TMS320C2000 platform and
includes associated code in a separate file (spru095c.zip). This includes all
Flash-based, ROM-based, and RAM-based devices within the 281x
generation.

The Boot ROM is factory-programmed with boot-loading software. Boot-mode
signals (general purpose I/Os) are used to tell the bootloader software what
mode to use on power up. The 281x Boot ROM also contains standard math
tables, such as SIN/COS waveforms for use in IQ math related algorithms.

This guide describes the purpose and features of the bootloader. It also
describes other contents of the device on-chip boot ROM and identifies where
all of the information is located within that memory. Project collateral
discussed in this user guide can be downloaded from
http://www.ti.com/lit/zip/SPRU095.

http://www.ti.com/lit/zip/SPRU095

8 Boot ROM SPRU095C

Boot ROM Overview

1 Boot ROM Overview
The boot ROM on the F281x, C281x, and R281x devices is a 4K x 16 block
located in memory from 0x3F F000 − 0x3F FFC0. This memory block is
mapped only when the MPNMC status bit in the XINTCNF2 register is 0. The
same Boot ROM is included in Flash, ROM, and RAM 281x devices.

1.1 Effect of XMPNMC on the Boot ROM

In this document XMPNMC refers to the input signal to the device while
MPNMC refers to the status bit in the external interface (XINTF) configuration
register XINTFCNF2. On devices without an XINTF, the XMPNMC input signal
is tied low internal to the device.

The MPNMC status bit in the XINTFCNF2 register switches the device
between microprocessor and microcomputer mode. When high, XINTF Zone
7 is enabled on the external interface and the internal boot ROM is disabled.
When low, XINTF Zone 7 is disabled from the external interface, and the
on-chip boot ROM memory can be accessed instead. The XMPNMC input
signal is latched into the XINTF configuration register XINTCNF2 on a reset.
After reset, the state of the XMPNMC input signal is ignored and you can then
modify the state of this mode in software.

On devices with an XINTF, like the F2812, the XMPNMC input signal is
available externally and therefore, you can control this signal to boot from the
internal boot ROM or from XINTF Zone 7. On devices without the XINTF, such
as the F2810, XMPNMC is tied low internal to the device and, therefore, boot
ROM is automatically enabled at reset.

The remainder of this document assumes that the XMPNMC input signal is
pulled low at reset to boot from internal ROM unless stated otherwise.

1.2 On-Chip ROM Description

On the 281x devices, the 4K x 16 on-chip ROM is factory programmed with the
boot-load routine and additional features. Appendix A contains the code for
each of the following items:

□ Bootloader functions
□ Version number, release date and checksum
□ Reset vector
□ CPU vector table (Used for test purposes only)
□ IQmath Tables

3K x 16 of boot ROM memory is reserved for math tables and future upgra-
des. These math tables and in the future math functions are intended to
help with performance and save RAM space.

Boot ROM Overview

SPRU095C Boot ROM 9

The 281x boot ROM includes math tables that are used by the Texas In-
struments™ TMS320C28x™ IQmath Library. The 28x IQmath Library is a
collection of highly optimized and high precision mathematical functions
for C/C++ programmers to seamlessly port a floating-point algorithm into
fixed-point code on TMS320C28x devices.

These routines are typically used in computational-intensive real-time ap-
plications where optimal execution speed and high accuracy is critical. By
using these routines you can achieve execution speeds that are consider-
ably faster than equivalent code written in standard ANSI C language. In
addition, by providing ready-to-use high precision functions, the TI IQmath
Library can shorten significantly your DSP application development time.
The 28x IQmath Library (literature number SPRC087), can be down-
loaded from the TI website.

The following math tables are included in the 281x Boot ROM.

■ Sin/Cos Table:

Table size: 1282 words

Q format: Q30

Contents: 32-bit samples for one and
a quarter period sin wave

This is useful for accurate sin wave generation and 32-bit FFTs. This
can also be used for 16-bit math, just skip over every second value.

■ Normalized Inverse Table:

Table size: 528 words

Q format: Q29

Contents: 32-bit normalized inverse samples plus
saturation limits

This table is used as an initial estimate in the Newton-Raphson in-
verse algorithm. By using a more accurate estimate the convergence
is quicker and hence cycle time is faster.

■ Normalized Square Root Table:

Table size: 274 words

Q format: Q30

Contents: 32-bit normalized inverse square root samples plus
saturation

This table is used as an initial estimate in the Newton-Raphson
square-root algorithm. By using a more accurate estimate the conver-
gence is quicker and hence cycle time is faster.

Boot ROM Overview

10 Boot ROM SPRU095C

■ Normalized Arctan Table:

Table size: 452 words

Q format: Q30

Contents 32-bit 2nd order coefficients for line of bset fit plus
normalization table

This table is used as an initial estimate in the Arctan iterative algo-
rithm. By using a more accurate estimate the convergence is quicker
and hence cycle time is faster.

■ Rounding and Saturation Table:

Table size: 360 words

Q format: Q30

Contents 32-bit rounding and saturation limits for
various Q values

Figure 1 shows the memory map of the on-chip ROM for the F2810/12. The
memory block is 4Kx16 in size and is located at 0x3F F000 − 0x3F FFFF in both
program and data space when the MPNMC status bit is low.

Figure 1. Memory Map of On-Chip ROM

On-chip boot ROM Section start
address

Math tables and
future upgrades

3K x 16

1K x 16

0x3F F000

0x3F F502

0x3F F712

0x3F F834

0x3F F9E8

0x3F FB50

0x3F FC00

0x3F FFC0

0x3F FFFF

Data space Prog space
Sin/Cos

(644 x 16)
Normalized inverse

(528 x 16)
Normalized square root

(274 x 16)
Normalized actan

(452 x 16)
Rounding and saturation

(360 x 16)

Reserved

Bootloader functions

ROM version
ROM checksum

Reset vector
CPU vector table

(64 x 16)

SPRU095C Boot ROM 11

Boot ROM Version and Checksum Information

2 Boot ROM Version and Checksum Information
The boot ROM contains its own version number located at address
0x3F FFBA. This version number starts at 1 and will be incremented any time
the boot ROM code is modified. The next address, 0x3F FFBB contains the
month and year (MM/YY in decimal) that the boot code was released. The next
four memory locations contain a checksum value for the boot ROM. Taking a
64-bit summation of all addresses within the ROM, except for the checksum
locations, generates this checksum.

Table 1. Memory Addresses

Address Contents

0x3F FFBA Boot ROM Version Number

0x3F FFBB MM/YY of release (in decimal)

0x3F FFBC

0x3F FFBD

0x3F FFBE

0x3F FFBF

Least significant word of checksum

...

...

Most significant word of checksum

12 Boot ROM SPRU095C

CPU Vector Table

3 CPU Vector Table

A CPU vector table resides in boot ROM memory from address 0x3F FFC0 −
0x3F FFFF. This vector table is active when VMAP = 1, ENPIE = 0 (PIE vector
table disabled) and MPNMC = 0 (internal Boot ROM memory enabled, XINTF
Zone 7 disabled).

Figure 2. Vector Table Map

64 x 16

0x3F F000

0x3F FC00

Reset fetched from here when
VMAP=1, XMPNMC=0
Other vectors fetched from here when

0x3F FFFF VMAP=1, MPNMC=0, ENPIE=0

Notes: 1) The VMAP bit is located in Status Register 1 (ST1). On the 281x devices, VMAP is always 1 on reset. It can be
changed after reset by software, however the normal operating mode will be to leave VMAP = 1.

2) On the 2812, XMPNMC is available externally; on the 2810 and 2811, it is tied low internally. On reset, the state of
the XMPNMC input signal is latched into the MPNMC status bit in the XINTCNF2 register where it can be changed
by software.

3) The ENPIE bit is located in the PIECTRL register. The default state of this bit at reset is 0, which disables the Periph-
eral Interrupt Expansion block (PIE).

The only vector that will normally be handled from the internal boot ROM
memory is the reset vector located at 0x3F FFC0. The reset vector is factory
programmed to point to the InitBoot function. This function starts the boot load
process. A series of checking operations is performed on General Purpose I/O
(GPIO I/O) pins to determine which boot mode to use. This boot mode
selection is described in the next section of this document.

The remaining vectors in the ROM are not used during normal operation on
the 281x devices. After the boot process is complete, you should initialize the
Peripheral Interrupt Expansion (PIE) vector table and enable the PIE block.
From that point on, all vectors, except reset, will be fetched from the PIE
module and not the CPU vector table shown here.

For TI silicon debug and test purposes the vectors located in the boot ROM
memory point to locations in the M0 SARAM block as described in the following
table. During silicon debug, you can program the specified locations in M0 with
branch instructions to catch any vectors fetched from boot ROM. This is not
required for normal device operation.

0x3F FFC0

Math tables
and functions

Bootloader
functions

Reset vector
CPU vector table

SPRU095C Boot ROM 13

CPU Vector Table

Table 2. Vector Locations

Location in

Contents
(i.e., points

Location in

Contents

Vector Boot ROM to) Vector Boot ROM (ie points to)

RESET 0x3F FFC0 InitBoot RTOSINT 0x3F FFE0 0x00 0060
 (0x3F FC00)

INT1 0x3F FFC2 0x00 0042 Reserved 0x3F FFE2 0x00 0062

INT2 0x3F FFC4 0x00 0044 NMI 0x3F FFE4 0x00 0064

INT3 0x3F FFC6 0x00 0046 ILLEGAL 0x3F FFE6 0x00 0066

INT4 0x3F FFC8 0x00 0048 USER1 0x3F FFE8 0x00 0068

INT5 0x3F FFCA 0x00 004A USER2 0x3F FFEA 0x00 006A

INT6 0x3F FFCC 0x00 004C USER3 0x3F FFEC 0x00 006C

INT7 0x3F FFCE 0x00 004E USER4 0x3F FFEE 0x00 006E

INT8 0x3F FFD0 0x00 0050 USER5 0x3F FFF0 0x00 0070

INT9 0x3F FFD2 0x00 0052 USER6 0x3F FFF2 0x00 0072

INT10 0x3F FFD4 0x00 0054 USER7 0x3F FFF4 0x00 0074

INT11 0x3F FFD6 0x00 0056 USER8 0x3F FFF6 0x00 0076

INT12 0x3F FFD8 0x00 0058 USER9 0x3F FFF8 0x00 0078

INT13 0x3F FFDA 0x00 005A USER10 0x3F FFFA 0x00 007A

INT14 0x3F FFDC 0x00 005C USER11 0x3F FFFC 0x00 007C

DLOGINT 0x3F FFDE 0x00 005E USER12 0x3F FFFE 0x00 007E

14 Boot ROM SPRU095C

Bootloader Features

4 Bootloader Features
This section describes in detail the boot mode selection process, as well as
the specifics of boot loader operation.

4.1 Bootloader Functional Operation

The 281x bootloader is the program located in the 281x ROM that is executed
following a reset when the device is in microcomputer mode.

The bootloader is used to transfer code from an external source into internal
or external interface (XINTF) memory following power up. This allows code to
reside in slow non-volatile memory externally, and be transferred to high-
speed memory to be executed.

The bootloader provides a variety of different ways to download code to
accommodate different system requirements. These modes are only available
if the processor boots in microcomputer mode (XMPNMC device input signal
= low).

The bootloader uses various GPIO signals to determine which boot mode to
use. The boot mode selection process as well as the specifics of each boot
loader operation are described in the remainder of this document. Figure 3
shows the basic bootloader flow.

SPRU095C Boot ROM 15

Bootloader Features

Figure 3. Bootloader Flow Diagram

 Yes

Boot ROM

 SelectBootMode
function

Boot determined by
the state of

I/O pins

Begin execution at

EntryPoint as
determined by

selected boot mode

Reset vector fetched
from boot ROM address

0x3F FFC0
 Jump to InitBoot

function to start
boot process

Note: On the F2810 the XMPNMC input signal is tied low internally on the device, and therefore boot from reset is always from
the internal boot ROM.

At reset, the value of the XMPNMC pin is sampled. The state of this pin
determines whether boot ROM or XINTF Zone 7 is enabled at reset.

If XMPNMC = 1 (Micro-Processor Mode) then Zone 7 is enabled and the reset
vector will be fetched from external memory. In this case, you must ensure that
the reset vector points to a valid memory location for code execution. This
option is only available on devices with an XINTF.

If XMPNMC = 0 (Micro-Computer Mode) then the boot ROM memory is
enabled and XINTF Zone 7 is disabled. In this case, the reset vector is fetched
from the internal boot ROM memory. All devices without an XINTF module
have the XMPNMC signal tied low internal to the device such that the boot
ROM memory is always enabled at reset.

The reset vector in boot ROM redirects program execution to the InitBoot
function. After performing device initialization the boot loader will check the
state of GPIO pins to determine which boot mode you want to execute. Options
include: Jump to Flash, Jump to H0 SARAM, Jump to OTP or call one of the
on-chip boot loading routines.

Reset
(power-on reset
or warm reset

Silicon sets the following:
PIE disabled (ENPIE−0)

VMAP=1
OBJMODE=0

AMODE=0
MOM1MAP=1

XMPNMC
input signal=0

?

No

(2812 only)

Reset vector fetched
from XINTF zone 7
address 0x3FFFC0

 Boot determined by
your application

You must configure
proper operating mode

of the device

16 Boot ROM SPRU095C

Bootloader Features

After the selection process and if required boot loading is complete, the
processor will continue execution at an entry point determined by the boot
mode selected. If a boot loader was called, then the input stream loaded by
the peripheral determines this entry address. This data stream is described in
section 2.4.3. If, instead, you choose to boot directly to Flash, OTP, or H0
SARAM, the entry address is predefined for each of these memory blocks.

The following sections discuss in detail the different boot modes available and
the process used for loading data code into the device.

4.2 Bootloader Device Configuration

At reset, any 28x CPU-based device is in 27x object-compatible mode. It
is up to the application to place the device in the proper operating mode before
execution proceeds.

On the 28x devices, when booting from the internal boot ROM (XMPNMC =
0), the device is configured for 28x operating mode by the boot ROM software.
You are responsible for any additional configuration required.

For example:

□ If your application includes C2xLP source, then you are responsible for
configuring the device for C2xLP source compatibility prior to execution
of code generated from C2xLP source.

□ If you boot from external memory (MPNMC = 1) then the application must
configure the device for 28x operating mode or C2xLP source compatible
mode as appropriate.

The configuration required for each operating mode is summarized in Table 3.

27x, 28x, and C2xLP are trademarks of Texas Instruments.

SPRU095C Boot ROM 17

Bootloader Features

Table 3. Configuration for Device Modes

 281x
C27x Mode (Reset)

28x Mode

C2xLP Source
Compatible Mode

OBJMODE 0 1 1

AMODE 0 0 1

PAGE0 0 0 0

M0M1MAP† 1 1 1

Other Settings SXM = 1
C = 1

SPM = 0

† Normally for 27x compatibility, the M0M1MAP would be 0. On the 281x; however, it is tied off high
internally. Thus at reset M0M1MAP is always configured for 28x mode on these devices.

4.2.1 PLL Multiplier Selection

The Boot ROM does not change the state of the PLL. Note that the PLL
multiplier is not affected by a reset from the debugger. Therefore, a boot that
is initialized from a reset from Code Composer Studio™ may be at a different
speed than booting by pulling the external reset line (XRS) low.

4.2.2 Watchdog Module

When branching directly to flash, H0 single-access RAM (SARAM), or one-
time-programmable (OTP) memory, the watchdog will not be touched. In the
other boot modes, the watchdog will be disabled before booting and then re-
enabled and cleared before branching to the final destination address.

4.2.3 PIE Configuration

The boot modes do not enable the PIE. It is left in its default state, which is
disabled.

4.2.4 Reserved Memory

The first 80 words of the M1 memory block (address 0x400 − 0x44F) are
reserved for stack use during the boot load process. If code is bootloaded into
this region there is no error checking to prevent it from corrupting the Boot
ROM stack.

4.3 Bootloader Modes

To accommodate different system requirements, the 281x boot ROM offers a
variety of different boot modes. This section describes the different boot

18 Boot ROM SPRU095C

Bootloader Features

modes and gives brief summary of their functional operation. The state of four
GPIO pins are used to determine the boot mode desired as shown in Table 4.

Table 4. Boot Mode Selection

GPIOF4 GPIOF12 GPIOF3 GPIOF2

(SCITXDA) (MDXA) (SPISTEA) (SPICLK)

PU No PU No PU No PU Mode Selected

1 x x x Jump to Flash address 0x3F 7FF6
 You must have programmed a branch instruction

here prior to reset to re-direct code execution as
desired.

0 1 x x Call SPI_Boot to load from an external serial SPI
EEPROM

0 0 1 1 Call SCI_Boot to load from SCI-A

0 0 1 0 Jump to H0 SARAM address 0x3F 8000

0 0 0 1 Jump to OTP address 0x3D 7800

0 0 0 0 Call Parallel_Boot to load from GPIO Port B

Notes: 1) PU = pin has an internal pullup No PU = pin does not have an internal pullup
2) You must take extra care due to any affect toggling SPICLK in order to select a boot mode may have on external

logic.
3) If the boot mode selected is Flash, H0 or OTP, then no external code is loaded by the bootloader.

Figure 4 shows an overview of the boot process. Each step is described in
greater detail in following sections.

SPRU095C Boot ROM 19

Bootloader Features

Figure 4. Boot ROM Function Overview

The following boot modes do not call a boot loader. Instead, they jump to a
predefined location in memory:

□ Jump to branch instruction in Flash Memory:

In this mode, the boot ROM software will configure the device for ‘28x op-
eration and then branch directly to location 0x3F 7FF6 in Flash memory.
This location is just before the 128-bit code security module (CSM) pass-
word locations. You are required to have previously programmed a branch
instruction at location 0x3F 7FF6 that will redirect code execution to either
a custom boot-loader or the application code.

On 281x RAM devices, the boot-to-Flash option jumps to reserved
memory and should not be used. On 281x ROM devices, the boot-to-Flash
option jumps to the location 0x3F 7FF6 in ROM.

Reset

InitBoot

Call
SelectBootMode

Call Yes
Boot Loader

?

Call
Boot Loader
SCI, SPI or
parallel I/O

Read
Entry Point
and load

data/code

No

EntryPoint determined
directly from state of

I/O pins

Call
ExitBoot

Begin execution
at EntryPoint

Read the state
of I/O pins to

determine what
boot mode is

desired

20 Boot ROM SPRU095C

Bootloader Features

Figure 5. Jump to Flash Flow Diagram

□ Jump to H0 SARAM

In this mode, the boot ROM software will configure the device for ‘28x op-
eration and then branch directly to 0x3F 8000; the first address in the H0
SARAM memory block.

Figure 6. Flow Diagram of Jump to H0 SARAM

□ Jump to OTP Memory

In this mode, the boot ROM software will configure the device for C28x op-
eration and then branch directly to at 0x3D 7800; the first address in the
OTP memory block.

On 281x ROM devices, the boot-to-OTP option jumps to address
0x3D 7800 in OTP. On 281x RAM devices, the boot-to-OTP option jumps
to reserved memory and should not be used.

Figure 7. Flow Diagram of Jump to OTP Memory

□ Standard Serial Boot Mode (SCI):

In this mode, the boot ROM will load code to be executed into on-chip
memory via the SCI-A port.

□ SPI EEPROM Boot Mode:

In this mode, the boot ROM will load code and data into on-chip memory
from an external EEPROM via the SPI port.

□ Boot from GPIO Port:

In this mode, the boot ROM uses a GPIO port B to load code and data from
an external source. This mode supports both 8-bit and 16-bit data

Reset InitBoot
SelectBootMode

Select jump
to flash

ExitBoot Jump to
0x3F 7FF6

User
programmed

branch to
desired
location

Reset InitBoot
SelectBootMode

Select jump
to HO SARAM

ExitBoot Jump to
0x3F 8000

Execution
continues

Reset InitBoot
SelectBootMode

Select jump
to OTP

ExitBoot Jump to
0x3D 7800

Execute
preprogrammed

OTP code

SPRU095C Boot ROM 21

Bootloader Features

streams. Since this mode requires a number of GPIO pins, it would
typically be used for downloading code only for flash programming when
the device is connected to a platform explicitly for flash programming and
not a target board.

4.4 Bootloader Data Stream Structure

The following two tables and associated examples show the structure of the
data stream incoming to the boot loader. The basic structure is the same for
all the boot loaders and is based on the C54x source data stream generated
by the C54x hex utility. The C28x hex utility has been updated to support this
structure. All values in the data stream structure are in hex.

The first 16-bit word in the data stream is known as the key value. The key
value is used to tell the boot loader the width of the incoming stream: 8 or 16
bits. Note that not all boot loaders will accept both 8 and 16-bit streams. Please
refer to the detailed information on each loader for the valid data stream width.
For an 8-bit data stream, the key value is 0x08AA and for a 16-bit stream it is
0x10AA. If a boot loader receives an invalid key value, then the load is aborted.
In this case, the entry point for the Flash memory will be used.

The next 8 words are used to initialize register values or otherwise enhance
the boot loader by passing values to it. If a boot loader does not use these
values then they are reserved for future use and the boot loader simply reads
the value and then discards it. Currently only the SPI boot loader uses one
word to initialize registers.

The next 10th and 11th words comprise the 22-bit entry point address. This
address is used to initialize the PC after the boot load is complete. This
address is most likely the entry point of the program downloaded by the boot
loader.

The twelfth word in the data stream is the size of the first data block to be
transferred. The size of the block is defined for both 8 and 16-bit data stream
formats as the number of 16-bit words in the block. For example, to transfer
a block of 20 8-bit data values from an 8-bit data stream, the block size would
be 0x000A to indicate 10 16-bit words.

The next two words tell the loader the destination address of the block of data.
Following the size and address will be the 16-bit words that makeup that block
of data.

This pattern of block size/destination address repeats for each block of data
to be transferred. Once all the blocks have been transferred, a block size of
0x0000 signals to the loader that the transfer is complete. At this point the

22 Boot ROM SPRU095C

Bootloader Features

loader will return the entry point address to the calling routine which in turn will
cleanup and exit. Execution will then continue at the entry point address as
determined by the input data stream contents.

Table 5. General Structure Of Source Program Data Stream In 16-Bit Mode

Word Contents

1 10AA (KeyValue for memory width = 16bits)

10 Entry point PC[22:16]

11 Entry point PC[15:0]

12 Block size (number of words) of the first block of data to load. If the block size is 0, this
indicates the end of the source program. Otherwise another section follows.

13 Destination address of first block Addr[31:16]

14 Destination address of first block Addr[15:0]

15 First word of the first block in the source being loaded

. …

. …

. Last word of the first block of the source being loaded

. Block size of the 2nd block to load.

. Destination address of second block Addr[31:16]

. Destination address of second block Addr[15:0]

. First word of the second block in the source being loaded

. …

. …

. Last word of the second block of the source being loaded

…

…

Reserved for future use

…

Reserved for future use

3

9

Register initialization value or reserved for future use 2

SPRU095C Boot ROM 23

Bootloader Features

Table 5. General Structure Of Source Program Data Stream In 16-Bit Mode
(Continued)

Word Contents

. Block size of the last block to load

. Destination address of last block Addr[31:16]

. Destination address of last block Addr[15:0]

. First word of the last block in the source being loaded

. …

. …

. Last word of the last block of the source being loaded

n 0000h − indicates end of the source program

Example 1. Data stream structure 16bit:

10AA
0000

;
;
0x10AA 16-bit key value

8 reserved words
0000

0000
0000

0000

0000
0000

0000
003F ; 0x003F8000 EntryAddr, starting point after boot load completes
8000

0005 ; 0x0005 − First block consists of 5 16-bit words
003F ; 0x003F9010 − First block will be loaded starting at 0x3F9010
9010

0001 ; Data loaded = 0x0001 0x0002 0x0003 0x0004 0x0005
0002
0003

0004
0005

0002 ; 0x0002 − 2nd block consists of 2 16-bit words
003F ; 0x003F8000 − 2nd block will be loaded starting at 0x3F8000
8000

7700 ; Data loaded = 0x7700 0x7625
7625
0000 ; 0x0000 − Size of 0 indicates end of data stream

24 Boot ROM SPRU095C

Bootloader Features

After load has completed the following memory values will have been
initialized as follows:
Location Value
0x3F9010 0x0001
0x3F9011 0x0002
0x3F9012 0x0003
0x3F9013 0x0004
0x3F9014 0x0005
0x3F8000 0x7700
0x3F8001 0x7625
PC Begins execution at 0x3F8000

SPRU095C Boot ROM 25

Bootloader Features

4.5 General Structure of Source Program Data Stream in 8-Bit Mode

In 8-bit mode, the LSB of the word is sent first followed by the MSB. The boot
loaders take this into account when loading an 8-bit data stream.

Table 6. LSB/MSB Loading Sequence in 8-Bit Data Stream

Byte Contents

1 LSB = AA (KeyValue for memory width = 8 bits)

2 MSB = 08h (KeyValue for memory width = 8 bits)

3 LSB = Register initialization value or reserved for future use

4 MSB= Register initialization value or reserved for future use

… …

17 LSB = reserved for future use

18 MSB= reserved for future use

19 LSB: Upper half of Entry point PC[23:16]

20 MSB: Upper half of Entry point PC[31:24] (Note: Always 0x00)

21 LSB: Lower half of Entry point PC[7:0]

22 MSB: Lower half of Entry point PC[15:8]

23 LSB: Block size in words of the first block to load. If the block size is 0, this indicates the
end of the source program. Otherwise another block follows. For example, a block size
of 0x000A would indicate 10 words or 20 bytes in the block.

24 MSB: block size

25 LSB: Upper half of Destination address of first block Addr[23:16]

26 MSB: Upper half of Destination address of first block Addr[31:24]

27 LSB: Lower half of Destination address of first block Addr[7:0]

28 MSB: Lower half of Destination address of first block Addr[15:8]

29 LSB: First word of the first block being loaded

30 MSB: First word of the first block being loaded

. …

…

. LSB: Last word of the first block of the source being loaded

26 Boot ROM SPRU095C

Bootloader Features

Table 6. LSB/MSB Loading Sequence in 8-Bit Data Stream (Continued)

Byte Contents

. MSB: Last word of the first block of the source being loaded

. LSB: Block size of the second block

. MSB: Block size of the second block

. LSB: Upper half of Destination address of second block Addr[23:16]

. MSB: Upper half of Destination address of second block Addr[31:24]

. LSB: Lower half of Destination address of second block Addr[7:0]

. MSB: Lower half of Destination address of second block Addr[15:8]

. LSB: First word of the second block being loaded

. MSB: First word of the second block being loaded

. …

. …

. LSB: Last word of the second block of the source being loaded

. MSB: Last word of the second block of the source being loaded

. …

. …

. …

. LSB: Block size of the last block

. MSB: Block size of the last block

. LSB: Upper half of Destination address of last block Addr[23:16]

. MSB: Upper half of Destination address of last block Addr[31:24]

. LSB: Lower half of Destination address of last block Addr[7:0]

. MSB: Lower half of Destination address of last block Addr[15:8]

. LSB: First word of the last block being loaded

. MSB: First word of the last block being loaded…

. …

. …

SPRU095C Boot ROM 27

Bootloader Features

Table 6. LSB/MSB Loading Sequence in 8-Bit Data Stream (Continued)

Byte Contents

. LSB: Last word of the last block of the source being loaded

. MSB: Last word of the last block of the source being loaded

n LSB: 00h

n+1 MSB: 00h − indicates the end of the source

Example 2. Example 1: Data stream structure 8 bit:

AA ; 0x08AA 8-bit key value
08

00 ; 8 reserved words
00
00

00
00

00

00

00
00

00

00
00

00
00

00

00

3F ; 0x003F8000 EntryAddr, starting point after boot load completes
00
00

80
05 ; 0x0005 − First block consists of 5 16-bit words
00

3F ; 0x003F9010 − First block will be loaded starting at 0x3F9010
00

10

90

01 ; Data loaded = 0x0001 0x0002 0x0003 0x0004 0x0005
00

02
00

03

00
04

00

05
00

28 Boot ROM SPRU095C

Bootloader Features

02 ; 0x0002 − 2nd block consists of 2 16-bit words
00
3F ; 0x003F8000 − First block will be loaded starting at 0x3F8000
00
00
80
00 ; Data loaded = 0x7700 0x7625
77
25
76
00 ; 0x0000 − Size of 0 indicates end of data stream
00

After load has completed the following memory values will have been
initialized as follows:
Location Value
0x3F9010 0x0001
0x3F9011 0x0002
0x3F9012 0x0003
0x3F9013 0x0004
0x3F9014 0x0005
0x3F8000 0x7700
0x3F8001 0x7625
PC Begins execution at 0x3F8000

4.6 Basic Transfer Procedure

Figure 8 illustrates the basic process a boot loader uses to determine whether
8-bit or 16-bit data stream has been selected, transfer that data, and start
program execution. This process occurs after the boot loader finds the valid
boot mode selected by the state of GPIO pins.

The loader first compares the first value sent by the host against the 16-bit key
value of 0x10AA. If the value fetched does not match then the loader will read
a second value. This value will be combined with the first value to form a word.
This will then be checked against the 8-bit key value of 0x08AA. If the loader
finds that the header does not match either the 8-bit or 16-bit key value, or if
the value is not valid for the given boot mode then the load will abort. In this
case the loader will return the entry point address for the flash to the calling
routine.

SPRU095C Boot ROM 29

Bootloader Features

W2:W1=
0x08AA

?

Yes 8-bit
DataSize

Read second word
(W2) and discard

upper 8-bits

R=0
?

No

Transfer R words of
data from source to

destination

Read BlockAddress

Read BlockSize (R)

No Data format error
Return

FLASH_ENTRY_POINT

Figure 8. F2810/12 Boot Loader Basic Transfer Procedure

Yes Return
EntryPoint

Notes: 1) 8-bit and 16-bit transfers are not valid for all boot modes. Refer to the info specific to a particular boot loader for any
limitations.

2) In 8-bit mode the LSB of the 16-bit word is read first followed by the MSB.

W1=
0x10AA

?

No

Yes

16-bit data size

Read first word (W1)

Read EntryPoint address

30 Boot ROM SPRU095C

Bootloader Features

4.7 InitBoot Assembly Routine

The first routine called after reset is the InitBoot assembly routine. This routine
initializes the device for operation in C28x object mode. Next it performs a
dummy read of the Code Security Module (CSM) password locations. If the
CSM passwords are erased (all 0xFFFFs) then this has the effect of unlocking
the CSM. Otherwise the CSM will remain locked and this dummy read of the
password locations will have no effect. This can be useful if you have a new
device that you want to boot load.

After the dummy read of the CSM password locations, the InitBoot routine calls
the SelectBootMode function. This function will then determine the type of boot
mode desired by the state of certain GPIO pins. Once the boot is complete,
the SelectBootMode function passes back the EntryAddr to the InitBoot
function. InitBoot then calls the ExitBoot routine that then restores CPU
registers to their reset state and exits to the EntryAddr that was determined by
the boot mode.

Figure 9. Overview of InitBoot Assembly Function

4.8 SelectBootMode Function

To determine the desired boot mode, the SelectBootMode function examines
the state of 4 GPIO pins as shown in Table 7. These pins are all part of GPIO
Port F and are normally output pins when used in their peripheral function
(shown in parenthesis).

Init Boot

Initialize device
OBJMODE=1

AMODE=0
MOM1MAP=1

DP=0
OVM=0
SPM=0

SP=0x400

Dummy read of
CSM password

locations

Call

SelectBootMode

Call

ExitBoot

SPRU095C Boot ROM 31

Bootloader Features

Table 7. GPIO Pin Status

GPIOF4 GPIOF12 GPIOF3 GPIOF2

(SCITXDA) (MDXA) (SPISTEA) (SPICLK)

PU No PU No PU No PU Mode Selected

1 x x x Jump to Flash address 0x3F 7FF6
 You must have programmed a branch instruction

here prior to reset to redirect code execution as
desired

0 1 x x Call SPI_Boot to load from external EEPROM

0 0 1 1 Call SCI_Boot to load from SCI-A

0 0 1 0 Jump to H0 SARAM address 0x3F 8000

0 0 0 1 Jump to OTP address 0x3D 7800

0 0 0 0 Call Parallel_Boot to load from GPIO Port B

Notes: 1) When booting directly to Flash is assumed that you have previously programmed a branch statement at 0x3F 7FF6
to redirect program flow as desired.

2) When booting directly to OTP or H0, it is assumed that you have previously programmed or loaded code starting
at the entry point location.

3) x = don’t care
4) You must take extra care due to any affect toggling SPICLK in order to select a boot mode may have on external

logic.
5) PU = pin has an internal pull-up resister. No PU = pin does not have an internal pull-up resistor

For a boot mode to be selected, the pins corresponding to the desired boot
mode have to be pulled low or high until the selection process completes. Note
that the state of the selection pins is not latched at reset; they are sampled
some cycles later in the SelectBootMode function.

The SelectBootMode routine disables the watchdog before calling the SCI,
SPI or Parallel boot loader. If a boot loader is not going to be called, then the
watchdog is left untouched. The boot loaders do not service the watchdog
and assume that it is disabled. Before exiting the SelectBootMode routine
will re-enable the watchdog and reset its timer.

When selecting a boot mode, the pins should be pulled high or low through a
weak pulldown or weak pull-up such that the DSP can drive them to a new state
when required. For example, if you wanted to boot from the SCI one of the pins
you pull low is the SCITXDA pin. This pulldown must be weak so that when the
SCI boot process begins the DSP will be able to properly transmit through the
TX pin. Likewise for the remaining boot mode selection pins.

32 Boot ROM SPRU095C

Bootloader Features

You must take extra care if you use SPICLK to select a boot mode. Toggling
of this signal may have an affect on external logic and this must be taken into
account.

SPRU095C Boot ROM 33

Bootloader Features

SCI
boot

?

Yes

No

SPI
boot

?

Yes

No

Call
Parallel_Boot

Call
WatchDogDisable

Call
WatchDogEnable

Call
SPI_Boot

Call
SCI_Boot

Figure 10. Overview of the SelectBootMode Function

You must have previously
programmed a branch statement
at flash address 0x3F 7FF6 to
redirect program as desired.
This location is just
before the CSM passwords.

Direct branch to the
HO SARAM block.

Execute user custom
boot loader or TI provided
boot loader without using
up main flash memory.

Bootloader selected (SCI, SPI or
parallel) will copy data from the
external device to internal or
XINTF memory.
A section of the data read in
determines the EntryPoint for
execution after the boot routines
have completed.

SelectBootMode

Return EntryAddr as
determined by boot

loader called

FLASH
boot

?

Yes

Return

FLASH_ENTRY_POINT
EntryAddr: 0x3F 7FF6

No

HO
boot

?

Yes Return
HO_ENTRY_POINT

EntryAddr: 0x3F 8000

No

OTP
boot

?

Yes Return
OTP_ENTRY_POINT
EntryAddr: 0x3F 7800

No

Configure GPIO port F
as an input port

Read GPIOF data and
throw away bits other
than those used for

mode selection

34 Boot ROM SPRU095C

Bootloader Features

4.9 SCI_Boot Function

The SCI boot mode asynchronously transfers code from SCI-A to internal or
XINTF memory. This boot mode only supports an incoming 8-bit data stream
and follows the same data flow as outlined in Example 1.

Figure 11. Overview of SCI Boot Loader Operation

SCIRXDA

The F2810/12 communicates with the external host device by communication
through the SCI-A Peripheral. The autobaud feature of the SCI port is used to
lock baud rates with the host. For this reason the SCI loader is very flexible and
you can use a number of different baud rates to communicate with the DSP.

After each data transfer, the DSP will echo back the 8-bit character received
to the host. In this manner, the host can perform checks that each character
was received by the DSP.

At higher baud rates, the slew rate of the incoming data bits can be effected
by transceiver and connector performance. While normal serial
communications may work well, this slew rate may limit reliable auto-baud
detection at higher baud rates (typically beyond 100kbaud) and cause the
auto-baud lock feature to fail. To avoid this, the following is recommended:

1) Achieve a baud-lock between the host and 28x SCI boot loader using a
lower baud rate.

2) Load the incoming 28x application or custom loader at this lower baud
rate.

3) The host may then handshake with the loaded 28x application to set the
SCI baud rate register to the desired high baud rate.

SCITXDA

Host

(Data and program
source)

281x

SPRU095C Boot ROM 35

Bootloader Features

Figure 12. Overview of SCI_Boot Function

Yes

Enable the SCI-A clock
set the LSPCLK to /4

Prime SCI-A baud register

No Autobaud
lock

?

Enable autobaud detection

SCI_Boot

Enable the SCIA TX and
RX pin functionality

Setup SCI-A for
1 stop, 8-bit character,

no parity, use internal
SC clock, no loopback,
disable Rx/Tx interrupts

Disable SCI FIFOs

Return
FLASH_ENTRY_POINT

 Echo autobaud character

Read KeyValue

Valid No
KeyValue
(0x08AA)

?

Yes

Read and discard 8
reserved words

Read EntryPoint address

Call SCIA_CopyData

Return
EntryPoint

36 Boot ROM SPRU095C

Bootloader Features

Return

Figure 13. Overview of SCIA_CopyData Function

 Call SCIA_GetWordData
to read

BlockHeader.BlockSize

BlockSize= Yes
0x0000

?

 Transfer

BlockHeader.BlockSize
words of data from

SCIA port to memory
starting at DestAddr

SCIA_CopyData

 No

Call SCIA_GetLongData
to read

BlockHeader.DestAddr

SPRU095C Boot ROM 37

Bootloader Features

Data
Received

?

No

Return MSB:LSB

Figure 14. Overview of SCI_GetWordData Function

 Yes

Read LSB

Echoback LSB
to host

 Yes

Read MSB

Echoback MSB
to host

4.10 Parallel_Boot Function (GPIO)
The parallel general purpose I/O (GPIO) boot mode asynchronously transfers
code from GPIO port B to internal or XINTF memory. Each value can be 16 bits
or 8 bits long and follows the same data flow as outlined in Data Stream
Structure.

Figure 15. Overview of Parallel GPIO Boot Loader Operation

281x

DSP control − GPIOD6 (T4CTRIPn)
Host

(Data and program
source)

Host control − GPIOD5 (T3CTRIPn)

16

Data GP I/O port B (EVB)

The 28x communicates with the external host device by polling/driving the
GPIOD5 and GPIOD6 lines. The handshake protocol shown in Figure 16 must
be used to successfully transfer each word via GPIO port B. This protocol is
very robust and allows for a slower or faster host to communicate with the 281x
device.

If the 8-bit mode is selected, two consecutive 8-bit words are read to form a
single 16-bit word. The most significant byte (MSB) is read first followed by the

SCIA_GetWordData
Data

Received
?

No

38 Boot ROM SPRU095C

Bootloader Features

least significant byte (LSB). In this case, data is read from the lower eight lines
of GPIO port B ignoring the higher byte.

The DSP first signals the host that the DSP is ready to begin data transfer by
pulling the GPIOD6 pin low. The host load then initiates the data transfer by
pulling the GPIOD5 pin low. The complete protocol is shown in the diagram
below:

Figure 16. Parallel GPIO Boot loader Handshake Protocol

Host control
GPIOD5

DSP control

GPIOD6

1) The DSP indicates it is ready to start receiving data by pulling the GPIOD6
pin low.

2) The boot loader waits until the host puts data on GPIO port B. The host
signals to the DSP that data is ready by pulling the GPIOD5 pin low.

3) The DSP reads the data and signals the host that the read is complete by
pulling GPIOD6 high.

4) The Boot loader waits until the Host acknowledges the DSP by pulling
GPIOD5 high.

5) The DSP again indicates it is ready for more data by pulling the GPIOD6
pin low.

This process is repeated for each data value to be sent.

Figure 17 shows an overview of the Parallel GPIO boot loader flow.

1 2 3 4 5 6

SPRU095C Boot ROM 39

Bootloader Features

Figure 17. Parallel GPIO Mode Overview

Yes

Figure 18 shows the transfer flow from the Host side. The operating speed of
the CPU and Host are not critical in this mode as the host will wait for the DSP
and the DSP will in turn wait for the host. In this manner the protocol will work
with both a host running faster and a host running slower then the DSP.

Parallel_Boot

Initialize GP I/O MUX
and Dir registers

GPIOB=input
GPIOD5=input

GPIOD6=output

Read KeyValue to
determine DataSize

Return
FLASH_ENTRY_POINT

No
Valid

KeyValue
(0x08AA or

0x10AA)
?

 Read and discard 8
reserved words

Read EntryPoint
address

Call
Parallel_CopyData

Return
EntryPoint

40 Boot ROM SPRU095C

Bootloader Features

Figure 18. Parallel GPIO Mode − Host Transfer Flow

Start transfer

No DSP ready
(GPIOD6=0)

?

Yes No DSP ack
(GPIOD6=1)

?

Yes

More
data

?

Yes

No

End transfer

Acknowledge DSP
(GPIOD5=1)

Signal that data
is ready

(GPIOD5=0)

Load GPIOB with data

SPRU095C Boot ROM 41

Bootloader Features

Figure 19. Overview of Parallel_CopyData Function

Figure 20 shows the flow for fetching a single word of data from the parallel
port.

The routine is passed a DataSize parameter of 8 bits or 16 bits. The routine
follows the previously defined protocol flow to read 16 bits from the GPIO B
port. If the DataSize is 16 bits, then the routine will pass this 16-bit value back
to the calling routine.

If the DataSize parameter is 8 bits, then the routine will and discard the upper
8 bits of the first read and treat the lower 8 bits as the least significant byte
(LSB) of the word to be fetched. The routine will then perform a 2nd fetch to
read the most significant byte (MSB). It then combines the MSB and LSB into
a single 16-bit value to be passed back to the calling routine.

Parallel_CopyData

BlockSize=
0x0000

?

Yes
Return

No

Transfer
BlockHeader.BlockSize

words of data from
GPIO B port to memory

starting at DestAddr

Call
Parallel_GetLongData

to read
BlockHeader.DestAddr

Call
Parallel_GetWordData

to read
BlockHeader.BlockSize

42 Boot ROM SPRU095C

Bootloader Features

Host
Ack

(GPIO5=1)
?

No

Yes

Data
size=8 bits

?

Ye

No

Return WordData

Figure 20. Parallel GPIO Boot Loader Word Fetch

 Yes

s WordData=MSB;LSB
A

DSP Ack read complete
(GPIO6=1)

Data
ready

(GPIO5=0)
?

No

Yes

Read word of data from
GPIOB

Data
ready

(GPIO5=0)
?

No

Yes

Read word from GPIOB,
throw away the upper 8 bits,

MSB of data=lower 8 bits

Parallel_GetWordData

Signal host that DSP is ready
(GPIO6=0)

A

Signal host that DSP is
ready to read MSB

(GPIO6=0)

Host
Ack

(GPIO5=1)
?

No

DSP Ack read complete
(GPIO6=1)

SPRU095C Boot ROM 43

Bootloader Features

4.11 SPI_Boot Function
The SPI loader expects an 8-bit wide SPI-compatible serial EEPROM device
to be present on the SPI pins as indicated in Figure 21. The SPI bootloader
does not support a 16-bit data stream.

Figure 21. SPI Loader

The SPI boot ROM loader initializes the SPI module to interface to a serial SPI
EEPROM. Devices of this type include, but are not limited to, the Xicor X25320
(4Kx8) and Xicor X25256 (32Kx8) SPI serial SPI EEPROMs.

The SPI boot ROM loader initializes the SPI with the following settings: FIFO
enabled, 8-bit character, internal SPICLK master mode and talk mode, clock
phase = 0, polarity = 0, using the slowest baud rate.

If the download is to be preformed from an SPI port on another device, then
that device must be setup to operate in the slave mode and mimic a serial SPI
EEPROM. Immediately after entering the SPI_Boot function, the pin functions
for the SPI pins are set to primary and the SPI is initialized. The initialization
is done at the slowest speed possible. Once the SPI is initialized and the key
value read, you could specify a change in baud rate or low speed peripheral
clock.

Table 8. SPI 8-Bit Data Stream

Byte Contents

1 LSB = AA (KeyValue for memory width = 8-bits)

2 MSB = 08h (KeyValue for memory width = 8-bits)

3 LSB = LOSPCP

4 MSB= SPIBRR

SPISIMOA

SPIESTEA/GPIOF3
SPICLKA

SPISOMIA

Serial SPI
EEPROM

DIN
DOUT
CLK
CS

281x

MSB = reserved 6

LSB = reserved 5

44 Boot ROM SPRU095C

Bootloader Features

Table 8. SPI 8-Bit Data Stream (Continued)

Byte Contents

19 LSB: Upper half of Entry point PC[23:16]

20 MSB: Upper half of Entry point PC[31:24] (Note: Always 0x00)

21 LSB: Lower half of Entry point PC[7:0]

22 MSB: Lower half of Entry point PC[15:8]

Blocks of data in the format size/destination address/data as shown in the generic data
stream description

LSB: 00h

MSB: 00h − indicates the end of the source

The data transfer is done in “burst” mode from the serial SPI EEPROM. The
transfer is carried out entirely in byte mode (SPI at 8 bits/character). A step-by
step description of the sequence follows:

1) The SPI-A port is initialized

2) The GPIOF3 pin is now used as a chip-select for the serial SPI EEPROM

3) The SPI-A outputs a read command for the serial SPI EEPROM

4) The SPI-A sends the serial SPI EEPROM an address 0x0000; that is, the
host requires that the EEPROM must have the downloadable packet start-
ing at address 0x0000 in the EEPROM.

5) The next word fetched must match the key value for an 8-bit data stream
(0x08AA).
The least significant byte of this word is the byte read first and the most
significant byte is the next byte fetched. This is true of all word transfers on
the SPI.
If the key value does not match then the load is aborted and the entry point
for the Flash (0x3F 7FF6) is returned to the calling routine.

6) The next 2 bytes fetched can be used to change the value of the low speed
peripheral clock register (LOSPCP) and the SPI Baud rate register
(SPIBRR). The first byte read is the LOSPCP value and the 2nd byte read
is the SPIBRR value.
The next 7 words are reserved for future enhancements. The SPI boot
loader reads these 7 words and discards them.

MSB= reserved for future use 18

LSB = reserved for future use 17

SPRU095C Boot ROM 45

Bootloader Features

7) The next 2 words makeup the 32-bit entry point address where execution
will continue after the boot load process is complete. This is typically the
entry point for the program being downloaded through the SPI port.

8) Multiple blocks of code and data are then copied into memory from the ex-
ternal serial SPI EEPROM through the SPI port. The blocks of code are
organized in the standard data stream structure presented earlier. This is
done until a block size of 0x0000 is encountered. At that point in time the
entry point address is returned to the calling routine that then exits the boot
loader and resumes execution at the address specified.

Figure 22. Data Transfer From EEPROM Flow

SPI_Boot

Valid
KeyValue
(0x08AA)

?

No Return
FLASH_ENTRY_POINT

Yes
Requested

LOSPCP !=2
?

No

Yes

Requested
SPIBRR !=

0x7F?

No

Yes

Return
EntryPoint Call SPIA_CopyData Read EntryPoint

address

Read and discard 7
reserved words

Change SPIBRR Read SPIBRR value

Change LOSPCP Read LOSPCP value

Read KeyValue

Enable EEPROM
Send read command and
start at EEPROM address

0x0000

Set chip enable high
(GPIOF3)

Setup SPI-A for
8-bit character,

use internal SPI clock,
master mode

Use slowest baud rate
(0x7F)

Relinquish SPI-A from
reset

Enable SPISIMOA,
SPISOMI and SPICLKA

pin functionality

Enable the SPI-A clock
Set the LSPCLK to 4

46 Boot ROM SPRU095C

Bootloader Features

Figure 23. Overview of SPIA_CopyData Function

SPIA_CopyData

BlockSize=
0x0000

?

Yes
Return

No

Transfer
BlockHeader.BlockSize

words of data from
SPIA port to memory
starting at DestAddr

Call
SPIA_GetLongData

to read
BlockHeader.DestAddr

Call
SPIA_GetWordData

to read
BlockHeader.BlockSize

SPRU095C Boot ROM 47

Bootloader Features

Data
Received

?

No

Yes

Figure 24. Overview of SPIA_GetWordData Function

 Yes

Read LSB

Send dummy
character

4.12 ExitBoot Assembly Routine

The 281x Boot Rom includes a ExitBoot routine that restores the CPU
registers to their default state at reset. This is performed on all registers with
one exception. The OBJMODE bit in ST1 is left set so that the device remains
configured for C28x operation. This flow is detailed in the following diagram:

SPIA_GetWordData Send dummy
character

Return MSB:LSB

Read MSB

Data
Received

?

No

48 Boot ROM SPRU095C

Bootloader Features

Figure 25. ExitBoot Procedure Flow

The following CPU registers are restored to their default values:

ACC = 0x0000 0000

RPC = 0x0000 0000

P = 0x0000 0000

XT = 0x0000 0000

ST0 = 0x0000

ST1 = 0x0A0B

XAR0 = XAR7 = 0x0000 0000

Reset

InitBoot

Call
SelectBootMode

Cleanup CPU
registers to default
value after reset*

Dealocate stack
(SP=0x400)

Begin execution
 at EntryPoint

Branch to EntryPoint

Call
BootLoader

?

No

Yes

Call ExitBoot

Call Boot Loader

SPRU095C Boot ROM 49

Bootloader Features

After the ExitBoot routine completes and the program flow is redirected to the
entry point address, the CPU registers will have the following values:

Table 9. CPU Register Values

Register Value Register Value

ACC 0x0000 0000 P 0x0000 0000

XT 0x0000 0000 RPC 0x00 0000

XAR0−XAR7 0x0000 0000 DP 0x0000

ST0 0x0000 ST1 0x0A0B
 15:10 OVC = 0 15:13 ARP = 0
 9:7 PM = 0 12 XF = 0
 6 V = 0 11 M0M1MAP = 1
 5 N = 0 10 reserved
 4 Z = 0 9 OBJMODE = 1
 3 C = 0 8 AMODE = 0
 2 TC = 0 7 IDLESTAT = 0
 1 OVM = 0 6 EALLOW = 0
 0 SXM = 0 5 LOOP = 0
 4 SPA = 0
 3 VMAP = 1
 2 PAGE0 = 0
 1 DBGM = 1
 0 INTM = 1

50 Boot ROM SPRU095C

Building the Boot Table

5 Building the Boot Table
To use the features of the 281x bootloader, you must first generate a boot table
that contains the complete data stream the bootloader needs. The hex
conversion utility tool included with the 28x code generation tools generates
the boot table. The contents of the boot table vary slightly depending on the
boot mode and the options selected when running the hex conversion utility.

The hex utility supports creation of the boot table required for the SCI, SPI, and
parallel I/O loaders. That is, the hex utility adds the required information to the
file such as the key value, reserved bits, entry point, address, block start
address, block length and terminating value. The actual file format required by
the host (ASCII, binary, hex, etc.) will differ from one specific application to
another and some additional conversion may be required.

To build the 281x boot table, follow these steps:

Step 1: Assemble (or compile) the code.

Step 2: Link the file. Each block of the boot table data corresponds to an ini-
tialized section in the COFF file. Uninitialized sections are not con-
verted by the hex conversion utility.

Step 3: Run the hex conversion utility. Choose the appropriate options for
the desired boot mode and run the hex conversion utility to convert
the COFF file produced by the linker to a boot table.

This table summarizes the hex conversion utility options available for the boot
loader. See the TMS320C28x Assembly Language Tools User’s Guide
(SPRU513) for a detailed description for the procedure for generating a boot
table and the required options.

SPRU095C Boot ROM 51

Building the Boot Table

Table 10. Boot-Loader Options
Option Description

−boot Convert all sections into bootable form (use instead of a SECTIONS directive)

−sci8 Specify the source of the boot loader table as the SCI-A port, 8-bit mode

−spi8 Specify the source of the boot loader table as the SPI-A port, 8-bit mode

−gpio8 Specify the source of the boot loader table as the GP I/O port, 8-bit mode

−gpio16 Specify the source of the boot loader table as the GP I/O port, 16-bit mode

−bootorg value Specify the source address of the boot loader table

−lospcp value Specify the initial value for the LOSPCP register. This value is used only for the spi8
boot table format and ignored for all other formats. If the value is greater than 0x7F,
the value is truncated to 0x7F.

−spibrr value Specify the initial value for the SPIBRR register. This value is used only for the spi8
boot table format and ignored for all other formats. If the value is greater than 0x7F,
the value is truncated to 0x7F.

−e value Specify the entry point at which to begin execution after boot loading. The value can
be an address or a global symbol. This value is optional. The entry point can be
defined at compile time using the linker −e option to assign the entry point to a
global symbol. The entry point for a C program is normally −c.intOO unless defined
otherwise by the −e linker option.

52 Boot ROM SPRU095C

Bootloader Code Listing

6 Bootloader Code Listing
//###
//
// FILE: F2812_Boot.h
//
// TITLE: F2812 Boot ROM Definitions.
//
//###
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|==============|=======================================
// 0.1 | 30 Jan 2002 | LH | Original Release.
// −−−−−|−−−−−−−−−−−−−|−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// | | |
//
//###
#ifndef F2812_BOOT_H
#define F2812_BOOT_H
//−−−
// Fixed boot entry points:
//
#define FLASH_ENTRY_POINT 0x3F7FF6
#define OTP_ENTRY_POINT 0x3D7800
#define H0_ENTRY_POINT 0x3F8000
#define PASSWORD_LOCATION 0x3F7FF8
// Misc definitions
#define ERROR 1
#define NO_ERROR 0
#define EIGHT_BIT 8
#define SIXTEEN_BIT 16
#define EIGHT_BIT_HEADER 0x08AA
#define SIXTEEN_BIT_HEADER 0x10AA
//−−−
// Common CPU Definitions:
//
#define EALLOW asm(” EALLOW”);
#define EDIS asm(” EDIS”);
typedef int i16;
typedef long i32;
typedef unsigned int ui16;
typedef unsigned long ui32;
//−−−
// Include Peripheral Header Files:
//
#include ”SysCtrl_Boot.h”
#include ”SPI_Boot.h”
#include ”SCI_Boot.h”
#include ”Parallel_Boot.h”
#endif // end of DSP28_DEVICE_H definition

;;###
;;
;; FILE: Init_Boot.asm

SPRU095C Boot ROM 53

Bootloader Code Listing

;;
;; TITLE: F2810/12 Boot Rom Initialization and Exit routines.
;;
;; Functions:
;;
;; _InitBoot
;; _ExitBoot
;;
;; Notes:
;;
;;###
;;
;; Ver | dd mmm yyyy | Who | Description of changes
;; =====|=============|==============|=======================================
;; 1.0 | 12 Mar 2002 | LH | PG Release.
;; | | |
;;###

.def _InitBoot

.ref _SelectBootMode

.sect ”.Version”

.word 0x0001 ; F2810/12 Boot ROM Version 1

.word 0x0302 ; Month/Year: 3/02

.sect ”.Checksum” ; 64-bit Checksum

.long 0x70F3099C ; least significant 32-bits

.long 0x00000402 ; most significant 32-bits

.sect ”.InitBoot”
;−−−
; _InitBoot
;−−−
;−−−
; This function performs the initial boot routine
; for the F2810/12 boot ROM.
;
; This module performs the following actions:
;
; 1) Initializes the stack pointer
; 2) Sets the device for C28x operating mode
; 3) Calls the main boot functions
; 4) Calls an exit routine
;−−−
_InitBoot:
; Initialize the stack pointer.
 stack: .usect ”.stack”,0

MOV SP, # stack ; Initialize the stack pointer
; Initialize the device for running in C28x mode.

C28OBJ ; Select C28x object mode
C28ADDR ; Select C27x/C28x addressing
C28MAP ; Set blocks M0/M1 for C28x mode
CLRC PAGE0 ; Always use stack addressing mode
MOVW DP,#0 ; Initialize DP to point to the low 64 K
CLRC OVM

54 Boot ROM SPRU095C

Bootloader Code Listing

; Set PM shift of 0
SPM 0

; Read the password locations − this will unlock the
; CSM only if the passwords are erased. Otherwise it
; will not have an effect.

MOVL XAR1,#0x3F7FF8;
MOVL XAR0,*XAR1++
MOVL XAR0,*XAR1++
MOVL XAR0,*XAR1++
MOVL XAR0,*XAR1

; Decide which boot mode to use
LCR _SelectBootMode

; Cleanup and exit. At this point the EntryAddr
; is located in the ACC register

BF _ExitBoot,UNC
;−−−
; _ExitBoot
;−−−
;−−−
;This module cleans up after the boot loader
;
; 1) Make sure the stack is deallocated.
; SP = 0x400 after exiting the boot
; loader
; 2) Push 0 onto the stack so RPC will be
; 0 after using LRETR to jump to the
; entry point
; 2) Load RPC with the entry point
; 3) Clear all XARn registers
; 4) Clear ACC, P and XT registers
; 5) LRETR − this will also clear the RPC
; register since 0 was on the stack
;−−−
_ExitBoot:
;−−−
; Ensure that the stack is deallocated
;−−−

MOV SP,# stack
;−−−
; Clear the bottom of the stack. This will endup
; in RPC when we are finished
;−−−

MOV *SP++,#0
MOV *SP++,#0

;−−−
; Load RPC with the entry point as determined
; by the boot mode. This address will be returned
; in the ACC register.
;−−−

PUSH ACC
POP RPC

;−−−
; Put registers back in their reset state.

SPRU095C Boot ROM 55

Bootloader Code Listing

;
; Clear all the XARn, ACC, XT, and P and DP
; registers
;
; NOTE: Leave the device in C28x operating mode
; (OBJMODE = 1, AMODE = 0)
;−−−

ZAPA
MOVL XT,ACC
MOVZ AR0,AL
MOVZ AR1,AL
MOVZ AR2,AL
MOVZ AR3,AL
MOVZ AR4,AL
MOVZ AR5,AL
MOVZ AR6,AL
MOVZ AR7,AL
MOVW DP, #0

;−−
; Restore ST0 and ST1. Note OBJMODE is
; the only bit not restored to its reset state.
; OBJMODE is left set for C28x object operating
; mode.
;
; ST0 = 0x0000 ST1 = 0x0A0B
; 15:10 OVC = 0 15:13 ARP = 0
; 9: 7 PM = 0 12 XF = 0
; 6 V = 0 11 M0M1MAP = 1
; 5 N = 0 10 reserved

; 4 Z = 0 9 OBJMODE = 1
; 3 C = 0 8 AMODE = 0
; 2 TC = 0 7 IDLESTAT = 0
; 1 OVM = 0 6 EALLOW = 0
; 0 SXM = 0 5 LOOP = 0
; 4 SPA = 0
; 3 VMAP = 1
; 2 PAGE0 = 0
; 1 DBGM = 1
; 0 INTM = 1
;−−−

MOV *SP++,#0
MOV *SP++,#0x0A0B
POP ST1
POP ST0

;−−
; Jump to the EntryAddr as defined by the
; boot mode selected and continue execution
;−−−

LRETR

;eof −−−−−−−−−−

//###

56 Boot ROM SPRU095C

Bootloader Code Listing

//
// FILE: SelectMode_Boot.c
//
// TITLE: F2810/12 Boot Mode selection routines
//
// Functions:
//
// ui32 SelectBootMode(void)
// inline void SelectMode_GPOISelect(void)
//
// Notes:
//
//###
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|==============|=======================================
// 1.0 | 12 Mar 2002 | LH | PG Release.
// | | |
//###
#include ”F2812_Boot.h”
inline void SelectMode_GPIOSelect(void);
// Define mask for mode selection
// all mode select pins are on GPIOF
// These definitions define which pins
// are used:
//GPIOF4 GPIOF12 GPIOF3 GPIOF2
//(SCITXDA) (MDXA) (SPISTEA) (SPICLKA) Mode Selected
// 1 x x x Jump to Flash address 0x3F 7FF6
// 0 1 x x Call SPI_Boot
// 0 0 1 1 Call SCI_Boot
// 0 0 1 0 Jump to H0 SARAM
// 0 0 0 1 Jump to OTP
// 0 0 0 0 Call Parallel_Boot
#define MODE_PIN1 0x0010 // GPIOF4
#define MODE_PIN2 0x1000 // GPIOF12
#define MODE_PIN3 0x0008 // GPIOF3
#define MODE_PIN4 0x0004 // GPIOF2
// On GP I/O port F use only the following pins to determine the boot mode
#define MODE_MASK (MODE_PIN1 | MODE_PIN2 | MODE_PIN3 | MODE_PIN4)
// Define which pins matter to which modes. Note that some modes
// do not check the state of all 4 pins.
#define FLASH_MASK (MODE_PIN1)
#define SPI_MASK (MODE_PIN1 | MODE_PIN2)
#define SCI_MASK (MODE_PIN1 | MODE_PIN2 | MODE_PIN3 | MODE_PIN4)
#define H0_MASK (MODE_PIN1 | MODE_PIN2 | MODE_PIN3 | MODE_PIN4)
#define OTP_MASK (MODE_PIN1 | MODE_PIN2 | MODE_PIN3 | MODE_PIN4)
#define PARALLEL_MASK (MODE_PIN1 | MODE_PIN2 | MODE_PIN3 | MODE_PIN4)
// Define which pins (out of the ones being examined) must be set
// to boot to a particular mode
#define FLASH_MODE (MODE_PIN1)
#define SPI_MODE (MODE_PIN2)
#define SCI_MODE (MODE_PIN3 | MODE_PIN4)
#define H0_MODE (MODE_PIN3)

SPRU095C Boot ROM 57

Bootloader Code Listing

#define OTP_MODE (MODE_PIN4)
#define PARALLEL_MODE 0x0000
ui32 SelectBootMode()
{
ui32 EntryAddr;
ui16 BootMode;

SelectMode_GPIOSelect();
BootMode = GPIODataRegs.GPFDAT.all & MODE_MASK;

// First check for modes which do not require
// a boot loader (Flash/H0/OTP)

if((BootMode & FLASH_MASK) == FLASH_MODE) return FLASH_ENTRY_POINT;
if((BootMode & H0_MASK) == H0_MODE) return H0_ENTRY_POINT;
if((BootMode & OTP_MASK) == OTP_MODE) return OTP_ENTRY_POINT;

// Otherwise, disable the watchdog and check for the
// other boot modes that requre loaders
WatchDogDisable();
if((BootMode & SCI_MASK) == SCI_MODE) EntryAddr = SCI_Boot();
else if((BootMode & SPI_MASK) == SPI_MODE) EntryAddr = SPI_Boot();
else EntryAddr = Parallel_Boot();
WatchDogEnable();
return EntryAddr;

}
//###
// inline void SelectMode_GPIOSelect(void)
//−−
// Enable GP I/O port F as an input port.
//−−
inline void SelectMode_GPIOSelect()
{

EALLOW;

// GPIO Port F is all I/O pins
// 0 = I/O pin 1 = Peripheral pin
GPIOMuxRegs.GPFMUX.all = 0x0000;

// Port F is all input
// 0 = input 1 = output
GPIOMuxRegs.GPFDIR.all = 0x0000;
EDIS;

}
;EOF −−−−−−−−−−
//###
//
// FILE: SCI_Boot.c
//
// TITLE: F2810/12 SCI Boot mode routines
//
// Functions:
//

58 Boot ROM SPRU095C

Bootloader Code Listing

// ui32 SCI_Boot(void)
// inline void SCIA_GPIOSelect(void)
// inline void SCIA_SysClockEnable(void)
// inline void SCIA_Init(void)
// inline void SCIA_AutobaudLock(void)
// inline ui16 SCIA_CheckKeyVal(void)
// inline void SCIA_ReservedFn(void)
// ui32 SCIA_GetLongData(void)
// ui32 SCIA_GetWordData(void)
// void SCIA_CopyData(void)
//
// Notes:
//
//###
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|==============|=======================================
// 1.0 | 12 Mar 2002 | LH | PG Release.
// | | |
//###
#include ”F2812_Boot.h”
// Private functions
inline void SCIA_GPIOSelect(void);
inline void SCIA_Init(void);
inline void SCIA_AutobaudLock(void);
inline ui16 SCIA_CheckKeyVal(void);
inline void SCIA_ReservedFn(void);
inline void SCIA_SysClockEnable(void);
ui32 SCIA_GetLongData(void);
ui16 SCIA_GetWordData(void);
void SCIA_CopyData(void);
// Data section where SCIA control registers
// reside
#pragma DATA_SECTION(SCIARegs,”.SCIARegs”);
volatile struct SCI_REGS SCIARegs;
//###
// ui32 SCI_Boot(void)
//−−
// This module is the main SCI boot routine.
// It will load code via the SCI-A port.
//
// It will return a entry point address back
// to the InitBoot routine which in turn calls
// the ExitBoot routine.
//−−
ui32 SCI_Boot()
{

ui32 EntryAddr;
ui16 ErrorFlag;
SCIA_SysClockEnable();
SCIA_GPIOSelect();
SCIA_Init();
SCIA_AutobaudLock();

SPRU095C Boot ROM 59

Bootloader Code Listing

// If the KeyValue was invalid, abort the load
// and return the flash entry point.
ErrorFlag = SCIA_CheckKeyVal();
if (ErrorFlag == ERROR) return FLASH_ENTRY_POINT;
SCIA_ReservedFn();
EntryAddr = SCIA_GetLongData();
SCIA_CopyData();
return EntryAddr;

}
//###
// void SCIA_GPIOSelect(void)
//−−
// Enable pins for the SCI-A module for SCI
// peripheral functionality.
//−−
inline void SCIA_GPIOSelect()
{

EALLOW
GPIOMuxRegs.GPFMUX.all = 0x0030;
EDIS

}
//###
// void SCIA_Init(void)
//−−
// Initialize the SCI-A port for communications
// with the host.
//−−
inline void SCIA_Init()
{

// Enable FIFO reset bit only
SCIARegs.SCIFFTX.all=0x8000;
// 1 stop bit, No parity, 8-bit character
// No loopback
SCIARegs.SCICCR.all = 0x0007;
// Enable TX, RX, Use internal SCICLK
SCIARegs.SCICTL1.all = 0x0003;
// Disable RxErr, Sleep, TX Wake,
// Diable Rx Interrupt, Tx Interrupt
SCIARegs.SCICTL2.all = 0x0000;
// Relinquish SCI-A from reset
SCIARegs.SCICTL1.all = 0x0023;
return;

}
//###
// void SCIA_AutobaudLock(void)
//−−
// Perform autobaud lock with the host.
// Note that if autobaud never occurs
// the program will hang in this routine as there
// is no timeout mechanism included.
//−−
inline void SCIA_AutobaudLock()
{

60 Boot ROM SPRU095C

Bootloader Code Listing

ui16 byteData;
// Must prime baud register with >= 1
SCIARegs.SCILBAUD = 1;
// Prepare for autobaud detection
// Set the CDC bit to enable autobaud detection
// and clear the ABD bit
SCIARegs.SCIFFCT.all = 0x2000;
// Wait until we correctly read an
// ’A’ or ’a’ and lock
while(SCIARegs.SCIFFCT.bit.ABD != 1) {}
// After autobaud lock, clear the CDC bit
SCIARegs.SCIFFCT.bit.CDC = 0;
while(SCIARegs.SCIRXST.bit.RXRDY != 1) { }
byteData = SCIARegs.SCIRXBUF.bit.RXDT;
SCIARegs.SCITXBUF = byteData;
return;

}
//###
// ui16 SCIA_CheckKeyVal(void)
//−−−
// The header of the datafile should have a proper
// key value of 0x08 0xAA. If it does not, then
// we either have a bad data file or we are not
// booting properly. If this is the case, return
// an error to the main routine.
//−−−
inline ui16 SCIA_CheckKeyVal()
{

ui16 wordData;
wordData = SCIA_GetWordData();
if(wordData != EIGHT_BIT_HEADER) return ERROR;
// No error found
return NO_ERROR;

}
//###
// void SCIA_ReservedFn(void)
//−−−
// This function reads 8 reserved words in the header.
// None of these reserved words are used by the
// SCI boot loader at this time, they may be used in
// future devices for enhancments.
//−−−
inline void SCIA_ReservedFn()
{

ui16 i;
// Read and discard the 8 reserved words.
for(i = 1; i <= 8; i++)
{

SCIA_GetWordData();
}
return;

}
//###

SPRU095C Boot ROM 61

Bootloader Code Listing

// ui32 SCIA_GetLongData(void)
//−−−
// This routine fetches two words from the SCI-A
// port and puts them together to form a single
// 32-bit value. It is assumed that the host is
// sending the data in the form MSW:LSW.
//−−−
ui32 SCIA_GetLongData()
{

ui32 longData = (ui32)0x00000000;
// Fetch the upper 1/2 of the 32-bit value
longData = ((ui32)SCIA_GetWordData() << 16);
// Fetch the lower 1/2 of the 32-bit value
longData |= (ui32)SCIA_GetWordData();
return longData;

}
//###
// ui16 SCIA_GetWordData(void)
//−−−
// This routine fetches two bytes from the SCI-A
// port and puts them together to form a single
// 16-bit value. It is assumed that the host is
// sending the data in the order LSB followed by MSB.
//−−−
ui16 SCIA_GetWordData()
{

ui16 wordData;
ui16 byteData;

wordData = 0x0000;
byteData = 0x0000;

// Fetch the LSB and verify back to the host
while(SCIARegs.SCIRXST.bit.RXRDY != 1) { }
wordData = (ui16)SCIARegs.SCIRXBUF.bit.RXDT;
SCIARegs.SCITXBUF = wordData;
// Fetch the MSB and verify back to the host
while(SCIARegs.SCIRXST.bit.RXRDY != 1) { }
byteData = (ui16)SCIARegs.SCIRXBUF.bit.RXDT;
SCIARegs.SCITXBUF = byteData;

// form the wordData from the MSB:LSB
wordData |= (byteData << 8);
return wordData;

}
//###
// void SCIA_CopyData(void)
//−−−
// This routine copies multiple blocks of data from the host
// to the specified RAM locations. There is no error
// checking on any of the destination addresses.
// That is it is assumed all addresses and block size
// values are correct.

62 Boot ROM SPRU095C

Bootloader Code Listing

//
// Multiple blocks of data are copied until a block
// size of 00 00 is encountered.
//
//−−−
void SCIA_CopyData()
{

struct HEADER {
ui16 BlockSize;
ui32 DestAddr;

} BlockHeader;

ui16 wordData;
ui16 i;

// Get the size in words of the first block
BlockHeader.BlockSize = SCIA_GetWordData();

// While the block size is > 0 copy the data
// to the DestAddr. There is no error checking
// as it is assumed the DestAddr is a valid
// memory location

while(BlockHeader.BlockSize != (ui16)0x0000)
{

BlockHeader.DestAddr = SCIA_GetLongData();
for(i = 1; i <= BlockHeader.BlockSize; i++)
{

wordData = SCIA_GetWordData();
*(ui16 *)BlockHeader.DestAddr++ = wordData;

}

// Get the size of the next block
BlockHeader.BlockSize = SCIA_GetWordData();

}
return;

}
//###
// inline void SCIA_SysClockEnable(void)
//−−−
// This routine enables the clocks to the SCIA Port.
//−−−
inline void SCIA_SysClockEnable()
{

EALLOW;
SysCtrlRegs.PCLKCR.bit.SCIAENCLK=1;
SysCtrlRegs.LOSPCP.all = 0x0002;
EDIS;

}
// EOF−−−−−−−

//###
//

SPRU095C Boot ROM 63

Bootloader Code Listing

// FILE: Parallel_Boot.c
//
// TITLE: F2810/12 Parallel Port I/O boot routines
//
// Functions:
//
// ui32 Parallel_Boot(void)
// inline void Parallel_GPIOSelect(void)
// inline ui16 Parallel_CheckKeyVal(void)
// invline void Parallel_ReservedFn(void)
// ui32 Parallel_GetLongData(ui16 DataSize)
// ui16 Parallel_GetWordData(ui16 DataSize)
// void Parallel_CopyData(ui16 DataSize)
// void Parallel_WaitHostRdy(void)
// void Parallel_HostHandshake(void)
// Notes:
//
//###
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|==============|=======================================
// 1.0 | 12 Mar 2002 | LH | PG Release.
// | | |
//###
#include ”F2812_Boot.h”
// Private function definitions
inline void Parallel_GPIOSelect(void);
inline ui16 Parallel_CheckKeyVal(void);
inline void Parallel_ReservedFn();
ui32 Parallel_GetLongData(ui16 DataSize);
ui16 Parallel_GetWordData(ui16 DataSize);
void Parallel_CopyData(ui16 DataSize);
void Parallel_WaitHostRdy(void);
void Parallel_HostHandshake(void);
#define HOST_DATA_NOT_RDY GPIODataRegs.GPDDAT.bit.GPIOD5!=0
#define WAIT_HOST_ACK GPIODataRegs.GPDDAT.bit.GPIOD5!=1
// Set (DSP_ACK) or Clear (DSP_RDY) GPIOD6
#define DSP_ACK GPIODataRegs.GPDSET.all = 0x0040
#define DSP_RDY GPIODataRegs.GPDCLEAR.all = 0x0040
#define DATA GPIODataRegs.GPBDAT.all
// Data section where GPIO control and data registers
// reside
#pragma DATA_SECTION(GPIODataRegs,”.GPIODataRegs”);
volatile struct GPIO_DATA_REGS GPIODataRegs;
#pragma DATA_SECTION(GPIOMuxRegs,”.GPIOMuxRegs”);
volatile struct GPIO_MUX_REGS GPIOMuxRegs;
#endif

//###
// ui32 Parallel_Boot(void)
//−−
// This module is the main Parallel boot routine.
// It will load code via GP I/O port B.

64 Boot ROM SPRU095C

Bootloader Code Listing

//
// This boot mode accepts 8-bit or 16-bit data.
// 8-bit data is expected to be the order LSB
// followed by MSB.
//
// This function returns a entry point address back
// to the InitBoot routine which in turn calls
// the ExitBoot routine.
//−−
ui32 Parallel_Boot()
{

ui32 EntryAddr;
ui16 DataSize;

Parallel_GPIOSelect();
DataSize = Parallel_CheckKeyVal();
if (DataSize == ERROR) return FLASH_ENTRY_POINT;
Parallel_ReservedFn(DataSize);

EntryAddr = Parallel_GetLongData(DataSize);
Parallel_CopyData(DataSize);

return EntryAddr;
}
//###
// void Parallel_GPIOSelect(void)
//−−
// Enable pins for GP I/O on Port B. Also enable
// the control pins for host ack and DSP ready.
//−−
inline void Parallel_GPIOSelect()
{

EALLOW;

// GPIO Port B is all I/O pins
// 0 = I/O pin 1 = Peripheral pin
GPIOMuxRegs.GPBMUX.all = 0x0000;

// GPIO Port D pin 5 and 6 are I/O pins
GPIOMuxRegs.GPDMUX.all &= 0xFF9F;

// Port B is all input
// D5 is an input control from the Host Ack/Rdy
// D6 is an output for DSP Ack/Rdy
// 0 = input 1 = output
GPIOMuxRegs.GPDDIR.bit.GPIOD6 = 1;
GPIOMuxRegs.GPDDIR.bit.GPIOD5 = 0;
GPIOMuxRegs.GPBDIR.all = 0x0000;

EDIS;
}
//###
// void Parallel_CheckKeyVal(void)

SPRU095C Boot ROM 65

Bootloader Code Listing

//−−−
// Determine if the data we are loading is in
// 8-bit or 16-bit format.
// If neither, return an error.
//
// Note that if the host never responds then
// the code will be stuck here. That is there
// is no timeout mechanism.
//−−
inline ui16 Parallel_CheckKeyVal()
{

ui16 wordData;

// Fetch a word from the parallel port and compare
// it to the defined 16-bit header format, if not check
// for a 8-bit header format.

wordData = Parallel_GetWordData(SIXTEEN_BIT);
if(wordData == SIXTEEN_BIT_HEADER) return SIXTEEN_BIT;
// If not 16-bit mode, check for 8-bit mode
// Call Parallel_GetWordData with 16-bit mode
// so we only fetch the MSB of the KeyValue and not
// two bytes. We will ignore the upper 8-bits and combine
// the result with the previous byte to form the
// header KeyValue.

wordData = wordData & 0x00FF;
wordData |= Parallel_GetWordData(SIXTEEN_BIT) << 8;
if(wordData == EIGHT_BIT_HEADER) return EIGHT_BIT;
// Didn’t find a 16-bit or an 8-bit KeyVal header so return an error.
else return ERROR;

}
//###
// void Parallel_ReservedFn(void)
//−−−
// This function reads 8 reserved words in the header.
// None of these reserved words are used by the
// Parallel boot loader at this time, they may be used in
// future devices for enhancments.
//−−−
inline void Parallel_ReservedFn(ui16 DataSize)
{

ui16 i;
// Read and discard the 8 reserved words.
for(i = 1; i <= 8; i++)
{

Parallel_GetWordData(DataSize);
}
return;

}
//###
// void Parallel_CopyData(void)
//−−−

66 Boot ROM SPRU095C

Bootloader Code Listing

// This routine copies multiple blocks of data from the host
// to the specified RAM locations. There is no error
// checking on any of the destination addresses.
// That is it is assumed all addresses and block size
// values are correct.
//
// Multiple blocks of data are copied until a block
// size of 00 00 is encountered.
//
//−−−
void Parallel_CopyData(ui16 DataSize)
{

struct HEADER {
ui16 BlockSize;
ui32 DestAddr;

} BlockHeader;

ui16 wordData;
ui16 i;

// Get the size in words of the first block
BlockHeader.BlockSize = Parallel_GetWordData(DataSize);

// While the block size is > 0 copy the data
// to the DestAddr. There is no error checking
// as it is assumed the DestAddr is a valid
// memory location

while(BlockHeader.BlockSize != (ui16)0x0000)
{

BlockHeader.DestAddr = Parallel_GetLongData(DataSize);
for(i = 1; i <= BlockHeader.BlockSize; i++)
{

wordData = Parallel_GetWordData(DataSize);
*(ui16 *)BlockHeader.DestAddr++ = wordData;

}

// Get the size of the next block
BlockHeader.BlockSize = Parallel_GetWordData(DataSize);

}
return;

}
//###
// ui16 Parallel_GetWordData(ui16 DataSize)
//−−−
// This routine fetches a 16-bit word from the
// GP I/O port. The function is passed a DataSize
// value. If the DataSize is 16, then the input
// stream is 16-bits and the function fetches a
// signle word and returns it to the host.
//
// If the DataSize is 8, then the input stream is
// an 8-bit input stream and the upper 8-bits of the

SPRU095C Boot ROM 67

Bootloader Code Listing

// GP I/O port are ignored. In the 8-bit case the
// first fetches the LSB and then the MSB from the
// GPIO port. These two bytes are then put together to
// form a single 16-bit word that is then passed back
// to the host. Note that in this case, the input stream
// from the host is in the order LSB followed by MSB
//−−−
ui16 Parallel_GetWordData(ui16 DataSize)
{

ui16 wordData;

// Get a word of data. If we are in
// 16-bit mode then we are done.

Parallel_WaitHostRdy();
wordData = DATA;
Parallel_HostHandshake();
// If we are in 8-bit mode then the first
// fetch was only the LSB. Fetch the MSB.

if(DataSize == EIGHT_BIT) {

wordData = wordData & 0x00FF;
Parallel_WaitHostRdy();
wordData |= (DATA << 8);
Parallel_HostHandshake();

}
return wordData;

}
//###
// ui32 Parallel_GetLongData(ui16 DataSize)
//−−−
// This routine fetches two words from the GP I/O
// port and puts them together to form a single
// 32-bit value. It is assumed that the host is
// sending the data in the form MSW:LSW.
//−−−
ui32 Parallel_GetLongData(ui16 DataSize)
{

ui32 longData;
longData = ((ui32)Parallel_GetWordData(DataSize))<< 16;
longData |= (ui32)Parallel_GetWordData(DataSize);
return longData;

}
//###
// void Parallel_WaitHostRdy(void)
//−−−
// This routine tells the host that the DSP is ready to
// recieve data. The DSP then waits for the host to
// signal that data is ready on the GP I/O port.e
//−−−
void Parallel_WaitHostRdy()
{

DSP_RDY;

68 Boot ROM SPRU095C

Bootloader Code Listing

while(HOST_DATA_NOT_RDY) { }
}
//###
// void Parallel_HostHandshake(void)
//−−−
// This routine tells the host that the DSP has recieved
// the data. The DSP then waits for the host to acknowledge
// the reciept before continuing.
//−−−
void Parallel_HostHandshake()
{

DSP_ACK;
while(WAIT_HOST_ACK) { }

}
// EOF −−−−−−−−
//###
//
// FILE: SPI_Boot.c
//
// TITLE: F2810/12 SPI Boot mode routines
//
// Functions:
//
// ui32 SPI_Boot(void)
// inline void SPIA_GPIOSelect(void)
// inline void SPIA_SysClockEnable(void)
// inline void SPIA_Init(void)
// inline void SPIA_Transmit(u16 cmdData)
// inline ui16 SPIA_CheckKeyVal(void)
// inline void SPIA_ReservedFn(void);
// ui32 SPIA_GetLongData(void)
// ui32 SPIA_GetWordData(void)
// void SPIA_CopyData(void)
//
// Notes:
//
//###
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|==============|=======================================
// 1.0 | 12 Mar 2002 | SS | PG Release.
// | | |
//###
#include ”F2812_Boot.h”
#pragma DATA_SECTION(SPIARegs,”.SPIARegs”);
volatile struct SPI_REGS SPIARegs;
// Private functions
inline void SPIA_GPIOSelect(void);
inline void SPIA_Init(void);
inline ui16 SPIA_Transmit(ui16 cmdData);
inline ui16 SPIA_CheckKeyVal(void);
inline void SPIA_ReservedFn(void);
inline void SPIA_SysClockEnable(void);

SPRU095C Boot ROM 69

Bootloader Code Listing

ui32 SPIA_GetLongData(void);
ui16 SPIA_GetWordData(void);
void SPIA_CopyData(void);
//###
// ui32 SPI_Boot(void)
//−−
// This module is the main SPI boot routine.
// It will load code via the SPI-A port.
//
// It will return a entry point address back
// to the ExitBoot routine.
//−−
ui32 SPI_Boot()
{

ui32 EntryAddr;
ui16 ErrorFlag;

SPIA_SysClockEnable();
SPIA_GPIOSelect();
SPIA_Init();
// 1. Enable EEPROM chip enable − low − Bit 5 for the IOPORT
// Chip enable − high
GPIODataRegs.GPFCLEAR.bit.GPIOF3 =1;
// 2. Enable EEPROM and send EEPROM Read Command
SPIA_Transmit(0x0300);
// 3. Send Starting for the EEPROM address 16bit
// Sending 0x0000,0000 will work for address and data packets
SPIA_GetWordData();
// 4. Check for 0x08AA data header, else go to flash
ErrorFlag = SPIA_CheckKeyVal();
if (ErrorFlag != 0) return FLASH_ENTRY_POINT;
// 4a.Check for Clock speed change and reserved words
SPIA_ReservedFn();
// 5. Get point of Entry address after load
EntryAddr = SPIA_GetLongData();
// 6. Receive and copy one or more code sections to destination addresses
SPIA_CopyData();
// 7. Disable EEPROM chip enable − high
// Chip enable − high
GPIODataRegs.GPFSET.bit.GPIOF3 =1;
return EntryAddr;

}
//###
// void SPIA_GPIOSelect(void)
//−−
// Enable pins for the SPI−A module for SPI
// peripheral functionality.
//−−
inline void SPIA_GPIOSelect()
{
EALLOW
// Enable SPISIMO/SPISOMI/SPICLK pins
GPIOMuxRegs.GPFMUX.all = 0x0007;

70 Boot ROM SPRU095C

Bootloader Code Listing

//IOPORT as output pin instead of SPISTE
GPIOMuxRegs.GPFDIR.all = 0x0008;
//Set IOPORT high GPIOF3, EEPROM CS enable high
GPIODataRegs.GPFDAT.all = 0x0008;

EDIS
}
//###
// void SPIA_Init(void)
//−−
// Initialize the SPI−A port for communications
// with the host.
//−−
inline void SPIA_Init()
{

// Enable FIFO reset bit only
SPIARegs.SPIFFTX.all=0x8000;
// 8-bit character
SPIARegs.SPICCR.all = 0x0007;
// Use internal SPICLK master mode and Talk mode
SPIARegs.SPICTL.all = 0x000E;
// Use the slowest baud rate
SPIARegs.SPIBRR = 0x007f;
// Relinquish SPI-A from reset
SPIARegs.SPICCR.all = 0x0087;
return;

}
//###
// void SPIA_Transmit(void)
//−−
// Send a byte/words through SPI transmit channel
//−−
inline ui16 SPIA_Transmit(ui16 cmdData)
{

ui16 recvData;
// Send Read command/dummy word to EEPROM to fetch a byte
SPIARegs.SPITXBUF = cmdData;
while((SPIARegs.SPISTS.bit.INT_FLAG) !=1);
// Clear SPIINT flag and capture received byte
recvData = SPIARegs.SPIRXBUF;

return recvData;

}
//###
// ui16 SPIA_CheckKeyVal(void)
//−−−
// The header of the datafile should have a proper
// key value of 0x08 0xAA. If it does not, then
// we either have a bad data file or we are not
// booting properly. If this is the case, return
// an error to the main routine.
//−−−

SPRU095C Boot ROM 71

Bootloader Code Listing

inline ui16 SPIA_CheckKeyVal()
{

ui16 wordData;

wordData = SPIA_GetWordData();
if(wordData != 0x08AA) return ERROR;
// No error found
return NO_ERROR;

}
//###
// void SPIA_ReservedFn(void)
//−−−
// This function reads 8 reserved words in the header.
// The first word has parameters for LOSPCP
// and SPIBRR register 0xMSB:LSB, LSB = is a three
// bit field for LOSPCP change MSB = is a 6bit field
// for SPIBRR register update
//
// If either byte is the default value of the register
// then no speed change occurs. The default values
// are LOSPCP = 0x02 and SPIBRR = 0x7F
// The remaining reserved words are read and discarded
// and then returns to the main routine.
//−−−
inline void SPIA_ReservedFn()
{

ui16 speedData;
ui16 i;

speedData = (ui16)0x0000;
// update LOSPCP register if 1st reserved byte is not the default
// value of 0x0002
speedData = SPIA_Transmit((ui16)0x0000);
if(speedData != (ui16)0x0002)
{

EALLOW;
SysCtrlRegs.LOSPCP.all = speedData;
EDIS;
// Dummy cycles
asm(” RPT #0x0F ||NOP”);

}

// update SPIBRR register if 2nd reserved byte is not the default
// value of 0x7F
speedData = SPIA_Transmit((ui16)0x0000);

if(speedData != (ui16) 0x007F)
{

SPIARegs.SPIBRR = speedData;
// Dummy cycles
asm(” RPT #0x0F ||NOP”);

}
// Read and discard the next 7 reserved words.

72 Boot ROM SPRU095C

Bootloader Code Listing

for(i = 1; i <= 7; i++)
{

SPIA_GetWordData();
}
return;

}
//###
// ui32 SPIA_GetLongData(void)
//−−−
// This routine fetches two words from the SPI-A
// port and puts them together to form a single
// 32-bit value. It is assumed that the host is
// sending the data in the form MSW:LSW.
// −−−
ui32 SPIA_GetLongData()
{

ui32 longData = (ui32)0x00000000;
// Fetch the upper 1/2 of the 32-bit value
longData = ((ui32)SPIA_GetWordData() << 16);

// Fetch the lower 1/2 of the 32-bit value
longData |= (ui32)SPIA_GetWordData();
return longData;

}
//###
// ui16 SPIA_GetWordData(void)
//−−−
// This routine fetches two bytes from the SPI-A
// port and puts them together to form a single
// 16-bit value. It is assumed that the host is
// sending the data in the form MSB:LSB.
//−−−
ui16 SPIA_GetWordData()
{

ui16 wordData;
ui16 byteData;

wordData = 0x0000;

// Fetch the LSB and verify back to the host
wordData = SPIA_Transmit(0x0000);
// Fetch the MSB and verify back to the host
byteData = SPIA_Transmit(0x0000);
// Shift the upper byte to be the MSB
wordData |= (byteData << 8);

return wordData;
}
//###
// void SPIA_CopyData(void)
//−−−
// This routine copies multiple blocks of data from the host
// to the specified RAM locations. There is no error
// checking on any of the destination addresses.

SPRU095C Boot ROM 73

Bootloader Code Listing

// That is it is assumed all addresses and block size
// values are correct.
//
// Multiple blocks of data are copied until a block
// size of 00 00 is encountered.
//
//−−−
void SPIA_CopyData()
{

struct HEADER {
ui16 BlockSize;
ui32 DestAddr;

} BlockHeader;

ui16 wordData;
ui16 i;

// Get the size in words of the first block
BlockHeader.BlockSize = SPIA_GetWordData();

// While the block size is > 0 copy the data
// to the DestAddr. There is no error checking
// as it is assumed the DestAddr is a valid
// memory location

while(BlockHeader.BlockSize != (ui16)0x0000)
{

BlockHeader.DestAddr = SPIA_GetLongData();
for(i = 1; i <= BlockHeader.BlockSize; i++)
{

wordData = SPIA_GetWordData();
*(ui16 *)BlockHeader.DestAddr++ = wordData;

}

// Get the size of the next block
BlockHeader.BlockSize = SPIA_GetWordData();

}
return;

}
//###
// inline void SPIA_SysClockEnable(void)
//−−−
// This routine enables the clocks to the SPIA Port.
//−−−
inline void SPIA_SysClockEnable()
{

EALLOW;
SysCtrlRegs.PCLKCR.bit.SPIAENCLK=1;
SysCtrlRegs.LOSPCP.all = 0x0002;
EDIS;

}

74 Boot ROM SPRU095C

A-1

Appendix A

 Appendix A

Revision History

This document was revised to SPRU095C from SPR095B. The scope of the
revisions was limited to technical changes as described in Section A.1. This
appendix lists only revisions made in the most recent version.

A.1 Changes Made in This Revision

The following changes were made in this revision:

Global change − Added code in a zip file.

Page Additions/Modifications/Deletions

17 Changed address of the M1 Memory Block from 0x400 − 0x450 to 0x400 − 0x44F in Section
4.2.4.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Contents
	Address Contents
	3 CPU Vector Table
	4.2.1 PLL Multiplier Selection
	Word Contents

	Table 5. General Structure Of Source Program Data Stream In 16-Bit Mode (Continued)
	Word Contents

	Example 1. Data stream structure 16bit:
	Table 6. LSB/MSB Loading Sequence in 8-Bit Data Stream (Continued)
	Example 2. Example 1: Data stream structure 8 bit:
	4.9 SCI_Boot Function
	Byte Contents
	Table 8. SPI 8-Bit Data Stream (Continued)
	Byte Contents

	6 Bootloader Code Listing
	Page Additions/Modifications/Deletions

