
TMS320C55x
CSL USB Programmer’s

Reference Guide

SPRU511
October 2001

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI’s terms and conditions of sale supplied
at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate
design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of the third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

The TMS320C55x�� CSL USB Programmers Reference Guide provides
C-program functions to configure and control on-chip Universial Serial Bus
(USB) peripherals. It is intended to make it easier to get algorithms running in
a real system. The information found in this document is targeted to the USB
spec 1.1 compliant USB module.

This document provides reference information for the USB and is organized
as follows:

� Overview – high level overview of the USB

� DSP Resource Requirements

� Module Initialization

� Data Structures

� API Routines

� Module Drivers

� Symbolic Constants

� Enumerated Data Types

� USB Data Structures

� USB Functions

� Configuration of the USB module using the CSL graphical user interface
(GUI).

� Appendix that details USB Terminology

How to Use This Manual

iv

How to Use This Manual

The information in this document describes the contents of the
TMS320C55x� DSP USB Reference Guide as follows:

� Chapter 1 provides an overview of the USB, includes figures, tables, and
examples showing USB module support for VC5509 devices.

� Chapter 2 provides essential USB functions with examples and descrip-
tions of their use.

� Chapter 3 provides a USB Demo Application sample and instructions.

� Appendix A provides an overview of USB terminology.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface.

� In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

� Macro names are written in uppercase text; function names are written in
lowercase.

� TMS320C55x DSP devices are referred to throughout this reference
guide as C5501, C5502, etc.

Notational Conventions / Related Documentation From Texas Instruments

How to Use This Manual

vRead This First

Related Documentation From Texas Instruments

The following books describe the TMS320C55x DSP and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
are located on the internet at http://www.ti.com.

Trademarks

The Texas Instruments logo and Texas Instruments are registered trademarks
of Texas Instruments. Trademarks of Texas Instruments include: TI, Code
Composer, DSP/BIOS, and TMS320C5000.

Microsoft and Windows 2000 are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other
countries.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.

Contents

vi

Contents

1 USB Overview 1-1.
An overview of USB Terminology, Components, Routines, Configuration settings, etc

1.1 CSL USB Module Overview 1-2.
1.1.1 Components of the CSL USB Module 1-2.

1.2 DSP Memory Resource Requirements 1-3.
1.3 USB Components Overview 1-4.

1.3.1 Data Structures 1-4.
1.3.2 API Routines 1-5.
1.3.3 Module Drivers 1-11.

1.4 USB Configuration and Interfaces 1-14.
1.5 Typical Application Using The CSL USB Module Support Library 1-15.

2 CSL USB Module Components 2-1.
This chapter covers USB symbolic constants, enumerated data types, data structures, and
functions

2.1 Symbolic Constants 2-2.
2.1.1 USB Data Transfer Flags 2-2.
2.1.2 USB Interrupt Events 2-2.

2.2 Enumerated Data Types 2-4.
2.2.1 Endpoint Numbers 2-4.
2.2.2 USB Transfer Types 2-5.
2.2.3 USB Device Number 2-6.
2.2.4 USB Boolean 2-6.

2.3 USB Data Structures 2-7.
2.3.1 USB Setup Packet 2-7.
2.3.2 Data Structure 2-7.
2.3.3 USB Endpoint Object 2-8.

2.4 USB Functions 2-9.
2.4.1 USB Events Dispatcher 2-11.
2.4.2 Software Initialization 2-12.
2.4.3 Software Control 2-15.
2.4.4 Module Initialization 2-18.
2.4.5 Module Control 2-20.
2.4.6 Data Transfer 2-24.
2.4.7 Status Query 2-30.
2.4.8 Miscellaneous 2-37.

Contents

viiContents

3 Configuring The USB Module Using CSL GUI 3-1.
Instructions and examples for the configuration of the USB module using CSL GUI

3.1 Overview 3-2.
3.2 USB Endpoint Configuration Manager 3-3.

3.2.1 Creating/Inserting an Endpoint Object 3-3.
3.2.2 Deleting/Renaming an Endpoint Object 3-3.
3.2.3 Configuring the Global Settings 3-3.
3.2.4 Configuring the Endpoint Object Properties 3-4.

3.3 USB Resource Manager 3-7.
3.3.1 Properties Page 3-7.

3.4 C Code Generation for the USB module 3-8.
3.4.1 Header File 3-8.
3.4.2 Source File 3-8.

3.5 Connecting the USB Module To a Host 3-10.

A USB Terminology A-1.
Definitions, descriptions, and terminologies associated with the USB

A.1 USB Terminology A-2.
A.1.1 Frames A-2.
A.1.2 Transfers, Transactions, and Packets A-4.

Figures

viii

Figures

1–1 Endpoint Data Buffer Format 1-4.
1–2 Software initialization 1-5.
1–3 Module initialization 1-7.
1–4 Module Control 1-8.
1–5 Data Transfer 1-9.
1–6 Status Query 1-10.
1–7 Data Buffer Handler 1-12.
1–8 Event Dispatcher 1-13.
1–9 Generic USB Application using CSL USB Module Support Library Components 1-15.
3–1 USB Sections Menu 3-2.
3–2 Global Settings for the Configuration Manager 3-3.
3–3 USB Properties Page 3-5.
3–4 USB Events Properties Page 3-6.
3–5 USB Resource Manager Menu 3-7.
3–6 USB Resource Manager Properties Page 3-7.
A–1 USB Frame Layout A-3.

Tables

ixContents

Tables

2–1 USB Data Transfer Flags 2-2.
2–2 USB Interrupt Events 2-2.
2–3 Summary of USB API functions 2-9.

Examples

x

Examples

3–1 USB Header File 3-8.
3–2 USB Source File (Declaration Section) 3-8.
3–3 USB Source File (Body Section) 3-9.

1-1

USB Overview

This chapter is an overview of the components, features and benefits,
routines, drivers, and configuration settings found in the USB module.

Topic Page

1.1 CSL USB Module Overview 1-2.

1.2 DSP Memory Resource Requirements 1-3.

1.3 USB Components Overview 1-4.

1.4 USB Configuration and Interfaces 1-14.

1.5 Typical Application Using the CSL USB
Module Support Library 1-15.

Chapter 1

CSL USB Module Overview

 1-2

1.1 CSL USB Module Overview

Features and benefits:

� Complete hardware abstraction

� Single call device configuration

� Single API for posting all four types of transfers:

� Control

� Bulk

� Interrupt

� Isochronous

� Supported data buffers:

� Single data buffer

� Multiple data buffers in linked list form. All the members of the linked
list can be concatenated into a single USB transfer or each member of
the linked list can be posted as an individual transfer.

� USB bus events and endpoint events are broadcast to the user selected
event-handler routines.

Note: One endpoint event handler routine is allowed per active endpoint. Event handler rou-
tines are bound to their respective endpoint objects during the endpoint object initializa-
tion.

1.1.1 Components of the CSL USB Module

Detailed descriptions for these components begin on page 1-4

� Data Structures:

� Endpoint Object

� Endpoint Data Buffer

� API Routines:

� Software initialization

� Module initialization

� Module Control

� Data Transfer

� Status Query

� Module Drivers:

� Data Buffer Handler

� Event Dispatcher

DSP Memory Resource Requirements

1-3USB Overview

1.2 DSP Memory Resource Requirements

� A typical USB application built using the CSL USB module requires 512
bytes of software stack and 512 bytes of system stack.

� The upper 256 bytes shared RAM of the USB module are reserved for use
by the CSL USB components for internal variables. These 256 bytes of
USB shared RAM can not be used as an endpoint data buffer.

� Each Endpoint object requires twenty words of DSP data memory.

USB Components Overview

 1-4

1.3 USB Components Overview

1.3.1 Data Structures

Endpoint Object

Endpoint objects are the starting point of building a USB application using the
USB Module Support Library.

In an application, every active USB endpoint must be represented by initialized
endpoint objects. An initialized endpoint object holds the Runtime
characteristics of a physical endpoint. The total number of endpoint objects in
an application depends on the number of physical endpoints the application
intends to use.

The endpoint objects can be initialized either by the CSL USB GUI, or by the
endpoint initialization API. The initialized endpoint objects are bound to the
respective endpoints by the USB module initialization API. Once the endpoint
objects are successfully bound, the application can use a handle (pointer) to
the endpoint object to communicate with the endpoint. A collection of initialized
endpoint objects represents a USB configuration.

Endpoint Data Buffer

The USB driver supports both single and multiple data buffers. Multiple data
buffers are supported as a linked list. Figure 1–1 illustrates the format of the
endpoint data buffer supported by the USB driver.

Figure 1–1. Endpoint Data Buffer Format

Byte count Data 1 Data 2 Data N...

16 bit 16 bit

Each 16-bit word of DSP data memory holds two bytes of USB data. The USB
driver uses the very first word of the data buffer to store the number of bytes
being transmitted or received. The format of the data buffers used for IN and
OUT endpoints is the same. The following equation can be used to determine
the effective length of the USB data buffer:

Buffer Length = 1 + int[(n +1)/2] words; Where n = number of bytes

The USB driver also supports a NULL buffer pointer to send and receive 0-byte
handshake packets to indicate the closure of a setup packet. The NULL buffer
pointer is a special case and can only be used with the control endpoints
(endpoint0).

API Routines

1-5USB Overview

1.3.2 API Routines

Software initialization

The software initialization API initializes the endpoint objects. The application
calls the software initialization API with the parameters such as handle to an
endpoint object, endpoint number, endpoint type (control, bulk, interrupt,
isochronous, and host port), endpoint size, and pointer to the endpoint event
handler routine. The software initialization API updates the endpoint object
based on the parameters passed.

The CSL USB GUI can also be used to initialize endpoint objects. The CSL
USB GUI initialize endpoint objects statically, whereas the software
initialization API initializes an endpoint object dynamically. Figure 1–2
illustrates the relationship between the USB software initialization API and a
USB application.

Figure 1–2. Software initialization

Application

Software initialization
API

Endpoint
objects

Application
layer

USB driver
layer

User

1. User applications passing
endpoint object initialization
parameter to software
initialization API

2. Software initialization API
initializing endpoint object
with the information passed
by the application

API Routines

 1-6

Module initialization

The module initialization API, based on the endpoint characteristics defined
by the initialized endpoint objects, programs the endpoint descriptor
(registers), and the USB module control and interrupt enable registers. The
initialized endpoint objects are passed to the module initialization API as a
pointer to a NULL terminated array of handles (pointers to the endpoint
objects).

The module initialization API stores a copy of the endpoint handles internally
for runtime use by the USB driver. Upon successful execution of the module
initialization API, the USB module is initialized to the configuration defined by
the endpoints passed as the array of endpoint handles.

The USB Module initialization API configures the USB Module, but does not
connect the module to the bus. The USB module is connected to the bus by
calling the appropriate module control API.

Figure 1–3 illustrates the USB module initialization.

API Routines

1-7USB Overview

Figure 1–3. Module initialization

Application

initialization
API

Endpoint
object

Application
layer

USB driver
layervariables

Internal

Endpoint
descriptor

USB module
control/interrupt

registers
USB hardware

layer

1. applications pass a pointer
to an array of endpoint
objects.

2. Module initialization API retrieves
endpoint characteristics from
initialized endpoint objects

3. Module initialization API
updates internal
variables

4. Module initialization API
programs the USB
module registers

registers

Module

Note: Gray backgrounds represent components that are indirectly involved in the process.

Module Control

The module control APIs allow the user application to control the hardware
features of the USB module. Some of the features that can be controlled by
the module control APIs are:

� Connect/disconnect from the bus

� Setting of the device address

� Stalling of an endpoint

The module control APIs access the internal variables and the endpoint
objects associated with the current USB device configuration to determine the
values and addresses of the registers to be modified. Figure 1–4 illustrates
USB Module Control API.

API Routines

 1-8

Figure 1–4. Module Control

Application

control
API

Endpoint
object

Application
layer

USB driver
layervariables

Internal

USB module
control

registers

USB
hardware

control
registers

Endpoint

Module

User applications calls
module control API

2. Module controlled
API retrieves register address and
values from endpoint objects and from
the internal variables.

Module control API
sets the registers
to control the USB module

Note: Gray backgrounds represent components that are indirectly involved in the process.

Data Transfers

The data transfer API allows an application to send and receive USB data
(single buffer or linked list of multiple buffers) through any active endpoint
defined in the current configuration. If there is no transfer in progress, the data
transfer API posts the request to the data buffer handler module of the USB
driver.

API Routines

1-9USB Overview

Upon completion of the transfer, the data buffer handler sets the
End-of-Transfer event flag. in the associated endpoint object. The application
can query the status of a posted data transfer by calling the appropriate status
query API.

Figure 1–5. Data Transfer

Application

Data transfer
API

Endpoint
objects

Application
layer

USB driver
layer

variables
Internal

USB
hardware

Layer

Data buffer
handler

Endpoint

Bus

1. Applications posts a data
transfer request

Data transfer API and
data buffer handler
retrieves the address of
the endpoint object.

5. Data moving in or out
of the physical endpoint

2. Data transfer API
posts the transfer

request

3. Data buffer handler retrieves the
information needed to complete
the transfer. The Data Buffer handles
update endpoint objects with the sta-
tus of the transfer.

4. Data buffer handler
driving the physical

endpoint

Note: Gray backgrounds represent components that are indirectly involved in a process.

API Routines

 1-10

Status Query

The status query API posts the application with runtime software and
hardware status of the USB module.

Remote wakeup, current USB frame number, and endpoint stall are examples
of the types of status that an application may query during runtime.

Depending on the type of query, the status query APIs access the appropriate
USB resource (hardware or software) and returns the requested status to the
application.

Figure 1–6. Status Query

Application

Status query
API

Endpoint
object

Application
layer

USB driver
layervariables

Internal

USB module
control/status

registers

USB
hardware

Layer

control/status
registers

Endpoint

API sending results
of the query to applications.

Status query API and
retrieves the status
of the hardware and
software and sends
them to the application

Note: Gray backgrounds represent components that are indirectly involved in a process.

Module Drivers

1-11USB Overview

1.3.3 Module Drivers

Data Buffer Handler

The data buffer handler sends and receives data that has been posted by the
data transfer API.

Data buffers are handled on an endpoint basis. The endpoint characteristics
defined during the endpoint object initialization and the data transfer
qualification flags set by the application determine the way each transfer
should be handled. If necessary, the data buffer handler breaks down each
transfer into multiple packets based on the maximum packet size supported
by the endpoint.

Upon completion of a transfer, the data buffer handler sets the
End-Of-Transfer flag in the associated endpoint object. The application can
query the status of the posted data transfer by using the status query API. The
data buffer handler uses DMA channels to move data in and out of the
general-purpose endpoints (endpoints 1-7). The control (endpoint0) transfers
are handled by dedicated data handler routines; hence they require more CPU
overhead than those of general-purpose endpoints. Figure 1–7 illustrates the
data buffer handler.

Module Drivers

 1-12

Figure 1–7. Data Buffer Handler

Application

Data transfer
API

Endpoint
objects

Application
layer

USB driver
layer

variables
Internal

USB
hardware

Layer

Data buffer
handler

Endpoint

Bus

1. Applications posts a data
transfer request

Data transfer API and
data buffer handler
retrieves the address of
the endpoint object.

5. Data moving in or out
of the physical endpoint

2. Data transfer API
posts the transfer

request

3. Data buffer handler retrieves the
information needed to complete
the transfer. The Data Buffer handles
update endpoint objects with the sta-
tus of the transfer.

4. Data buffer handler
driving the physical

endpoint

Note: Gray backgrounds represent components that are indirectly involved in a process.

Event Dispatcher

The event dispatcher traps the USB bus events (bus reset, setup packet
received, suspend request, etc.) and the endpoint event (end of data transfer)
and broadcasts them to the user-selected event handler routines. Event
handler routines are bound with the endpoint objects during the endpoint
object initialization. Only one event handler routine is allowed per active
endpoint.

Module Drivers

1-13USB Overview

In the background, the event dispatcher also broadcasts the endpoint events
to the data buffer handler. The Data Buffer Handler depends on the
End-of-Transfer events to drive data in and out of the active USB endpoints.
Figure 1–8 illustrates the event dispatcher into action.

Figure 1–8. Event Dispatcher
Note: Gray backgrounds represent components that are indirectly involved in a process.

Endpoint
object

Application
layer

USB driver
layer

USB driver
layer

Application
(event handler)

Event
dispatcher object

Endpoint

Data
buffer

handler

generator
Interrupt

Bus

2. Event dispatcher updates
 the USB event flags

1. All USB interrupt events are
trapped by the event dispatcher

3. Event dispatcher retrieves
 the address of the event
 handler routine

4. Event dispatcher calls
 the event handler routine

Endpoint events are dispatched
to the data buffer handler in
the background

USB Configuration and Interfaces

 1-14

1.4 USB Configuration and Interfaces

The USB driver supports single configurations with single interface. At any
time, a configuration is represented by a collection of initialized endpoint
objects.

An application can define multiple configurations by creating multiple arrays
of initialized endpoint objects. You can easily switch among configurations by:

Step 1: Resetting the USB module

Step 2: Calling the hardware initialization API with the array of endpoint
objects representing the desired configuration.

Typical Application Using The CSL USB Module Support Library

1-15USB Overview

1.5 Typical Application Using The CSL USB Module Support Library

Figure 1–9 illustrates a generic representation of a Universal Serial Bus (USB)
application using the various components available to you via the USB Module
Support Library Components.

Figure 1–9. Generic USB Application using CSL USB Module Support Library
Components

USB
data

USB
module

USB event
dispatcher
and data
handler

User’s Application
data
USB

USB host
controller

in PC
(OHCI or UHCI)

USB cable

Intermodule communication using USB
endpoint objects and internal variables

PC

Device

2-1

CSL USB Module Components

This chapter contains descriptions and examples for the symbolic constants,
enumerated data types, data structures and the API routines for the CSL USB
module.

Topic Page

2.1 Symbolic Constants 2-2.

2.2 Enumerated Data Types 2-4.

2.3 USB Data Structures 2-7.

2.4 USB Functions 2-9.

Chapter 2

 2-2

2.1 Symbolic Constants

2.1.1 USB Data Transfer Flags

These qualifying flags are used with the USB Data Transfer API.

Table 2–1. USB Data Transfer Flags

Constant Description

USB_IOFLAG_NONE Default value

USB_IOFLAG_NOSHORT Does not expect or insert a 0-byte packet after a full
size packet.

USB_IOFLAG_SWAP Swaps hi/lo bytes before data is transmited or after
data is received

USB_IOFLAG_LNK Data buffer (transmit or receive) passed is a linked
list

USB_IOFLAG_CAT Concatenates multiple data buffers (linked list) into a
single transfer.

USB_IOFLAG_EOLL Ignores the argument ByteCnt, transfers ends when
the end of the linked list is reached

2.1.2 USB Interrupt Events

These Symbolic Constants are used by the CSL graphical user interface (GUI)
and by the CSL USB Module functions to initialize the Endpoint objects.

Table 2–2. USB Interrupt Events

Constant Description

USB_EVENT_NONE No interrupt is received

USB_EVENT_RESET Bus Reset

USB_EVENT_SOF Start of Frame

USB_EVENT_SUSPEND Bus Suspend

USB_EVENT_RESUME Bus Resume

USB_EVENT_SETUP Setup Packet Received

USB_EVENT_EOT End of posted transfer

2-3

Table 2–2. USB Interrupt Events(Continued)

Constant Description

USB_EVENT_STPOW Setup Packet Overwrite

USB_EVENT_PSOF Pre-Start of Frame

USB_EVENT_HINT Host Interrupt

USB_EVENT_HERR Host Error

NOTE: USB_EVENT_EOT is not an actual hardware interrupt. This flag is set
by the USB event dispatcher to indicate the completion of the latest posted
transaction for an endpoint.

2-4

2.2 Enumerated Data Types

2.2.1 Endpoint Numbers

Endpoint Numbers are used by either the CSL USB GUI or the CSL USB
Module functions to initialize the USB Endpoint Objects.

USB_EpNum

Data Type USB_EpNum;

Members OUT Endpoints

USB_OUT_EP0 = 0x00 /* Out Endpoint 0 – Control Out Endpoint */

USB_OUT_EP1 = 0x01 /* Out Endpoint 1 */

USB_OUT_EP2 = 0x02 /* Out Endpoint 2 */

USB_OUT_EP3 = 0x03 /* Out Endpoint 3 */

USB_OUT_EP4 = 0x04 /* Out Endpoint 4 */

USB_OUT_EP5 = 0x05 /* Out Endpoint 5 */

USB_OUT_EP6 = 0x06 /* Out Endpoint 6 */

USB_OUT_EP7 = 0x07 /* Out Endpoint 7 */

IN Endpoints

USB_IN_EP1 = 0x09 /* IN Endpoint 1

USB_IN_EP0 = 0x08 /* IN Endpoint 0 – Control IN Endpoint */

USB_IN_EP2 = 0x0A /* IN Endpoint 2 */

USB_IN_EP3 = 0x0B /* IN Endpoint 3 */

USB_IN_EP4 = 0x0C /* IN Endpoint 4 */

USB_IN_EP5 = 0x0D /* IN Endpoint 5 */

USB_IN_EP6 = 0x0E /* IN Endpoint 6 */

USB_IN_EP7 = 0x0F /* IN Endpoint 7 */

Enumerated Data Types

2-5

2.2.2 USB Transfer Types

The USB Transfer types are used by either the CSL USB GUI or CSL USB
functions to initialize the USB Endpoint Objects.

USB_XferType

Data Type USB_XferType;

Members Transfer Type

USB_CTRL = 0x00 /* Endpoint functions as a control endpoint */

USB_BULK = 0x01 /* Endpoint functions as a bulk endpoint. */

USB_INTR = 0x02 /* Endpoint functions as an interrupt endpoint. */

USB_ISO = 0x03 /* Endpoint functions as an isochronous endpoint. */

USB_HPORT = 0x04 /* Endpoint functions as a Host Port */

NOTE: USB_HPORT is a special feature and is not a part of USB specifications. For
details on host port mode, please refer to the TMS320C55x DSP Peripheral Reference
Guide (SPRU317B).

Enumerated Data Types

 2-6

2.2.3 USB Device Number

Device numbers are used by Device Control, Status Query and Data Transfer
functions.

USB_DevNum

Data Type USB_DevNum;

Members Device Number

USB0 = 0x00 /* 1st USB module */

USB1 = 0x01 /* 2nd USB module – Use only if the DSP supports two USB
Modules. */

USB2 = 0x02 /* 3rd USB module – Use only if the DSP supports three
USB Modules. */

NOTE: At this time, USB0 is the only supported device.

Comments Device Numbers are implemented to support multiple USB modules in a single
DSP. Currently, only USB0 is supported.

Example None

2.2.4 USB Boolean

USB_Boolean

Data Type USB_boolean

Members USB_FALSE = 0,
USB_TRUE = 1

Comments None

Example None

USB Data Structures

2-7

2.3 USB Data Structures

Every active USB endpoint is associated with an endpoint object that keeps
track of the endpoint related initialization and runtime information.

2.3.1 USB Setup Packet

Data Structure to hold USB setup packetUSB_SetupStruct

Structure USB_SetupStruct

Members int New /* New = 1, Structure holds new setup packet */

Uint16 bmRequest Type /* Byte 0 of setup packet */

Uint16 bRequest /* Byte 1 of setup packet */

Uint16 wValue /* Byte 2 and 3 of setup packet */

Uint16 wIndex /* Byte 4 and 5 of setup packet */

Uint16 wLength /* Byte 6 and 7 of setup packet */

Comments Data structure to hold the USB setup packet. A function call to USB_getSetup-
Packet (USB_DevNum DevNum, USB_SetupStruct *USB_Setup) returns the
most recent setup packet.

Example None

2.3.2 Data Structure

Data Structure to send and receive USB data as a linked listUSB_DataStruct

Structure USB_DataStruct

Members

Uint16 Bytes; /* Total number of bytes in the buffer */

Uint16 pBuffer; /* pointer to the start of buffer */

struct USB_DataStructDef *pNextBuffer; /* pointer to the next structure */

Comments USB_DataStruct is used by the USB Data Transfer API to send and receive
USB data in linked list form.

Data Structures

 2-8

2.3.3 USB Endpoint Object

The Endpoint Objects hold USB endpoint related initialization and runtime
information.

Data Structure for USB Endpoint ObjectsUSB_EpObj

Structure USB_EpObj, *USB_EpHandle;

Members

USB_EpNum EpNum; /* USB endpoint number */

USB_XferType XferType; /* USB xfer type supported by the endpoint */

Uint16 MaxPktSiz; /* Max pkt size supported by the endpoint */

Uint16 EventMask; /* OR’ed value of USB_EVENTS. The USB */
/* event dispatcher will call the */
/* ISR if the event matches the EventMask */

USB_EVENT_ISR Fxn; /* Pointer to USB event ISR */

Uint16 DataFlags; /* OR’ed combination of USB_DATA_IN */
/* OUT_FLAGS */

Uint16 Status; /* Reserved for future use */

Uint16 EDReg_SAddr; /* Endpoint desc reg block start addr. 2 regs */
/* for EP0 and 6 regs for all others. */

Uint16 DMA_SAddr; /* DMA reg block start addr. Used ONLY for */
/* EP1 - EP7 */

Uint16 TotBytCnt; /* Total number of bytes to xfer */

Uint16 BytInThisSeg; /* # of bytes in the active node of the linked list */

Uint16 *pBuffer; /* Active data buffer pointer */

USB_DataStruct *pNextBuffer; /* Pointer to the next node of the linked list */

Uint16 EventFlag; /* Flag to indicate the event that caused the */
 /* USB interrupt */

Comments User’s code should not modify Endpoint Objects directly.

USB Functions

2-9

2.4 USB Functions

Table 2–3. Summary of USB API functions

(a) USB Event Dispatcher

Function Purpose See page...

USB_evDispatch Sets the USB event flags 2-11

(b) Software Initialization

Function Purpose See page...

USB_initEndptObj Initializes an endpoint object 2-12

USB_setAPIVectorAddress Initializes the USB API vector pointer 2-14

(c) Software Control

Function Purpose See page...

USB_setRemoteWakeup Sets or clears the remote wakeup feature 2-15

USB_abortTransaction Aborts a Data transfer in progress 2-16

USB_abortAllTransaction Aborts all Data transfers in progress 2-16

(d) Module Initialization

Function Purpose See page ...

USB_init Initializes the USB Module 2-18

(e) Data Transfer

Function Purpose See page ...

USB_getSetupPacket Reads the setup packet from the setup data buffer 2-24

USB_postTransaction Transmits or receives USB data through an endpoint 2-25

USB Functions

 2-10

(f) Module Control

Macro Purpose See page ...

USB_initPLL Initializes the USB PLL module 2-20

USB_connectDev Connects the USB module to the upstream port 2-20

USB_disconnectDev Disconnects the USB module from the upstream port 2-21

USB_issueRemoteWakeup Issues a remote wakeup signal to the host 2-21

USB_resetDev Reset the USB module 2-22

USB_setDevAddr Sets the USB device address 2-22

USB_stallEndpt Stalls an endpoint 2-23

USB_clearEndptStall Clears an endpoint stall 2-23

(g) Status Query

Function Purpose See page ...

USB_getFrameNo Returns the current Frame Number 2-30

USB_getEvents Reads and clears all pending USB_EVENTS for an
endpoint

2-30

USB_getRemoteWakeupStat Gets the status of the remote wakeup feature 2-32

USB_peekEvents Reads all the pending USB_EVENTS for an endpoint 2-32

USB_isTransactionDone Returns the Status of a previously posted data
transfer request

2-34

USB_bytesRemaining Returns the number of bytes awaiting transfer 2-35

USB_getEndptStall Determines if an endpoint is stalled 2-36

(h) Miscellaneous functions

Function Purpose See page ...

USB_epNumToHandle Returns a handle to an endpoint object 2-37

USB Functions

2-11

2.4.1 USB Events Dispatcher

Traps and broadcasts USB events to user selected event handler routinesUSB_evDispatch

Function void USB_evDispatch(void);

Category Module Driver

Arguments None

Return Value None

Comments Any USB application build on CSL USB component must use this USB event
dispatcher function to handle the USB interrupts. There are two ways to use
this function. The first method is interrupt polling. This is where the user’s code
polls the USB interrupt flag bit periodically and calls the USB Event Dispatcher
function every time the USB interrupt flag is set. The second method is to en-
capsulate the USB Event Dispatcher function in an ISR and set up the DSP
interrupt vector table to service this ISR every time a USB event occurs.

Example 1 Polling Method:

if(IFR0 & IFR0_USBMSK)
 {
 IFR0 |= IFR0_USBMSK; /* Clear USB interrupt flag */
 USB_evDispatch(); /* Handle all USB events */
 }

Example 2 ISR Method:

interrupt void USB_ISR(void)
{
 USB_evDispatch(); /* call USB event dispather to */

/* handle all USB events */

}

USB Functions

 2-12

2.4.2 Software Initialization

Initializes an endpoint objectUSB_initEndptObj

Function USB_Boolean USB_initEndptObj (USB_DevNum DevNum,
 USB_EpHandle hEp,
 USB_EpNum EpNum,
 USB_XferType XferType,
 Uint16 MaxPktSiz,
 Uint16 EvMsk,
 USB_EVENT_ISR Fxn);

Category Software Initialization

Arguments DevNum USB device number, enumerated data type of USB_DevNum.
Currently, the only active device number available is USB0.

hEp Handle or a pointer to an initialized endpoint object

EpNum USB endpoint number, enumerated data type of USB_EpNum

XferType Type of data transfer to be supported by the endpoint,
enumerated data type of USB_XferType.

MaxPktSiz Max data packet size supported by the endpoint

EvMsk ORed combination of USB Interrupt Events to be broadcasted
to the associated Endpoint event handler

Fxn Associated Endpoint event handler routine

Return Value USB_TRUE if the initialization was successful; otherwise, USB_FALSE is
returned.

Description Initializes an endpoint object so that it may be used with other USB functions
at a later time.

Comments The event handler must be in void Fxn (void) form. Do not use Interrupt
Pragma to define a USB Event handler routine. Once the program control
branches to Fxn, the code is free to call other functions or post a DSP/BIOS
software interrupt.

This function can be replaced by using the C55x Chip Support Library GUI to
create an initialized endpoint object.

USB Functions

2-13

Example The following example initializes an endpoint object endpoint 0 Out (control
OUT endpoint):

/* create an instance of an endpoint object */

USB_EpObj EndptObjOut0;

/* USB driver will call the event handler routine */

/* associated with this endpoint if any of the */

/* following events are detected */

Uint16 event_mask = USB_EVENT_RESET | USB_EVENT_SETUP |

 USB_EVENT_SUSPEND | USB_EVENT_RESUME |

 USB_EVENT_EOT;

extern void Endpt0EvHndler(); // Endpoint0 event handler

 routine

USB_initEndptObj(USB0, // endpoint is associated with

 USB0 module

&EndptObjOut0, // handle to endpoint object

USB_OUT_EP0, // endpoint associated with

 the endpoint object

USB_CTRL, // transfer type this endpoint

 will support

0x40, // max packet the endpoint can

 handle

event_mask, // call the event handler if

 these events are detected

Endpt0EvHndler); // endpoint even handler

 routine

USB Functions

 2-14

Initializes the API vector pointerUSB_setAPIVec-
torAddress

Category Software Initialization

Function void USB_setAPIVectorAddress()

Arguments None

Return Value None

Comments USB_setAPIVectorAddress allows the user application to access the CSL
USB API via a relocatable function call table.

USB buffer RAM locations 0x667E and 0x667F are reserved to point to the API
Vector Table. These are 8-bit locations and hold the two buytes of a 24-bit
address. The lower byte is assumed to be 0, thus forcing the table to be
allocated on a 256-byte boundary.

Before you call a CSL USB function, you must initialize the API Vector pointer
by calling USB_setAPIVectorAddress(). Failure to initialize the API Vector
pointer will result in a malfunction within the application.

Example void USB_setAPIVectorAddress()

USB Functions

2-15

2.4.3 Software Control

Sets or clears the remote wakeup featureUSB_setRemoteWa-
keup

Function void USB_setRemoteWakeup(USB_DevNum DevNum, USB_Boolean
 RmtWkpStat);

Category Software Control

Arguments DevNum USB device number, enumerated data type of
USB_DevNum. Currently, the only active device number

 available is USB0.

RmtWkpStat: If USB_TRUE, the driver sets the remote wakeup feature and
a subsequent call to USB_issueRemoteWakeup() causes

 the driver to generate a remote signal on the bus. If
USB_FALSE, the driver clears the remote wakeup feature
and a subsequent call to USB_issueRemoteWakeup() does
not generate a remote signal on the bus.

Return Value None

Comments The Host must set the remote wake up feature first. An application must verify
if the remote wakeup feature is set before generating a remote wakeup signal.

Example The following example enables the remote wakeup feature for USB0:

USB_setRemoteWakeup(USB0, USB_TRUE);

The following example disables the remote wakeup feature for USB0:

USB_setRemoteWakeup(USB0, USB_FALSE);

USB Functions

 2-16

Aborts all data transfersUSB_AbortAll-
Transaction

Function USB_Boolean USB_abortAllTransaction(USB_DevNum DevNum);

Category Software Control

Arguments DevNum USB device number, enumerated data type of USB_DevNum.
Currently, the only active device number available is USB0.

Return Value USB_TRUE if all transfers have been successfully terminated; otherwise,
USB_FALSE is returned.

Description USB_AbortAllTransaction terminates all data transfers in progress and makes
endpoints free for new data transfer requests.

Comments None

Example The following example aborts all transfers in progress via the USB0 module
and frees up the endpoints to post new data transfer requests:

USB_abortAllTransaction(USB0);

Aborts a data transfer in progressUSB_Aborttran-
saction

Function USB_Boolean USB_abortTransaction(USB_EpHandle hEp);

Category Software Control

Arguments hEp Handle or a pointer to an initialized endpoint object

Return Value USB_TRUE if transfer has been successfully terminated; otherwise,
USB_FALSE is returned.

Description Terminates a data transfer in progress, allowing a new data transfer request
to be posted.

Comments The endpoint handle determines the endpoint associated with the data trans-
fer in progress.

USB Functions

2-17

Example The following example aborts a transfer in progress through endpoint 6
OUT and requests a new transfer to fill up usb_OutData2 buffer with 17
bytes of data from the host:

Uint16 usb_OutData2[33]; /* 2+64 byte buffer */

 . /* the first two bytes indicate the */

 . /* actual number of bytes received */

if(!USB_isTransactionDone(&EndptObjOut6))

 /* if transfer in progress */

 USB_abortTransaction((&EndptObjIn6)

/* abort the transfer */

USB_postTransaction(&EndptObjOut6, 17, &usb_OutData2,

USB_IOFLAG_NONE);

USB Functions

 2-18

2.4.4 Module Initialization

Initializes the USB_Module to operation modeUSB_init

Category Module Initialization

Function USB_Boolean USB_init (USB_DevNum DevNum,
 USB_EpHandle hEpObj[],
 Uchar PSofTmrCnt);

Arguments DevNum USB device number, enumerated data type of USB_DevNum.
Currently, the only active device number available is USB0.

hEpObj[] Pointer to a NULL terminated array of handles (pointers) of
 initialized endpoint objects. Maximum number of handles in the

array cannot be more than 16 (excluding the NULL handle).

PSofTmrCnt 8-bit counter value for the pre SOF timer

Return Value USB_TRUE if the module initialization is successful, otherwise, USB_FALSE
is returned.

Description Initializes the USB_Module to operation mode.

Comments Upon successful return from the function call, the USB module is ready for op-
eration (all registers are configured and unmasked interrupts are enabled).
Once the USB module is initialized, it is necessary that the application unmask
the USB interrupt mask bit in the IER0 register and enable the DSP global in-
terrupt. Finally, the application must call the function USB_connectDev(USB0)
to connect the USB module to the USB bus.

If DSP/BIOS is used, the USB interrupt must be enabled through the BIOS
hardware interrupt configuration too.

If the PSofTmrCat is not zero, then the pre-SOF interrupt will occur
approximately (PSofTmrCnt) x 16cycles(12Mhz clock) prior to every SOF.

Example The following example initializes the USB0 module to support a USB device
with one interrupt and two bulk endpoints in addition to two control endpoints.
The function call also enables the pre-SOF interrupt. It is assumed that the
endpoint objects are initialized prior to initializing the USB Module:

USB Functions

2-19

/* Control endpoint objects */

USB_EpObj EndptObjOut0, EndptObjIn0;

/* Bulk endpoint objects */

USB_EpObj EndptObjOut2, EndptObjIn2;

/* Interrupt endpoint object */

USB_EpObj EndptObjIn3;

/* create a Null Terminated array of endpoint objects */

USB_EpHandle hEpObjArray[] = {& EndptObjOut0, & EndptObjIn0,

 & EndptObjOut2, &EndptObjIn2,

 & EndptObjIn3, NULL};

{

/* Initialize endpoint objects here */

}

USB_Boolean USB_init(USB0, hEpObjArray, 0x40);

USB Functions

 2-20

2.4.5 Module Control

Initializes the USB PLLUSB_initPLL

Function void USB_initPLL(Uint16 inclk, Uint16 outclk, Uint16 plldiv);

Category Module Control

Arguments inclk: Input clock (supplied at CLKIN pin) frequency (in MHz)
outclk: Desired clock frequency (in MHz) for the USB modules The outclk

must be 48 MHz for the proper operation of the USB module.
plldiv: Input clock (supplied at CLKIN pin) divide down value, used for
 USB PLL_enable as well as USB PLL bypass mode

Return Value None

Comments pllmult = (outclk * (plldiv+1)) / inclk

if pllmult > 1, outclk = (pllmult / (plldiv + 1)) * inclk
if pllmult < 1, outclk = (1 / (plldiv + 1)) * inclk

Example The following example initializes the USB PLL to generate a 48 MHz USB
clock from a 12 MHz source clock:

USB_initPLL(12, 48, 0);

Connects the USB module to the upstream portUSB_connectDev

Function void USB_connectDev(USB_DevNum DevNum);

Category Module Control

Arguments DevNum USB device number, enumerated data type of USB_DevNum.
Currently, the only active device number available is USB0.

Return Value None

Comments Connects the USB module to the upstream port (D+ pull-up enabled).

Example The following example connects USB0 to the bus:

USB_connectDev(USB0);

USB Functions

2-21

Disconnects the USB module from the upstream portUSB_disconnectDev

Function void USB_disconnectDev(USB_DevNum DevNum);

Category Module Control

Arguments DevNum USB device number, enumerated data type of USB_DevNum.
Currently, the only active device number available is USB0.

Return Value None

Comments Disconnects the USB module from the upstream port (D+ pull-up disabled).

Example The following example disconnects USB0 from the bus:

USB_disconnectDev(USB0);

Issues a remote wakeup signal to the hostUSB_issueRemoteWa-
keup

Function USB_Boolean USB_issueRemoteWakeup(USB_DevNum DevNum);

Category Module Control

Arguments DevNum USB device number, enumerated data type of USB_DevNum.
Currently, the only active device number available is USB0.

Return Value USB_TRUE if successful, else USB_FALSE (if remote wakeup feature is not
set prior to calling this function).

Comments The USB driver generates a remote wakeup signal on the bus only if the re-
mote wakeup is enabled. An application must enable the remote wakeup fea-
ture by calling the USB_setRemoteWakeup() routine when a Set Remote Wa-
keup request is received from the host.

Example The following example causes the USB0 to generate a remote wakeup signal
on the bus if the host has already set the remote wakeup feature:

USB_Boolean status;

status = USB_issueRemoteWakeup (USB0)

USB Functions

 2-22

Resets the USB moduleUSB_resetDev

Function void USB_resetDev(USB_DevNum DevNum);

Category Module Control

Arguments DevNum USB device number, enumerated data type of
USB_DevNum. Currently, the only active device number
available is USB0.

Return Value None

Comments Once the module has been reset, the control and status registers are returned
to power-up reset values and the USB module is disconnected from the up-
stream port.

Example The following example resets all the status and control registers of USB0 to
power-on reset value and disconnects the USB module from the bus:

USB_resetDev (USB0);

Sets the USB device addressUSB_setDevAddr

Function void USB_setDevAddr(USB_DevNum DevNum, Uchar addr);

Category Module Control

Arguments DevNum USB device number, enumerated data type of
USB_DevNum. Currently, the only active device number
available is USB0.

addr 7-bit USB device address

Return Value None

Comments None

Example The following example sets the address of USB0 to 03h. After execution of the
function the USB module responds to this address:

USB_setDevAddr (USB0, 0x03);

USB Functions

2-23

Stalls an endpointUSB_stallEndpt

Function void USB_stallEndpt(USB_EpHandle hEp);

Category Module Control

Arguments hEp Handle or a pointer to an initialized endpoint object

Return Value None

Description Stalls an endpoint.

Comments The endpoint handle determines the endpoint to stall.

Example The following example stalls endpoint 5 IN:

USB_stallEndpt (&EndptObjIn5);

Clears an endpoint stallUSB_clearEndpt-
Stall

Function void USB_clearEndptStall(USB_EpHandle hEp);

Category Module Control

Arguments hEp Handle or a pointer to an initialized endpoint object

Return Value None

Description Clears an endpoint stall.

Comments The endpoint handle determines the endpoint to bring out of stall.

Example The following example clears the stall condition of endpoint 5 IN:

USB_clearEndptStall (&EndptObjIn5);

USB Functions

 2-24

2.4.6 Data Transfer

Read the setup packet from the setup data bufferUSB_getSetup-
Packet

Category Data Transfer

Function USB_Boolean USB_getSetupPacket(USB_DevNum DevNum,
USB_SetupStruct *USB_Setup);

Arguments DevNum USB device number, enumerated data type of
USB_DevNum. Currently, the only active device number
available is USB0.

*USB_Setup Pointer to a structure of type USB_SetupStruct

Return Value USB_TRUE if successful. Otherwise, USB_FALSE. If successful, the
USB_Setup structure holds the new setup packet.

Description None

Comments None

Example The following example returns the data from the most recent setup packet
received by USB0:

USB_SetupStruct USB0_SetupPkt;

 .

 .

void USB_Endpt0EventHandler(void)

{

 .

 .

 if(USB_getEvents(EndptObjIn0) & USB_EVENT_SETUP)

 {

 if(USB_getSetupPacket(USB0, USB0_SetupPkt) == USB_TRUE)

 {

/* Application code for handling setup packet. */
 .

 .

 }

 }

 .

}

USB Functions

2-25

Transmit or receive USB data through an endpoint.USB_postTransac-
tion

Category Data Transfer

Function USB_Boolean USB_postTransaction(USB_EpHandle hEp,
 Uint16 ByteCnt,
 void *Data,
 USB_FLAGS Flags);

Arguments hEp Handle or a pointer to an initialized endpoint object

ByteCnt Total number of bytes in the buffer pointed by *Data

*Data A pointer to a data buffer or a linked list of type
USB_DataStruct

Flags ORed combination of USB Data Transfer Flags

Return Value If the previously posted transfer is not completed, USB_FALSE is returned.
USB_TRUE is returned if the data transfer request was posted successfully.

Description

Comments The endpoint handle determines if the data moves in or out of the USB module.
If the USB_IOFLAG_EOT event mask is set and an event handler routine is
supplied during the endpoint object initialization, the USB event dispatcher
calls the associated event handler routine at the end of the handler routine.

Known Limitations: This limitation applies to OUT Endpoints only if the data
buffer is a linked list and USB_IOFLAG_CAT is set. If there is an instance
where the host prematurely terminates the data transfer (with or without a
short packet), the driver will attempt to fill the rest of the data buffers in the
linked list.

As a result, the posted transaction appears to be in progress, and a call to
USB_isTransactionDone (..) will return USB_FALSE.

If the current node is the very last node of the linked list, the driver treats this
as a termination of transfer and a call to the routine USB_isTransactionDone
(..) returns USB_TRUE.

Reasons for the limitations: In order to move data more efficiently, the
driver, when possible, programs the DMA active/reload registers at the same
time. It is beyond the scope of the driver to anticipate an early termination of
data transfer and not program the DMA Reload registers.

USB Functions

 2-26

Workaround: If there are concerns that the host may prematurely terminate
the transfer, then avoid using the USB_IOFLAG_CAT with a linked list for OUT
transfers.

Affected Endpoints: OUT [1..7]

NOTE: Since endpoint0 transfers are not done by the USB dedicated DMA,
 endpoint 0 IN/OUT transfers are not affected.

Example Declare three standard and one linked list data buffer to be used by the data
transfer examples (A C55x word holds two butes of USB data in BigEndian
mode):

USB_EpObj EndptObjIn2;

USB_EpObj EndptObjOut3;

Uint16 usb_InData1[] = {0, 0x0100, 0x0302, 0x0004};

Uint16 usb_InData2[] = {0, 0x1110, 0x1312, 0x1514, 0x1716};

Uint16 usb_InData3[] = {0, 0x0100, 0x03002,

0x7D7C, 0x7F7E}; // 128 bytes of data

uint16 USB_OutData[5]; //4-byte buffer for USB OUT data

USB_DataStruct usb_InLnk2 =

{

 8, // length of data buffer in bytes

 (Uint16 *)&usb_InData2, // pointer to the data buffer

 NULL // pointer to next linked list

};

USB_DataStruct usb_InLnk1 =

{

 5, // length of data buffer in bytes

 (Uint16 *)&usb_InData1, // pointer to the data buffer

 &usb_InLnk2 // pointer to next linked list

};

 .

 .

Sending Data to the Host

Case 1a:

Send 4 bytes from data buffer usb_InData1[] through Endpoint 2 IN. The data
appears on the bus in the following order:
0x00, 0x01, 0x02, 0x03

USB_postTransaction(&EndptObjIn2, 4, &usb_InData1,

USB_IOFLAG_NONE);

USB Functions

2-27

 .

Case 1b:

Send 4 bytes from data buffer usb_InData1[] through Endpoint 2 IN with
high byte and low byte swapped. The data appears on the bus in the
following order:
0x01, 0x00, 0x03, and 0x02

USB_postTransaction(&EndptObjIn2, 4, &usb_InData1,

USB_IOFLAG_SWAP);

Case 1c:

Send 96 bytes from data buffer usb_InData3[] through Endpoint 2 IN. Do
not insert a 0-byte packet if the transfer ends with a full size packet. The
data appears on the bus in the following order:
0x00 0x01 0x02, . . . 0x5E, and 0x5F

USB_postTransaction(&EndptObjIn2, 4, &usb_InData1,

USB_IOFLAG_NOSHORT);

Case 2a:

Send 10 bytes (all 5 bytes from usb_InData1[] and the rest from
usb_InData2[]) of data through Endpoint 2 IN. Generate separate transfers
for usb_InData1[] and usb_InData2[].

The data appears on the bus in the following order:
0x00, 0x01, 0x02, 0x03, and 0x04, for the first transfer
0x10, 0x11, 0x12, 0x13, and 0x14 for the second transfer

USB_postTransaction(&EndptObjIn2, 10, &usb_InLnk1,

USB_IOFLAG_LNK);

Case 2b:

Send 10 bytes (all 5 bytes from usb_InData1[] and the rest from
usb_InData2[]) of data through Endpoint 2 IN. Concatenate usb_InData1[]
and usb_InData2[] to send them as a single transfer.

The data appears on the bus in the following order:
 0x00, 0x01, 0x02, 0x03, 0x04, 0x10, 0x11, 0x12, 0x13, and 0x14.

USB_postTransaction(&EndptObjIn2, 10, &usb_InLnk1,

USB_IOFLAG_LNK|USB_IOFLAG_CAT);

USB Functions

 2-28

Case 2c:

Same as case 2a except that no 0-byte packets are inserted if any transfer
ends with a full size data packet.

USB_postTransaction(&EndptObjIn2, 10, &usb_InLnk1,

USB_IOFLAG_LNK|USB_IOFLAG_NOSHORT);

Case 3a:

Send all the data bytes in the linked list usb_InLnk1 through Endpoint 2 IN.
Generate separate transfers for each data buffer in the list. The transfer
ends when the end of the linked list is reached. A NULL pointer to the next
node indicates the end of the linked list.

The data appears on the bus in the following order:
0x00, 0x01, 0x02, 0x03, and 0x04 for the first transfer
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, and 0x17 for the second
transfer.

USB_postTransaction(&EndptObjIn2, 0, &usb_InLnk1,

USB_IOFLAG_LNK|USB_IOFLAG_EOLL);

Case 3b:

Send all the data bytes in the linked list usb_InLnk1 through Endpoint 2 IN.
Concatenate all the data buffers in the list to send them as a single transfer.
The transfer ends when the end of the linked list is reached. A NULL
pointer to the next node indicates the end of the linked list.

The data will appear on the bus in the following order:
0x00, 0x01, 0x02, 0x03, 0x04, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
and 0x17

USB_postTransaction(&EndptObjIn2, 0, &usb_InLnk1,

USB_IOFLAG_LNK|USB_IOFLAG_CAT|USB_IOFLAG_EOLL);

USB Functions

2-29

Case 3c:

Same as case 3b except that no 0-byte packets are inserted if the transfer
ends with a full size data packet.

USB_postTransaction(&EndptObjIn2, 0, &usb_InLnk1,

USB_IOFLAG_LNK|USB_IOFLAG_CAT|USB_IOFLAG_EOLL|USB_IOFLAG_NOSHORT);

.

while(!USB_isTransactionDone(&EndptObjIn2)); /* wait until

last posted transfer is done */

USB_postTransaction(&EndptObjIn2, 10, &usb_InLnk1,

USB_IOFLAG_LNK);

Receiving Data from the host:

The function call examples shown above are also valid for receiving data
from a USB host. To receive data, the pointer to the endpoint object
passed, should be associated with a USB out Endpoint. For example, the
following function call will receive 8-bytes of data in a USB_outData[] buffer.

USB_postTransaction (&EndptObjOut3, 8, &USB_outData,

 USB_IOFLAG_NONE);

Handling 0-byte Control Handshake Packets

Case 4a:

Send a 0-byte handshake packet to end a setup packet. Sending a NULL
data buffer pointer is a special case supported only for control endpoints to
send and receive a 0-byte handshake packet. Sending a NULL buffer
pointer to the USB driver for data transfer through any other endpoint
causes the driver to fail.

USB_postTransaction(&EndptObjIn0, 0, NULL, USB_IOFLAG_NONE);

Case 4b:

Receive a 0-byte handshake packet to end a setup packet. Sending a
NULL data buffer pointer is a special case supported only for control
endpoints to send and receive a 0-byte handshake packet. Sending a
NULL buffer pointer to the USB driver for data transfer through any other
endpoint causes the driver to fail.

USB_postTransaction(&EndptObjOut0, 0, NULL, USB_IOFLAG_NONE);

USB Functions

 2-30

2.4.7 Status Query

Returns the current USB frame numberUSB_getFrameNo

Function Uint16 USB_getFrameNo(USB_DevNum DevNum);

Category Status/Query

Arguments DevNum USB device number, enumerated data type of
USB_DevNum. Currently, the only active device number
available is USB0.

Return Value Current USB Frame Number

Comments None

Example The following example returns the current frame number for the USB0 module:

Uint16 CurFrmNo;

CurFrmNo = USB_getFrameNo (USB0);

Reads and clears all pending USB_EVENTSUSB_getEvents

Function USB_EVENT_MASK USB_getEvents(USB_EpHandle hEp);

Category Status/Query

Arguments hEp Handle or pointer to an initialized endpoint object

Return Value ORed combination of all the pending USB_EVENTS associated with a
particular endpoint.

Description Get all the pending USB_EVENTS

Comments Calling this function also clears all the pending USB_EVENTS associated with
a particular USB endpoint.

USB Functions

2-31

Example The following example returns all the events that occurred at Endpoint 0 OUT
and clears the internal variable that holds the Endpoint 0 OUT events:

USB_EpObj EndptObjOut0;

 .

 .

void USB_Endpt0EventHandler(void)

{

 USB_EVENT_MASK mask;

 .

 .

 mask = USB_getEvents(EndptObjOut0);

 if(mask & USB_EVENT_RESET)

 {

/* Application code for handling the event. */

 .

 .

 }

 if(mask & USB_EVENT_SETUP)

 {

/* Application code for handling the event. */

 .

 .

 }

 .

 .

}

USB Functions

 2-32

Get the status of the remote wakeup featureUSB_getRemoteWa-
keupStat

Function USB_Boolean USB_getRemoteWakeupStat(USB_DevNum DevNum);

Category Status Query

Arguments DevNum USB device number, enumerated data type of
USB_DevNum. Currently, the only active device number
available is USB0.

Return Value USB_TRUE if the remote wakeup feature is enabled in the software.
USB_FALSE if the remote wakeup feature is disabled in the software.

Comments An application must verify if the remote wakeup feature is set before
generating a remote wakeup signal.

Example The following example informs the firmware whether the remote wakeup
feature for USB0 is set or not:

 USB_Boolean RmtWkpStat;

 RmtWkpStat = USB_getRemoteWakeupStat (USB0);

Reads all pending USB_EVENTSUSB_peekEvents

Function USB_EVENT_MASK USB_peekEvents(USB_EpHandle hEp);

Category Status/Query

Arguments hEp Handle or pointer to an initialized endpoint object

Return Value ORed combination of all the pending USB_EVENTS associated with a
particular endpoint.

Description

Comments Calling this function does not clear the USB_EVENTS associated with a par-
ticular USB endpoint.

USB Functions

2-33

Example The following example returns all the events that occurred at Endpoint 0 OUT,
but does not clear the internal variable that holds the Endpoint 0 OUT events:

USB_EpObj EndptObjOut0;

 .

 .

void USB_Endpt0EventHandler(void)

{

 .

 .

 if(USB_getEvents(EndptObjOut0) & USB_EVENT_RESET)

 {

/* Application code for handling the event. */

 .

 .

 }

 if(USB_getEvents(EndptObjOut0) & USB_EVENT_SETUP)

 {

/* Application code for handling the event. */

 .

 .

 }

 .

 .

}

USB Functions

 2-34

Returns the status of a previously posted data transfer requestUSB_isTranscac-
tionDone

Function USB_Boolean USB_isTransactionDone(USB_EpHandle hEp);

Category Status/Query

Arguments hEp Handle or a pointer to an initialized endpoint object

Return Value USB_TRUE, if the previously posted transfer is completed, otherwise,
USB_FALSE.

Description None

Example Send 5 bytes from data buffer usb_InData1[] through Endpoint 6 IN Wait for
transfer to complete and then send 8 bytes from usb_InData2[].

Uint16 usb_InData1[] = {0, 0x0100, 0x0302, 0x0004};

Uint16 usb_InData2[] = {0, 0x1110, 0x1312, 0x1514, 0x1716};

 .

 .

USB_postTransaction(&EndptObjIn6, 5, &USB_InData1,

USB_IOFLAG_NONE);

 .

while(!USB_isTransactionDone(&EndptObjIn6)); /* wait until

last posted transfer is done */

USB_postTransaction(&EndptObjIn6, 8, &USB_InData2,

USB_IOFLAG_NONE);

USB Functions

2-35

Returns the number of bytes awaiting transferUSB_bytesRe-
maining

Function USB_BYTE_COUNT USB_bytesRemaining(USB_EpHandle hEp);

Category Status/Query

Arguments hEp Handle or a pointer to an initialized endpoint object

Return Value The number of bytes remaining to be transferred. Return value is 0xFFFF if
USB_IOFLAG_NOBCNT flag is used while posting the transfer request.

Description Returns the number of bytes awaiting transfer from the previously posted data
transfer request.

Comments The endpoint handle determines the endpoint the data moves through.

Example The following example returns the number of bytes to be received through
endpoint-6 OUT to fill a buffer with 49 bytes of data from the host:

USB_BYTE_COUNT bytes_to_recv

Uint16 usb_OutData1[65]; /* 128 byte buffer */

 .

 .

USB_postTransaction(&EndptObjOut6, 49, &usb_OutData1,

 USB_IOFLAG_NONE);

 .

if(!USB_isTransactionDone(&EndptObjOut6)) /* if transfer is

 not compete */

 bytes_to_recv = USB_bytesRemaining(&EndptObjIn6);

USB Functions

 2-36

Determines if an endpoint is stalledUSB_getEndpt-
Stall

Function USB_Boolean USB_getEndptStall(USB_EpHandle hEp);

Category Status/Query

Arguments hEp Handle or a pointer to an initialized endpoint object

Return Value USB_TRUE if the endpoint is stalled, otherwise, USB_FALSE is returned.

Description Determines if an endpoint is stalled.

Comments The endpoint handle selects the endpoint.

Example The following example returns the stall condition of endpoint 5 IN:

USB_Boolean EndptStallStat;

 .

 .

EndptStallStat = USB_getEndptStall (&EndptObjIn5);

USB Functions

2-37

2.4.8 Miscellaneous

Returns a handle or a pointer to an endpoint objectUSB_epNumTo-
Handle

Function USB_EpHandle USB_epNumToHandle(USB_DevNum DevNum, Uchar
Endpt);

Category Misc

Arguments DevNum USB device number, enumerated data type of USB_DevNum.
Currently, the only active device number available is USB0.

Endpt 8-bit endpoint number per USB specifications:
0x00 -> Endpt 0 Out, 0x01 -> Endpt 1 Out
0x80 -> Endpt 0 In, 0x81 -> Endpt 1 In

Return Value A handle or a pointer to the endpoint object if a valid endpoint object exists,
otherwise a NULL handle.

Description Delivers a handle or a pointer to an endpoint.

Comments Returns a handle to an endpoint object, which can be used to call other USB
functions.

This routine is helpful when the application does not have any prior knowledge
of the endpoint it is handling. For example, if the host request to stall an end-
point, the application can read the endpoint number from the setup packet, re-
trieve the handle to this endpoint by calling USB_epNumToHandle (..), and call
USB_stallEndpt (..) with the handle to stall the endpoint.

Example The following example retrieves a handle to endpoint object for Endpoint 4 IN.

If an endpoint is not active, the function call returns a NULL pointer.

/* create an instance of a handle to an endpoint object */

USB_EpHandle hEndptIn4;

/* retrieve the handle to the endpoint object */

hEndptIn4 = USB_epNumToHandle(USB0, 0x84),

if(hEndptIn4 != NULL)

/* stall endpoint */

 USB_clearEndptStall(hEndptIn4);

3-1

Configuring The USB Module Using CSL GUI

This chapter contains instructions for the configuration of the USB module
using the CSL graphical user interface (GUI).

Topic Page

3.1 Overview 3-2.

3.2 USB Endpoint Configuration Manager 3-3.

3.3 USB Resource Manager 3-7.

3.4 C Code Generation for the USB module 3-8.

3.5 Connecting a USB Module To a Host 3-10.

Chapter 3

Overview

 3-2

3.1 Overview

The CSL USB graphical user interface (GUI) facilitates the configuration of the
Universal Serial Bus (USB) module. The USB GUI consists of an Endpoint
Configuration Manager and a Resource Manager. The USB Endpoint
Configuration Manager allows initialized endpoint objects to be used with the
CSL USB API functions. The USB Resource Manager allows the user to group
all initialized endpoint objects created by the USB Endpoint Configuration
Manager into a user defined USB configuration array. The USB configuration
array is used by the CSL USB API functions to initializae the USB module.

Figure 3–1 illustrates the USB sections menu on the CSL graphical user
interface (GUI)

Figure 3–1. USB Sections Menu

The USB includes the following two sections:

� USB Endpoint Configuration Manager: Allows you to create initialized
endpoint objects.

� USB Resource Manager: Allows you to group all initialized endpoint
objects under a configuration array.

USB Endpoint Configuration Manager

3-3Configuring The USB Module Using CSL GUI

3.2 USB Endpoint Configuration Manager

The USB Endpoint Configuration Manager allows you to create initialized
endpoint objects through the Properties page.

3.2.1 Creating/Inserting an Endpoint Object

There is no predefined endpoint object available.

To create a endpoint object, you must insert a new endpoint configuration
object.

To insert a new endpoint configuration object, right-click on the USB Endpoint
Configuration Manager and select insert USBCfg from the drop-down menu.
The configuration objects can be renamed.

Note: Only one endpoing object is allowed per active endpoint in a USB application.

3.2.2 Deleting/Renaming an Endpoint Object

To delete or to rename an endpoint object, right-click on the endpoint object
you want to delete or rename. Select Delete to delete an object. Select
Rename to rename an object.

3.2.3 Configuring the Global Settings

Figure 3–2. Global Settings for the Configuration Manager

USB Endpoint Configuration Manager

 3-4

The following options are available for the Global Settings of the Configuration
Manager:

� Memory Available for Endpoint Packets: Displays the memory (in byte)
available in the USB Buffer RAM for endpoints yet to be added. Every time
a new endpoint (object) is added to the configuration, a block of memory
from the USB Buffer RAM is set aside for that that endpoint.

The CSL USB API functions require all the active endpoints operating in
double–buffer mode, hence the size of the memory reserved in the USB
Buffer RAM for each endpoint is twice the size of the endpoint packet size.

For more information regarding USB Buffer RAM, please refer to the USB
chapter of the TMS320C55x DSP Peripherals Reference Guide
(SPRU317C).

� PreSOF Interrupt Timer Value: Allows you to set the Pre-Start-of-Frame
interrupt counter value. Please refer to the USB_init function, on page
2-18, for more information on setting the PreSOF Interrupt Timer Value.

� USB PLL Input Clock Frequency: Allows you to enter the Input clock fre-
quency to the USB PLL. Please refer to the USB_initPLL function, on page
2-20, for more information on setting the USB PLL clock frequency.

3.2.4 Configuring the Endpoint Object Properties

The Properties pages allow you to set the characteristics of an endpoint
associated with an endpoint object (see Figure 3–3, on page 3-5). To access
the Properties dialog box, right-click on an endpoint object and select
Properties. By default, the general page of the properties dialog box is
displayed.

You can set the various configuration options through the following properties
pages:

� General Settings: Allows general settings for the USB Module.

� Endpoint Settings: Allows you to configure a USB endpoint object.

� USB Events: Allows you to select the USB events used to trigger an
endpoint event handler routine. For more information, please refer to the
USB Event Dispatcher description found on page 1-12

Figure 3–3, on page 3-5, depicts the Properties Page.

USB Endpoint Configuration Manager

3-5Configuring The USB Module Using CSL GUI

Figure 3–3. USB Properties Page

Each Tab page is composed of several options that are set to a default value
(at device reset).

The USB Properties page allows you to configure endpoints with the following
options:

� Endpoint Number: Allows you to select an endpoint to associate the the
endpoint object.

� Transfer Type: Allows you to select the Transfer type to be supported by
the endpoint.

� Maximum Packet Size: Allows you to determine the Maximum packet size
supported by the endpoint.

� User Interrupt Handle Function: Allows you to set the User defined USB
event handler routine to be called by the USB Event Dispatcher when any
of the events selected from the USB Events tab occurs.

Figure 3–4 illustrates the USB Event tab.

USB Endpoint Configuration Manager

 3-6

Figure 3–4. USB Events Properties Page

USB Resource Manager

3-7Configuring The USB Module Using CSL GUI

3.3 USB Resource Manager
The USB Resource Manager allows you to generate the USB configuration
arrays to be used by the USB_init() function.

Figure 3–5 illustrates the USB Resource Manager menu on the CSL Graphical
User Interface (GUI).

Figure 3–5. USB Resource Manager Menu

3.3.1 Properties Page
You can generate the USB Initialization code through the Properties page.

To access the Properties page, right-click on the predefined USB peripheral
and select Properties from the drop-down menu (see Figure 3–6, on page
3-7).

To pre-initialize the USB peripheral, check the Enable USB Configuration box.

You can also change the name of the USB configuration array (default name
is cfgarray), under which all initialized endpoint objects are grouped together.

In the example shown in Figure 3–6, the Enable USB configuration is selected,
and the USB initialization code will be generated.

Figure 3–6. USB Resource Manager Properties Page

C Code Generation for the USB module

 3-8

3.4 C Code Generation for the USB module
Two C files are generated from the configuration tool:

� Header file

� Source file

3.4.1 Header File

The header file includes all the CSL header files for the USB module and
contains endpoint objects defined within the Endpoint Configuration Manager
pages (see Example 3–1). The endpoint object structure is described in the
USB Data Structures section (see section 2.3, on page 2-7).

Example 3–1. USB Header File

extern USB_EpObj usbEpObjOut0;

3.4.2 Source File
The source file includes the declaration (initialized structures) of endpoint
objects (see Example 3–2). The endpoint object structure is described in the
USB Data Structures section (see section 2.3, on page 2-7).

Example 3–2. USB Source File (Declaration Section)

/* Config Structures */

USB_EpObj usbEpObjOut0 = {

USB_OUT_EP0, /* Endpoint Number */

USB_CTRL, /* Transfer type value */

0x0040, /* Maximum Packet Size Supported by EP */

0x003d, /* Event Mask */

USB_ctl_handler,/* Pointer to USB event ISR */

0x0000, /* Data Flags */

0x0000, /* Status */

0x6782, /* Endpoint descriptor reg block start addr */

0x6680, /* DMA reg block start addr */

0x0000, /* Total byte count */

0x0000, /* Number of bytes in the active node of the linked list */

NULL /* Pointer to store the number of bytes moved in (out) */

NULL /* Active data buffer pointer */

NULL /* Pointer to NEXT Buffer */

0x0000 /* Event Flag */

};

C Code Generation for the USB module

3-9Configuring The USB Module Using CSL GUI

The source file contains the USB module initialization code, using CSL USB
API functions (see Example 3–3).

This function is encapsulated into a unique function, CSL_cfgInit(), which is
called from your main C file. The USB API function calls are generated only
if Enable USB configuration is checked under the USB Resource Manager
Propteries page.

Example 3–3. USB Source File (Body Section)

void CSL_cfgInit()

{

myUSBConfig[i++] = &usbEpObjOut0;

myUSBConfig[i] = NULL;

USB_setAPIVectorAddress();

USB_initPLL(12, 48, 0);

USB_init(USB0, myUSBConfig, 0x80);

}

Connecting the USB Module To a Host

 3-10

3.5 Connecting the USB Module To a Host

Calling the CSL_cfgInit() from the main C file will program all USB module
control and configuration registers. As discussed in chapter 1, all the CSL USB
API functions work in conjunction with USB Event Dispatcher.

There are two options to use when enabling the USB Event Dispatcher:

� Interrupt Polling Method: The user’s code polls the USB interrupt flag bit
periodically and calls the USB Event Dispatcher functions every time the
USB interrupt flag is set.

� Encapsulating the USB Event Dispatcher function: The user encapsulates
the USB Event Dispatcher function in an ISR and sets the DSP to service
this ISR every time a USB event occurs.

Once the CSL_cfgInit() is called and the USB Event Dispatcher function is
enabled, the USB module can be connected to the bus by calling the
USB_devConnect() function. At this point, the USB module can be connected
to a USB traffic generator to transmit and receive raw USB data.

Connecting the USB module to a host requires additional code running on the
DSP to support the USB protocol (for example, a PC running on the Windows
2000 platform).

Without the USB protocol handling code, the DSP may not be able to process
the data received, resulting in the possibility of the host PC locking up.

A chapter 9 compliant USB demo application using CSL USB API functions
and the CSL USB GUI is available from the Texas Instruments’ DSP Village
web site.

A-1

Appendix A

USB Terminology

This appendix contains definitions, descriptions, and terminology associated
with the USB.

Topic Page

A.1 USB Terminology A-2.

Appendix A

USB Terminology

 A-2

A.1 USB Terminology

A.1.1 Frames

The USB is a single master (called host) and multiple slave (called device)
interface. The host is in charge of initiating all transfers (control or data). In
order to manage the bus traffic efficiently, the bus time is divided into
1-millisecond slots called frames. The host allocates a portion of the frame for
each device successfully attached to the bus. The location of slots in a frame
allocated for each device is not fixed. The host may allocate the slot anywhere
within a frame. Figure A–1 illustrates the layout and components of a USB
frame.

USB Terminology

A-3USB Terminology

Figure A–1. USB Frame Layout

Start of frame
Device 1 : Endpoint 2
Device 2 : Endpoint 2

Device 5 : Endpoint 3

Device 5 : Endpoint 3

Device 5 : Endpoint 3

Unused

Unused

Device 2 : Endpoint 0

Device 5 : Endpoint 3

Device 5 : Endpoint 3

Device 1 : Endpoint 2
Start of frame

Device 2 : Endpoint 0

Unused

Device 2 : Endpoint 0

Start of frame
Device 1 : Endpoint 2

1 ms
frame

frame
1 ms

frame
1 ms

.

.

.

USB Terminology

 A-4

A.1.2 Transfers, Transactions, and Packets

A transfer is a collection of transactions. The USB transactions are made up
of multiple packets. There are four types of data transfers:

� Control

� Bulk

� Interrupt

� Isochronous

A.1.2.1 Transfer Types

� Control

Control transfers are performed with the device control endpoint , which is
typically Endpoint0, and are given a standard protocol in the USB specifi-
cation. The host allocates a small percentage (maximum 10%) of the bus
bandwidth for control transfers. The host guarantees that some pending
transactions belong to control transfers and are completed in every frame.

� Bulk

Bulk transfers are used for moving large amounts of non-time critical data
that requires reliable delivery. Bus bandwidth is not guaranteed for bulk
transfers; all of the ”left-over” time on the bus is dedicated for bulk trans-
fers only. On an idle bus, bulk transfers are fast.

� Interrupt

An interrupt transfer is a limited latency delivery mechanism for moving
moderate amounts of data from the device to the host. Interrupt transfers
appear the same to the device as the bulk transfers, except the way they
are scheduled by the host. Interrupt transfers, along with isochronous
transfers, are guaranteed an allocated amount of bus bandwidth (maxi-
mum 90%). Full speed interrupt transfers can occur as often as every
frame or as infrequently as every 255 frames.

� Isochronous

Isochronous transfers are used for continuous real-time data delivery. Iso-
chronous data is guaranteed a time of delivery, but not accuracy. In order
to maintain the real-time delivery schedule, isochronous transfers do not
include handshake packets. Unlike other transfers, isochronous transfers
are not retried if an error occurs during the transfer.

USB Terminology

A-5USB Terminology

A.1.2.2 Transactions

Transactions are the building blocks of a transfer. The USB uses four different
transactions to address the four different transfers in section A.1.2.1, on page
A-4. Except for Isochronous transfers, each transaction is made up of three
packets:

� Token

� Data

� Handshake

The Isochronous transfer is made up of only two packets:

� Token

� Data

� Control

A basic control transaction consists of the following packets:

� Setup packet

� Data packet

� Handshake packet

The Data packet is optional. As a result, some control packets may only
have a Setup packet and a Handshake packet.

� Bulk

A bulk transaction consists of three packets:

� IN/OUT token packet

� Data packet

� Handshake packet

To read data in, the host issues an IN token. The device responds with a
Data packet and the host ends the transaction with a Handshake packet.
To write data out, the host issues an OUT token packet, followed by a Data
packet. The device completes the transaction by sending a Handshake
packet.

� Interrupt

Being similar to bulk transactions, interrupt transactions are made up of
three packets. Interrupt transactions always carry data from the device to
the host. Therefore, an interrupt transaction starts with an IN token packet
issued by the host, followed by a Data packet from the device, and ends
with a Handshake packet from the host.

USB Terminology

 A-6

� Isochronous

Isochronous transactions consist of a token packet and a Data (DATA0)
Packet. The transaction starts with an IN/OUT token packet from the host,
followed by a Data packet from either the host of the device, depending on
the direction of the data flow. There are no handshake packets involved in
an isochronous transaction; therefore, occasional errors are acceptable.

A.1.2.3 Packets

All USB transactions are made up of units referred to as “packets”. A USB
packet always starts with a ”SYNC” field followed by a ”PID” and ends with an
”EOP”. The USB packets are grouped into four major categories:

� Token

Token packets are used to identify a transaction. Four token packets are
available as defined in the USB 1.1 Specification:

� SOF

The Start-Of-Frame packet is used to indicate the beginning of a
1-millisecond USB frame. An SOF packet has 11-bits of data and
5-bits of CRC error checking. The 11-bits of data in the packet is a
monotonically increasing Frame Number that is typically used by
the real-time devices to synchronize data transfers. The Frame
Number rolls over every 2,048 milliseconds.

� SETUP

Setup packets are used to initiate a control transfer. A setup packet
has a 7-bits of device address, 4-bits of endpoint address, and 5-bits
of CRC error checking.

� IN

IN packets are used by the host to initiate a data transfer from a
device to itself. An IN packet has 7-bits of device address, 4-bits of
endpoint address, and 5-bits of CRC error checking. The IN packets
are used in all four USB transfers.

� OUT

OUT packets are used by the host to initiate a data write from itself
to the device. Like an IN packet, an OUT packet has 7-bits of device
address, 4-bits of endpoint address, and 5-bits of CRC error
checking. The OUT packets are used in control, bulk, and
isochronous transfers.

USB Terminology

A-7USB Terminology

� DATA

Data packets are used to carry data payloads associated with a given
transaction. Two types of data packets are available as defined in the USB
1.1 Specification:

� DATA0 (even)

A DATA0 packet is an even PID data packet. DATA0 packets are
made up of 0-1023 bytes of data followed by a16-bit CRC value.
DATA0 packets are used in all four transfers.

� DATA1 (odd)

A DATA1 packet is an odd PID data packet. DATA1 packets are
made up of 0-64 bytes of data followed by a 16-bit CRC value.
DATA1 packets are used in control, bulk, and interrupt transfers.

DATA1 and DATA0 packets are used to keep the host and device synchro-
nized during a transfer that requires multiple transactions. During a long
transfer, the data packets are toggled between DATA0 and DATA1. This
technique is known as a Data Toggle. The sender and the receiver keep
track of the data toggle bit to ensure that there are no lost transactions.
Data Toggle is not implemented in isochronous transfers. Isochronous
transfers use only DATA0 packets.

� Handshake

Handshake packets are used by a receiver to indicate the reception status
of a token and/or data packets. Three types of handshake packets are de-
fined in the USB 1.1 Specification:

� ACK

ACK, or Acknowledgment packet, is used to indicate the error-free
reception of a token or data packet.

� NAK

NAK, or Negative Acknowledgement packet, allows a device to
report to the host that the receiver is not ready to handle a specific
token or data packet at that particular time. A device is allowed to
NAK any packet, the only exception being a setup packet. If a NAK
packet is received, the host retries the packet at a later time. During
interrupt transactions, a NAK means that no data is currently
available to return to the host, meaning that no interrupt request is
currently pending.

USB Terminology

 A-8

� STALL

A device responds with a STALL handshake if any of the following
cases are true:

� Specific control requests (setup packet) are not supported

� There is a failure to carry out the control request

� The endpoint is halted (failed)

In the case of a control endpoint, the stall condition is automatically
cleared when the next setup packet arrives. A stalled bulk or interrupt
endpoint requires the host to step in and clear the stall condition . The
host never sends a STALL.

� Special

The host uses special preamble packets (PRE) before initiating low speed
packets. Upon receiving the PRE packet, the USB hubs enable low speed
ports. Except for the hubs, all other devices ignore the PRE packet. The
PRE packets do not end with an EOP.

Index

Index-1

Index

A
ACK (Acknowledgment packet), definition of, A-7

API Routines, 1-5
as components of the USB CSL Module, 1-2
Data Transfer, 1-8

illustration of, 1-9
Module Control, 1-7

illustration of, 1-8
Module Initialization, 1-6

illustration of, 1-7
Software Initialization, 1-5

illustration of, 1-5
Status Query, 1-10

illustration of, 1-10

B
Buffer Length equation, 1-4

Buffer RAM, 3-4

BytInThisSeg, see also USB_EpObj, 2-8

C
C Code Generation for the USB module, 3-8

header file, 3-8
source file, 3-8

example of a Body Section, 3-9
example of a Declaration Section, 3-8

Configuration, see also Module Drivers, 1-14

Connecting a USB module to a host, 3-10

Control Handshake Packets, 2-29

CRC error checking, see also Packets, A-6

CSL GUI
endpoint number, 3-5
endpoint settings, 3-4
general settings, 3-4
maximum packet size, 3-5
Memory Available for Endpoint Packets, 3-4
PreSOF Interrupt Timer Value, 3-4
properties page, 3-7
transfer type, 3-5
USB events, 3-4
USB PLL Input Clock Frequency, 3-4
USB Resource Manager Menu, 3-7
USB sections menu, 3-2
User Interupt Handle Function, 3-5

CSL USB Module, components of, 1-2

CSL USB Module Overview
API Routines, 1-5
Data Structures, 1-4
Features and benefits of, 1-2

CSL_cfgInit, 3-9

D
Data Buffer Handler

definition of, 1-11
illustration of, 1-12

Data Structure, 2-7

Data Structures, 1-4
as components of the USB Support Library, 1-2
Endpoint Data Buffer, 1-4
Endpoint Data Buffer Format, illustration of, 1-4
Endpoint Object, 1-4
USB Endpoint Object, 2-8
USB Setup Packet, 2-7
USB_DataStruct, 2-7
USB_EpObj, 2-8
USB_SetupStruct, 2-7

Index

Index-2

Data Toggle, definition of, A-7

Data Transfer, 1-8, 2-24
See also USB API Routines (Functions)
illustration of, 1-9

DATA0, see also Packets, A-7

DATA1, see also Packets, A-7

DataFlags, see also USB_EpObj, 2-8

Deleting/Renaming an endpoint Object, 3-3

DMA_SAddr, see also USB_EpObj, 2-8

DSP Memory Resource requirements, 1-3

E
EDReg_SAddr, see also USB_EpObj, 2-8

Encapsulating the USB Event Dispatcher function,
3-10

Endpoint Configuration Manager, 3-2

Endpoint Data Buffer, 1-4

Endpoint Data Buffer Format, illustration of, 1-4

Endpoint Number, 3-5

Endpoint Numbers, 2-4

Endpoint Object, 1-4

Endpoint Object Properties, configuring, 3-4

Endpoint Settings, 3-4

Enumerated Data Types, 2-4
Endpoint Numbers, 2-4
USB Device Numbers, 2-6
USB Transfer Types, 2-5

EOP, see also Packets, A-6

EpNum, see also USB_EpObj, 2-8

Event Dispatcher
See also USB API Routines (Functions)
definition of, 1-12
illustration of, 1-13

EventFlag, see also USB_EpObj, 2-8

EventMask, see also USB_EpObj, 2-8

F
Frames, A-2

Functions, miscellaneous, 2-37

Fxn, see also USB_EpObj, 2-8

G
General Settings, 3-4
Global Settings, configuring, 3-3

H
Handling 0–byte Control Handshake Packets, 2-29
Handshake, see also Packets, A-7
Handshake Packets, 2-29
Header File, 3-8

I
inclk, see also USB_initPLL, 2-20
Interfaces, see also Module Drivers, 1-14
Interrupt Polling Method, 3-10

M
Maximum Packet Size, 3-5
MaxPktSiz, see also USB_EpObj, 2-8
mcbspCfg, 3-3
Memory Available for Endpoint Packets, 3-4
Module Control, 1-7, 2-20

See also USB API Routines (Functions)
illustration of, 1-8

Module Drivers, 1-11
as components of the USB Support Library, 1-2
Data Buffer Handler, 1-11
Event Dispatcher, 1-12
Switching among configurations, 1-14

Module Initialization, 1-6, 2-18
See also USB API Routines (Functions)
illustration of, 1-7

multiple slave, A-2

N
NAK (Negative Acknowledgment packet), defintion

of, A-7

O
outclk, see also USB_initPLL, 2-20

Index

Index-3

P
Packets, A-4, A-6

pBuffer, see also USB_EpObj, 2-8

PID, see also Packets, A-6

plldiv, see also USB_initPLL, 2-20

pNextBuffer, see also USB_EpObj, 2-8

pre–initializing a USB peripheral, 3-7

Preamble packets (PRE), A-8

PreSOF Interrupt Timer Value, 3-4

Properties Page, 3-7

Properties page, 3-5

R
Resource Manager, 3-2

S
Sending Data to the Host, 2-26

single master, A-2

Software Initialization. See USB API Routines
(Functions)

Software Control, 2-15
See also USB API Routines (Functions)

Software Initialization, 1-5, 2-12
illustration of, 1-5

Source File, 3-8

Source File (Body Section), 3-9

Source File (Declaration Section), 3-8

STALL, instances of, see also Handshake, A-8

Status, see also USB_EpObj, 2-8

Status Query, 1-10, 2-30
See also USB API Routines (Functions)
illustration of, 1-10

Switching among configurations, see also Module
Drivers, 1-14

Symbolic Constants, 2-2
USB Data Transfer Flags, 2-2
USB Interrupt Events, 2-2

SYNC field, see also Packets, A-6

T
TotByCnt, see also USB_EpObj, 2-8
Transactions, A-4, A-5
Transfer Type, 3-5
Transfer Types, A-4
Transfers, A-4

U
USB

Miscellaneous Functions. See USB API Routines
(Functions)

Primary Summary of functions, 2-9
USB Application

typical illustration of, 1-15
using the CSL USB Module Support Library, 1-15

USB Components Overview, 1-4
USB Data Buffer, equation, 1-4
USB Data Structures, 2-7
USB Data Transfer Flags, 2-2

table, 2-2
USB_IOFLAG_CAT, 2-2
USB_IOFLAG_EOLL, 2-2
USB_IOFLAG_LNK, 2-2
USB_IOFLAG_NONE, 2-2
USB_IOFLAG_NOSHORT, 2-2
USB_IOFLAG_SWAP, 2-2

USB Device Number, 2-6
USB Boolean, 2-6

USB Endpoint Configuration Manager, 3-3
configuring the endpoint object properties, 3-4
configuring the Global settings, 3-3
creating/inserting an endpoint object, 3-3
deleting/renaming an endpoint object, 3-3

USB Endpoint Object, 2-8
USB Events, 3-4
USB Frame layout‘, illustration of, A-3
USB Functions, 2-9

USB_AbortAllTransaction, 2-16
USB_Aborttransaction, 2-16
USB_bytesRemaining, 2-35
USB_clearEndptStall, 2-23
USB_connectDev, 2-20
USB_disconnectDev, 2-21
USB_epNumToHandle, 2-37
USB_evDispatch, 2-11
USB_getEndptStall, 2-36

Index

Index-4

USB_getEvents, 2-30
USB_getFrameNo, 2-30
USB_getRemoteWakeupStat, 2-32
USB_getSetupPacket, 2-24
USB_init, 2-18
USB_initEndptObj, 2-12
USB_initPLL, 2-20
USB_issueRemoteWakeup, 2-21
USB_isTransactionDone, 2-34
USB_peekEvents, 2-32
USB_postTransaction, 2-25
USB_resetDev, 2-22
USB_setDevAddr, 2-22
USB_setRemoteWakeup, 2-15
USB_stallEndpt, 2-23

USB Interrupt Events, 2-2
table, 2-2

USB Module
connecting to a host, 3-10
Frames, A-2
Module Drivers, 1-11
Symbolic Constants, 2-2
Transfers, Transactions, and Packets, A-4

USB module
C Code generation for, 3-8
configuring with CSL GUI, 3-2

USB PLL Input Clock Frequency, 3-4

USB Resource Manager, 3-7
properties page, 3-7

USB Setup Packet, 2-7

USB Transfer Types, 2-5
USB_BULK, 2-5
USB_CTRL, 2-5
USB_HPORT, 2-5
USB_INTR, 2-5
USB_ISO, 2-5

USB_AbortAllTransaction, 2-16

USB_Aborttransaction, 2-16

USB_BOOLEAN, 2-6

USB_BULK, 2-5

USB_bytesRemaining, 2-35

USB_clearEndptStall, 2-23

USB_connectDev, 2-20

USB_CTRL, 2-5

USB_DataStruct, 2-7, 2-8

USB_DevNum, 2-6

USB_disconnectDev, 2-21

USB_EpNum, 2-4
see also USB_EpObj, 2-8

USB_epNumToHandle, 2-37

USB_EpObj, 2-8

USB_evDispatch, 2-11

USB_EVENT_EOT, 2-3

USB_EVENT_ISR, 2-8

USB_EVENT_MASK, as used with USB_getEvents,
2-30

USB_getEndptStall, 2-36

USB_getEvents, 2-30

USB_getFrameNo, 2-30

USB_getRemoteWakeupStat, 2-32

USB_getSetupPacket, 2-24

USB_HPORT, 2-5
special note on use of, 2-5

USB_init, 2-18

USB_initEndptObj, 2-12

USB_initPLL, 2-20

USB_INTR, 2-5

USB_IOFLAG_CAT, 2-2

USB_IOFLAG_EOLL, 2-2

USB_IOFLAG_LNK, 2-2

USB_IOFLAG_NONE, 2-2

USB_IOFLAG_NOSHORT, 2-2

USB_IOFLAG_SWAP, 2-2

USB_ISO, 2-5

USB_issueRemoteWakeup, 2-21

USB_issueRemoteWakeup(), as associated with
USB_setRemoteWakeup, 2-15

USB_isTransactionDone, 2-34

USB_peekEvents, 2-32

USB_postTransaction, 2-25
Example, 2-26

Case 1a, 2-26
Case 1b, 2-27
Case 1c, 2-27
Case 2a, 2-27
Case 2b, 2-27
Case 2c, 2-28
Case 3a, 2-28
Case 3b, 2-28
Case 3c, 2-29
Case 4a, 2-29
Case 4b, 2-29

Index

Index-5

Known Limitations, 2-25
Affected Endpoints, 2-26
Work Around, 2-26

USB_resetDev, 2-22

USB_setAPIVectorAddress, 2-14

USB_setDevAddr, 2-22

USB_setRemoteWakeup, 2-15

USB_setRemoteWakeup(), as associated with
USB_issueRemoteWakeup, 2-21

USB_SetupStruct, 2-7
USB_stallEndpt, 2-23
USB_XferType, 2-5

see also USB_EpObj, 2-8
User Interrupt Handle Function, 3-5

X
XferType, see also USB_EpObj, 2-8

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	USB Overview
	CSL USB Module Overview
	Components of the CSL USB Module

	DSP Memory Resource Requirements
	USB Components Overview
	Data Structures
	Endpoint Object
	Endpoint Data Buffer

	API Routines
	Software initialization
	Module initialization
	Module Control
	Data Transfers
	Status Query

	Module Drivers
	Data Buffer Handler
	Event Dispatcher

	USB Configuration and Interfaces
	Typical USB Application Using The CSL USB Module Support Library

	CSL USB Module Components
	Symbolic Constants
	USB Data Transfer Flags
	USB Interrupt Events

	Enumerated Data Types
	Endpoint Numbers
	USB_EpNum

	USB Transfer Types
	USB_XferType

	USB Device Number
	USB_DevNum

	USB Boolean
	USB_Boolean

	USB Data Structures
	USB Setup Packet
	USB_SetupStruct

	Data Structure
	USB_DataStruct

	USB Endpoint Object
	USB_EpObj

	USB Functions
	USB Events Dispatcher
	USB_evDispatch

	Software Initialization
	USB_initEndptObj
	USB_setAPIVectorAddress

	Software Control
	USB_setRemoteWakeup
	USB_AbortAllTransaction
	USB_Aborttransaction

	Module Initialization
	USB_init

	Module Control
	USB_initPLL
	USB_connectDev
	USB_disconnectDev
	USB_issueRemoteWakeup
	USB_resetDev
	USB_setDevAddr
	USB_stallEndpt
	USB_clearEndptStall

	Data Transfer
	USB_getSetupPacket
	USB_postTransaction

	Status Query
	USB_getFrameNo
	USB_getEvents
	USB_getRemoteWakeupStat
	USB_peekEvents
	USB_isTranscactionDone
	USB_bytesRemaining
	USB_getEndptStall

	Miscellaneous
	USB_epNumToHandle

	Configuring The USB Module Using CSL GUI
	Overview
	USB Endpoint Configuration Manager
	Creating/Inserting an Endpoint Object
	Deleting/Renaming an Endpoint Object
	Configuring the Global Settings
	Configuring the Endpoint Object Properties

	USB Resource Manager
	Properties Page

	C Code Generation for the USB module
	Header File
	Source File

	Connecting the USB Module To a Host

	USB Terminology
	USB Terminology
	Frames
	Transfers, Transactions, and Packets
	Transfer Types
	Transactions
	Packets

	Index

