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1.1 Introduction

We live in a world driven by data: financial data, medical data, sports and enter-
tainment data.  In this era, data, be it audio, video, or the written word, are deliv-
ered through a single medium.  That medium could be wireless technology,
satellite broadcasting, cable, or digital subscriber loop (DSL) technology.  All
these media, however, have one thing in common, the need to process digital
data quickly.

The C6000 family with the VelociTI architecture addresses the demands of this
new era.  First introduced in 1997 with the C62x and C67x cores, the C6000
family uses an advanced very long instruction word (VLIW) architecture.  The
architecture contains multiple execution units running in parallel, which allow
them to perform multiple instructions in a single clock cycle.  Parallelism is the
key to extremely high performance.  At a 200 MHz clock rate and 1600 million
instructions per second (MIPS) at introduction, the C6201 achieved ten times
the performance of earlier digital signal processing (DSP) solutions.  Today,
the C62x device family can achieve 2400 MIPS at clock rates of 300 MHz,
which is a performance increase of 50% over the past three years.

The newest member of the C6000 family, the C64x, brings the highest level
of performance for processing data in this era of data convergence.  At clock
rates of 1.1 GHz and greater, the C64x can process information at a rate of
8800+ MIPS or nearly nine billion instructions per second.  Initial devices will
be sampling in the 600 MHz-800 MHz range, giving performance levels of
4800-6400 MIPS.  In addition to clock rate, more work can be done each cycle
with the VelociTI.2 extensions to the VelociTI architecture.  These extensions
include new instructions to accelerate performance in key applications and
extend the parallelism of the architecture.

Increased clock rate and increased CPU throughput are only part of the solu-
tion.  Processing data at these extremely high rates increases the need for I/O
bandwidth.  Initial C64x devices have three external buses with speeds of up
to 133MHz.  Each bus has a primary mission.  One provides a fast glueless
interface for synchronous and asynchronous memories at data rates as fast
as 1.1Gbytes/sec.  Another bus interfaces to slow peripheral devices and the
third bus provides a port to support industry standard host interfaces.  Three
flexible Multi–channel Buffered Serial Ports can each supply 100Mbits/sec
each of additional throughput. The internal DMA engine can provide over
2Gbytes/sec of I/O bandwidth with 64 independent channels.

The C64x goes beyond a core and peripheral set to bring the maximum level
of performance for processing digital data quickly. The tight coupling of the
CPU architecture and the compiler help to maximize processor throughput.
The RISC like instruction set and extensive use of pipelining allow many in-
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structions to be scheduled and executed in parallel.  The key extensions made
to the ‘C62x architecture that allow the ‘C64x to perform more work each clock
cycle include wider data paths, a larger register file, greater orthogonality and
new instructions that support packed data processing.

The C64x central processing unit (CPU), as shown in Figure 1, consists of
eight functional units, two register files, and two data paths.  Like the
C62x/C67x, two of these eight functional units are multipliers.  The C64x multi-
plier has been enhanced so that it is capable of performing two 16-bit x 16-bit
multiplies every clock cycle.  This doubles the 16-bit multiply rate of the
C62x/C67x; four 16-bit x 16-bit multiplies can be executed every cycle on the
C64x.  Using 600 MHz to represent early C64x performance, this means 2.4
billion 16-bit multiplies can occur every second.  Moreover, each multiplier on
the C64x has the capability of performing four 8-bit x 8-bit multiplies every
clock cycle.  At 600 MHz, this is equivalent to 4.8 billion 8-bit multiplies occur-
ring every second.  Eight-bit data is common in the field of image processing,
one of the application areas served by the C64x.
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Figure 1–1. C62x/C67x and C64x CPUs

Instruction fetch

Instruction dispatch

Instruction decode

Control
registers

Emulation

Interrupt

control

+

L1

+

S1

+

M1

X

Register file A
A15–A0

+

D1

Data path 1 Data path 2

M2

+

D2

X

S2

+

L2

B15–B0

C62x/C67x CPU

+

L1

+

+
+

S1

+
+
+
+

M1

X

X

D1

+
+

Data path 1

Register file A
A15–A0
A31–A16

+
+

D2

x

X
x
x

M2 S2

+
+
+
+

+

L2

Register file B
B15–B0

Data path 2

Instruction fetch
Instruction dispatch

Instruction decode

In
te

rr
up

t
co

nt
ro

lControl registers

C64x CPU

Dual 32–bit load/store path
(dual 64–bit load path – C67x only) Dual 64–bit load/store paths

C62x/C67x CPU C64x CPU

+
+

Advanced instruction
packing

x
x

x
x

B31–B16

Advanced
emulation

+

x +
+

Register file B

X

The dual 16-bit extensions built into the multiply functional unit are also present
in the other six functional units.  These include dual 16-bit addition/subtraction,
compare, shift, min/max, and absolute value operations.  The quad 8-bit
extensions built into the multiply functional unit are found in four of the six
remaining functional units.  These include quad 8-bit addition/subtraction,
compare, average, min/max, and bit expansion operations.  The C64x goes
beyond building extensions in the hardware.  Packed 8-bit and 16-bit data
types are used by the code generation tools to take full advantage of these
extensions.  By doubling the registers in the register file and doubling the width
of the data path as well as utilizing advanced instruction packing, the C6000
compiler can improve performance with even fewer restrictions placed upon
it by the architecture.  These additions and others make the C64x an even
better compiler target than the original C62x architecture, while reducing code
size by up to 25%.



Introduction

1-5Introduction

In summary, the C64x VelociTI.2 is object-code-compatible with the C62x, yet
contains key extensions to the existing C62x VelociTI architecture in several
areas:

� Register file enhancements

� Data path extensions

� Packed data processing

� Additional functional unit hardware

� Increased orthogonality

These enhancements are examined in the Architectural Overview Section.
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1.2 Application Areas

This section focuses on two application areas whose performance is greatly
enhanced by the C64x VelociTI.2 extensions to the C62x/C67x architecture.

1.2.1 Digital Communications

The popularity of the Internet and its pervasiveness in every day life has grown
tremendously in the past three years.  Today you can make plane reservations,
arrange for a gift to be sent to your host, and pay the bill for both purchases
while sitting in front of your computer.

This type of data interaction has given rise to a technology called DSL (digital
subscriber loop).  DSL has been developed to deliver high speed communica-
tion services over the existing communications infrastructure (the local loop).
The same copper telephone wires that come into your home can be used to
bring in massive amounts of data required by your connection to the Web.  In
particular, this type of interaction is asymmetric; you are receiving much more
data from your Internet Service Provider (ISP) then you are sending back.  This
type of DSL is called ADSL (asymmetric digital subscriber loop).  The data
rates achieved by this technology are 8M bits/sec from the ISP to you (down-
stream) and 800K bits/sec from you to the ISP (upstream).

The C6000 is the processing engine of choice in many ADSL solutions today.
Specific features have been included in the C64x to further enhance the suit-
ability of the C6000 processor family for ADSL solutions.  ADSL signal proc-
essing tasks that will significantly benefit from the C64x extensions include
FFT/IFFT, Reed Solomon Encode/Decode, Circular Echo Synthesis filter,
Constellation Encode/Decode, Convolutional Encode, Viterbi Decode, and
various other operations.

Another delivery mechanism for broadband communications is the cable
modem.  The cable modem utilizes the cable network that delivers cable TV
to over 100M people in the US alone.  The C64x capabilities will also signifi-
cantly advance the development of cable modem solutions. The enhance-
ments for operations such as Reed Solomon Encode/Decode listed above will
also benefit cable modems.  In addition, specific features have been included
that enhance the performance of operations such as Sample Rate Conver-
sion, Byte to Symbol Conversion and LMS (Least Mean Square) Equalization.

It is anticipated that the significant architectural extensions of the C64x,
coupled with the increased clock rate, will enable several new innovative solu-
tions.  Future DSL standards will offer even higher data rates than ADSL
(13-52M bits/sec downstream and 1.5 to 2.3M bits/sec upstream).  Another
solution made possible by this breakthrough is that larger numbers of multiple
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modems can be connected with a single processor in central office applica-
tions.  Alternatively, residential modems will contain significant additional proc-
essing capability so that other functions, such as media decoding, will be
performed on the same digital signal processor.

Another example of digital communications is the wireless revolution.  Every-
where you look someone is using a cell phone.  What was once a communica-
tions device for a few individuals is now common place.  The increase of wire-
less communications usage requires that the support infrastructure be
improved immensely.  The basestations must handle higher call volumes and
wider calling areas, which means more channels at higher frequencies.  The
C62x has been widely adopted by the wireless basestation market place.  The
C62x can be found in 3G (third generation) basestation transceivers, smart
antennas, wireless local loop basestations and wireless LANs (Local Area
Networks).

Using the basestation transceiver as an example, the data rate frequency is
2.4 GHz and is down-sampled to 6 to 12 MHz.  Four channels need to be
processed every burst period.  The key functions performed by the DSP are
FFTs, channel and noise estimation, channel correction and interference
estimation and detection.

Table 1–1 contains the benchmark results for our current performance on
some of the key algorithms in broadband communications and wireless
communications.  These algorithms, collectively referred to as digital commu-
nications, are listed in Table 1.  Ratios for cycle count and total performance
improvements on C64x relative to C62x are shown in the table.  The total
performance ratio combines the cycle count improvement ratio with the clock
rate improvement for a 600 MHz C64x relative to a 300 MHz C62x.



Application Areas

 1-8

Table 1–1. Digital Communications Benchmarks

Digital Communications

Cycle 
Performance
Improvement

Ratio
C64x:C62x

Total 
Performance
Improvement 

600 MHz C64x vs
300 MHz C62x

Byte to Symbol Conversion (Cable
Modem)

15.6x 31.2x

FFT – Radix 4 Complex (ADSL) 2.1x 4.2x

LMS Equalizer (Cable Modem) 2.0x 4.0x

Reed Solomon Decode: Chien Search
(ADSL, Cable Modem)

4.7x 9.4x

Reed Solomon Decode: Forney Algorithm
(ADSL, Cable Modem)

3.2x 6.4x

Reed Solomon Decode: Syndrome Accu-
mulation (ADSL, Cable Modem)

3.7x 7.4x

Reed Solomon Decode: Berlekamp
Massey Algorithm (ADSL, Cable Modem)

2.0x 4.0x

Time Domain Equalizer (ADSL) 2.0x 4.0x

Viterbi Decode (GSM) 2.7x 5.4x

1.2.2 Image Processing Applications

Thus far we have examined broadband and wireless communications
technology but visual communication is equally dominant in this era of data
convergence.  The C62x/C67x processors are currently found in many image
processing application areas such as motion video, network cameras, raster
image printers, digital scanners, visual inspection systems, radar/sonar and
medical image processing.  These processors perform image compression,
image transmission, pattern and optical character recognition, encryption and
image enhancements.  The C64x with its 8-bit and 16-bit extensions further
amplifies the ability of the C6000 family in image processing applications.

Table 1–2 contains a summary of current performance for some key image/
video processing benchmarks.  Ratios for cycle count and total performance
improvements on C64x relative to C62x are shown in the table.  The total
performance ratio combines the cycle count improvement ratio with the clock
rate improvement for a 600 MHz C64x relative to a 300 MHz C62x.



Application Areas

1-9Introduction

Table 1–2. Image/Video Processing Benchmarks

Image/Video Processing

Cycle 
Performance
Improvement

Ratio
C64x:C62x

Total 
Performance
Improvement 
600 MHz C64x

vs 300 MHz
C62x

3 x 3 Correlation 3.5x 7.0x

3 x 3 Median Filter 4.2x 8.4x

IDCT – 8x8φ 1.8x 3.6x

Morphology – Gray Scale Dilation 6.3x 12.6x

Morphology – Gray Scale Erosion 5.7x 11.4x

Motion Compensation 7.1x 14.2x

Motion Estimation – 8x8 MAD 7.6x 15.2x

Object Perimeter Computation 4.8x 9.6x

Polyphase Filter – Image Scaling 2.3x 4.6x

Thresholding 3.9x 7.8x

φ – The IDCT implementation is IEEE 1180-1990 compliant.

Table 1–3 provides a summary of kernels that are common building blocks
used in digital communications and/or image/video processing applications.
Ratios for cycle count and total performance improvements on C64x relative
to C62x are shown in the table.  The total performance ratio combines the cycle
count improvement ratio with the clock rate improvement for a 600 MHz C64x
relative to a 300 MHz C62x.
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Table 1–3. DSP and Image Processing Kernels

DSP Kernels/Image Processing
Kernels

C62x Cycle
Count

C64x cycle
count

Cycle 
Performance
Improvement

Ratio 
C64x:C62x

Total 
Performance
Improvement 
600 MHz C64x 

vs 
300 MHz C62x

Correlation – 3x3 4.5 
cycles/pixel

1.28 
cycles/pixel

3.5x 7.0x

FFT – Radix 4 – Complex(size = N
log (N))

12.7 
cycles/data

6.0 
cycles/data

2.1x 4.2x

Median Filter – 3x3 9.0 
cycles/pixel

2.1 
cycles/pixel

4.3x 8.6x

Motion Estimation – 8x8 MAD 0.953 
cycles/pixel

0.126 
cycles/pixel

7.6x 15.2x

Polyphase Filter – Sample Rate
Conversion

1.02 
cycles/output/

filter tap

0.51 
cycles/output/

filter tap

2.0x 4.0x

Polyphase Filter – Image Scaling 0.77 
cycles/output/

filter tap

0.33 
cycles/output/

filter tap

2.3x 4.6x

Reed Solomon Decode: Syndrome
Accumulation

1680 
cycles/ packet

460 
cycles/ packet

3.7x 7.4x

Vector Product 0.5 
cycles/data

0.25 
cycles/data

2.0x 4.0x

Viterbi Decode (GSM)
(16 states)

38.25 
cycles/output

14 Ψ 
cycles/output

2.7x 5.4x

Ψ – Includes traceback

These benchmarks along with the code that implements them can be found
at the following URL: http://www.ti.com.
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2.1 Architectural Overview 

Now that we have taken a brief glimpse into a few of the applications areas
contained in the era of data convergence, let us take a closer look at the C64x
CPU, the processing engine at the center of these applications.

2.1.1 C6000 CPU

The C6000 CPU components consist of:

� Two general-purpose register files (A and B)

� Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)

� Two load-from-memory data paths (LD1 and LD2)

� Two store-to-memory data paths (ST1 and ST2)

� Two data address paths (DA1 and DA2)

� Two register file data cross paths (1X and 2X)

Figure 2–1 illustrates the CPUs for the VelociTI architecture and VelociTI.2
extensions.
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Figure 2–1. CPUs for VelociTI and VelociTI.2
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2.1.2 Register File Enhancements

There are two general-purpose register files (A and B) in the C6000 data paths.
For the C62x/C67x, each of these files contains 16 32-bit registers (A0-A15
for file A and B0-B15 for file B). The general-purpose registers can be used for
data, data address pointers, or condition registers. The C64x register file
doubles the number of general-purpose registers that are in the C62x/C67x
cores with 32 32-bit registers per data path (A0-A31 for file A and B0-B31 for
file B). On the C62x/C67x, registers A1, A2, B0, B1, and B2 can be used as
condition registers.  On the C64x, A0 may be used as a condition register as
well, bringing the total to six condition registers. In all C6000 devices, registers
A4-A7 and B4-B7 can be used for circular addressing.
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The C62x/C67x general-purpose register files support data ranging in size
from packed 16–bit data through 40-bit fixed-point and 64-bit floating-point
data.  Values larger than 32 bits, such as 40-bit long and 64-bit float quantities,
are stored in register pairs, with the 32 LSBs of data placed in an even-num-
bered register and the remaining 8 or 32 MSBs in the next upper register
(which is always an odd-numbered register).  The C64x register file, shown in
Table 2–1, supports all the C62x data types and extends this by additionally
supporting packed 8-bit types and 64-bit fixed-point data types.  Packed data
types store either four 8-bit values or two 16-bit values in a single 32-bit register
or four 16-bit values in a 64-bit register pair.

Table 2–1. C6000 Register File

Register Files

A B

A0 B0 C62x/C64x/C67x

A1 B1

: :

A15 B15

A16 B16 C64x only

A17 B17

: :

A31 B31

2.1.3 Functional Units

The eight functional units in the C6000 data paths can be divided into two
groups of four; each functional unit in one data path is almost identical to the
corresponding unit in the other data path.  The functional units and these differ-
ences are described in Table 2–2.

The C64x is object code compatible with the C62x. Besides being able to
perform all the C62x instructions, the C64x also contains many 8–bit and
16–bit extensions to the instruction set. For example, the MPYU4 instruction
performs four 8x8 unsigned multiplies with a single instruction on a .M unit. The
ADD4 instruction performs four 8–bit additions with a single instruction on a
.L unit.  The new operations can be found in boldface in Table 2–2.
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Table 2–2. Functional Units and Operations Performed

Functional Unit Fixed-Point Operations

.M unit (.M1, .M2) 16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations

Quad 8 x 8 multiply with add operations

Bit expansion

Bit interleaving/de–interleaving

Galois Field Multiply

Rotation

Variable shift operations

.L unit (.L1, .L2) 32/40–bit arithmetic and compare operations

32–bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5–bit constant generation

Dual 16–bit arithmetic operations

Quad 8–bit arithmetic operations

Dual 16–bit min/max operations

Quad 8–bit min/max operations

Quad 8–bit subtract with absolute value

** Bold type indicates that these fixed-point operations are new** Bold type indicates that these fixed-point operations are new.
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Functional Unit Fixed-Point Operations

.S unit (.S1, .S2) 32–bit arithmetic operations

32/40–bit shifts and 32–bit bit–field operations

32–bit logical operations

Branches

Constant generation

Register transfers to/from control register file (.S2
only)

Byte shifts

Data packing/unpacking

Dual 16–bit compare operations

Quad 8–bit compare operations

Dual 16–bit shift operations

Dual 16–bit saturated arithmetic operations

Quad 8–bit saturated arithmetic operations

.D unit (.D1, .D2) 32–bit add, subtract, linear and circular address
calculation

Loads and stores with 5–bit constant offset

Loads and stores with 15–bit constant offset (.D2
only)

Load and store double words with 5–bit constant
offset

Load and store non–aligned words and double
words

5–bit constant offset generation

32–bit logical operations

Dual 16-bit arithmetic operations

** Bold type indicates that these fixed-point operations are new.
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2.1.4 Register File Paths

Each functional unit reads directly from and writes directly to the register file
within its own data path.  That is, the .L1, .S1, .D1, and .M1 units write to
register file A, and the .L2, .S2, .D2, and .M2 units write to register file B.

Most data lines in the CPU support 32-bit operands, and some support long
(40-bit) and double word (64-bit) operands. Each functional unit has its own
32-bit write port into a general-purpose register file (refer to Figure 2–1).  Each
functional unit has two 32-bit read ports for source operands src1 and src2.
Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long
writes, as well as an 8-bit input for 40-bit long reads.  Because each unit has
its own 32-bit write port, all eight units can be used in parallel with every cycle
when performing 32 bit operations.  Since each C64x multiplier can return up
to a 64-bit result, an extra write port has been added from the multipliers to the
register file, as compared to the C62x.

The register files are also connected to the opposite-side register file’s func-
tional units via the 1X and 2X cross paths.  These cross paths allow functional
units from one data path to access a 32-bit operand from the opposite side’s
register file.  The 1X cross path allows functional units from data path A to read
its source from register file B.  Similarly, the 2X cross path allows functional
units from data path B to read its source from register file A.

Figure 2–2. C64x Data Cross Paths

S1 S2 D S2D

L1 S1

S1D

M1

S2 D S1 S2

D1

DA1

S1

Register A0–A31 2X

1X

(address) (address)
DA2

Register B0–B311X

S2 S1 D

D2

S2 S1 D

M2 S2 L2

S2 S1 D D S2 S1

2X

C64x data cross paths

On the C64x, all eight of the functional units have access to the register file on
the opposite side via a cross path.  The .M1, .M2, .S1, .S2, .D1 and .D2 units’
src2 inputs are selectable between the cross path and the register file found
on the same side.  In the case of the .L1 and .L2, both src1 and src2 inputs are
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also selectable between the cross path and the same-side register file.  For
comparison, on the the C62x/C67x, only six functional units have access to the
register file on the opposite side via a cross path; the .D units do not have a
data cross path.

Only two cross paths, 1X and 2X, exist in the C6000 architecture.  Therefore,
the limit is one source read from each data path’s opposite register file per
cycle, or a total of two cross-path source reads per cycle.  The C64x pipelines
data cross path accesses allow multiple units per side to read the same cross-
path source simultaneously.  The cross path operand for one side may be used
by up to two functional units on that side in an execute packet.  In the
C62x/C67x, only one functional unit per data path per execute packet could
get an operand from the opposite register file.

2.1.5 Memory, Load and Store Paths

The data address paths named DA1 and DA2 are each connected to the .D
units in both data paths.  Load/store instructions can use an address register
from one register file while loading to or storing from the other register file.
Figure 2–3 illustrates the C64x memory load and store paths.

Figure 2–3. C64x Memory Load and Store Paths
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(load data)
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40–bit write paths (8 MSBs, DL; 32 LSBs, D)
40–bit read paths (8 MSBs, SL; 32 LSBs, S2)

Register B0–B31

The C64x supports double-word loads and stores.  There are four 32-bit paths
for loading data for memory to the register file.  For side A, LD1a is the load
path for the 32 LSBs; LD1b is the load path for the 32 MSBs.  For side B, LD2a
is the load path for the 32 LSBs; LD2b is the load path for the 32 MSBs.  There
are also four 32-bit paths for storing register values to memory from each
register file.  ST1a is the write path for the 32 LSBs on side A; ST1b is the write
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path for the 32 MSBs for side A.  For side B, ST2a is the write path for the 32
LSBs and ST2b is the write path for the 32 MSBs.  Wide loads are essential
in sustaining processing throughput.

The C64x can also access words and double words at any byte boundary
using non-aligned loads and stores.  As a result, word and double-word data
does not always need alignment to 32-bit or 64-bit boundaries as in the
C62x/C67x.  Non-aligned loads and stores combined with the pack and
unpack instructions described earlier, mean that the compiler does not have
to format the data to take advantage of the 8-bit and 16-bit hardware exten-
sions. Without these operations, significant effort would be needed to leverage
the parallelism.  The C64x provides a complete set of data flow operations to
sustain the maximum performance improvement made possible by the 8-bit
and 16-bit extensions added to the C6000 architecture.

2.2 Unique Features of the C64x

Thus far, we have looked at two areas where the C64x has extended the
C62x/C67x VelociTI architecture.  Those are register file enhancements
(doubling the register file and increasing the data types stored in the register
file) and data path extensions (doubling the load-store paths to 64 bits and
allowing for non-aligned loads and stores of words/double words).

We will now more closely examine three other areas where the C64x adds
unique features to the existing C62x/C67x architecture.  Those areas are
packed data processing (8-bit and 16-bit instruction set extensions with data
flow enhancements), additional functional unit hardware, and increased ortho-
gonality.

2.2.1 Packed Data Processing

Instructions have been added that operate directly on packed data (both 8-bit
and 16-bit) to streamline data flow and increase instruction set efficiency.  An
extensive collection of pack and unpack instructions simplifies manipulation
of packed data types.  The C64x has a comprehensive collection of 8–bit and
16-bit instruction set extensions.  They are included in Table 2–3.
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Table 2–3. Quad 8-bit and Dual 16-bit Instruction Set Extensions

Operation Quad 8-bit Dual 16-bit

Multiply X X

Multiply with Saturation X

Addition/Subtraction X X*

Addition with Saturation X X

Absolute Value X

Subtract with Absolute Value X

Compare X X

Shift X

Data Pack/Unpack X X

Data Pack with Saturation X X

Dot product with optional negate X+ X

Min/Max/Average X X

Bit–expansion (Mask generation) X X

* = The C62x/C67x provides support for 16–bit data with the
ADD2/SUB2 instructions.  The C64x extends this support to
include 8-bit data.

+ = Dot product with negate is not available for 8-bit data

Appendix A includes a code example using the dual 16-bit dot product instruc-
tion.

2.2.2 Additional Functional Unit Hardware:

Additional hardware has been built into the eight functional units of the C64x
to expand their functionality.  We have already discussed two important exten-
sions.  Each .M unit can now perform two 16x16 bit multiplies or four 8x8 bit
multiplies every clock cycle.  Also, the .D units can now access words and
double words on any byte boundary by using non-aligned load and store
instructions.  The C62x/C67x only provides aligned load and store instruc-
tions.

In addition, the .L units can perform byte shifts and the .M units can perform
bi-directional variable shifts in addition to the .S unit’s ability to do shifts. The
bi-directional shifts directly assist voice-compression codecs (vocoders).  The
.L units can now perform quad 8-bit subtracts with absolute value.  This abso-
lute difference instruction greatly aids motion estimation algorithms.
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Special communication-specific instructions, such as SHFL, DEAL and
GMPY4, have been added to the .M unit to address common operations in
error-correcting codes.  Bit-count and rotate hardware on the .M unit extends
support for bit-level algorithms such as binary morphology, image metric
calculations and encryption algorithms.  Table 2–4 contains a listing of these
special purpose instructions.

Table 2–4. C64x Special Purpose Instructions

Instruction Description Example Application

BITC4 Bit count Machine vision

GMPY4 Galois Field MPY Reed Solomon support

SHFL Bit interleaving Convolution encoder

DEAL Bit de-interleaving Cable modem

SWAP4 Byte swap Endian swap

XPNDx Bit expansion Graphics

MPYHIx, MPYLIx Extended precision 16x32 MPYs Audio

AVGx Quad 8-bit, Dual 16-bit average Motion compensation

SUBABS4 Quad 8-bit Absolute of differences Motion estimation

SSHVL, SSHVR Signed variable shift GSM

The additional functional unit hardware is key to the improvements in perfor-
mance that we saw in the benchmarks found in the previous section.  For the
broadband communications area, the dual 16-bit arithmetic supported by six
of the eight functional units paired with a bit reverse (BITR) instruction
improves FFT (Fast Fourier Transform) benchmarks by a factor of two.  The
Galois field multiply instruction (GMPY4) provides a 4.7 times performance
boost for Reed Solomon decoding using the Chien search as compared to the
C62x implementation; this improvement increases to 9.4x when you include
the clock cycle speed-up of 300 MHz to 600 MHz. The bit interleaving and de-
interleaving hardware provides a performance boost for both DSL and cable
modem.  In fact, the de-interleave hardware helps improve the 64QAM byte
to symbol conversion benchmark by a factor of 15.6 as compared to the C62x
cycle count.

In the wireless communications area, doubling the number of 16 x 16 multiplies
on the C64x doubles the throughput of filtering.  The dual 16-bit compare
instructions, coupled with the MAX2/MIN2 instructions and additional regis-
ters available to store state variables, gives a 2.7 times performance boost for
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GSM Viterbi decoding.  The signed variable shifts greatly aid the performance
of GSM vocoders.

The 8-bit hardware extensions dramatically improve image/video processing
applications.  The loop kernels found in these algorithms can operate on 8-bit
or 16-bit data.  The average instructions improve the performance of motion
compensation by a factor of seven on a per clock cycle basis versus the C62x.
The quad absolute difference instruction bolsters motion estimation perfor-
mance by a factor of 7.6 on a per clock cycle basis for an 8x8 minimum abso-
lute difference (MAD) computation. The dual 16-bit and quad 8-bit support and
increased clock rate gives image processing applications a 15 times
throughput improvement as compared to the C62x implementations
(comparing C62x devices in the 150-300 MHz range to C64x devices in the
600 MHz to 1.1 GHz range).

It is important to note that the C64x provides a comprehensive set of data
packing and unpacking operations to allow sustained high performance for the
quad 8-bit and dual 16-bit hardware extensions.  Unpack instructions prepare
8–bit data for parallel 16–bit operations.  Pack instructions return parallel
results to output precision including saturation support.

2.2.3 Increased Orthogonality

When we talk about orthogonality in the VelociTI architecture, we mean that
there is a great deal of generality in the architecture.  We have already
discussed that the register file is general purpose.  The registers can be a
pointer to data or can contain data.  We have also discussed how an ADD
instruction can be performed on six of the eight functional units.  This flexibility
allows the compiler to achieve maximum performance.

The C64x contains even more orthogonality than the original C62x/C67x
architecture.  The .D unit can now perform 32-bit logical instructions in addition
to the .S and .L units.  Also, the .D unit now directly supports load and store
instructions for double-word data values.  The C62x does not directly support
loads and stores of double words, and the C67x only directly supports loads
of double words.  The .L and .D units can now be used to load 5-bit constants
in addition to the .S unit’s ability to load 16-bit constants.

There is an additional factor that provides the compiler with more flexibility.  On
the C62x/C67x, one long source and one long result per data path could occur
every clock cycle.  On the C64x, up to two long sources and two long results
can be accessed on each data path every clock cycle.
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2.3 C64x Instruction Set Extension Details

Table 2–5 includes a complete list of the new C64x instructions and the func-
tional unit(s) that perform them.  For a complete listing of all the instructions
and their usage, please see the C6000 CPU and Instruction Set Reference
Guide at the following URL: http://www.ti.com/ .

Table 2–5. Functional Unit to Additional Instruction Mapping

Instruction .L unit .M unit .S unit .D unit

ABS2 √
ADD2 ψ √ √ √
ADD4 √
ADDKPC √
AND  ψ √ √ √
ANDN √ √ √
AVG2 √
AVGU4 √
BDEC √
BITC4 √
BITR √
BNOP √
BNOP reg √
BPOS √
CMPEQ2 √
CMPEQ4 √
CMPGT2 √
CMPGTU4 √
CMPLT2 √
CMPLTU4 √
DEAL √
DOTP2 √
DOTPN2 √
DOTPNRSU2 √
DOTPNRUS2 √
DOTPRSU2 √
DOTPRUS2 √
DOTPSU4 √
DOTPU4 √
GMPY4 √
LDDW √
LDNDW √
LDNW √
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Instruction .L unit .M unit .S unit .D unit

MAX2 √
MAXU4 √
MIN2 √
MINU4 √
MPY2 √
MPYHI √
MPYHIR √
MPYIH √
MPYIHR √
MPYIL √
MPYILR √
MPYLI √
MPYLIR √
MPYSU4 √
MPYUS4 √
MPYU4 √
MVD √
MVK ψ √ √ √
OR     ψ √ √ √
PACK2 √ √
PACKH2 √ √
PACKH4 √
PACKHL2 √ √
PACKL4 √
PACKLH2 √ √
ROTL √
SADD2 √
SADDU4 √
SADDSU2 √
SADDUS2 √
SHFL √
SHLMB √ √
SHR2 √
SHRMB √ √
SHRU2 √
SMPY2 √
SPACK2 √
SPACKU4 √
SSHVL √
SSHVR √
STDW √
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Instruction .L unit .M unit .S unit .D unit
STNDW √
STNW √
SUB2  ψ √ √ √
SUB4 √
SUBABS4 √
SWAP2 √ √
SWAP4 √
UNPKHU4 √ √
UNPKLU4 √ √
XOR √ √ √
XPND2 √
XPND4 √

ψ – Indicates instructions that exist on the C62x/C67x but are now available on one or more additional functional
units.
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2.4 Chip Level Features

2.4.1 Two–Level Cache Architecture

On initial C64x devices, the CPU interfaces directly to dedicated level–one
program (L1P) and data (L1D) caches of 16 Kbytes each.  These caches oper-
ate at the full speed of CPU access.  A second level unified L2 program/data
memory provides flexible storage.  Figure 2–4 depicts an example L2 of size
1024 Kbytes; the size and segmentation of the L2 cache in the C64x family
may change over time.  One configuration for L2 is entirely mapped SRAM.
The other configurations have both SRAM and a 4-way set associative cache
of various sizes.  Changing the way memory can be mapped allows the user
to lock critical code such as interrupt service routines or commonly called func-
tions in on–chip RAM.  It also allows critical data sections such as the software
stack and often re–used coefficients to be locked on–chip.

Figure 2–4. C64x L1/L2 Cache
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2.4.2 Powerful Enhanced DMA Controller

The C64x EDMA can provide over 2Gbytes/sec of external bandwidth on initial
implementations.  The EDMA supports up to 64 channels triggered by inde-
pendent events.  A total of 85 parameter sets are available for linking or chain-
ing.  Linking allows a sequence of transfers to be issued when a single event
occurs.  Chaining allows one EDMA channel to trigger another channel upon
data transfer completion.  Linking and chaining allow continuous auto–initiali-
zation of DMA operation with only initial configuration by the CPU.  These fea-
tures also allow circular buffers, ping–pong buffers, and transfers of complex
data structures.  Transfers can be triggered on an element by element or frame
by frame basis.  Programmable triggering allows both sample by sample trans-
fers and buffer by buffer transfers.  Each channel supports both one and two–
dimensional transfers. Strides are independently programmable for each di-
mension.  Using 1–D and 2–D the user can transfer subframes of an image
as well as automatically interleave or de–interleave time–division multiplexed
(TDM) digital streams.  Byte, word, half-word, and double-word data sizes are
supported.

The EDMA supports unsurpassed concurrency.  Four independent transfer
queues allow highly efficient operation.  Channels on different queues can in-
terleave transfers on a cycle by cycle basis.  For example, on cycle 1 queue
0 could service a L2 cache miss to EMIFA.  On cycle 2, queue 1 could move
data from a serial port to EMIFB.  On cycle 3, the HPI could transfer data to
mapped internal memory through queue 3.  On cycle 4, the EMIFA could move
data to a serial port.  The key system benefit in this efficiency is that the system
designer can simply sum total the required bandwidth to see if the EDMA can
support the system needs.  Interactions between channels do not affect perfor-
mance as much as in traditional DMA implementations.
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Figure 2–5. EDMA
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2.4.3 Three External Buses

The initial C64x chip architecture supports up to 3 parallel external buses: two
external memory interfaces (EMIFs) and one host port interface (HPI).  One
EMIF (EMIFA) is 64–bits wide and is intended for direct connection to high–
speed synchronous memory.  A second 16–bit EMIF (EMIFB) is intended for
external I/O peripherals such as FIFOs and parallel data converters.  Decoup-
ling memory from I/O devices both simplifies board design and provides I/O
concurrency.  Although the intent of the two EMIFs are different, they are iden-
tical except for their width, allowing for a variety of system designs.

On initial implementations, these EMIFs have a maximum bus rate of 133
MHz.  Each EMIF has four chip enable (CE) spaces.  EMIFA can support read
and write operations to 64–, 32–, 16–, and 8–bit external devices.  Similarly,
EMIFB can support read and write operations to both 16– and 8–bit devices.
Variable width support allows interoperability with many external I/O peripher-
als and allows the system designer to make bandwidth/cost/power tradeoffs.
Each EMIF has three memory controllers.  The SDRAM controller supports 16
Mbit – 256 Mbit SDRAM devices.  A programmable synchronous controller
with selectable read/write latency offers direct connection to flow-through syn-
chronous burst SRAMs, standard–write synchronous burst SRAMs, ZBT
(zero bus turnaround) synchronous burst SRAMs, synchronous FIFOs, and
clocked FIFOs.  Finally, a programmable asynchronous controller with inde-
pendent setup, strobe, and hold control allows easy interface to many asyn-
chronous SRAMs, FIFOs, and peripheral devices.  The EMIFs operate with
dedicated external clock inputs that decouple CPU operating frequency from
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bus frequency.  In addition, particular controllers can operate at 1x, 1/2x or 1/4x
the bus input clock.  All these features are independently configurable for each
CE space of each EMIF.

A 32–bit wide HPI provides dedicated connection to a variety of industry stan-
dard host processors and PCI bridge chips.  The HPI can operate in either a
32–bit (HPI32) or 16–bit (HPI16) wide mode.  An additional use of the HPI is
as a slave port through which a mastering peripheral can stream data into the
DSP.

In some C64x devices, the 32-bit wide HPI is replaced by a dedicated PCI port.
The C64x PCI port supports connection of the DSP to a PCI host via the inte-
grated PCI master/slave bus interface and features a 32-bit address/data bus
at 33MHz.  The C64x PCI port contains the logic required to implement a fully
compliant PCI Specification revision 2.2 bursting master/slave with access
into the DSP’s memory map (peripherals, on-chip RAM, and external memory
through the EMIF).  The C64x PCI port interfaces to the DSP via the EDMA
internal address generation hardware. This architecture allows for both PCI
master and slave transactions, while keeping the EDMA channel resources
available for other applications.
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Figure 2–6. An Initial C64x Implementation – The C6415 DSP
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2.4.4 Flexible Serial Connections

Three Multichannel Buffered Serial Ports (McBSPs) interface to a variety of
standards.  Each C64x McBSP supports independent channel selection at any
given time for up to 128-channels.  The 128 channels represent a full ST-Bus
span.  ST-Bus in combination with the flexible asynchronous interface pro-
vides a glueless connection to a variety of multichannel telecommunications
interface products such as H.110/H.100 framers as well as T1/E1 framing
chips and the IOM2 bus.  Multiple audio standards such as IIS and AC97 are
directly supported allowing interface to stereo multichannel audio devices.  Fi-
nally, SPI mode allows connection to serial control devices and ROMs.
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2.4.5 The UTOPIA Port

In some C64x devices, one of the McBSPs may be configured at reset as a
UTOPIA (Universal Test and Operations Interface for ATM) port.  The C64x
UTOPIA peripheral is an ATM controller (ATMC) slave device that interfaces
to a master ATM controller.  The UTOPIA port conforms to the ATM Forum
standard specification af-phy-0039.000.  Specifically, this interface supports
the UTOPIA Level 2 interface that allows 8-bit slave operation up to 50MHz for
both tranmit and receive operations.  Both the CPU and the EDMA can service
the UTOPIA peripheral.

2.4.6 General Purpose Input/Output

The general-purpose input/output (GPIO) peripheral provides dedicated gen-
eral-purpose pins that can be configred as either inputs or outputs.  When con-
figured as an output, the user can control the state driven on the output pin.
When configured as an input, the user can detect the state of the input which
is reflected in an internal register.  While there are a total of 16 GPIO pins, some
are multiplexed with other device pins.  In addition, the GPIO peripheral can
produce CPU interrupts and EDMA events in different interrupt/event genera-
tion modes.

2.4.7 Additional Peripheral Information

The C64x peripherals play an integral role in sustaining the system I/O band-
width.  For more detailed information on these new device interfaces and for
specific peripheral information, please refer to the device data sheets and to
the C6000 Peripherals Guide.  These documents can be found at the following
URL: http://www.ti.com.
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2.5 Ease of Development

The C6000 remains a very friendly high-level language compiler target.  The
CPU architecture and the compiler development continue to be closely
coupled.

The C64x continues the load/store architecture found in the C6000 family.  By
separating arithmetic and memory operations, processor throughput is maxi-
mized.  The RISC like instruction set and extensive use of pipelining allow
many instructions to be scheduled and executed in parallel. Also, because
there is a great deal of orthogonality to the data path, register file, and instruc-
tion set, the compiler has very few restrictions.  For example, the general-
purpose registers can be used for data or data address pointers. The ADD
instruction can execute on six of the eight functional units giving the compiler
many choices of where to execute the ADD.

As with the C62x/C67x, every instruction on the C64x can be executed condi-
tionally.  This minimizes branching in the generated code.  The pipeline is
completely deterministic.  The compiler has full visibility into the open, non-
interlocked pipeline.

The C62x/C67x VelociTI architecture contains instruction packing.  Eight
instructions are fetched every clock cycle.  Of these instructions, any, some,
or all may be executed in parallel.  To allow maximum usage of parallel instruc-
tions, the VelociTI architecture does not allow execute packets to cross-fetch
packet boundaries. The code generation tools handled this limitation by
padding fetch packets with NOP instructions.  The C64x VelociTI.2 architec-
ture extensions eliminate this limitation by including advanced instruction
packing in the instruction dispatch unit.  This improvement removes all
execute packet boundary restrictions, thereby eliminating all of the NOPs
added to pad fetch packets and helps to reduce code size.

As previously mentioned, the C64x can also access words and double words
at any byte boundary using non-aligned loads and stores.  Non-aligned loads
and stores combined with the new data packing and unpacking instructions,
mean that the compiler does not have to format the data to take advantage of
the 8-bit and 16-bit hardware extensions.  Without these operations, signifi-
cant effort would be needed to leverage the parallelism.  This is yet another
example of how significant it is to tightly couple the CPU architecture and the
compiler development.  The C64x provides a complete set of data flow opera-
tions to sustain the maximum performance improvement made possible by the
8-bit and 16-bit extensions added to the C6000 architecture.

Other improvements to the C64x architecture, which increase compiler perfor-
mance, are being able to execute logical instructions on two additional func-
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tional units, doubling the register file from 32 to 64 general-purpose registers
and increasing the number of condition registers.  In addition, instructions
have been added that further reduce code size and increase register flexibility.
These include:

� BDEC and BPOS instructions combine a branch instruction with the
decrement/test positive of a destination register respectively. These
instructions help reduce the number of instructions needed to decrement
a loop counter and conditionally branch based upon the value of that
counter. Any register can be used as the loop counter, which can free up
the standard condition registers (A0–A2 and B0–B2) for other uses.

� The ADDKPC instruction helps reduce the number of instructions needed
to set up the return address for a function call.

� The BNOP instruction helps reduce the number of instructions required to
perform a branch when NOPs are needed to fill the delay slots of a branch.

TI’s C6000 Compile Tools were co-developed with the architecture to offer
best-in-class performance.  Examples of C6000 Compiler performance can be
found at the following URL: http://www.ti.com.  The examples at the URL
above above detail the C62x performance but the same underlying data path
and compiler technology are used for the C64x.  Compiler performance will be
further enhanced as the advantages of the C64x VelociTI.2 extensions are
more fully leveraged in subsequent compiler releases.  For further details on
specific optimization techniques for the C64x, please refer to the C6000 Pro-
grammer’s Guide.  For more information on compiler optimization, please see
the C6000 Compiler Optimization Tutorial at the URL http://www.ti.com as
well.



Summary

 2-24

2.6 Summary

The C64x brings the highest level of performance for addressing the demands
of this era of data convergence.  At clock rates of 1.1 GHz and greater, the
C64x can process information at a rate of 8800+ MIPS or nearly nine billion
instructions per second.  The C64x VelociTI.2 extensions and higher clock rate
improve performance of the C62x/C67x VelociTI architecture by a factor of 9
in broadband communications and a factor of 15 in image processing applica-
tions.

These advances in performance are made possible by some key extensions
made to the VelociTI architecture in several areas:

� Register file enhancements

� Data path extensions

� Packed data processing

� Additional functional unit hardware

� Increased orthogonality

2.6.1 Register File Enhancements

� The register files have doubled in size.  The C62x has 32 general-purpose
registers and the C64x has 64 general-purpose registers.

� The C62x uses A1, A2, B0, B1 and B2 as condition registers.  The C64x
can also use A0 as a condition register, bringing the total to six.

� The C62x register file supports packed 16-bit data types in addition to
32-bit and 40-bit data types.  The C64x register file extends this by
supporting packed 8-bit types and 64-bit types.

2.6.2 Data Path Extensions

� Each .D unit can load and store double words (64 bits) with a single instruc-
tion.  The .D unit on the C62x cannot load and store 64-bit values with a
single instruction.

� The .D unit can now access operands via a data cross path similar to the
.L, .M and .S functional units.  In the C62x, only address crosspaths on the
.D unit are supported.

� The C64x pipelines data cross path accesses.  This allows the same
register to be used as a data cross path operand by multiple functional
units in the same execute packet.  In the C62x, only one cross operand
is allowed per side.



Summary

2-25Architecture

2.6.3 Packed Data Processing

� Instructions have been added that operate directly on packed data to
streamline data flow and increase instruction set efficiency.  The C64x has
a comprehensive collection of quad 8-bit and dual 16-bit instruction set
extensions.

� Extensive collection of pack and unpack instructions simplifies manipula-
tion of packed data types

2.6.4 Additional Functional Unit Hardware

� Each .M unit can now perform two 16x16 bit multiplies or four 8x8 bit multi-
plies every clock cycle.

� The .D units can now access words and double words on any byte
boundary by using non-aligned load and store instructions.  The C62x only
provides aligned load and store instructions.

� The .L units can perform byte shifts and the .M units can perform bi-direc-
tional variable shifts in addition to the .S unit’s ability to do shifts.  The bi–
directional shifts directly assist voice-compression codecs (vocoders).

� The .L units can perform quad 8-bit subtracts with absolute value.  This
absolute difference instruction greatly aids motion estimation algorithms.

� Special communications-specific instructions, such as SHFL, DEAL and
GMPY4 have been added to the .M unit to address common operations
in error–correcting codes.

� Bit-count and Rotate hardware on the .M unit extends support for bit-level
algorithms such as binary morphology, image metric calculations and
encryption algorithms.

2.6.5 Increased Orthogonality

� The .D unit can now perform 32-bit logical instructions in addition to the
.S and .L units.

� The .D unit now directly supports load and store instructions for double
word data values.  The C62x does not directly support loads and stores
of double words and the C67x only directly supports loads of double
words.

� The .L, and .D units can now be used to load 5-bit constants in addition
to the .S unit’s ability to load 16-bit constants.
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� On the C62x one long source and one long result per data path could occur
every cycle.  On the C64x, up to two long sources and two long results can
be accessed on each data path every cycle.

The C64x goes beyond building extensions in the hardware to bring the
maximum level of performance for processing digital data quickly in this era
of data convergence. The tight coupling of the CPU architecture and the
compiler help to maximize processor throughput.  The RISC-like instruction
set and extensive use of pipelining allow many instructions to be scheduled
and executed in parallel and parallelism is the key to extremely high perfor-
mance.  In addition, a high performance two-level cache design allows the
CPU to operate at the maximum rate. This two-level cache lowers develop-
ment time by automating off-chip to on-chip data transfers. A high perfor-
mance EDMA controller feeds the CPU through flexible high bandwidth three-
bus architecture.

Aided by advanced instruction packing, doubling the number of registers in the
register file and doubling the width of the data path, the C6000 compiler can
improve code performance with few restrictions placed upon it by the architec-
ture. The blending of CPU, system architecture, and compiler tools simulta-
neously maintain full system performance with reduced development time.
These factors and others make the C64x an even better compiler target than
the original C62x architecture, allowing developers to keep up with the
demands of the era of data convergence.
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A.1 Sum of Products Example

One of the fundamental building blocks of any DSP algorithm be it convolution, filtering or FFTs is the
sum of products equation.

       N

Y = ∑  a n   *  x n

     n = 1

The two basic instructions in this sum of products equation are multiply and add.  We want to multiply
an element in the a array with the corresponding element in the x array.  We then will keep a running
sum of products as we process the next elements in the arrays.

Here is a C implementation of this algorithm where the number of elements in the arrays is 40.

/* Main Code */
main()
{
  y = DotP(a, x, 40);
}
int DotP(short *m, short *n, int count)
{ int i;
  int product;
  int sum = 0;
for (i=0; i < count; i++)
{
  product = m[i] * n[i];
  sum += product;
 }
return(sum);
}

Here is the output of the compiler for the loop kernel for the example above. This is using a pre–release
version of the 4.0 C6000 compiler.  The customer release version became available in early 2Q00. The
compiler options used were:

–k –mv6400 –o2 –mt –mi –mx –mw

For more information on compiler optimization, please see the C6000 Compiler Optimization Tutorial
at the URL http://www.ti.com/ .
PIPED LOOP KERNEL
LOOP:
   [ A0]   SUB     .L1     A0,1,A0
|| [!A0]   ADD     .S1     A6,A5,A5   ; keep running sum
||         MPY     .M1X    B4,A4,A6   ; multiply two 16–bit values
|| [ B0]   BDEC    .S2     LOOP,B0    ; decrement loop counter and branch if > 0
||         LDH     .D1T1   *A3++,A4   ; load 16–bit value
||         LDH     .D2T2   *B5++,B4   ; load 16–bit value

Notice that we are multiplying short (16-bit) values. We know that the C64x has the capability of
performing four 16 x16 multiplies in a single cycle.  Moreover, one of the special instructions on the C64x
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is a DOTP2 instruction.  The DOTP2 instruction returns the dot product between two pairs of signed
packed 16-bit values residing in two 32-bit registers.

How can we take advantage of this instruction from the C language?  DOTP2 is available to the compiler
as an intrinsic.  An intrinsic function is similar to the mathematics functions available in the Run–Time
Support Library.  An intrinsic allows your C code to directly access the hardware while preserving the
C environment. Intrinsic functions have a leading underscore with the function in lower case letters. The
intrinsic for DOTP2 is _dotp2.

Next we need to access the data as 32-bit values.  The DOTP2 instruction is doing two 16 x 16 multiplies
which means we need two 32-bit values to be accessed every cycle. We can use the new
_amem4_const memory intrinsic available in compiler release 4.1 to have the compiler access 32-bit
values.  Next because we are doing two 16 x 16 multiplies per clock cycle, we only need to perform this
loop 20 times instead of 40.

Our C code now looks like the following:
/* Main Code */
main()
{
y = DotP(_amem4_const(&a), _amem4_const(&x), 20);
}
int DotP(int *m, int * n, int count)

{ int i;
  int product;
  int sum = 0;

  for (i=0; i < count; i++)
{
    product = _dotp2(m[i], n[i]);
    sum  = product + sum;
}
  return(sum);
}

Here is the output of the compiler for the loop kernel for our intrinsic example above. The compiler
options used were:
–k –mv6400 –o2 –mt –mi –mx –mw

; PIPED LOOP KERNEL
LOOP:
   [!A1]   ADD     .L2     B8,B4,B4     ; running sum 0
||         DOTP2   .M2X    B7,A6,B8     ; 2 16x16 multiplies + add ; prod 0
|| [ A0]   BDEC    .S1     LOOP,A0      ; decrement loop counter and branch if >0
||         LDW     .D1T1   *+A4(4),A3   ; load a 32–bit value
||         LDW     .D2T2   *+B5(4),B6   ; load a 32–bit value
   [ A1]   SUB     .L1     A1,1,A1      ;
|| [!A1]   ADD     .S1     A7,A5,A5     ; running sum 1
||         DOTP2   .M1X    B6,A3,A7     ; 2 16x16 multiplies + add ; prod 1
||         LDW     .D1T1   *++A4(8),A6  ; load a 32–bit value
||         LDW     .D2T2   *++B5(8),B7  ; load a 32–bit value
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The compiler has created a 2 cycle loop with four 16 x 16 multiplies occurring and two results  produced
every loop iteration. The compiler is bringing in data as 32-bit values with the LDW instructions and is
using the DOTP2 instruction on both multiply functional units.

Can this code be improved further?  We know that the C64x can bring in data as 64-bit values. We need
eight 16–bit values every clock cycle to be able to do four 16 x 16 multiplies every clock cycle.  This can
be accomplished by using two LDDW instructions and two DOTP2 instructions. This time we will use
the new _amemd8_const memory intrinsic available in compiler release 4.1 to have the compiler access
64-bit values.  As we mentioned earlier, the DOTP2 instruction is doing two 16 x 16 multiplies that use
two 32–bit values.  Since we are bringing in the data as 64–bits we need to specify which 32–bit values
the DOTP2 instructions are operating on.  We can do this by using the _lo and _hi intrinsics.  The _lo
intrinsic specifies the lower 32–bits of a 64–bit value and the _hi intrinsic specifies the upper 32 bits of
a 64-bit value.  Finally, since we are doing four 16 x 16 multiplies per clock cycle, we only need to perform
this loop 10 times instead of 20 times in our previous example.

Our C code for the DotP now looks like the following:
int DotP(const short * restrict m, const short * restrict n, int count)
{ int i;
  int sum= 0;

  m3_m2 = _hi(_amemd8_const(&m[i]));
  m1_m0 = _lo(_amemd8_const(&m[i]));

  n3_n2 = _hi(_amemd8_const(&n[i]));
  n1_n0 = _lo(_amend8_const(&n[i]));

     count >> 2; */ count is divided by two if using same main          
                    function to call this subroutine*/
  for (i=0; i < count; i++)
  {
    sum += _dotp2(m3_m2, n3_n2) +
          _dotp2(m1_m0, n1_n0);
  }
  return sum;
}

Here is the output of the compiler for the loop kernel for our second intrinsic example above.

The compiler options used were:
–k –mv6400 –o2 –mt –mi –mx –mw

loop:    ; PIPED LOOP KERNEL
   [ B0]   SUB     .L2     B0,1,B0        ; decrement running sum counter
|| [!B0]   ADD     .S2     B8,B6,B6       ; running sum 0
|| [!B0]   ADD     .L1     A7,A6,A6       ; running sum 1
||         DOTP2   .M2X    B4,A4,B8       ; 2 16x16 multiplies + add ;prod 0
||         DOTP2   .M1X    B5,A5,A7       ; 2 16x16 multiplies + add ;prod 1
|| [ A0]   BDEC    .S1     loop,A0        ; branch to loop & decrement loop count
||         LDDW    .D1T1   *A3++,A5:A4    ; load a 64–bit value
||         LDDW    .D2T2   *B7++,B5:B4    ; load a 64–bit value
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The compiler has created a single cycle loop with four 16 x 16 multiplies occurring and two results
produced every loop iteration. This represents a four–fold improvement from our original implementa-
tion.

The previous two code examples used intrinsics to improve the performance of the C code.  The use
of intrinsics is not always necessary to achieve single cycle loop performance for the sum of products
example.  If the compiler is provided with enough information about the loop count and about the align-
ment and scope of the pointer variables, single cycle throughput can be achieved for this algorithm
without the use of intrinsics.  For more information on compiler optimization, please see the C6000
Compiler Optimization Tutorial at the URL http://www.ti.com/ .
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Image Processing Kernel Code Examples

Appendix B contains code examples that come from the application benchmarks section and
commented on in the architectural overview. These examples are meant to highlight some of the key
extensions to the VelociTI architecture.  For this reason they are coded in linear assembly to illustrate
the functionality of the particular instructions.  Linear assembly allows us to write assembly code with
C variable names and without having to specify register allocation.
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B.1 Threshold Example

The code fragment below illustrates a thresholding example.  An input data value is compared to a re-
ference value. If the input value is less than the threshold, the corresponding output is set to zero.  Other-
wise, the output value is equal to the input data minus the threshold.  This is a form of clamping.  Other
threshold algorithms can be implemented in a similar manner.

Two load double word instructions, LDDW, are used to load in the sixteen 8–bit pixel values.  The
threshold value has been loaded into each of the bytes contained in registers thr0 and thr1.  The
CMPGTU4 instruction is used to compare four input pixel values with the threshold value at the same
time.  Each of the four comparisons will generate a 1-bit result. A 1 if the input value is greater than the
threshold and a 0 if the input is less than the threshold.  These four results are stored in the 4 LSBs of
the register res0.

The XPND4 instruction is used to expand the results in res0 where each bit will be replicated to fill an
entire byte’s worth of data creating the mask, mask0.  The threshold is subtracted from the input data
using a SUB4 instruction, creating tmp0.  The mask0 is then ANDed with tmp0  to  produce the output,
out0. This is then repeated for each set of four pixels.

Figure B–1 is a graphical interpretation of the data flow in the algorithm described above.  These opera-
tions would be repeated for each set of four pixels.

Figure B–1. Threshold Example
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    LDDW *input_data_ptr++(8), data0:data1    ; Load eight 8–bit input data values
                                              ; and post increment pointer by 8
                                              ; bytes
     CMPGTU4 data0, thr0, res0                ; Compare four input pixels with
                                              ; threshold value
     XPND4   res0, mask0                      ; Expand bit to byte in a mask
     SUB4    data0, thr0, tmp0                ; Subtract threshold from input data
     AND     mask0, tmp0, out0                ; AND mask with the subtracted value
 
     CMPGTU4 data1, thr0, res1                ; Compare second set of four input
                                              ; pixels with threshold value
     XPND4   res1, mask1                      ; Expand bit to byte in a mask
     SUB4    data1, thr1, tmp1                ; Subtract threshold from input data
     AND     mask1, tmp1, out1                ; AND mask with the subtracted value
 
     STDW    out0:out1, *output_data_ptr++    ; Store eight 8–bit values to memory
     LDDW  *input_data_ptr++(8), data2:data3  ; Load next eight 8–bit input data
                                              ; values and post increment pointer
                                              ; by 8 bytes
     CMPGTU4 data2, thr1, res2                ; Compare third set of four input
                                              ; pixels to threshold value
     XPND4   res2, mask2                      ; Expand bit to byte in a mask
     SUB4    data2, thr2, tmp2                ; Subtract threshold from input data
     AND     mask2, tmp2, out2                ; AND mask with the subtracted value
 
     CMPGTU4 data3, thr1, res3                ; Compare last set of four input    
                                              ; pixels with threshold value
     XPND4   res3, mask3                      ; Expand bit to byte in a mask
     SUB4    data3, thr3, tmp3                ; Subtract threshold from input data
     AND     mask3, tmp3, out3                ; AND mask with the subtracted value
 
     STDW    out2:out3, *output_data_ptr++    ; Store eight 8–bit values to memory
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B.2 Motion Estimation Example

This example illustrates one row of processing for an 8x8 minimum absolute difference (MAD) computa-
tion.  Multiple instances of this code block are used in a loop to achieve computation of the overall MAD
value.

One non-aligned load double word instruction, LDNDW, is used to load in the eight 8–bit pixel reference
values.  A non-aligned load is used because in the MAD computation the reference data block can start
on any pixel (byte) boundary.  Typically, you are stepping the motion search across a general region
of reference data so the required data alignment of the reference data can change from one loop itera-
tion to the next. The input data is loaded using a load double word instruction, LDDW, because it is
assumed to be aligned on double word boundaries.  Next the SUBABS4 instruction is used to take the
absolute difference between the input data and the reference values.  Each SUBABS4  instruction
processes four 8-bit pixels.

We now need to sum together the absolute difference values.  The four values in one 32–bit register
may be summed together by using a DOTPU4 instruction as shown.  The masks in the DOTPU4 opera-
tions are pre–loaded with each byte value containing the value +1. Therefore, multiplying each byte
value with one and adding them together allows us to sum the four values in the 32-bit register.

We then use ADD instructions to sum the results together and the final result is added to a quantity
my_mad that is the running MAD value that is carried over from row to row and provides the final numer-
ical output.  Figure B–2 is a graphical interpretation of the data flow in the algorithm described above.
These operations would be repeated for each set of four pixels.

Figure B–2. Motion Estimation Example

LDDW

data0data1 ref0ref1

LDNDW starting at
byte 1

SUBABS4 diff0

DOTPU4
mask

sum0

5 5 7 7 7 7 3 3 3 5

9 8 7 6 5 4 3 2 1 0

1 F C 0 A 9 2 4

55 7 7 7 1 F C 0 A 9 2 44 7 3 33

111 1

3 +  6 + 1 + 1

| A-7| | 9-3| || 2-3| | 4-3|
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Example B–1. One row of 8x8 MAD calculation

; row 1
     LDNDW  *ref_ptr++(8), ref0:ref1        ; Load eight 8–bit reference values
                                            ; and post increment pointer by 8
                                            ; bytes
     ADD    ref_ptr, offset, ref_ptr        ; Add offset to move reference
                                            ; data pointer to next row
 
     LDDW   *input_data_ptr++, data0:data1  ; Load eight 8–bit input data values
                                            ; and post increment pointer
 
 
     SUBABS4 ref0, data0, diff0             ; get absolute difference value
                                            ; for first four bytes
     SUBABS4 ref1, data1, diff1             ; get absolute difference value
                                            ; for next four bytes
 
     DOTPU4 diff0, mask0, sum0             ; add absolute differences of the
                                            ; first four bytes
     DOTPU4 diff1, mask0, sum1             ; add absolute differences of the
                                            ; next four bytes
     ADD    sum0, sum1, mad_r1              ; add result of absolute differences
                                            ; of the eight bytes
 
     ADD    my_mad, mad_r1, my_mad          ; add this result to running sum
                                            ; my_mad
Wednesday, January 5, 2000
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Appendix A

Glossary

A

address: The location of program code or data stored; an individually
accessible memory location.

ALU: See arithmetic logic unit.

arithmetic logic unit (ALU):  The hardware of the CPU that performs
arithmetic and logic functions.

C

central processing unit (CPU): The unit that coordinates the functions of
a processor.

circular addressing: An address mode in which a finite set of addresses is
reused by linking the largest address back to the smallest address.

clock cycles: A periodic or sequence of events based on the input from the
external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

compiler: A computer program that translates programs in a high-level
language into their assembly-language equivalents.

CPU: See central processing unit.

crosspath: A link between register files to provide communication between
the CPU units.

Appendix C
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D

double word: A set of 64 bits that is stored, addressed, transmitted, or oper-
ated on as a unit.

E

execute packet: A group of instructions that execute in parallel.

F

fixed-point processor: A processor which does arithmetic operations
using integer arithmetic with no exponents.

floating-point processor: A processor capable of handling floating-point
arithmetic where real operands are represented using exponents.

M

million instructions per second (MIPS): A measure of the execution
speed of a computer.

P

parallelism: Sequencing events to occur simultaneously. Parallelism is
achieved in a CPU by using instruction pipelining.

pipeline: A method of executing instructions in which the output of one
process serves as the input to another, much like an assembly line.
These processes become the stages or phases of the pipeline.

pipeline processing: A technique that provides simultaneous, or parallel,
processing within the computer. It refers to overlapping operations by
moving data or instructions into a conceptual pipe with all stages of the
pipe processing simultaneously.

program fetch unit: The CPU hardware that retrieves program instructions.

Glossary
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R

register: A small area of high speed memory, located within a processor or
electronic device, that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of
microprogrammed complex instruction set computers. The result is a
higher instruction throughput and a faster real-time interrupt service
response from a smaller, cost-effective chip.

S

saturation: A state where any further input no longer results in the expected
output.

shifter: A hardware unit that shifts bits in a word to the left or to the right.

W

word: A set of 32 bits that is stored, addressed, transmitted, or operated on
as a unit.

Glossary



D-1

Appendix A

Related  Documents

The following books describe the TMS320C6000 generation and related sup-
port tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C6000 CPU and Instruction Set Reference Guide  (literature
number SPRU189) describes the CPU architecture, pipeline, instruction set,
and interrupts for the TMS320C6000 digital signal processors (DSPs).

TMS320C6201 Digital Signal Processor Data Sheet  (literature number
SPRS051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C6202/C6202B/C6203/C6204 Digital Signal Processor Data
Sheet  (literature number SPRS104) describes the features of the
TMS320C6202/03/04 fixed-point DSP and provides pinouts, electrical
specifications, and timings for the device.

TMS320C6205 Digital Signal Processor Data Sheet  (literature number
SPRS106) describes the features of the TMS320C6205 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6211/C6711 Digital Si gnal Processor Data Sheet  (literature num-
ber SPRS073) describes the features of the TMS320C6211 fixed-point
DSP and the TMS320C6711 floating-point DSP and provides pinouts,
electrical specifications, and timings for the device.

TMS320C6712 Digital Signal Processor Data Sheet  (literature number
SPRS148) describes the features of the TMS320C6712 floating-point
DSP and provides pinouts, electrical specifications, and timings for the
device.

TMS320C6701 Digital Signal Processor Data Sheet  (literature number
SPRS067) describes the features of the TMS320C6701 floating-point
DSP and provides pinouts, electrical specifications, and timings for the
device.

Appendix D
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TMS320C6000 Peripherals Reference Guide  (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, serial ports, direct memory access (DMA), clocking and phase-
locked loop (PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide  (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide  (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320 Third-Party Support Reference Guide  (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Trademarks

TI, XDS510, VelociTI, and 320 Hotline On-line are trademarks of Texas Instru-
ments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft Corpora-
tion.

Related Documentation From Texas Instruments / Trademarks

Related Documents
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