

TMS320C672x DSP Dual Data Movement
Accelerator (dMAX)

Reference Guide

Literature Number: SPRU795D
November 2005 – Revised October 2007

Submit Documentation Feedback

2 SPRU795D – November 2005 – Revised October 2007

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Contents 3

Contents

Preface .. 11

1 Introduction/Feature Overview .. 13
1.1 Overview... 14
1.2 dMAX Terminology ... 18
1.3 Initiating dMAX Transfers ... 20
1.4 FIFO Implementation .. 20

1.4.1 FIFO Watermarks ... 22
1.4.2 FIFO Error Field .. 22

1.5 Types of dMAX Transfers ... 23
1.5.1 One-Dimensional Transfers .. 24
1.5.2 Two-Dimensional Transfers .. 25
1.5.3 Three-Dimensional Transfers ... 27
1.5.4 FIFO Transfers ... 29
1.5.5 One-Dimensional Burst (1DN) Transfers .. 42
1.5.6 SPI Slave Transfer ... 43

1.6 Quantum Transfers ... 44
1.7 Element Size and Alignment .. 45
1.8 Source/Destination Address Updates ... 45
1.9 Reloading dMAX Transfers .. 45
1.10 dMAX Interrupt Generation ... 45

1.10.1 Using an Event to Initiate a CPU Interrupt .. 46
1.10.2 End of Transfer Notification Interrupt to the CPU.. 46
1.10.3 FIFO Status Notification Interrupt .. 47
1.10.4 dMAX NMI Interrupt .. 47

1.11 Emulation Operation ... 47
1.12 Event Encoder .. 48

1.12.1 Synchronization of dMAX Events .. 48
1.12.2 Event Priority Processing Within the Same Event Priority Group ... 50

2 Register and Memory Description .. 53
2.1 Parameter RAM (PaRAM) .. 54

2.1.1 Event Entry Table ... 56
2.1.2 Transfer Entry Table ... 63

2.2 FIFO Descriptor .. 71
2.3 dMAX Control Registers ... 73

2.3.1 dMAX Event Register 0 (DER0) ... 74
2.3.2 dMAX Event Register 1 (DER1) ... 74
2.3.3 dMAX Event Register 2 (DER2) ... 75
2.3.4 dMAX Event Flag Register (DEFR) .. 76
2.3.5 dMAX Event Enable Register (DEER) .. 77
2.3.6 dMAX Event Disable Register (DEDR) ... 77
2.3.7 dMAX Event Polarity (DEPR) ... 78
2.3.8 dMAX Event High Priority (DEHPR) ... 79
2.3.9 dMAX Event Low Priority (DELPR) .. 80
2.3.10 dMAX FIFO Status Register 0 (DFSR0) ... 80

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

Submit Documentation Feedback

2.3.11 dMAX FIFO Status Register 1 (DFSR1) ... 81
2.3.12 dMAX Transfer Completion Register 0 (DTCR0) .. 82
2.3.13 dMAX Transfer Completion Register 1 (DTCR1) .. 82
2.3.14 dMAX Event Trigger Register (DETR) .. 83
2.3.15 dMAX Event Status Register (DESR) ... 85

3 Transfer Examples .. 87
3.1 Transfer Synchronization .. 88
3.2 General Purpose Transfer Examples ... 88

3.2.1 Steps Required to Set Up a General Purpose Transfer ... 88
3.2.2 EXAMPLE: 1D Block Move Transfer .. 89
3.2.3 EXAMPLE: Element- Synchronized 1D Transfer .. 90
3.2.4 EXAMPLE: Sub-frame Extraction ... 93
3.2.5 EXAMPLE: Three Dimensional (3D) Data De-Interleaving ... 95
3.2.6 EXAMPLE: Ping-Pong Data Buffering Example ... 96

3.3 FIFO Transfer Examples .. 102
3.3.1 Steps Required to Set Up a FIFO Transfer .. 102
3.3.2 EXAMPLE: 1D FIFO Write Transfer ... 104
3.3.3 EXAMPLE: 2D FIFO Write Transfer with Reload ... 106
3.3.4 EXAMPLE: 1D FIFO Read Transfer ... 110
3.3.5 EXAMPLE: 2D FIFO Read Transfer with Reload ... 112
3.3.6 EXAMPLE: FIFO Overflow Error .. 115
3.3.7 EXAMPLE: FIFO Underflow Error .. 118
3.3.8 EXAMPLE: FIFO Delay-Tap Error .. 122

3.4 One-Dimensional Burst Transfers .. 126
3.4.1 Steps Required to Set Up a One-Dimensional Burst Transfer ... 126
3.4.2 Example: One-Dimensional Burst Transfer .. 127

3.5 SPI Slave Transfer ... 129
3.5.1 Steps Required to Set Up a SPI Slave Transfer .. 129
3.5.2 Example: SPI Slave Transfer ... 130

3.6 Examples of Servicing Peripherals ... 131
3.6.1 EXAMPLE: Servicing McASP Peripheral .. 132
3.6.2 EXAMPLE: Servicing I2C Peripherals (FIFO FMARK Watermark) .. 136
3.6.3 EXAMPLE: Servicing I2C Peripherals (FIFO EMARK Watermark) .. 140

3.7 Example of Using dMAX Events to Generate a CPU Interrupt .. 145
3.7.1 Using External Signals to Trigger a CPU Interrupt ... 145

3.8 Examples of dMAX Usage for Delay-Based Effects ... 145
3.8.1 Writing a Block of Fresh Samples to Each FIFO Quadrant .. 148
3.8.2 Reading a Block of Delayed Samples from Each FIFO Quadrant .. 155

4 dMAX Controller Performance .. 163
 4.1 Overview .. 164
 4.2 Guidelines for Getting the Best dMAX Performance .. 164
 4.2.1 General Purpose Transfer: Best Performance Tips .. 165
 4.2.2 FIFO Transfer: Best Performance Tips .. 165
 4.2.3 One-Dimensional Burst Transfer: Best Performance Tips .. 166
 4.3 General Performance Transfer Performance .. 167
 4.4 Transfer Duration and Latency... 168
 4.5 General Purpose Transfer Latency.. 169
 4.6 Transfers within the Internal Memory ... 170

4 Contents SPRU795D – November 2005 – Revised October 2007

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

Submit Documentation Feedback

 4.6.1 Copy of Sequential Data (SINDX0=1 and DINDX0=1) .. 170

4.6.2 Sorting of Sequential Data (SINDX0≠1 and DINDX0=1, or SINDX0=1 and DINDX0≠1)...... 172
4.6.3 Sorting of Non-Sequential Data (SINDX0≠1 and DINDX0≠1) 174

4.7 Transfers Between the Internal Memory and McASP... 176
4.7.1 Copy of Sequential Data (SINDX0=1 and DINDX0=1) .. 177
4.7.2 Sorting of Sequential Data (SINDX0=1 and DINDX0≠1 or SINDX0≠1 and DINDX0=1) 178

4.8 Transfers Between Internal Memory and EMIF SDRAM ... 179
4.8.1 Copy of Sequential Data (SINDX0=1 and DINDX0=1) .. 179
4.8.2 Sorting of Sequential Data (SINDX0≠1 and DINDX0=1 or SINDX0 = 1 and DINDX0≠1)..... 184

4.9 One-Dimensional Burst Transfer Performance .. 188
4.10 SPI Slave Transfer Performance .. 195
4.11 FIFO Transfer Performance .. 196
4.12 Transfer Duration and Latency... 197
4.13 FIFO Read .. 198

4.13.1 FIFO Read Transfers Within Internal Memory ... 198
4.13.2 FIFO Read Transfers Between Internal Memory and EMIF SDRAM 199

4.14 FIFO Write Transfer ... 200
4.14.1 FIFO Write Transfers Within the Internal Memory... 200
4.14.2 FIFO Write Transfers Between Internal Memory and EMIF SDRAM 201

A Revision History ... 203

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

6 List of Figures SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

List of Figures
1-1 TMS320C672x Block Diagram ... 14
1-2 dMAX Controller Block Diagram ... 16
1-3 Parameters Defining a FIFO: Read Pointer, Write Pointer, FIFO Base Address, FIFO Size, EMARK,

FMARK, FMSC, EMSC, and EFIELD ... 21
1-4 One-Dimensional Transfer ... 24
1-5 A Two-Dimensional Transfer .. 26
1-6 A Three-Dimensional Transfer ... 28
1-7 Three-Frame FIFO Write Transfer (Prior to Transfer Start) ... 32
1-8 Three-Frame FIFO Write Transfer (After Transfer of the First Frame) ... 33
1-9 Three-Frame FIFO Write Transfer (After Transfer of the Second Frame) ... 34
1-10 Three-Frame FIFO Write Transfer (Immediately After Transfer of the Third Frame) ... 35
1-11 Three-Frame FIFO Write Transfer (Transfer Complete) .. 36
1-12 Three-Frame FIFO Read (Prior to Transfer Start) .. 38
1-13 Three-Frame FIFO Read (After Reading the First Tap) ... 39
1-14 Three-Tap FIFO Read (After Reading the Second Tap) .. 40
1-15 Three-Tap FIFO Read (Immediately After Reading the Third Tap) .. 41
1-16 Three-Tap FIFO Read (Transfer Complete) ... 42
1-17 SPI Slave Transfer ... 43
1-18 An Example of a Long Transfer (Transfer Size is Equal to 15 Elements and Quantum Transfer Limit Size

is Set to 4) .. 44
1-19 A Data Traffic Example: All Events Arrive from Three Event Signals Sorted to the Lower Priority Event

Group ... 50
1-20 A Data Traffic Example: A New Event Arrives During a Long Transfer ... 51
2-1 PaRAM Memory Map ... 54
2-2 PaRAM Memory Organization Block Diagram ... 55
2-3 Event Entry for General Purpose Data Transfer .. 57
2-4 Event Entry for FIFO Transfer .. 59
2-5 Event Entry for Interrupt from dMAX Controller to the CPU ... 60
2-6 Event Entry for One-Dimensional Burst Transfer ... 61
2-7 Event Entry for SPI Slave Transfers ... 62
2-8 Transfer Entry for General Purpose Data Transfer for CC=01 or CC=11 .. 63
2-9 Transfer Entry for General Purpose Data Transfer for CC=10 ... 63
2-10 Transfer Entry for General Purpose Data Transfer for CC=00 ... 64
2-11 Transfer Entry for FIFO Write ... 66
2-12 Transfer Entry for FIFO Read ... 68
2-13 Transfer Entry for One-Dimensional Burst Transfer ... 69
2-14 Transfer Entry for SPI Slave Transfer .. 70
2-15 FIFO Descriptor .. 71
2-16 dMAX Event Register 0 (DER0) ... 74
2-17 dMAX Event Register 1 (DER1) ... 74
2-18 dMAX Event Register 2 (DER2) ... 75
2-19 dMAX Event Flag Register (DEFR) .. 76
2-20 dMAX Event Enable Register (DEER) ... 77
2-21 dMAX Event Disable Register (DEDR) .. 77
2-22 dMAX Event Polarity (DEPR) ... 78
2-23 dMAX Event High Priority (DEHPR) ... 79
2-24 dMAX Event Low Priority (DELPR) .. 80
2-25 dMAX FIFO Status Register 0 (DFSR0) ... 80
2-26 dMAX FIFO Status Register 1 (DFSR1) ... 81
2-27 dMAX Transfer Completion Register 0 (DTCR0) ... 82
2-28 dMAX Transfer Completion Register 1 (DTCR1) ... 82
2-29 dMAX Event Trigger Register (DETR) ... 83

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

Submit Documentation Feedback

2-30 CPU Triggers Event by Writing to the DETR (when DEPR[0]=1) Timing Diagram .. 84
2-31 dMAX Event Status (DES) Register ... 85
3-1 Block Move Diagram .. 89
3-2 Event Entry and Transfer Entry for 1D Block Transfer ... 90
3-3 Element-Synchronized 1D Transfer Diagram (After Receiving the First Synchronization Event) 91
3-4 Element-Synchronized 1D Transfer Diagram (After Receiving the Second Synchronization Event) 91
3-5 Element-Synchronized 1D Transfer Diagram (After Receiving Six Synchronization Events) 92
3-6 Event Entry and Transfer Entry for Element-Synchronized 1D Transfer .. 92
3-7 Sub-Frame Extraction .. 93
3-8 Event Entry and Transfer Entry for Sub-Frame Extraction Transfer .. 94
3-9 3D Data De-Interleaving ... 95
3-10 Event Entry and Transfer Entry for 3D Data De-Interleaving ... 96
3-11 Event Entry and Transfer Entry for Ping-Pong Data Buffering ... 97
3-12 Ping-Pong Data Buffering After Receiving the First Synchronization Event ... 98
3-13 Ping-Pong Data Buffering After Receiving the Second Synchronization Event ... 99
3-14 Ping-Pong Data Buffering After Receiving the Fourth Synchronization Event ... 100
3-15 Ping-Pong Data Buffering After Receiving the Fifth Synchronization Event ... 101
3-16 1D FIFO Write Diagram (Before Transfer) ... 104
3-17 1D FIFO Write Diagram (After Transfer) .. 104
3-18 Event Entry, Transfer Entry, and FIFO Descriptor for 1D FIFO Write .. 105
3-19 2D FIFO Write Transfer Diagram (Before First Synchronization Event) ... 106
3-20 2D FIFO Write Transfer Diagram (After Receiving the First Synchronization Event) 107
3-21 2D FIFO Write Transfer Diagram (After Receiving the Second Synchronization Event) 107
3-22 2D FIFO Write Transfer Diagram (After Receiving Three Synchronization Events) ... 108
3-23 2D FIFO Write Transfer Diagram (After Receiving All Synchronization Events) .. 108
3-24 Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for 2D FIFO Write Transfer 109
3-25 1D FIFO Read Diagram (Before Transfer) ... 110
3-26 1D FIFO Read Diagram (After Transfer) .. 110
3-27 Event Entry, Transfer Entry, and FIFO Descriptor for 1D FIFO Read .. 111
3-28 2D FIFO Read Transfer Diagram (Before First Synchronization Event) .. 112
3-29 2D FIFO Read Transfer Diagram (After Receiving the First Synchronization Event) 112
3-30 2D FIFO Read Transfer Diagram (After Receiving the Second Synchronization Event) 113
3-31 2D FIFO Read Transfer Diagram (After Receiving Three Synchronization Events) .. 113
3-32 2D FIFO Read Transfer Diagram (After Receiving All Synchronization Events) .. 113
3-33 Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for 2D FIFO Read Transfer 114
3-34 Event Entry, Transfer Entry, and FIFO Descriptor for FIFO Overflow Error ... 116
3-35 FIFO Overflow Error Diagram (Before Receiving Synchronization Event) ... 117
3-36 FIFO Overflow Error Diagram (After Receiving Synchronization Event) .. 117
3-37 dMAX FIFO Status Registers Before FIFO Overflow Error Occurs .. 118
3-38 dMAX FIFO Status Registers After FIFO Overflow Error Occurs ... 118
3-39 FIFO Descriptor After FIFO Overflow Error Occurs ... 118
3-40 Event Entry, Transfer Entry, and FIFO Descriptor for FIFO Underflow Error ... 119
3-41 FIFO Underflow Error Diagram (Before Receiving Synchronization Event) ... 120
3-42 FIFO Underflow Error Diagram (After Receiving Synchronization Event) .. 120
3-43 dMAX FIFO Status Registers Before FIFO Underflow Error Occurs .. 121
3-44 dMAX FIFO Status Registers After FIFO Underflow Error Occurs ... 121
3-45 FIFO Descriptor After FIFO Overflow Error Occurs ... 121
3-46 Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for FIFO Delay-Tap Error 123
3-47 FIFO Delay-tap Error Diagram (Before First Synchronization Event) ... 124
3-48 FIFO Delay-Tap Error Diagram (After Receiving the First Synchronization Event) .. 124
3-49 FIFO Delay-Tap Error Diagram (After Receiving the Second Synchronization Event) 124
3-50 dMAX FIFO Status Registers Before FIFO Delay-Tap Error Occurs ... 125
3-51 dMAX FIFO Status Registers After FIFO Delay-Tap Error Occurs .. 125

SPRU795D – November 2005 – Revised October 2007 List of Figures 7

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

8 List of Figures SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

3-52 FIFO Descriptor After FIFO Delay-Tap Error Occurs ... 125
3-53 1DN Block Move Diagram .. 127
3-54 Event Entry and Transfer Entry for 1DN Transfer .. 128
3-55 SPI Slave Transfer Diagram ... 130
3-56 Event Entry and Transfer Entry for SPI Slave Transfer .. 130
3-57 Event Entry and Transfer Entry for McASP Transfer ... 132
3-58 McASP Receive Example After Receiving the First Synchronization Event .. 133
3-59 McASP Receive Example After Receiving the Second Synchronization Event ... 134
3-60 McASP Receive Example After Receiving the Third Synchronization Event ... 135
3-61 McASP Receive Example After Receiving the Eight Synchronization Events ... 135
3-62 McASP Receive Example After Receiving the Nine Synchronization Event .. 136
3-63 FIFO FMARK Example Diagram (Before First I2C Event) ... 137
3-64 FIFO FMARK Example Diagram (After First Synchronization Event from the I2C) ... 137
3-65 FIFO FMARK Example (After the Eighth Element Has Been Transferred) .. 137
3-66 dMAX FIFO Status Registers Before FIFO FMARK is Reached .. 138
3-67 dMAX FIFO Status Registers After FIFO FMARK is Reached ... 138
3-68 FIFO FMARK Example (After FIFO Read Transfer) .. 138
3-69 Event Entry and Transfer Entry for FIFO FMARK Example (FIFO Write Transfer) .. 139
3-70 Event Entry and Transfer Entry for FIFO FMARK Example (FIFO Read Transfer) ... 139
3-71 FIFO Descriptor for FIFO FMARK Example ... 140
3-72 FIFO EMARK Example Diagram (Before First I2C Event) ... 141
3-73 FIFO EMARK Example Diagram (After First Synchronization Event from the I2C) ... 141
3-74 FIFO EMARK Example (After the Fourth Element has been Transferred) .. 141
3-75 dMAX FIFO Status Registers Before FIFO EMARK is Reached ... 142
3-76 dMAX FIFO Status Registers After FIFO EMARK is Reached .. 142
3-77 FIFO EMARK Example (After FIFO Write Transfer) .. 142
3-78 Event Entry and Transfer Entry for FIFO EMARK Example (FIFO Read Transfer) ... 143
3-79 Event Entry and Transfer Entry for FIFO EMARK Example (FIFO Write Transfer) ... 144
3-80 FIFO Descriptor for FIFO FMARK Example ... 144
3-81 Event Used to Trigger CPU Interrupt INT13 Example .. 145
3-82 Block Diagram of the Delay Effect on Four Input Channels ... 146
3-83 Sequence of Events for Processing ... 146
3-84 FIFO Descriptor and Block Diagram of FIFO ... 147
3-85 Table-Guided Multi-tap Delay FIFO Write Transfer. Situation Before Transfer Start 149
3-86 Condition After Fresh Block of Data from the First Channel Moved to the First Delay Line 150
3-87 Condition After Fresh Block of Data From the Second Channel Moved to the Second Delay Line 151
3-88 Condition After Fresh Block of Data From the Third Channel is Moved to the Third Delay Line 152
3-89 Condition After a Fresh Block of Data From the Fourth Channel is Moved to the Fourth Delay Line 154
3-90 Reading Delayed Block of Samples From the FIFO Using Table Guided Multi-tap Delay FIFO Read

Transfer. Situation Before Transfer Start ... 156
3-91 Condition After Delayed Block of Data is Retrieved From the First Delay Line.. 157
3-92 Condition After Delayed block of Data is Retrieved From the Second Delay Line ... 158
3-93 Condition After Delayed Block of Data is Retrieved From the Third Delay Line .. 159
3-94 condition After a Block of Data is Retrieved From the Fourth Delay Line .. 161
3-95 FIFO Descriptor and Block Diagram of FIFO After Moving Four Delay TAPS to Four Delay Lines 162
4-1 Three Transfer Types Used to Collect Performance Data ... 167
4-2 Transfer Latency and Duration Measured in Number of dMAX Clocks .. 168
4-3 MAX Module Data Throughput for Copy of a Sequential Block of Data when Both Source and

Destination are in Internal Memory (SINDX0=1 and DINDX0=1) ... 170
4-4 MAX Module Data Throughput for Sorting of Sequential Block of Data when both Source and Destination

are in Internal Memory (SINDX0≠1, DINDX0=1) .. 172
4-5 Table-Guided Multi-tap Delay FIFO Transfer ... 196
4-6 Transfer Latency and Tap Transfer Duration Measured in Number of dMAX Clocks 197

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

Submit Documentation Feedback

List of Tables

1-1 Differences Between the C621x/C671x EDMA and C672x dMAX ... 17
1-2 dMAX Channel Synchronization Events ... 49
2-1 Event Entry for General Purpose Data Transfer Field Descriptions ... 57
2-2 Event Entry for FIFO Transfer Field Descriptions .. 59
2-3 Event Entry for Interrupt from dMAX Controller to the CPU Field Descriptions ... 60
2-4 Table Describing Bit Fields of Event Entry for One-Dimensional Burst Transfer ... 61
2-5 Table Describing Bit Fields of Event Entry for SPI Slave Transfer .. 62
2-6 Transfer Entry for General Purpose Data Field Descriptions ... 64
2-7 Transfer Entry for FIFO Write Field Descriptions ... 66
2-8 Transfer Entry for FIFO READ Field Descriptions .. 68
2-9 Transfer Entry for One-Dimensional Burst Transfer Description .. 69
2-10 Transfer Entry for SPI Slave Transfer Description ... 70
2-11 FIFO Descriptor Field Descriptions .. 71
2-12 dMAX Control Registers ... 73
2-13 dMAX Event Register 0 (DER0) Field Descriptions ... 74
2-14 dMAX Event Register 1 (DER1) Field Descriptions ... 74
2-15 dMAX Event Register 2 (DER2) Field Descriptions ... 75
2-16 dMAX Event Register 3 (DER3) Field Descriptions ... 75
2-17 dMAX Event Flag Register (DEFR) Field Descriptions .. 76
2-18 dMAX Event Enable Register (DEER) FIELD Descriptions .. 77
2-19 dMAX Event Disable Register (DEDR) Field Descriptions ... 77
2-20 dMAX Event Polarity Register (DEPR) Field Descriptions ... 78
2-21 dMAX Event High Priority Register (DEHPR) Field Descriptions ... 79
2-22 dMAX Event Low Priority Register (DELPR) Field Descriptions .. 80
2-23 dMAX FIFO Status Register 0 (DFSR0) Field Descriptions ... 80
2-24 dMAX FIFO Status Register 1 (DFSR1) Field Descriptions ... 81
2-25 dMAX Transfer Completion Register 0 (DTCR0) Field Descriptions .. 82
2-26 dMAX Transfer Completion Register 1 (DTCR1) Field Descriptions .. 82
2-27 dMAX Event Trigger (DET) Register Field Descriptions .. 83
2-28 dMAX Event Status Register (DESR) Field Descriptions ... 85
4-1 MAX Module Performance for Copy of a Block of Sequential Elements when both Source and

Destination are in Internal Memory .. 171
4-2 MAX Module Performance for Sorting of Sequential Elements when both Source and Destination are in

Internal Memory ... 173
4-3 MAX Module Performance for Sorting of Non-Sequential Elements when both Source and Destination

are in Internal Memory ... 175
4-4 MAX Module Performance for Copy of Block of Sequential Elements from McASP DMA Port Source to

Destination in Internal Memory ... 177
4-5 MAX Module Performance for Copy of a Block of Sequential Elements from Source in the Internal

Memory to McASP DMA Port Destination .. 177
4-6 MAX Module Performance for Sorting of Sequential Elements from McASP DMA Port Source to

Non-Sequential Destination in Internal Memory ... 178
4-7 MAX Module Performance for Sorting of Non-Sequential Data from Source in the Internal Memory to

McASP DMA Port Destination .. 178
4-8 MAX Module Performance for Copy of a Block of Sequential Elements when Source is in Internal

Memory and Destination is in the SDRAM (EMIF is 32-bit wide) ... 180
4-9 MAX Module Performance for Copy of a Block of Sequential Elements when Source is in SDRAM and

Destination is in Internal Memory (EMIF is 32-bit wide) ... 181
4-10 MAX Module Performance for Copy of a Block of Sequential Elements when Source is in Internal

Memory and Destination is in the SDRAM (EMIF is 16-bit wide) ... 182
4-11 MAX Module Performance for Copy of a Block of Sequential Elements when Source is in SDRAM and

Destination is in Internal Memory (EMIF is 16-bit wide) ... 183

SPRU795D – November 2005 – Revised October 2007 List of Tables 9

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

10 List of Tables SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

4-12 MAX Module Performance for Sorting Block of Non-Sequential Elements from Source in Internal Memory
to Sequential Locations at Destination in SDRAM (EMIF is 32-bit wide) ... 185

4-13 MAX Module Performance for Sorting of Block of Sequential Locations from Source in SDRAM to
Non-Sequential Destination Locations in Internal Memory (EMIF is 32-bit wide) ... 185

4-14 MAX Module Performance for Sorting Block of Non-Sequential Elements from Source in Internal Memory
to Sequential Locations at Destination in SDRAM (EMIF is 16-bit wide) ... 186

4-15 MAX Module Performance for Sorting of Block of Sequential Locations from Source in the SDRAM to
Non-Sequential Destination Locations in Internal Memory (EMIF is 16-bit wide) ... 187

4-16 MAX Module Performance for Moving Sequential Data - Both Source and Destination are in Internal
Memory .. 189

4-17 MAX Module Performance for Moving Sequential Data - Source is in Internal Memory and Destination is
in External Memory (EMIF is 32 bits Wide) .. 190

4-18 MAX Module Performance for Moving Sequential Data - Source is in Internal Memory and Destination is
in External Memory (EMIF is 16 bits Wide) .. 191

4-19 MAX Module Performance for Moving sequential Data - Source is in External Memory and Destination is
in Internal Memory (EMIF is 32 bits Wide) ... 192

4-20 MAX Module Performance for Moving Sequential Data - Source is in External Memory and Destination is
in Internal Memory (EMIF is 16-bit wide) ... 193

4-21 MAX Module Performance for Moving Sequential Data - Source is in External Memory and Destination is
in External memory (EMIF is 32-bit Wide).. 194

4-22 MAX Module Performance for Moving Sequential Data - Source is in External Memory and Destination is
in External Memory (EMIF is 16-bit Wide).. 195

4-23 MAX Module Performance for Handling One SPI Event .. 195
4-24 FIFO Read MAX Module Performance for Moving Various Tap Sizes When Both Source FIFO and

Destination Locations are in Internal Memory .. 198
4-25 FIFO Read MAX Module Performance for Moving Various Tap Sizes When Source FIFO is in SDRAM

and Destination is in Internal Memory (EMIF is 32-bit wide) .. 199
4-26 FIFO Read MAX Module Performance for Moving Various Tap Sizes when Source FIFO Is In the

SDRAM and Destination is in Internal Memory (EMIF is 16-bit wide) .. 199
4-27 FIFO Write MAX Module Performance for Various Tap Sizes when Source Data and Destination FIFO

are in Internal Memory ... 200
4-28 FIFO Write MAX Module Performance for Various Tap Sizes when Source is in Internal Memory and

Destination FIFO is in SDRAM (EMIF is 32-bit wide) ... 201
4-29 FIFO Write MAX Module Performance for Various Tap Sizes when Source is in Internal Memory and

Destination FIFO is in SDRAM (EMIF is 16-bit wide) ... 202
A-1 Changes in this Revision .. 203

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

Submit Documentation Feedback

Preface
SPRU795D – November 2005 – Revised October 2007

Read This First

About This Manual

This document provides an overview and describes the common operation of the data movement
accelerator controller (referred to as dMAX throughout this document) in the digital signal processors
(DSPs) of the TMS320C672x™ DSP family. This document also describes operations and registers
unique to dMAX. The following chapters are included:
• Chapter 1 provides an overview of dMAX.
• Chapter 2 provides a list of registers and register descriptions that are used in dMAX.
• Chapter 3 presents transfer examples for dMAX.
• Chapter 4 provides performance and throughput data along with guidelines on how to obtain the best

performance.
Project collateral discussed in this reference guide can be downloaded from http://www.ti.com/lit/zip/SPRU795.

Notational Conventions

This document uses the following conventions:
• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40

hexadecimal (decimal 64): 40h.
• Registers in this document are shown in chapter and described in tables

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments
The following documents describe the C6000™ devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.
TMS320C672x DSP Peripherals Overview Reference Guide (literature number SPRU723) describes
peripherals available on the TMS320C672x™ DSPs.
TMS320C6000 Technical Brief (literature number SPRU197) gives an introduction to the TMS320C62x™
and TMS320C67x™ DSPs, development tools, and third-party support.
TMS320c672x DSP CPU and Instruction Set Reference Guide (literature number SPRU733) describes the
TMS320C672x™ CPU architecture, instruction set, pipeline, and interrupts for these digital signal
processors.
TMS320C6000 Code Composer Studio Tutorial (literature number SPRU301) introduces the Code
Composer Studio™ integrated development environment and software tools.
TMS320C6000 Programmer's Guide (literature number SPRU198) describes ways to optimize C and
assembly code for the TMS320C6000 DSPs and includes application program examples.
Code Composer Studio Application Programming Interface Reference Guide (literature number SPRU321)
describes the Code Composer Studio™ application programming interface (API), which allows you to
program custom plug-ins for Code Composer.

SPRU795D – November 2005 – Revised October 2007 Read This First 11

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/lit/zip/SPRU795
http://www.ti.com/
http://www.ti.com/
http://www-s.ti.com/sc/techlit/spru723
http://www-s.ti.com/sc/techlit/spru197
http://www-s.ti.com/sc/techlit/spru733
http://www-s.ti.com/sc/techlit/spru301
http://www-s.ti.com/sc/techlit/spru198
http://www-s.ti.com/sc/techlit/spru321

www.ti.com

12 Read This First SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Related Documentation From Texas Instruments

Trademarks
TMS320C672x, C6000, TMS320C62x, TMS320C67x, Code Composer Studio are trademarks of Texas
Instruments.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 13

1.1 Overview ... 14
1.2 dMAX Terminology .. 18
1.3 Initiating dMAX Transfers ... 20
1.4 FIFO Implementation ... 20
1.5 Types of dMAX Transfers ... 23
1.6 Quantum Transfers ... 44
1.7 Element Size and Alignment .. 45
1.8 Source/Destination Address Updates ... 45
1.9 Reloading dMAX Transfers .. 45
1.10 dMAX Interrupt Generation .. 45
1.11 Emulation Operation ... 47
1.12 Event Encoder ... 48

Chapter 1
SPRU795D – November 2005 – Revised October 2007

Introduction/Feature Overview

This chapter provides an overview of the data movement acceleration controller (dMAX) and its features.

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Overview

14 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

HiMAX
LoMAX

dMAX

High
Performance

Crossbar
Switch

I2C; SPI; RTI;

PLLCTRL

HPI

McASP 0, 1, 2

256

32

INT

Events

Events

Event

PMP DMP CSP

Memory controller

32 32 32 32 32 32 32 64 64 256

RAM

(256 Kbytes)

ROM

(384 Kbytes)

CPU

Program
fetch

D1 D2

32K
byte

program
cache

Single cycle unified RAM/ROM

EMIF

1.1 Overview

The dMAX controller handles user-programmed data transfers between the internal data memory
controller and the device peripherals on the C672x DSP, as shown in Figure 1-1. dMAX also allows
movement of data to/from any addressable memory space, including internal memory, peripherals, and
external memory. Additionally, it has a different architecture from the previous EDMA controller in the
C621x/C671x devices.

Figure 1-1. TMS320C672x Block Diagram

PMP = Program Master Port
DMP = Data Master Port
CSP = CPU Slave Port

Master Port
Slave Ports

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Overview

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 15

The dMAX controller includes the capability to:
• Perform three-dimensional data transfers for advanced data sorting
• Manage a section of the memory as a circular buffer/FIFO with delay tap based reading and writing

data
• Concurrently process two transfer requests (provided that they are to/from different

source/destinations)
Figure 1-2 shows a block diagram of dMAX which includes:
• Event and interrupt processing registers
• Event encoder
• High priority event parameter RAM (PaRAM)
• Low priority event parameter RAM (PaRAM)
• Address generation hardware for high-priority events - MAX0 (HiMAX)
• Address generation hardware for low-priority events - MAX1 (LoMAX)
The TMS320C672x peripheral bus structure can be described logically as a high-performance crossbar
switch with five master ports and five slave ports (shown in Figure 1-1). When accessing the slave ports,
the MAX0 (HiMAX) module is always given the highest priority, followed by the MAX1 (LoMAX) module. If,
for example, several masters, including MAX0 and MAX1, attempt concurrently to access the same slave
port, the MAX0 module will be given the highest priority, followed by the MAX1 module.
Event signals are connected to bits of the dMAX Event Register (DER), and the bits in the DER reflect the
current state of the event signals. An event is defined as a transition of the event signal. The dMAX Event
Flag Register (DEFR) can be programmed individually for each event signal, to capture either low-to-high
or high-to-low transitions of the bits in the DER (event polarity is individually programmable). Event polarity
is programmable in the dMAX Event Polarity Register (DEPR).
An event is also a synchronization signal that can be used: 1) to trigger dMAX to start a transfer, or 2) to
generate an interrupt to the CPU. All the events are sorted into two groups: a low-priority event group (the
LoMAX module serves these requests) and a high-priority event group (the HiMAX module serves these
requests).
Simultaneous occurrences of events are prioritized by the event encoder, which sorts them out and
chooses the two highest priority events - one from each priority group. The event encoder then passes the
events to the address-generation hardware. The priority of simultaneous events within a group is resolved
according to the event number (an event with the lower number has higher priority within its group). dMAX
can simultaneously process the two highest priority requests from each priority group.
Each PaRAM contains an event entry table section and a transfer entry table section. An event entry
describes an event type and associates the event to either one of the transfer types or to an interrupt. If
an event entry associates the event to one of the transfer types, the event entry will contain a pointer to
the specific transfer entry in the transfer entry table. The transfer entry table may contain up to eight
transfer entries. A transfer entry specifies details required by dMAX to perform the transfer. If an event
entry associates the event to an interrupt, the event entry specifies which interrupt should be generated to
the CPU when the event arrives.
Prior to enabling events and triggering a transfer, the event entry and transfer entry must be configured.
The event entry must specify type of transfer, transfer details (type of synchronization, reload, element
size, etc.), and should include a pointer to the transfer entry. The transfer entry must specify source,
destination, counts, and indexes. If an event is sorted in the high-priority event group, the event entry and
transfer entry must be specified in the high-priority parameter RAM. If an event is sorted in the low-priority
event group, the event entry and transfer entry must be specified in the low-priority parameter RAM.
When an event is used to trigger a CPU interrupt, the event entry specifies which interrupt line should be
used, and a transfer entry is not required. When an event is used to trigger a data transfer, the event entry
specifies the type of transfer, transfer options, and points to the transfer entry. The transfer entry is stored
in the parameter RAM, and is passed to the address generation hardware (MAX modules), which
addresses the external memory interface (EMIF) and/or peripherals to perform the necessary read and
write transactions.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Overview

16 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Figure 1-2. dMAX Controller Block Diagram

HiMAX
Master
Crossbar
Switch
Port

Interrupt
lines to
the CPU

To/from

Crossbar
Switch

Events

LoMAX
Master
Crossbar
Switch
Port

High priority PaRAM dMAX

Event
entry
table

HiMAX
RAM
R/W

Transfer
entry
table

High
priority
REQ

Control
R/W

Transfer entry #7

Low priority PaRAM

Event entry #0

Event
entry
table

LoMAX
RAM
R/W

Low
priority
REQ

Transfer
entry
table

LoMAX
(MAX1)

Event
encoder

+
event and
interrupt
registers

HiMAX
(MAX0)

Transfer entry #7

Transfer entry #k

Transfer entry #0

Reserved

Event entry #31

Event entry #k

Transfer entry #k

Transfer entry #0

Reserved

Event entry #31

Event entry #k

Event entry #0

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Overview

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 17

Table 1-1 summarizes the difference between dMAX and the C6000 EDMAs.

Table 1-1. Differences Between the C621x/C671x EDMA and C672x dMAX
Features C621x/671x EDMA dMAX
Maximum number of channels 16 16

Parameter RAM size 2048 bytes 1024 bytes (512b HiMAX + 512b LoMAX)

Alternate transfer complete interrupt No Yes

Transfer chaining Only channels 8 to 11 No

Linking transfers Yes No (Values used for transfer reload are built inside a
transfer entry)

Clock rate EDMA clock rate equals CPU clock dMAX clock rate equals of the CPU clock rate
rate

Parameter storage for an event 6 words 11 words

Number of words in parameter RAM required to 18 words 11 words
specify a data transfer with reload

CIER Register Yes No

CIPR Register Flag Clear Write 1 to clear dMAX Transfer Completion (DTCR) Register has
similar functionality. Write 1 to clear.

Event Select Register Yes No (Event Entry Table used for similar purpose)

Priority Queue Status Register Yes No

Interrupt events to the CPU 1 8 dMAX handles CPU interrupts along with transfer
events. One interrupt line (INT8) is dedicated for end of
transfer notification. One interrupt line (INT7) is
dedicated for FIFO status and error notifications.

Event Set Register Yes No. The CPU can initiate transfers by using dMAX
Event Trigger (DETR) Register.

Event Clear Register Yes No.

Event Enable Register Yes Yes. Used only to enable events. Write 0 has no effect.

Event Disable Register No Yes. Write 1 to disable an event

QDMA transfers Yes No

Event polarity selection No Yes

Event Register (reflects current state of event signals) No Yes

Event Flag Register (Captures transitions on event Yes. (On 621x/671x, called ER) Yes
signals captured in the Event Register)

3D transfer support No Yes

Independent index fields for source and destination for No Yes
all transfer dimensions.

Size of index field for the first transfer dimension 16 16

Size of index field for the second transfer dimension 16 16

Internal Read/Write Path Width 64 bits Each of two MAX modules has 32-bit wide path

Size of index field for the third transfer dimension N/A 16

Frame index usage to derive the next frame start Frame index added to the start Frame index added to the address of a last element in
address element address in a frame a frame

Priority levels for events Yes. Set in the PRI bit field in the Yes. If set, bits in DEHPR put events into the
OPT parameter high-priority group. If set, bits in DELPR put events into

the low-priority group.

Error notification to the CPU in case of FIFO overflow No Yes
or underflow

Transfer indexes expressed in no. of elements No Yes

Circular buffer support No Yes

Table based multi-tap delay transfers No Yes

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

18 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Terminology

1.2 dMAX Terminology
The following definitions help to understand some of the terms used in this document:
• dMAX: Dual data movement accelerator. dMAX is composed of two equivalent modules, MAX0 and

MAX1. The MAX modules can operate in parallel.
• Element transfer: An element transfer is the transfer of a single data element (8-,16-, or 32-bit) from

source to destination. Each element can be transferred based on a synchronization event, if required.
Element transfer is used in context with (1D) transfer.

• Frame: A group of elements comprise a frame. A frame can have staggered or contiguous elements. A
frame can be transferred with or without a synchronizing event. Frame is used in context with
one-dimensional (1D) transfer.

• Event: An event is a transition on an event signal latched in the dMAX Event Flag Register (DEFR).
For example, data received by the McASP can trigger an event.

• Event Entry: If an event is used to trigger a data transfer, the event entry should be set to specify the
type of transfer, the transfer options, and should include a pointer to a transfer entry. If the event is
used to trigger an interrupt, the event entry only specifies which interrupt line should be used.
The event entry uses only one word of memory space in the dMAX parameter RAM, within which is a
one-to-one correspondence between the events and the event entries. A unique event entry is
assigned to an event in each PaRAM (an event has one event entry in the high-priority PaRAM, and
one event entry in the low-priority PaRAM). The event priority group decides which event entry will be
passed to the HiMAX/LoMAX once an event arrives.
All the events are sorted into low- or high-priority groups. The event encoder prioritizes all received
events, and sorts the event with the highest priority from each group. The two highest priority events
(one from each group) can be processed at the same time (HiMAX will process the highest priority
request from the high priority event group, and LoMAX will process the highest priority request from the
low priority event group). An event entry is programmable and defines how the corresponding event is
going to be processed when it arrives.

• Event Entry Table: The event entry table contains all the event entries and occupies 32 words; it is
located at the very beginning of the parameter RAM. There are two event entry tables, one for high
priority events and the other for low priority events. If an event belongs to a high priority event group,
then its event entry is located in the high-priority event entry table. If an event belongs to a low priority
event group, then its event entry is located in the low-priority event entry table.

• Event Priority Group: dMAX events can be configured as either high-priority or low-priority. This splits
events into two priority groups; high-priority or low-priority. The high-priority event group is serviced by
the MAX0 module. The low-priority event group is serviced by the MAX1 module.

• Transfer Entry: The transfer entry table includes an 11-word long entry that defines transfer
parameters such as source, destination, count, and indexes. There is enough space in each parameter
RAM to keep transfer entries for eight different transfers (16 transfer entries total).

• Quantum Transfer: To improve system latency, long data transfers are divided into a number of
smaller transfers (quantum transfers). The dMAX controller is always moving data in small
sub-transfers called quantum transfers. If an event arrives while dMAX is performing a quantum
transfer, the event will be serviced after the current quantum has been transferred.

• Quantum Transfer Size Limit (QTSL): The maximum size of a quantum transfer is programmable
within the event entry for a given channel. It can be programmed to be 1, 4, 8, or 16 elements. The
actual size of a quantum transfer is the smaller of the QTSL and the number of elements still to be
transferred. Decreasing the QTSL will decrease the overall dMAX latency; increasing it will increase
the dMAX data throughput.

• Pending Event: A pending event is an event latched in the DEFR that has not been processed by the
dMAX controller.

• Long Data Transfer: A long data transfer occurs when the number of elements to be transferred after
each synchronization event is larger than the QTSL.

• One-Dimensional (1D) Transfer: A group of elements makes up a 1D block. The number of elements
in this block can be specified as well as the spacing between them. The spacing can be specified
independently for both the source and the destination and can range from -32768 to +32767
elements).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 19

www.ti.com

dMAX Terminology

• Two-Dimensional (2D) Transfers: A group of frames comprise a 2D block. The first dimension is the
number of elements in a frame, and the second dimension is the number of frames. The number of
frames in a 2D block can range from 1 to 65535. Either frames or the entire 2D block can be
transferred at a time. Spacing between frames can be specified independently for source and
destination (valid values for frame index: -32768 to 32767 elements).

• Three-Dimensional (3D) Transfers: A group of 2D blocks comprise a 3D block. The first dimension is
the number of elements in a frame, and the second dimension is the number of such frames, and the
third dimension is number of 2D blocks. The number of 2D blocks can range from 1 to 32767. Either a
frame or the entire 3D block can be transferred at a time. Spacing between 2D blocks can be specified
independently for source and destination (valid values for spacing between 2D blocks are: -32768 to
32767 elements).

• One-Dimensional Burst (1DN) Transfer: One-dimensional burst transfer is optimized for moving
sequential data from one memory location to the other. This transfer does not support non-sequential
source or destination.

• SPI Slave Transfer: SPI peripheral servicing requires that for a given SPI event, one element be read
from the SPI input register and an element be written to the SPI output shift register. The SPI slave
transfer provides this functionality.

• FIFO (Circular Buffer): A FIFO is defined by its base address, size, two watermarks and two pointers
(read pointer and write pointer). The two pointers are continuously chasing each other as data is being
written to and read from the buffer. Reads and writes to the buffer are asynchronous to each other.
When the FIFO is filled with data, the pointers wrap around and new samples overwrite the old data.
The FIFO size is specified in number of elements; it does not have to be a power of two.

• Table-based Multi-tap Delay Transfer: Many audio algorithms access large delay buffers in a
non-sequential fashion. A table-based, multi-tap delay transfer reads/writes elements to/from a FIFO
according to table of pre-defined delay tap offsets.
Table based, multi-tap delay memory access patterns have arbitrary spacing between consecutive taps
(defined by the delay tables), and have predictable contiguous spacing within a tap (the delay samples
within a tap are contiguous).

• dMAX Channel: An event signal associated with the event entry and transfer entry used to transfer
data.

• Reference (Reload) Registers in Transfer Entry: Values from the reference set of registers are used
to load the active set of registers at the end of a transfer if reload is enabled. This facilitates the
ping-pong buffering scheme.

• Active Registers in Transfer Entry: These active sets of registers are updated by dMAX during the
course of a transfer. dMAX maintains the current transfer state information in the set of active
registers.

• Delay Table: A delay table is referenced by a pointer in a transfer entry for a FIFO transfer. The table
lists all required delays for table based multi-tap delay transfers (the delay offsets are referenced to the
buffer pointers).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

20 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Initiating dMAX Transfers

1.3 Initiating dMAX Transfers
There are two ways to initiate a data transfer using the dMAX controller:
• Event-triggered dMAX transfer (this is a more typical usage of dMAX)
• CPU-initiated dMAX transfer
An event-triggered dMAX transfer allows the submission of transfer requests to occur automatically, based
on system events, without any intervention by the CPU. dMAX also includes support for CPU-initiated
transfers for added control and robustness, and they can be used to start memory-to-memory transfers.
To generate an event to dMAX, the CPU must create a transition on one of the bits from the dMAX Event
Trigger Register (DETR), which are mapped to the dMAX Event Register (DER) based on the polarity.
Each dMAX transfer can be started independently. The CPU can also disable a dMAX channel by
disabling the event associated with that channel.
• Event-triggered dMAX Transfer: If an event is enabled, and latched in the DEFR, the event encoder

causes its event entry and its transfer entry to be passed to the address generation hardware, which
performs the requested accesses. Although the event causes this transfer, it is very important that the
event itself be enabled by the CPU. Writing a 1 to the corresponding bit in the dMAX Event Entry
Register (DEER) enables an event. Alternatively, an event is still latched in the DEFR, even if its
corresponding enable bit in the DEER is 0 (disabled). The dMAX transfer related to this event occurs
as soon as it is enabled in the DEER.

• CPU-initiated dMAX Transfer: For CPU-initiated transfers, the CPU uses the DETR. To initiate a
transfer, the CPU must create an appropriate edge on a bit in DETR (the appropriate edge depends on
the polarity set for the event). A transition on a DETR signal will be latched in the DEFR. Just as with
an event coming from a peripheral, the event entry and transfer entry in the dMAX parameter RAM
corresponding to this event are passed to the address generation hardware, which performs the
requested access as appropriate. CPU-initiated dMAX transfers are unsynchronized data transfers.

Prior to enabling events and triggering a transfer, the event entry and transfer entry must be configured.
The event entry must specify: type of transfer, transfer details (type of synchronization, reload, element
size, etc.), and should include a pointer to the transfer entry. The transfer entry must specify source,
destination, counts, and indexes. If an event is sorted in the high-priority event group, the event entry and
transfer entry must be specified in the high-priority parameter RAM. If an event is sorted in the low-priority
event group, the event entry and transfer entry must be specified in the low-priority parameter RAM.

1.4 FIFO Implementation

The dMAX controller has the capability to utilize a section of the memory as a circular buffer/FIFO and
supports dedicated transfer types to and from a FIFO (circular buffer). In this case, the FIFO is a block of
memory (external or internal) in the DSP RAM defined by its base address and its size, and the size of
elements that it holds (8-, 16-, or 32-bit). The size of the FIFO buffer is specified in terms of the maximum
number of elements the buffer can hold; it does not have to be a power of two. The maximum size of a
FIFO is limited to 1048576 elements.
When the FIFO buffer is filled with data, the buffer wraps around and new samples overwrite the old data.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 21

www.ti.com

FIFO Implementation

A FIFO buffer is described by a FIFO descriptor, which can be located any place in the DSP memory. A
block diagram of a FIFO and its descriptor is presented in Figure 1-3.

Figure 1-3. Parameters Defining a FIFO: Read Pointer, Write Pointer, FIFO Base Address, FIFO Size,

EMARK, FMARK, FMSC, EMSC, and EFIELD

In FIFO read and write transfer entries, a FIFO is referenced by using a pointer to the FIFO descriptor.
In the discussion below, it is assumed that reads and writes to a FIFO are performed by the dMAX
controller. If the CPU reads/writes data to a FIFO, the read and write pointers are not going to be
automatically updated, and special care must be taken to keep the pointer values current.
The write pointer points to a FIFO location where dMAX will store the next incoming sample. The write
pointer is automatically updated at the end of a transfer in which dMAX writes new samples to the FIFO.
In Figure 1-3 the new samples are written to the buffer in a counter-clockwise direction, and the last
sample written to the buffer is marked with (B). The write pointer is referenced to the base address of a
buffer (the write pointer value is zero when it is pointing to a FIFO base address). Once the value in the
write pointer reaches the size of the buffer, a write of a new sample to the buffer will force the pointer to
wrap around to zero.
The read pointer points to a FIFO location from which dMAX will retrieve the next sample. At the end of a
transfer in which samples are read from the FIFO, the read pointer is automatically updated. In Figure 1-3
the new samples are read from the FIFO in a counter-clockwise direction, and the last sample read from
the buffer is marked with (A). The read pointer is referenced to the base address of a buffer (read pointer
value is zero when it is pointing to a buffer base address). Once the value in the read pointer reaches the
buffer size, a read from the buffer will force the pointer to wrap around to zero.

A
M B

EFIELD

EMARK EMSC

FMARK FMSC

WP

RP

Size

Base

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

22 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Implementation

1.4.1 FIFO Watermarks
It is useful to detect conditions when the number of unread elements in a FIFO drops below a certain
number or grows beyond another predefined number (these two levels will be referred to as FIFO
watermarks).
A dedicated interrupt line is reserved to indicate the FIFO watermark conditions and FIFO errors to the
CPU. The FIFO status interrupt line and the dMAX FIFO Status Register (DFSR) are used to notify the
CPU about the status of FIFOs.
Two watermarks, EMARK and FMARK, are assigned to a FIFO along with parameters shown in
Figure 1-3. A status bit is assigned to each watermark condition. The bit is set in the DFSR only when the
watermark is reached.
When the number of unread samples in the FIFO becomes larger or equal than the pre-defined FMARK,
dMAX will signal the watermark condition to the CPU by triggering a FIFO status interrupt, and by setting
the Full Mark Status (FMSC) bit in the DFSR.
When the number of fresh samples in the FIFO (samples that have not been read from the FIFO)
becomes equal or drops below than pre-defined EMARK, dMAX will signal the watermark condition to the
CPU by triggering a FIFO status interrupt, and by setting the Empty Mark Status (EMSC) bit in the DFSR.
In order to receive a next watermark notification, the CPU needs to clear the EMSC or FMSC status bits in
the DFSR. The dMAX controller will not trigger a new FIFO status CPU interrupt unless the status bits are
cleared by the CPU for the last watermark condition reported.

1.4.2 FIFO Error Field
If an error occurs when reading or writing to a FIFO, dMAX uses the error field (EFIELD), within the FIFO
descriptor, to indicate the error type to the CPU. If an error is detected, the dMAX controller will abort a
transfer and a CPU intervention is required to resume operation.
The dMAX controller notifies the CPU about FIFO transfer error by setting both status bits assigned to the
FIFO (FMSC and EMSC) in the DFSR, by writing error code to the EFIELD and triggering a FIFO status
interrupt.
The dMAX controller reports three types of FIFO errors to the CPU:
• An overflow error is indicated and a FIFO transfer is aborted before unread samples from FIFO are

overwritten. Each time before performing a write transfer, dMAX compares a bit value contained in the
active COUNT0 bit field with the number of empty slots in the FIFO. If the number of empty slots in the
FIFO is smaller than the value contained in the COUNT0 bit field, dMAX will abort the write transfer
and flag an error to the CPU.

• An underflow error condition is flagged and a transfer is aborted when an attempt is made to read
more than the number of unread samples stored in the FIFO. Each time before performing a read
transfer, dMAX compares a bit value contained in the active COUNT0 bit field with the number of
samples in the FIFO available for read. If the number of samples available for read in the FIFO is
smaller than the value contained in the COUNT0 bit field, dMAX will abort the read transfer and flag an
error to the CPU.

• In a table-based, multi-tap delay transfer, if a delay specified in the delay table is larger than number of
samples stored in the FIFO, an error will be generated and the transfer will be aborted.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 23

www.ti.com

Types of dMAX Transfers

1.5 Types of dMAX Transfers
The dMAX controller provides for five types of data transfers:
• General purpose data transfer (covers one-dimensional (1D), two-dimensional (2D), and

three-dimensional (3D) transfer)
• FIFO write transfer with support for table-based, multi-tap delay memory access
• FIFO read transfer with support for table-based, multi-tap delay memory access
• One-dimensional burst (1DN) transfer
• SPI slave transfer

One-dimensional and two-dimensional transfers are implemented as special cases of a three-dimensional
transfer, where counters for the higher dimensions are equal to zero (e.g., a 3D transfer with the third
dimension counter equal to zero becomes a 2D transfer).
A dMAX transfer is described by its transfer entry. The entry defines the required transfer parameters such
as source, destination counts, indexes, etc. For a general-purpose data transfer, an independent set of
indexes for source and destination can be specified for each transfer dimension. This facilitates 1D-2D,
1D-3D, and 2D-3D element sorting.
The format for the transfer entry is different for different transfer types. The transfer entry contains a set of
active registers that are continuously updated by dMAX during the course of a transfer. It also contains
reference registers which are used to reload values in the active register set.
When a transfer is complete, an active address register can be reloaded from one of two sets of address
reference registers. The reload option can be enabled or disabled by the RLOAD bit-field of the event
entry (reload is explained in Section 1.9 and the RLOAD bit field is defined in Section 2.1.1.1). An active
register set with the capability of reloading from one of two reference register sets facilitates
implementation of various ping-pong buffering schemes.
A set of active registers for a general-purpose data transfer includes source address, destination address,
and element counters for each transfer dimension (COUNT2, COUNT1 and COUNT0). There are two sets
of reference registers that specify reference values for source, destination address, and one reference
counter register. During a transfer, dMAX uses the active register set and the reference counter. If reload
is enabled at the end of the transfer, active address registers are loaded from one of two sets of reference
address registers. The address reference register set used during reload is specified by the PP bit
(defined in Section 2.1.2.1) within the transfer entry.
A set of active registers for a FIFO transfer includes a linear address and frame and element counter. Two
registers hold reference values for linear address. One register holds a reference value for frame and
element counter. During a transfer, the dMAX controller uses the active register set, and a reference
element counter. If reload is enabled, at the end of the transfer, active linear address is loaded from one of
two reference address registers. The address reference register used during reload is specified by the PP
bit within the transfer entry (the PP bit is defined in Section 2.1.2.2 and Section 2.1.2.3).
Transfer synchronization is specified by the SYNC bit in the event entry. Transfers can be either
frame-synchronized (a frame of data is transferred after receiving a synchronizing event) or whole transfer
can be completed after receiving a synchronization event. Element-synchronized transfers (one element is
transferred after receiving a synchronization event) are considered a special case of frame synchronized
transfers. By making frame size equal to one, and by selecting frame synchronization with the SYNC bit, a
frame-synchronized transfer becomes element-synchronized. SPI slave transfer allows for servicing the
SPI peripheral when used in slave mode. The peripheral servicing requires that for a given SPI event, one
element be read from the SPI input register and an element be written to the SPI output shift register. The
SPI slave transfer supports this functionality. A set of active registers for a SPI slave transfer includes
source address, destination address, and element counter. For each input event, one element is read from
the SPI input shift register (SPIBUF) and is stored in the destination address. Also, one element is read
from the input address and moved to the SPI output shift register (SPIDAT0).

CAUTION
1DN and SPI Slave transfers requires System Patch Version 2_00_00 or later:
http://focus.ti.com/docs/toolsw/folders/print/sprc203.html

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/
http://focus.ti.com/docs/toolsw/folders/print/sprc203.html

24 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

The input address and the output address are incremented by one after handling each event. There are
two sets of reference registers that specify reference values for source address and destination address;
also there is one reference counter register. During a transfer, dMAX uses the active register set. If reload
is enabled at the end of the transfer, active address registers are loaded from one of two sets of reference
address registers. The address reference register set used during reload is specified by the PP bit within
the transfer entry.
One-dimensional burst transfer (1DN) is optimized for moving sequential data from one memory location
to the other. This transfer does not support non-sequential source or destination. It also does not support
reload feature. The data transfer happens in bursts. The burst length (number of elements transferred in a
single burst) and the number of bursts for each transfer can be programmed. The transfer is designed to
require minimal setup overhead and allow for fast data movement and therefore does not provide some of
the features supported by general purpose transfers.

1.5.1 One-Dimensional Transfers
A transfer is one-dimensional (1D) when the COUNT2 and COUNT1 registers in a transfer entry are equal
to zero and smaller or equal to one, respectively, and if the COUNT0 register is greater than zero. In this
case, dMAX will transfer the number of elements specified by the COUNT0 bit field of the transfer entry.
The maximum number of elements that can be moved by a 1D-transfer is 65535.
During the course of a transfer, dMAX updates the active parameters within transfer entry (active source
address, active destination address and active element counter).
The distance between elements within the frame is specified by index0 and can be independently
controlled for source and destination (source and destination index 0). After each element transfer, active
source and destination addresses are updated by the product of element size and the appropriate index0.
The source index0 and destination index0 are expressed in number of elements, and can be between
-32768 to 32767.
A 1D transfer is graphically presented in Figure 1-4. The example presents transfer phases in a case
when active COUNT0 and reference COUNT0 are set to four prior to transfer.

Figure 1-4. One-Dimensional Transfer

Active COUNT0 = 4 Active COUNT0 = 3 Active COUNT0 = 2 Active COUNT0 = 1
Reference COUNT0 = 4 Reference COUNT0 = 4 Reference COUNT0 = 4 Reference COUNT0 = 4

INDEX0*ESIZE INDEX0*ESIZE INDEX0*ESIZE

 INDEX0*ESIZE INDEX0*ESIZE

INDEX0*ESIZE

Active COUNT0 = 0
Reference COUNT0 = 4

INDEX0*ESIZE

INDEX0*ESIZE

INDEX0*ESIZE

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 25

www.ti.com

Types of dMAX Transfers

The active COUNT0 field within the transfer entry is decremented after each element transfer. A 1D
transfer is complete when the active COUNT0 field is decremented to zero. In a 1D transfer, the value of
the SYNC bit field of the event entry is ignored and COUNT0 number of elements is transferred after
receiving an event.
After a transfer is complete, and when reload is enabled, the reference counters and a different set of
address reference registers will be loaded in the active register set. There are two sets of reference
registers for source and destination addresses, and one set of counter registers. These two sets of
reference address registers facilitate ping-pong buffering. A new transfer will be automatically kicked off
after a new event is received.

1.5.2 Two-Dimensional Transfers
A transfer is two-dimensional (2D) when the COUNT2 register field in a transfer entry is smaller or equal
to one, and the COUNT1 and COUNT0 register fields are greater than zero. In this case, the dMAX
controller will transfer a 2D block (COUNT1 number of frames, and each frame will have COUNT0 number
of elements).
During course of a transfer, the dMAX controller updates the active parameters within transfer entry
(active source address, active destination address and active element counter).
The size of COUNT1 and COUNT0 control bit-fields within the transfer entry is adjustable by setting the
counter configuration bits in the event entry. There are two options for a 2D transfer:
• The maximum number of frames in a 2D block can be up to 65535. In this case frame can contain up

to 255 elements.
• The maximum frame size of 65535 elements can be achieved if the maximum number of frames in a

2D block is limited to 255.
The frame index (index1) defines the distance, in number of elements, between the last element in a
frame and the first element of the next frame, and it can be between -32768 and 32767. The frame index
can be controlled independently for source and destination.
The distance between elements within the frame is specified by index0 and can be independently
controlled for source and destination (source and destination index 0). The source index0 and destination
index0 are expressed in number of elements, and can be between -32768 and 32767. While the active
COUNT0 control register is greater than zero, source and destination address are updated after each
element transfer by using the product of element size and the appropriate index0.
When the active COUNT0 control register is decremented to zero, the active COUNT1 control register is
decremented by one and source and destination addresses are updated by using the product of element
size and the appropriate index1. The active COUNT0 control register is then reloaded from the COUNT0
reference register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

26 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

A 2D transfer is graphically presented in Figure 1-5. The example presents transfer phases where active
COUNT0 and reference COUNT0 are set to four, and active COUNT1 and reference COUNT1 are set to
two prior to transfer. The left panel in Figure 1-5 presents the memory and counters prior to transfer. A
phase after the first frame was transferred is presented by the middle panel.

Figure 1-5. A Two-Dimensional Transfer

Active COUNT0 = 4
Active COUNT1 = 2

Reference COUNT0 = 4

Active COUNT0 = 4
Active COUNT1 = 1

Reference COUNT0 = 4

Active COUNT0 = 0
Active COUNT1 = 0

Reference COUNT0 = 4
Reference COUNT1 = 2 Reference COUNT1 = 2

INDEX0*ESIZE

INDEX0*ESIZE

INDEX0*ESIZE

Reference COUNT1 = 2

INDEX0*ESIZE

INDEX0*ESIZE

INDEX0*ESIZE

INDEX1*ESIZE INDEX1*ESIZE

INDEX0*ESIZE

INDEX0*ESIZE

INDEX0*ESIZE

After the transfer of each frame, the active COUNT1 register is decremented and the active COUNT0
register is reloaded from the COUNT0 reference register. A transfer is complete when the active COUNT1
field is decremented to zero.
A 2D transfer can be either frame-synchronized, which means that one frame of COUNT0 elements is
moved after receiving a synchronization event, or whole transfer, which means that COUNT1 number of
frames can be moved after receiving a synchronization event. When the SYNC bit field of the event entry
is equal to zero, the transfer is frame-synchronized and only one frame is transferred after receiving an
event. When the SYNC bit field of the event entry is equal to one (COUNT0 equal to one), the data
becomes element-synchronized. When the SYNC bit field of the event is equal to one, the full 2D block is
moved after receiving an event.
If reload is enabled after a transfer is complete, the reference counter and a different set of address
reference registers will be loaded in the active register set. There are two sets of reference registers for
source and destination addresses and one reference element counter register. Two sets of reference
address registers facilitate ping-pong buffering. A new transfer will be automatically kicked off, after a new
event is received.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 27

www.ti.com

Types of dMAX Transfers

1.5.3 Three-Dimensional Transfers
A transfer is three-dimensional (3D) when the COUNT2 register is greater than one, and COUNT1, and
COUNT0 registers in a transfer entry are greater than zero. In this case, the dMAX controller will transfer
COUNT2 number of 2D blocks. Each 2D block will have COUNT1 frames, and each frame will have
COUNT0 number of elements.
During the course of a transfer, dMAX updates the active parameters within the transfer entry (active
source address, active destination address, and active element counter).
The size of COUNT2, COUNT1 and COUNT0 control bit-fields within the transfer entry is adjustable by
setting the counter configuration bits in the event entry. There are three options for 3D transfers:
• The maximum number of 2D blocks can be up to 32767. Each 2D block will have up to 255 frames,

and each frame can have up to 255 elements;
• The maximum frame size can be up to 65535 elements. The maximum number of 2D blocks is limited

to 127, and each 2-D block is composed of up to 255 frames.
• The maximum number of frames, within a 2D block, can be up to 65535. The number of 2D blocks is

limited to 127, and each frame has up to 255 elements.
The 2D-block index (index2) defines the distance, in number of elements, between the last element in a
2D block and the first element of the next 2D block, and it can be between -32768 and 32767. The block
index can be controlled independently for source and destination.
Frame index (index1) defines the distance, in number of elements, between the last element in a frame
and the first element of the next frame, and it can be between -32768 and 32767. The frame index can be
controlled independently for source and destination.
The distance between elements within the frame is specified by index0, and can be independently
controlled for source and destination (source and destination index 0). The source index0 and destination
index0 are expressed in number of elements, and can be between -32768 and 32767. While the active
COUNT0 control register is greater than zero, source and destination addresses are updated by using the
product of element size and the appropriate index0 after each element transfer.
When the active COUNT0 control register is decremented to zero, the active COUNT1 control register is
decremented by one and the source and destination addresses are updated by using the product of
element size and the appropriate index1. The active COUNT0 control register is then reloaded from one of
two COUNT0 reference registers.
When the active COUNT1 control register is decremented to zero, the active COUNT2 control register is
decremented by one and the source and destination addresses are updated by using the product of
element size and the appropriate index2. The active COUNT1 control register is then reloaded from the
COUNT1 reference register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

28 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

A 3D transfer is shown in Figure 1-6. The example presents phases after each frame transfer in a case
when active COUNT0, COUNT1, COUNT2 and reference COUNT0, COUNT1, COUNT2 are set to two
prior to transfer.

Active COUNT0 = 2
Active COUNT1 = 2
Active COUNT2 = 2

Figure 1-6. A Three-Dimensional Transfer
Active COUNT0 = 2
Active COUNT1 = 1
Active COUNT2 = 2

Active COUNT0 = 2
Active COUNT1 = 2
Active COUNT2 = 1

Reference COUNT0 = 2
Reference COUNT1 = 2

Reference COUNT0 = 2
Reference COUNT1 = 2

Reference COUNT0 = 2
Reference COUNT1 = 2

Reference COUNT2 = 2 Reference COUNT2 = 2 Reference COUNT2 = 2

INDEX0*ESIZE

INDEX1*ESIZE

Active COUNT0 = 2
Active COUNT1 = 1
Active COUNT2 = 1

Reference COUNT0 = 2
Reference COUNT1 = 2
Reference COUNT2 = 2

INDEX0*ESIZE

INDEX1*ESIZE

INDEX0*ESIZE

INDEX2*ESIZE

INDEX0*ESIZE

INDEX1*ESIZE

INDEX0*ESIZE

INDEX2*ESIZE

Active COUNT0 = 0
Active COUNT1 = 0
Active COUNT2 = 0

Reference COUNT0 = 2
Reference COUNT1 = 2
Reference COUNT2 = 2

INDEX0*ESIZE

INDEX1*ESIZE

INDEX0*ESIZE

INDEX2*ESIZE

INDEX0*ESIZE INDEX0*ESIZE

INDEX1*ESIZE

INDEX1*ESIZE

INDEX0*ESIZE

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 29

www.ti.com

Types of dMAX Transfers

After the transfer of each frame, the active COUNT1 register is decremented and the active COUNT0
register is reloaded from the COUNT0 reference register. After transfer of the 2D block, the active
COUNT2 register is decremented and the active COUNT1 register is reloaded from the COUNT1
reference register. A transfer is complete when the active COUNT2 field is decremented to zero.
Transfer synchronization is specified by the SYNC bit in the event entry. Transfers can be
frame-synchronized (one frame of data is moved after receiving a synchronizing event), or whole transfer
can be moved after receiving a synchronization event. Element-synchronized transfers (one element is
transferred after receiving a synchronization event) are considered a special case of frame-synchronized
transfers. By making the frame size equal to one, and by selecting frame-synchronization with the SYNC
bit, a frame-synchronized transfer becomes element-synchronized.
If reload is enabled after a transfer is complete, the reference counter and a different set of address
reference registers will be loaded in the active register set. There are two sets of reference registers for
source and destination addresses and one reference element counter register. Two sets of reference
address registers facilitate ping-pong buffering. A new transfer will be automatically kicked off, after a new
event is received.

1.5.4 FIFO Transfers
The dMAX controller can move data between a two-dimensional linear address and a circular buffer
(FIFO). dMAX supports FIFO write and FIFO read type of transfers. A FIFO transfer is specified by its
transfer entry in the PaRAM. The transfer entry describes the transfer and contains a pointer to the
descriptor of a FIFO which is used either as a transfer source or as a transfer destination.
Two-dimensional linear address space is described in the FIFO transfer entry by its address, two
dimensional element counter, and two indexes - one for each dimension. The index0 is expressed in
number of elements and represents distance between two elements within a frame. The index0 can be
anywhere between -32768 to 32767. The index1 is also expressed in number of elements; it represents
distance between two frames, and it can be between -32768 to 32767.
During the course of a transfer, dMAX updates the active parameters within transfer entry (active linear
address and active element counter), and the appropriate pointer within the FIFO descriptor. For a FIFO
write, dMAX will update the write pointer, and for a FIFO read, the read pointer gets updated.
When the active element counter (COUNT0) control register is greater than zero, the active linear address
is updated after each element transfer by using the product of element size and the index0.
When the active element counter (COUNT0) control register is decremented to zero, the active frame
counter (COUNT1) control register is decremented by one and the active linear address is updated by
using the product of element size and the index1. The active element counter control register is then
reloaded from the reference element counter register.
The appropriate pointer within the FIFO descriptor (read pointer for a FIFO read transfer or write pointer
for a FIFO write) is updated only when the active frame counter control register is decremented to zero.
The pointer is adjusted by adding reference element counter (COUNT0). The pointer adjustment is always
calculated by modulo FIFO buffer size.
Values in the active frame counter (COUNT1) register must be always smaller or equal to the value
specified in the reference frame counter (COUNT1R) register. If that is not the case, dMAX will ignore the
transfer entry and will not perform the transfer.
During a FIFO read transfer, if the reference frame counter (COUNT1) is greater than zero, multiple sets
of consecutive samples (taps) can be read from a FIFO and stored in the linear DSP memory without CPU
involvement. The taps can be read anywhere from the FIFO. The tap position (tap delay) within the FIFO
buffer is expressed in number of samples and is calculated by subtracting from the FIFO read pointer. All
taps in a multi-tap delay read transfer have the same size (defined by reference element counter
COUNT0). Tap delay values are stored in a dedicated table (delay table).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

30 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

During a FIFO write transfer, if the reference frame counter COUNT1 is greater than zero, a data frame
read from the linear DSP memory can be stored to the FIFO as a consecutive set of samples (taps). The
taps can be stored anywhere in the FIFO buffer. The tap position (tap delay) within the FIFO buffer is
expressed in number of samples and is calculated by subtracting from the FIFO write pointer. All taps in a
multi-tap delay write transfer have the same number of elements (defined by reference element counter
COUNT0). Tap delay values are stored in a dedicated table (delay table).
A FIFO transfer can be either frame-synchronized (COUNT0 elements moved after receiving a
synchronization event) or whole transfer (can be moved after receiving a synchronization event). If the
SYNC bit field of the event entry is equal to zero, the transfer is frame-synchronized and only one frame
(COUNT0 elements) is transferred after receiving an event. If the frame size is equal to one, the data
transfer becomes element synchronized. If the SYNC bit field of the event entry is equal to one, the whole
transfer is synchronized to one event.
If reload is enabled after a transfer is complete, the reference counter and a linear address reference
register will be loaded in the active register set. There are two sets of linear address reference registers
and only one reference element counter register. Two sets of linear address reference registers facilitate
ping-pong buffering. A new transfer will be automatically kicked off, after a new event is received.
Each FIFO transfer entry contains pointers to two delay tables. A dedicated delay table can be used with
each of the two reference register sets (a different delay table can be used for ping and pong buffers). The
delay tables are referenced from the transfer entry by pointers, and can be located anywhere in the DSP
memory space. The same delay tables can be applied to different FIFOs by specifying the same pointers
to delay tables in the FIFO transfer entries.

1.5.4.1 FIFO Write
A transfer entry for FIFO write includes: an active copy of source address, a pointer to FIFO descriptor,
two source address indexes, an active and a reference copy of element counters, two sets of reference
registers used to reload source address, and two pointers to delay tables.
An active copy of source address points to a DSP memory location which will be copied to the FIFO
buffer. An active copy of source address is automatically updated by the dMAX controller during a course
of a transfer. Instead of fully describing the FIFO buffer within the transfer entry, a pointer to the FIFO
descriptor is used (for more detail on the FIFO descriptor see Section 1.4 and Section 2.2). The FIFO
descriptor can be located anywhere in the DSP RAM.
An element counter is two-dimensional when the frame count register COUNT1 in a transfer entry is
greater than one. In this case, COUNT1 number of frames will be transferred by the dMAX controller, and
each frame will have COUNT0 samples. Each of these frames is stored to the FIFO as a set of
consecutive elements (taps).
The tap position within the FIFO is determined by delay table entries. The tap delay is expressed in
number of samples and it is calculated from the FIFO write pointer. The number of entries in the delay
table is equal to value of reference frame count register COUNT1. There is one-to-one correspondence
between delay table entries and taps (each delay table entry is assigned to one tap). The first delay read
from the delay table corresponds to the first tap written to the FIFO; the second delay read from the delay
table corresponds to the second tap written to the FIFO, and so on.
Source index1 defines the distance, in number of elements, between the last element in a frame and the
first element of the next frame, and it can be between -32768 and 32767. The distance between elements
within the frame is specified by index0. The source index0 is expressed in number of elements, and can
be between -32768 and 32767. While the active COUNT0 control register is greater than zero, source
address is updated after each element transfer by using the product of element size and the appropriate
index0.
When the active element counter COUNT0 control register is decremented to zero, the active COUNT1
control register is decremented by one and source address is updated by using the product of element
size and the index1. The active element counter COUNT0 control register is then reloaded from the
COUNT0 reference register.
The write pointer within the FIFO descriptor is updated only when active frame counter COUNT1 control
register is decremented to zero. The pointer is adjusted by adding reference element counter COUNT0.
The pointer adjustment is always calculated by modulo FIFO buffer size.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 31

www.ti.com

Types of dMAX Transfers

An element counter is one-dimensional when the frame counter COUNT1 register in a transfer entry is
smaller or equal to one. In case when reference frame counter COUNT1 is equal to zero, dMAX will
ignore delay table and transfer COUNT0 elements from source to the location in the FIFO pointed by the
write pointer.
An example of a FIFO write transfer is presented in Figure 1-7. In the figure it is assumed that the FIFO
write pointer grows in a counter-clockwise direction when new samples are written to the FIFO. A transfer
entry for a FIFO write shown in Figure 1-7 specifies:
• Linear source address (SRC) from which data will be copied to the FIFO. Currently sample (A) is at a

memory location pointed to by SRC (Figure 1-7).
• Two source address indexes: sindex0 and sindex1 (for clarity, the indexes are not shown in

Figure 1-7).
• Active and reference copy of frame and element counter. At the beginning of the transfer, active and

reference frame counters are set to three (COUNT1), while active and reference element counters
(COUNT0) are set to two.

• Pointer to a FIFO descriptor. The FIFO descriptor defines the destination FIFO. In case of FIFO write
transfer the relevant FIFO descriptor parameters shown in Figure 1-7 are:
– FIFO size (in number of elements)
– FIFO base address, and
– FIFO write pointer

• Pointers to two delay tables (for clarity reasons only one delay table is shown in Figure 1-7). There is
one-to-one correspondence between delays from the delay table and taps written to the FIFO. The first
table delay corresponds to the first frame; the second delay corresponds to the second frame etc.

Having the frame count equal to three means that in this transfer, three frames will be sorted to taps and
stored to the FIFO. Since the element count is equal to two, each tap will have two elements. Source
index0 dictates spacing between source elements read within a frame. The frame elements are written to
subsequent locations within the circular buffer (FIFO). Location where tap is stored within the FIFO is
dictated by the delay tables.
A FIFO write can be either frame-synchronized (a sync event is required to transfer each frame), or fully
synchronized (one event can be used to synchronize the whole transfer).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

32 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

Figure 1-7. Three-Frame FIFO Write Transfer (Prior to Transfer Start)

Transfer entry for FIFO write
(in PaRAM)

Source data

FIFO descriptor

DTABLE0

DLY0 = 20
DLY0 = 5
DLY0 = 2 DTABLE0

F Pointer to FIFO
descriptor (PFD)

COUNT1R = 3
E COUNT0R = 2

WP COUNT1A = 3
FIFOSIZE COUNT0A = 2
FIFOBASE SRC D

C

B

A

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 33

www.ti.com

Types of dMAX Transfers

Figure 1-8 shows that since one frame is transferred, the active frame counter (COUNT1) is decremented
by one.
Prior to transfer, the active SRC points to the first frame element (A). After transfer of the first element (A),
the active element counter (COUNT0) is decremented by one, and the SRC is updated by the product of
source index0 and element size. The SRC now points to the second frame element (B). After transfer of
the second element (B), COUNT0 is decremented by one. Since COUNT0 is now equal to zero, the SRC
is updated by the product of source index1 and element size, and the value of the active element counter
is reloaded from the reference element counter.
The first entry from the delay table (DTABLE0) dictates the location within the FIFO where the first frame
will be stored. The delay entry specifies destination location relative to the write pointer. Since the first
value read from the delay table is equal to two, starting storing point for the first tap will be two samples
behind the write pointer.
Before the second frame is transferred, the SRC points to the first element of the second frame
(Figure 1-8). After transfer of the first element of the second frame, COUNT0 is decremented by one, and
the SRC is updated by the product of source index0 and element size. The SRC now points to the second
element of the second frame (D). After transfer of the second element (D), COUNT0 is decremented by
one. Since the active element counter is now equal to zero, the SRC is updated by the product of source
index1 and element size, and the value of the active element counter is reloaded from the reference
element counter.

Figure 1-8. Three-Frame FIFO Write Transfer (After Transfer of the First Frame)

Transfer entry for FIFO write
(in PaRAM)

Source data

SINDEX0*ESIZE

SINDEX1*ESIZE A
B

FIFO descriptor

DTABLE0

DLY0 = 20
DLY0 = 5
DLY0 = 2 DTABLE0

F Pointer to FIFO
descriptor (PFD)

COUNT1R = 3 E COUNT0R = 2
WP COUNT1A = 2

FIFOSIZE COUNT0A = 2
FIFOBASE SRC D

C

B

A

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

34 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

Figure 1-9 shows that after the second frame is transferred, COUNT1 is decremented by one.
The second entry from the delay table (DTABLE0) dictates the location within the FIFO where the second
frame will be stored. The delay entry specifies destination location relative to the write pointer. Since the
second value read from the delay table is equal to five, the starting storing point for the second tap will be
five samples behind the write pointer.
Before the last frame is transferred, the active source address pointer (SRC) points to the first element of
the third frame (E) (Figure 1-9). After transfer of the first element (E), COUNT0 is decremented by one,
and the SRC is updated by product of source index0 and element size. The SRC now points to the
second element of the third frame (F). After transfer of the second element (F), COUNT0 is decremented
by one.

Figure 1-9. Three-Frame FIFO Write Transfer (After Transfer of the Second Frame)

Source data

SINDEX0*ESIZE

SINDEX1*ESIZE C
D A B

SINDEX0*ESIZE

SINDEX1*ESIZE

FIFO descriptor

DTABLE0

Transfer entry for FIFO write
(in PaRAM)

The third entry from the delay table (DTABLE0) dictates the location within the FIFO where the third frame
will be stored. The delay entry specifies the destination location relative to the write pointer. Since the third
value read from the delay table is equal to 20, the starting storing point for the first tap will be 20 samples
behind the write pointer.

DLY0 = 20
DLY0 = 5

FIFOBASE SRC D

B

A

C

COUNT0R = 2

DTABLE0 DLY0 = 2

F Pointer to FIFO
descriptor (PFD)

COUNT1R = 3 E

WP COUNT1A = 1
FIFOSIZE COUNT0A = 2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 35

www.ti.com

Types of dMAX Transfers

The results of what happens immediately after the last frame is transferred is presented in Figure 1-10.
Since a frame is transferred, COUNT1 is decremented by one, and now equals zero.

Figure 1-10. Three-Frame FIFO Write Transfer (Immediately After Transfer of the Third Frame)

F
E

Source data

SINDEX0*ESIZE

SINDEX1*ESIZE C
D A B

SINDEX0*ESIZE

SINDEX1*ESIZE

SINDEX0*ESIZE

DTABLE0

FIFO descriptor

Transfer entry for FIFO write

(in PaRAM)

DLY0 = 20

DLY0 = 2 DTABLE0

COUNT1R = 3

F

COUNT0R = 2

FIFOBASE SRC D

B

A

C

DLY0 = 5

Pointer to FIFO
descriptor (PFD)

E

WP COUNT1A = 0
FIFOSIZE COUNT0A = 0

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

36 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

Since the active frame counter is equal to zero, the transfer is complete. After completing the whole
transfer (frame counter decremented to zero), dMAX automatically updates the FIFO write pointer.
Figure 1-11 presents the setup after the transfer is complete. The write pointer is incremented by
reference frame size (reference value for COUNT0, which is two in this example). The value of the write
pointer is calculated by modulo FIFO size.

Figure 1-11. Three-Frame FIFO Write Transfer (Transfer Complete)

F
E

Source data

SINDEX0*ESIZE

SINDEX1*ESIZE C
D A B

SINDEX0*ESIZE

SINDEX1*ESIZE

SINDEX0*ESIZE

DTABLE0

FIFO descriptor

Transfer entry for FIFO write

(in PaRAM)

If reload is enabled, the SRC can be reloaded from one of two reference registers, and value of the active
element and frame counters can be loaded from the reference counter register. In the example, only one
delay table is shown for clarity. If reload is enabled, an appropriate delay table pointer is used with each
reload.
When the reference frame counter (COUNT1R) is equal to zero, dMAX ignores the delay table and data is
written to FIFO starting from the location pointed to by the write pointer.

DLY0 = 20

DLY0 = 2 DTABLE0

COUNT1R = 3

F

COUNT0R = 2

FIFOBASE SRC D

B

A

C

DLY0 = 5

Pointer to FIFO
descriptor (PFD)

E

WP COUNT1A = 0
FIFOSIZE COUNT0A = 0

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 37

www.ti.com

Types of dMAX Transfers

1.5.4.2 FIFO Read
A transfer entry for FIFO read includes: an active copy of destination address, a pointer to FIFO
descriptor, two destination address indexes, an active and a reference copy of element counters, two sets
of reference registers used to reload destination address, and two pointers to delay tables.
An active copy of destination address points to a DSP memory location where data read from the FIFO
buffer will be stored. An active copy of destination address is automatically updated by dMAX during a
course of a transfer. Instead of fully describing FIFO buffer within the transfer entry a pointer to FIFO
descriptor is used (for more detail on the FIFO descriptor see Section 1.4 and Section 2.2). The FIFO
descriptor can be located anywhere in the DSP RAM.
An element counter is two-dimensional when the element count register (COUNT1) in a transfer entry is
greater than one. In this case, COUNT1 number of taps will be transferred by dMAX from the FIFO to
linear memory, and each tap will have COUNT0 elements. Each tap read from the FIFO is a set of
COUNT0 consecutive elements.
The tap position within the FIFO is determined by delay table entries. The tap position (tap delay) within
the FIFO buffer is expressed in number of samples and is calculated from the FIFO read pointer. The
number of entries in the delay table is equal to value of the reference frame count register (COUNT1).
There is one-to-one correspondence between delay table entries and taps (each delay table entry is
assigned to one tap). The first delay read from the delay table corresponds to the first tap read from the
FIFO; the second delay read from the delay table corresponds to the second tap read from the FIFO, etc.
Destination index1 defines the distance, in number of elements, between the last element in a frame and
the first element of the next frame; it can be between -32768 and 32767.
The distance between elements within the frame is specified by index0. The destination index0 is
expressed in number of elements, and can be between -32768 and 32767. While the active COUNT0
control register is greater than zero, destination address is updated after each element transfer by using
the product of element size and the appropriate index0.
When the active COUNT0 control register is decremented to zero, the active COUNT1 control register is
decremented by one and destination address is updated by using the product of element size and the
index1. The active COUNT0 control register is then reloaded from the COUNT0 reference register.
The read pointer within the FIFO descriptor is updated only when the active COUNT1 control register is
decremented to zero. The pointer is adjusted by adding COUNT0. The pointer adjustment is always
calculated by modulo FIFO buffer size.
An element counter is one-dimensional when the COUNT1 register in a transfer entry is smaller or equal
to one. When reference COUNT1 is equal to zero, dMAX will ignore the delay table and transfer COUNT0
elements from a FIFO location pointed by the read pointer to memory location pointed by active
destination address register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

38 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

An example of a FIFO read transfer is presented in Figure 1-12, where the FIFO read pointer moves in a
counter-clockwise direction when samples are read from the FIFO. A transfer entry for FIFO read shown
in Figure 1-12 specifies:
• A destination (DST) address to which data is going to be stored after being read from the FIFO.
• Two destination address indexes: dindex0 and dindex1 (for clarity the indexes are not shown in

Figure 1-12).
• Active and reference copy of frame and element counter. At the beginning of the transfer, active and

reference frame counters are set to three (COUNT1), while active and reference element counters
(COUNT0) are set to two.

• Pointer to a FIFO descriptor. The FIFO descriptor defines the source FIFO. In case of FIFO read
transfer the relevant FIFO descriptor parameters shown in Figure 1-12 are:
– FIFO size (in number of elements)
– FIFO base address, and
– FIFO read pointer

• Pointers to two delay tables (for clarity, only one delay table is shown in Figure 1-12). There is
one-to-one correspondence between delays from the delay table and taps read from the FIFO. The
first table delay corresponds to the first tap; the second delay corresponds to the second tap, etc.

Figure 1-12. Three-Frame FIFO Read (Prior to Transfer Start)

Having frame count equal to three means that in this transfer, three taps will be pulled out from the FIFO
buffer and sorted out to the linear DSP memory. Since the element count is equal to two, each tap will
have two elements. The samples within the tap are read from subsequent locations within the FIFO. The
FIFO location from which the tap is retrieved is dictated by the delay tables. Destination index0 dictates
spacing between frame elements when dMAX stores samples read from the FIFO to the linear DSP
memory.
A FIFO read can be either frame-synchronized (a sync event is required to transfer each frame), or one
event can be used to synchronize the whole transfer.

F
E

Destination
C

D A
B

FIFO descriptor

DTABLE0

Transfer entry for FIFO read
(in PaRAM)

DLY0 = 20
DLY0 = 5
DLY0 = 2 DTABLE0

Pointer to FIFO
descriptor (PFD)

COUNT1R = 3
COUNT0R = 2
COUNT1A = 3
COUNT0A = 2

RP DST
FIFOSIZE
FIFOBASE

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 39

www.ti.com

Types of dMAX Transfers

Figure 1-13 shows the results of the first frame being transferred. Since one frame is transferred, the
active frame counter (COUNT1) is decremented by one.

Figure 1-13. Three-Frame FIFO Read (After Reading the First Tap)

F
E

Destination

A
C

D A B DINDEX0*ESIZE
B

DST
COUNT0A = 2
COUNT1A = 2
COUNT0R = 2
COUNT1R = 3
Pointer to FIFO
descriptor (PFD)

DTABLE0

Transfer entry for FIFO read
(in PaRAM)

FIFOBASE
FIFOSIZE

RP

DTABLE0
DLY0 = 2
DLY0 = 5

DLY0 = 20

FIFO descriptor

DINDEX1*ESIZE

The first entry from the delay table (DTABLE0) dictates location within the FIFO from which the first tap
will be read. The delay entry specifies the source location relative to the read pointer. Since the first value
read from the delay table is equal to two, the starting point for the first tap will be two samples behind the
read pointer. Tap size is equal to frame size and it is equal to two, so the first tap read from the FIFO
consists of elements (A) and (B).
The first tap element (A) is transferred to the location pointed to by the active destination address. After
transfer of the first element (A), the active element counter (COUNT0) is decremented by one, the active
destination address (DST) is updated by product of destination index0 and element size, and the second
tap element (B) is transferred. After transfer of the second element (B), the active element counter
(COUNT0) is decremented by one. Since the active element counter is now equal to zero, the DST is
updated by product of destination index1 and element size, and value of the active element counter is
reloaded from the reference element counter.
The second entry from the delay table (DTABLE0) dictates location within the FIFO from which the second
tap will be read. The delay entry specifies source location relative to the read pointer. Since the second
value read from the delay table is equal to five, starting point for the second tap will be five samples
behind the read pointer. Tap size is equal to frame size and it is equal to two, so the second tap read from
the FIFO consists of elements (C) and (D).
The first element of the second tap (C) is transferred to the location pointed by the active destination
address. After transfer of the first element (C) the active element counter (COUNT0) is decremented by
one, and the active destination address DST is updated by product of destination index0 and element
size, and the second tap element (D) is transferred. After transfer of the second element of the second tap
(D), the active element counter (COUNT0) is decremented by one. Since the active element counter is
now equal to zero, the active destination address DST is updated by product of destination index1 and
element size, and value of the active element counter is reloaded from the reference element counter.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

40 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

Figure 1-14 shows what happens immediately after the frame transfer. Since another frame is transferred,
the active frame counter (COUNT1) is decremented by one.

Figure 1-14. Three-Tap FIFO Read (After Reading the Second Tap)

Transfer entry for FIFO read
(in PaRAM)

The third delay from the delay table (DTABLE0) dictates location within the FIFO from which the third tap
will be read. The delay specifies source location relative to the read pointer. Since the third value read
from the delay table is equal to 20, starting point for the third tap will be 20 samples behind the read
pointer. Tap size is equal to frame size and it is equal to two, so the third tap read from the FIFO consists
of elements (E) and (F).
The first element of the first tap (E) is transferred to the location pointed by the active destination address.
After transfer of the first element (E), the active element counter (COUNT0) is decremented by one, and
the active destination address DST is updated by product of destination index0 and element size, and the
second element of the third tap (F) is transferred. After transfer of the second element (F) the active
element counter (COUNT0) is decremented by one.

Destination

C
D A

B DINDEX0*ESIZE

DINDEX1*ESIZE

DINDEX0*ESIZE

FIFO descriptor DINDEX1*ESIZE

DTABLE0

DLY0 = 20
DLY0 = 5
DLY0 = 2 DTABLE0

Pointer to FIFO
descriptor (PFD)

COUNT1R = 3
COUNT0R = 2
COUNT1A = 1
COUNT0A = 2

D DST RP
FIFOSIZE

C FIFOBASE

B

A

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 41

www.ti.com

Types of dMAX Transfers

Figure 1-15 shows what happens immediately after the frame transfer. Since another frame is transferred,
the active frame counter (COUNT1) is decremented by one and equals zero.

Figure 1-15. Three-Tap FIFO Read (Immediately After Reading the Third Tap)

F

E

C
D A

B
DINDEX0*ESIZE

Destination

A

B

DST
COUNT0A = 0
COUNT1A = 0
COUNT0R = 2
COUNT1R = 3
Pointer to FIFO
descriptor (PFD)

DTABLE0

Transfer entry for FIFO read
(in PaRAM)

FIFOBASE
FIFOSIZE

RP

DTABLE0
DLY0 = 2
DLY0 = 5

DLY0 = 20

FIFO descriptor

DINDEX1*ESIZE

C
DINDEX0*ESIZE

D

DINDEX1*ESIZE

E
DINDEX0*ESIZE

F

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

42 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Types of dMAX Transfers

When the active counter is equal to zero, the transfer is complete. After completing the whole transfer
(frame counter decremented to zero), dMAX automatically updates the FIFO read pointer. Figure 1-16
shows the setup after the transfer is complete. The read pointer is incremented by reference frame size
(reference value for COUNT0, which is two in this example). The value of the read pointer is calculated by
modulo FIFO size.

Figure 1-16. Three-Tap FIFO Read (Transfer Complete)

F
E

C B
D A DINDEX0*ESIZE

Destination

A

B

DST
COUNT0A = 0
COUNT1A = 0
COUNT0R = 2
COUNT1R = 3
Pointer to FIFO
descriptor (PFD)

DTABLE0

Transfer entry for FIFO read
(in PaRAM)

FIFOBASE
FIFOSIZE

RP

DTABLE0
DLY0 = 2
DLY0 = 5

DLY0 = 20

FIFO descriptor

DINDEX1*ESIZE

C
DINDEX0*ESIZE

D

DINDEX1*ESIZE

E
DINDEX0*ESIZE

F

If reload is enabled, the active destination address DST can be reloaded from one of two reference
registers, and the value of the active element and frame counters can be loaded from the reference
counter register. In the example, only one delay table is shown for clarity. If reload is enabled, an
appropriate delay table pointer is used with each reload.
If the reference frame counter (COUNT1) is equal to zero, dMAX ignores the delay table and FIFO read
starts at the location pointed by the read pointer .

1.5.5 One-Dimensional Burst (1DN) Transfers

The one-dimensional burst transfer (1DN) is optimized for doing fast transfer of sequential data from one
memory location to the other. A 1DN transfer is specified by its transfer entry in the PaRAM. The transfer
entry describes the transfer and contains pointer to the source and the destination address. The transfer
entry also contains the CNT that defines the number of bytes that need to be transferred.
The 1DN transfer happens in bursts. A burst is synonymous to a quantum transfer and describes the
number of bytes that the dMAX will transfer before it checks for a new event. If an event arrives while
dMAX is performing a burst transfer, the event will be serviced after the burst has been completed. The
burst length can be configured to be between 1-64 bytes. Unlike the general purpose transfers, the 1DN
transfer does not yield to a higher priority pending transfer after transferring one burst. The 1DN transfer

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 43

www.ti.com

Types of dMAX Transfers

SPIBUF

SRC

SPIBUF

SRC

SPIBUF

SRC

only yields after a burst if there is a new event that has arrived. The 1DN transfer yields to a higher priority
pending transfer after performing N bursts. The number of bursts (N) after which the 1DN transfer yields to
a higher priority pending transfer is user configurable. The number of bursts can be configured in the
transfer entry. The 1DN transfer can thus block a higher priority pending transfer and therefore should be
used with caution.
During the course of a transfer, dMAX updates the parameters within the transfer entry (source address,
destination address, byte counter and number of bursts). The maximum number of bytes that can be
moved by a 1DN transfer is 65535.
After receiving an event, CNT number of bytes are transferred. A 1DN transfer is complete when the CNT
field is decremented to zero.

1.5.6 SPI Slave Transfer
SPI slave transfer allows for servicing the SPI peripheral when used in slave mode. The peripheral
servicing requires that for a given SPI event, one element be read from the SPI input register and an
element be written to the SPI output shift register. The SPI slave transfer supports this functionality. The
672x DSP supports two SPI peripherals. The SPI peripheral to use for a give SPI slave transfer is
configured in the event entry.
A set of active registers for a SPI slave transfer includes source address, destination address, and
element counter. During course of a transfer, the dMAX controller updates the active parameters within
transfer entry (active source address, active destination address and active element counter). The element
size can be configured to be 8-bit or 16-bit in the event entry.
For each input event, one element is read from the SPI input shift register (SPIBUF) and is stored in the
destination address. Also, one element is read from the input address and moved to the SPI output shift
register (SPIDAT0). The input address and the output address are incremented by one after servicing
each event. There are two sets of reference registers that specify reference values for source and
destination address; there is also one reference counter register. During a transfer, dMAX uses the active
register set.
A SPI slave transfer is graphically presented in Figure 1-17. The example presents transfer phases in a
case when active count and reference count is set to 3.

Figure 1-17. SPI Slave Transfer

SPIDAT0 SPIDAT0 SPIDAT0

Active count = 2

DST

Active count = 1

DST

Active count = 0

DST

Reference count = 3 Reference count = 3 Reference count = 3

The maximum number of elements that can be transferred by a SPI slave transfer is 65535. A SPI slave
transfer is complete when the active element count field is decremented to zero. If reload is enabled at the
end of the transfer, active address registers are loaded from one of two sets of reference address
registers. The address reference register set used during reload is specified by the PP bit within the
transfer entry. If PP bit is 0, address reference register set 1 is loaded to the active address registers. If
PP bit is 1, address reference register set 0 is loaded to the active address registers. The PP bit is toggled
after loading the reference register set.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

44 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Quantum Transfers

1.6 Quantum Transfers
Splitting a transfer into a number of sub-transfers allows the dMAX controller to quickly process
higher-priority requests that arrived during the transfer, and therefore reduce the system latency. To
improve system latency, dMAX always moves data in small sub-transfers called quantum transfers. The
number of elements transferred during a quantum transfer is always less than or equal to the quantum
transfer size limit (QTSL) which is specified in a transfer entry. A transfer longer than the quantum transfer
size limit is called a long transfer.
An example of a long transfer is presented in Figure 1-18. In this example, an event is triggering a transfer
of 15 elements, and the QTSL is set to four in the transfer entry.

Figure 1-18. An Example of a Long Transfer (Transfer Size is Equal to 15 Elements and Quantum Transfer

Limit Size is Set to 4)
Case A: COUNT0 = 15, COUNT1 = 0, COUNT2 = 0

EventFlag0

LoMAX
Data traffic

E0(Q0) E0(Q1) E0(Q2)

E0(Q3)

Case B: COUNT0 = 5, COUNT1 = 3, COUNT2 = 0

EventFlag0

LoMAX
Data traffic

E0(Q0) E0(Q1)

E0(Q2)

E0(Q3)

E0(Q4)

E0(Q5)

Transfer size of E0 is 15 elements
In the Event Entry QTSL is set to 4 elements
In the Event Entry SYNC = ‘1’

In CASE A the transfer is one-dimensional
In CASE B the transfer is two-dimensional

Legend:
Ex(Qy): Quantum transfer (y), is a part of a long transfer

initiated by an event on the event signal number (x).
Event Flagx: A flag that corresponds to event number (x), from

the EFR register

The QTSL is an upper bound to the number of elements that dMAX can transfer from source to
destination without interruption. During a quantum transfer, dMAX may move from source to destination a
number of elements that will not exceed what is specified in the QTSL bit field of the event entry. For
general purpose data transfer, the size of the quantum transfer is equal to the minimum between the
QTSL and the active element counter, COUNT0A.
In the example presented in the upper panel of Figure 1-18 (CASE A), a transfer will be broken into four
quantum transfers: E0(Q0), E0(Q1), E0(Q2), and E0(Q3). The dMAX controller transfers four elements
within each of the first three quantum transfers, and during the last quantum transfer, the remaining three
elements are moved.
In the example presented in the lower panel of Figure 1-18 (CASE B), a transfer will be broken into six
quantum transfers. In the example, the frame size is equal to five and the QTSL is equal to four, so the
first quantum transfer moves the first four elements of a frame while the second quantum transfer moves
the remaining one element. Therefore, dMAX, in CASE B, breaks transfer of each of three frames into two
quantum transfers.
A FIFO transfer that crosses the upper FIFO boundary is always split into two quantum transfers (even
when the transfer size is equal to or smaller than the QTSL specified in the event entry). The first of the
two quantum transfers will fill the gap between the FIFO pointer and the upper FIFO boundary; the second
quantum transfer will wrap around and move remaining elements starting from the lower FIFO boundary.
When a new event arrives while dMAX is performing a quantum transfer (and the quantum transfer is a
part of a long transfer started by the event that belongs to the same priority group as the new event), the
new event will be serviced after completion of the quantum transfer that is in progress. After servicing the
event, if there are no other pending events in the same priority group, dMAX will continue processing
previously interrupted data transfer (assuming that the event doesn't start another long transfer with higher
priority than the interrupted long transfer).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 45

www.ti.com

Element Size and Alignment

If there are no pending events and two long transfers in progress are pending (assuming the two transfers
belong to events from the same priority group), the transfer that corresponds to a higher priority event is
going to be serviced first.
The QTSL is programmable and can be different for different channels. By decreasing the QTSL, overall
dMAX latency will decrease; by increasing it, the dMAX data throughput will increase.

1.7 Element Size and Alignment

The element size can be independently set for each channel. The dMAX controller supports three different
element size settings: 8-bit, 16-bit, and 32-bit.
The transfer counter always specifies the number of elements to be transferred. Source, destination
indexes, and buffer size are also specified in number of elements.

1.8 Source/Destination Address Updates
Since all indexes are specified in number of elements, in order to calculate correct address, the index
value must be multiplied by element size. Indexes can take positive and negative values. After each
transfer, source and destination addresses are updated by the product of the appropriate index and
element size.

1.9 Reloading dMAX Transfers

The transfer entry contains a set of active registers, two sets of address reference registers, and only one
reference counter register. In the active register set, dMAX maintains information about the state of a
transfer (current source and destination addresses and current element count).
The reload option can be used with all transfer types supported by dMAX. If reload is enabled after a
transfer is complete, a set of address reference registers will be loaded to the active register set. A new
transfer will be automatically kicked off after a new event is received. A different set of address reference
registers will be loaded into the active set of address registers each time a transfer completes. The PP
control bit in the transfer entry indicates which reference set was last loaded in the set of active registers.
If the PP bit in the transfer entry is cleared to zero, during the next reload, dMAX will move Reload1 set of
registers into the active registers and set the PP bit to one. If the PP bit in the transfer entry is set to one,
during the next reload, dMAX will move Reload0 set of registers into the active registers, and will clear the
PP bit to zero.
For FIFO transfers, a reference register set consists of two linear address references and one reference
element counter register. A FIFO transfer entry also contains two delay table pointers. There is one-to-one
correspondence between reference address registers and delay-table pointers. The purpose of
associating a delay-table pointer with a reference register set is to be able to alternate or use a different
delay table every time a new transfer is initiated by reload. If reload is enabled, a different address
reference register will be loaded in the active address register every time transfer completes. The PP
control bit in the transfer entry indicates which reference register was loaded in the active register and
which delay table is used in the current transfer.

1.10 dMAX Interrupt Generation

The dMAX controller can use:
• A dedicated interrupt line (INT8) to notify the CPU about data transfer completion.
• A dedicated interrupt line (INT7) to indicate the FIFO status conditions to the CPU.
• any event presented in Table 1-2 to trigger a CPU interrupt by using one of six interrupt lines (see

Section 2.1.1.3).

CAUTION
Only 32-bit transfers are supported to and from the McASP DMA ports.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

46 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Interrupt Generation

1.10.1 Using an Event to Initiate a CPU Interrupt
An event from a peripheral or an external event can be used to generate an interrupt to the CPU via
dMAX. In order to generate an interrupt, an event entry that corresponds to the event must be
programmed appropriately. If an event is used to generate a CPU interrupt, a transfer entry is not
required, and the event entry only needs to specify which interrupt line should be used to trigger the CPU
interrupt.

1.10.2 End of Transfer Notification Interrupt to the CPU
The dMAX controller is responsible for generating transfer-complete interrupts to the CPU; it uses a single
interrupt line to the CPU on behalf of all 16 possible channels. The various control registers and bit fields
facilitate dMAX interrupt generation.
Upon completion of the entire channel transfer (counter for all dimensions expired to zero), the
transfer-complete interrupt applies. The TCINT bit field within the event entry enables dMAX to notify the
CPU at the end of a transfer. At the end of a transfer, if the TCINT bit field in the event entry is set, dMAX
will set a bit in one of two dMAX Transfer Complete Registers (DTCR). Prior to setting the bit in the
register, dMAX will verify if the bit was cleared; if the bit is zero, it will generate an interrupt to the CPU.
The TCC value programmed in the event entry dictates the DTCR bit number that gets set. In the dMAX
controller, the TCC field specifies the transfer complete pending bit, with values between 0-15. The TCC
codes 0-7 correspond to bits 0-7 of the DTCR0, while TCC codes 8-15 correspond to bits 0-7 of the
DTCR1.
If the TCC pending bit is not cleared by the CPU before dMAX attempts to set the bit again, dMAX will not
generate a CPU interrupt.
If the TCINT bit is not set in the event entry, the TCC code will not be set and a CPU interrupt will not be
generated at the end of a transfer.
If the TCINT bit in the event entry is set, at the end of transfer, dMAX will trigger a CPU interrupt (INT8),
and if the interrupt is enabled, its interrupt service routine is executed.
The transfer complete code can be programmed to any value for any dMAX channel; no direct relation
between the channel number and the transfer complete code value is needed. This allows multiple
channels having the same transfer complete code value to cause the CPU to execute the same ISR (for
different channels). Alternatively, the same channel can set multiple complete codes depending on the
transfers performed.

1.10.2.1 Alternate Transfer Complete Interrupt
The dMAX controller allows an interrupt upon completion of intermediate transfers in a block, and enabled
by the alternate transfer complete interrupt (ATCINT) field in the event entry. When it is enabled, an
interrupt is set (and sent to the CPU) upon completion of each intermediate transfer of the current
channel. At the end of an intermediate transfer, if the ATCINT bit field in the event entry is set, the dMAX
controller will set a bit in one of two dMAX Transfer Complete Registers (DTCR). Prior to setting the bit in
the DTCR, the dMAX controller will verify that the bit was cleared; only if the bit is zero will it generate an
interrupt to the CPU. The TCC value programmed in the event entry dictates the DTCR bit number that
gets set. In the dMAX controller, the TCC field specifies the transfer complete pending bit, with values
between 0-15. The TCC codes 0-7 correspond to bits 0-7 of the DTCR0 register, while TCC codes 8-15
correspond to bits 0-7 of the DTCR1 register.
If the TCC pending bit is not cleared by the CPU before dMAX attempts to set the bit again, dMAX will not
generate a CPU interrupt.
If the ATCINT bit is not set in the event entry, the TCC code will not be set and a CPU interrupt will not be
generated upon completion of each intermediate transfer of the current channel.
The alternate transfer complete interrupt is not applicable if the whole transfer is synchronized to one
synchronizing event (SYNC bit field in the event entry equal to one).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 47

www.ti.com

1.10.2.2 Processing of End of Transfer dMAX Interrupt by the CPU

Emulation Operation

Since the dMAX controller tracks the completion of the dMAX channel transfer, it sets the appropriate bit
in the DTCR as per the transfer complete pending bit specified. The CPU ISR should read either dMAX
Event Status Register (DESR) or DTCR to determine what, if any, events/channels have completed and
perform the necessary operations. The read-only DESR will have a lower overhead than reading the
DTCR, since the DESR is placed inside the CPU for faster access. The pending bit can only be cleared by
writing to the DTCR. Writing a 1 to the relevant bit can clear the DTCR bits; writing a 0 has no effect.
By the time one interrupt is serviced, many others could have occurred and relevant bits set in the DTCR.
Each of these bits in the DTCR would probably need different types of service. The ISR should check for
all pending interrupts and continue until all the posted interrupts are serviced.

1.10.3 FIFO Status Notification Interrupt

1.10.3.1 FIFO Buffer Watermarks

A FIFO buffer descriptor contains two watermarks; empty mark (EMARK), and full mark (FMARK). If the
number of fresh samples in the circular buffer becomes equal or drops below EMARK, a FIFO empty
condition will be signaled to the CPU. If the number of fresh samples in the circular buffer becomes equal
or rises above FMARK, a FIFO full condition will be signaled to the CPU. The watermark notifications can
be enabled or disabled by writing to a bit in the event entry describing a FIFO transfer.
To signal a watermark condition to the CPU, the dMAX sets the FIFO status code pending bit in the dMAX
FIFO Status Register (DFSR) and triggers a FIFO status interrupt to the CPU (INT7). The FIFO status
code bit to be used for this notification is dictated by the value specified in the FIFO buffer descriptor. In
order to receive further watermark notifications from the particular buffer, the CPU must clear the FIFO
status code pending bit in the DFSR.
The Full Mark Status Code (FMSC) value programmed in the FIFO descriptor dictates the DFSR bit
number that gets set to indicate a FIFO full status. In the dMAX controller, the FMSC field specifies the
FIFO full status pending bit, with values between 0-15. The FMSC codes 0-7 correspond to bits 0-7 of the
DFSR0, while FMSC codes 8-15 correspond to bits 0-7 of the DFSR1.
The Empty Mark Status Code (EMSC) value programmed in the FIFO descriptor dictates the DFSR bit
number that gets set to indicate a FIFO empty status. The EMSC field specifies the FIFO empty status
pending bit, with values between 0-15. The EMSC codes 0-7 correspond to bits 0-7 of the DFSR0, while
EMSC codes 8-15 correspond to bits 0-7 of the DFSR1.

1.10.3.2 FIFO Buffer Error Notifications

The FIFO errors are discussed in Section 1.4.2. In case of a FIFO error, dMAX will abort the transfer. The
controller will notify the CPU by triggering a FIFO status interrupt, setting an appropriate error flag in the
FIFO descriptor, and by setting both status flags assigned to the FIFO (EMSF and FMSF FIFO status
flags are set in the DFSR0 and DFSR1).

1.10.4 dMAX NMI Interrupt

dMAX has an interrupt line, dMAX NMI, that is hooked to the CPU INT1.interrupt. dMAX will never assert
this dMAX NMI interrupt to the CPU.

1.11 Emulation Operation

During debug using the emulator, the CPU may be halted on an execute packet boundary for single
stepping, benchmarking, profiling, or other debug uses. During an emulation halt, dMAX operations
continue; toggling bits in the DETR will not trigger dMAX events.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

48 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Event Encoder

1.12 Event Encoder
The event encoder uses information from two registers, DEHPR and DELPR, to sort all events in two
priority groups. The event encoder then ranks all events within one group according to their event
numbers (lower event number, higher event priority within its group). The highest priority event from the
high-priority group and the highest priority event from the low-priority group can be then processed
concurrently by dMAX.
A new event always takes priority over a long transfer. The event numbers are only used for arbitration
among multiple pending events. For example, if there are multiple new events and multiple long transfers
all pending then the new event with the lowest event number (i.e., highest priority) will be serviced first.
Once all new events have been serviced, then the long transfer with the lowest number/highest priority will
be transferred next.

1.12.1 Synchronization of dMAX Events
The dMAX Event Flag Register (DEFR) captures up to 31 separate events; therefore, it is possible for
events to occur simultaneously on the dMAX event inputs. In such cases, the event encoder resolves the
order of processing. This mechanism sorts simultaneous events and sets the priority of the events.
The dMAX controller sorts all events into two priority groups to which an event can belong: high priority
and low priority. Two registers, the DEHPR and DELPR, establish the association of an event and priority
group. Bits in the DER and DEFR are assigned to the events according to their event numbers (bit n in
thesen registers correspond to event number n). There is a one-to-one correspondence between the event
flags in the DEFR and 32 bits in the DEHPR. Setting a bit in the DEHPR puts the corresponding event in
the high-priority event group. There is also a one-to-one correspondence between the event flags in the
DEFR, and the 32 bits in the DELPR. Setting a bit in the DELPR puts the corresponding event in the
low-priority event group.
For events arriving simultaneously within the same priority group, priority is determined by their event
number (an event with lower event number has a higher priority within its group).
dMAX can simultaneously process one event from each priority group. Therefore, the two highest priority
events (one from each group) can be processed at the same time.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 49

www.ti.com

Event Encoder

Table 1-2 lists how the synchronization events are associated with event numbers in dMAX.

Table 1-2. dMAX Channel Synchronization Events

Event
Number

Event
Acronym

Address
Offset in the
Event Entry
Table

Event Description
0 DETR[0] 0x00 The CPU triggers the event by creating an appropriate

transition (edge) on bit0 in the DETR register.
1 DETR[16] 0x04 The CPU triggers the event by creating an appropriate

transition (edge) on bit16 in the DETR register.
2 RTIREQ0 0x08 RTI DMA REQ[0]
3 RTIREQ1 0x0C RTI DMA REQ[1]
4 MCASP0TX 0x10 MCASP0 TX DMA REQ
5 MCASP0RX 0x14 MCASP0 RX DMA REQ
6 MCASP1TX 0x18 MCASP1 TX DMA REQ
7 MCASP1RX 0x1C MCASP1 RX DMA REQ
8 MCASP2TX 0x20 MCASP2 TX DMA REQ
9 MCASP2RX 0x24 MCASP2 RX DMA REQ

10 DETR[1] 0x28 The CPU triggers the event by creating an appropriate
transition (edge) on bit1 in the DETR register.

11 DETR[17] 0x2C The CPU triggers the event by creating an appropriate
transition (edge) on bit17 in the DETR register.

12 UHPIINT 0x30 UHPI CPU_INT
13 SPI0RX 0x34 SPI0 DMA_RX_REQ
14 SPI1RX 0x38 SPI1 DMA_RX_REQ
15 RTIREQ2 0x3C RTI DMA REQ[2]
16 RTIREQ3 0x40 RTI DMA REQ[3]
17 DETR[2] 0x44 The CPU triggers the event by creating an appropriate

transition (edge) on bit2 in the DETR register.
18 DETR[18] 0x48 The CPU triggers the event by creating an appropriate

transition (edge) on bit18 in the DETR register.
19 I2C0XEVT 0x4C I2C 0 Transmit Event
20 I2C0REVT 0x50 I2C 0 Receive Event
21 I2C1XEVT 0x54 I2C 1 Transmit Event
22 I2C1REVT 0x58 I2C 1 Receive Event
23 DETR[3] 0x5C The CPU triggers the event by creating an appropriate

transition (edge) on bit3 in the DETR register.
24 DETR[19] 0x60 The CPU triggers the event by creating an appropriate

transition (edge) on bit19 in the DETR register.
25 Reserved 0x64 Reserved
26 MCASP0ERR 0x68 AMUTEIN0 or McASP0 TX INT or McASP0 RX INT (error

on MCASP0)
27 MCASP1ERR 0x6C AMUTEIN1 or McASP1 TX INT or McASP1 RX INT (error

on MCASP1)
28 MCASP2ERR 0x70 AMUTEIN2 or McASP2 TX INT or McASP2 RX INT (error

on MCASP2)
29 OVLREQ[0/1] 0x74 Error on RTI
30 DETR[20] 0x78 The CPU triggers the event by creating an appropriate

transition (edge) on bit20 in the DETR register.
31 DETR[21] 0x7C The CPU triggers the event by creating an appropriate

transition (edge) on bit21 in the DETR register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

50 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Event Encoder

1.12.2 Event Priority Processing Within the Same Event Priority Group

Within a priority group, events are prioritized according to the event numbers (lower event number has
higher priority).
Long data transfers are always divided into a number of quantum transfers and serviced in the
background. A long data transfer will always have a lower priority than a new event. If a new event arrives,
the new event will be given higher priority than the long transfer. This is true even if the new event priority
is lower than the priority of the event that triggered the long data transfer.
If an event arrives while dMAX is performing a quantum transfer (sub-transfer of a long data transfer), the
new event will be serviced immediately after completion of the quantum transfer that is in progress. After
servicing the new event, if there are no other pending events, dMAX will continue processing the
previously interrupted data transfer.
A data traffic example illustrating the case when events arrive from three event signals (Event0, 1 and 4)
sorted to the same priority event group is given in Figure 1-19. Within the group, event0 has the highest
priority, followed by event1 and event4. A transition on event signal zero is latched in the Event Flag
register (EFR), and EventFlag0 is set. The flag is cleared once dMAX starts processing the event. The
event0 triggers a long data transfer E0. dMAX begins moving the first quantum transfer E0(Q0) of the long
data transfer E0, at the time stamp t0. The EventFlag0 is automatically cleared.

Figure 1-19. A Data Traffic Example: All Events Arrive from Three Event Signals Sorted to the Lower

Priority Event Group

EventFlag0

EventFlag1

EventFlag4

LoMAX
data traffic

Transfer size of E0 is 4 quantum transfers
Transfer size of E1 is 1 quantum transfers
Transfer size of E4 is 3 quantum transfers

Legend:

Ex(Qy): Quantum transfer (y), is a part of
a long transfer initiated by an event
on the event signal number (x).

EventFlagx: A flag that corresponds to event

number (x), from the EFR register.

While dMAX is moving the second quantum transfer E0(Q1) of the long transfer E0, a new event arrives at
time stamp t1 (EventFlag4 gets set). New events always have higher priority than long data transfers.
Even though Event4 has lower priority than the event that started the long data transfer E0, the new event
will be serviced as soon as quantum transfer E0(Q1) is complete.
At the time stamp t2, dMAX starts servicing the new event and EventFlag4, which corresponds to the
event, is automatically cleared. The new event triggers a new long data transfer E4. The dMAX controller
begins moving the first quantum transfer E4(Q0) of the new long data transfer E4, at the time stamp t2.
After quantum transfer E4(Q0) is completed (time stamp t3), there are no new events waiting to be
processed, but there are two long data transfers pending execution. Long pending data transfers are
prioritized, among themselves, according to their triggering events. Since Event0 has higher priority than
Event4, the long data transfer E0 is resumed. The long data transfer E0 is done after quantum transfers
E0(Q2), and E0(Q3) are completed. After completing transfer E0, dMAX will switch back, and resume long
data transfer E4.
An event1 arrives at time stamp t4, while dMAX is transferring the second quantum transfer E4(Q1) of
long data transfer E4. The new event is serviced as soon as the dMAX completes quantum transfer
E4(Q1). The new event triggers a short data transfer which contains only one quantum transfer E1(Q0).
dMAX resumes long data transfer E4, once quantum transfer E1(Q0) is complete.

E0(Q0) E0(Q1) E4(Q0) E0(Q2) E0(Q3) E4(Q1) E1(Q0) E4(Q2) E1(Q0)

t0 t1 t2 t3 t4 t5 t6 t7

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Introduction/Feature Overview 51

www.ti.com

Event Encoder

At time stamp t6, dMAX would continue processing transfer E1, instead of resuming transfer E4, if number
of elements synchronized to EventFlag1, that took place at time stamp t4, was larger than quantum
transfer size limit.
If an event arrives while dMAX is performing a quantum transfer, the event will be serviced after
completion of the quantum transfer that is in progress. After servicing the event, dMAX will continue
processing the previously interrupted data transfer as long as there are no other pending transfers with
higher priority than previously interrupted data transfer, and the new event did not trigger a long transfer
with priority higher than the interrupted transfer.
An illustration of when a new event arrives, on the same channel, during a course of a long transfer is
presented in Figure 1-20. An event at time stamp t0 triggers a long transfer (QTSL is set to four elements
and transfer size is set to 15 elements). The transfer will be broken into four quantum transfers. The first
three quantum transfers will be four words long. The last quantum transfer will be three words long. If a
new event on the channel arrives before start of the last quantum transfer, dMAX will ignore the event. For
example in Figure 1-20, a new event on the channel arrived during the first quantum transfer E0(Q0). The
event will not affect progress of the transfer E0. dMAX clears the event flag right before start of the second
quantum transfer E0(Q1). In other words, the event is ignored and dMAX continues with transfer E0
(second quantum transfer is performed). If a new event on the channel arrives during the last quantum
transfer, the event will trigger a new transfer (assuming that the active element counter (COUNT0) is
greater than zero when the last quantum is transferred).

Figure 1-20. A Data Traffic Example: A New Event Arrives During a Long Transfer

If a new sychronization event arrives before start of the
last quantum transfer the event is cleared and ignored.

EventFlag0

LoMAX

data traffic

E0(Q0)

E0(Q1) E0(Q2) E0(Q3)

t0 t2 A new event is ignored in
case it arrived before start of
the last quantum transfer

Transfer size of E0 is 15 elements
QTSL is set to 4 elements
SYNC is set to zero

Legend:
Ex(Qy): Quantum transfer (y), is a part of

a long transfer initiated by an event
on the event signal number (x).

EventFlagx: A flag that corresponds to event
number (x), from the EFR register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

Submit Documentation Feedback

52 Introduction/Feature Overview SPRU795D – November 2005 – Revised October 2007

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 53

Chapter 2
SPRU795D – November 2005 – Revised October 2007

Register and Memory Description

The memory for the dMAX controller is divided to high-priority and low-priority PaRAM. High-priority
PaRAM contains the event entry table and transfer table for high-priority events, while low-priority PaRAM
contains the event entry table and transfer table for low-priority events. Both high- and low-priority PaRAM
memories are organized identically.

Topic Page

2.1 Parameter RAM (PaRAM) ... 54
2.2 FIFO Descriptor ... 71
2.3 dMAX Control Registers ... 73

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Parameter RAM (PaRAM)

54 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

2.1 Parameter RAM (PaRAM)
Each PaRAM contains two sections: the event entry table section and the transfer entry table section. The
PaRAM memory map is shown in Figure 2-1.

Figure 2-1. PaRAM Memory Map

PaRAM address

Base_Addr + 0x000

Base_Addr + 0x07C
Base_Addr + 0x080

Base_Addr + 0x09C
Base_Addr + 0x0A0

Base_Addr + 0x0CC

Base_Addr + 0x0F8

Base_Addr + 0x124

Base_Addr + 0x150

Base_Addr + 0x17C

Base_Addr + 0x1A8

Base_Addr + 0x1D4

Pointer to
transfer

entry (PTE)

0x028

0x033

0x03E

0x049

0x054

0x05F

0x06A

0x075

The PaRAM memory size is equal to 128 words (32-bit words). Within the PaRAM, the event entry table is
located between word offsets 0x00 and 0x1F; word offsets 0x20-0x27 are reserved and the transfer entry
table ram utilizes the remainder. A pointer to transfer entry (PTE) specifies a word offset from the PaRAM
base to the start of the transfer entry.

Event entry RAM

Reserved

Transfer entry 0

Transfer entry 1

Transfer entry 2

Transfer entry 3

Transfer entry 4

Transfer entry 5

Transfer entry 6

Transfer entry 7

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Parameter RAM (PaRAM)

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 55

The dMAX PaRAM memory organization is shown in Figure 2-2.

Figure 2-2. PaRAM Memory Organization Block Diagram

An event entry describes an event type and associates the event to either one of transfer types or to an
interrupt. If an event entry associates the event to one of the transfer types, the event entry will contain a
pointer to the specific transfer entry in the transfer entry table (this is illustrated in Figure 2-2). If an event
entry associates the event to an interrupt, the event entry specifies which interrupt should be generated to
the CPU in case the event arrives. The transfer table may contain up to eight transfer entries. A transfer
entry specifies details required by the dMAX controller to perform the transfer. The size of a transfer entry
table is 88 words, and the transfer entry size is 11 words. A total of eight transfer entries can fit in both
high-priority and low-priority PaRAMs.

Event entry#0 in event entry table:

31 14 8 5 4 0

Event entry
table

Transfer
entry table

31 0
WORD 0

WORD 1

Transfer entry
(transfer description)

WORD 10
Transfer entry #7

Transfer entry #6

Transfer entry #5

Transfer entry #4

Transfer entry #3

Transfer entry #1

Transfer entry #0

Reserved

Event31

Event2
Event1

Event
type PTE Event0

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Parameter RAM (PaRAM)

56 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

2.1.1 Event Entry Table
When an event is processed, its corresponding event entry is passed to dMAX, and the controller uses the
information to process the event. An event entry is programmable and associates the event either with a
CPU interrupt or with one of the transfer types. In the first case, the event entry will specify which interrupt
line should be used. In the second case, the event entry will dictate transfer options.
There is an event entry table for both high-priority and low-priority events. Each event can be associated
with one of two event entries, based on event priority. One event entry is located inside the high-priority
table and the other one is within the low-priority event table.
After receiving an event, dMAX uses the event entry currently associated with it. If the event currently
belongs to the high-priority event group, dMAX is provided with the event entry from the high priority event
entry table; the same happens with the low priority event group. If two events from different priority groups
arrive at the same time, both event entries, from high- and low-priority event tables will be simultaneously
provided to dMAX.
An event is sorted into a high- or low-priority group by setting DEHPR and DELPR registers. Each of the
two event entry tables has 32 entries (each entry is one word long) and is stored starting from the word
zero address in the PaRAM. There is a one-to-one correspondence between the events and the 31 entries
in the table. Event entry 25 is not used (bit 25 in the DEFR is not associated to any event). The first entry
in the event entry table is assigned to the event mapped to the LSB bit of the DEFR (to the event number
zero). The events linked to subsequent bits of the DEFR are assigned to subsequent entries in the event
entry table. The last entry (entry 31) in the event entry table is assigned to the event mapped to the MSB
bit of the DEFR (event number 31).
Synchronization allows dMAX transfers to be triggered by events from peripherals. A channel puts a
request for a data transfer only when its event entry specifies a transfer type, transfer options, and points
to a transfer entry.
A new data transfer is initiated only when an event entry is programmed, and when dMAX receives its
event or when the CPU manually synchronizes it (by creating a transition on one of the DTER register bits
mapped into the DER register). The amount of data to be transferred depends on the configuration of the
transfer entry.

Note: It is not recommended to access the active register set, indexes, reference counter (within
the transfer entry), or event entry of a transfer in progress.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Parameter RAM (PaRAM)

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 57

2.1.1.1 Event Entry for General Purpose Data Transfers
An event entry for a general purpose data transfer is presented in Figure 2-3 and explained in Table 2-1.

Figure 2-3. Event Entry for General Purpose Data Transfer

31 30 29 28 27 24 23 22 21 20 19 18 17 16

QTSL SYNC Reserved TCC ATCINT TCINT Reserved RLOAD CC ESIZE

R/W-0

15

14

R/W-0 R/W-0 R/W-0

8

 R/W-0

7

R/W-0 R/W-0

5

 R/W-0

4

 R/W-0 R/W-0

0

R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-1. Event Entry for General Purpose Data Transfer Field Descriptions

Bit Field Value Description
31-30 QTSL[1:0] Quantum Transfer Size Limit

 00 During a quantum transfer the dMAX controller may not move more than one element.
 01 During a quantum transfer the dMAX controller may not move more than four elements.
 10 During a quantum transfer the dMAX controller may not move more than eight elements.
 11 During a quantum transfer the dMAX controller may not move more than sixteen elements.

29 SYNC Transfer Synchronization
 0 Transfer COUNT0 number of elements on every sync event
 1 Complete whole transfer on every sync event

28 Reserved 0 Reserved
27-24 TCC 15-0 Transfer Complete Code. Specifies code that is set in the DTCR0 or DTCR1 register after transfer

(or transfer phase) is completed. TCC codes 0-7 correspond to bits 0-7 of the DTCR0. TCC codes
8-15 correspond to bits 0-7 of the DTCR1.

23 ATCINT Enables alternate transfer mode
 0 Alternate transfer mode disabled
 1 The CPU gets notified after completion of each frame. A TCC pending bit is set in the DTCR0 or

DTCR1 register and, if the bit in the DTCR register was previously cleared, the CPU interrupt is
triggered at the end of each transfer phase.

22 TCINT Transfer Completion Interrupt enable
 0 TCC code and Transfer Complete Interrupt disabled
 1 After completing a whole transfer, the dMAX controller sets a TCC pending bit. If the bit in the
 DTCR register was previously cleared, it triggers an interrupt to the CPU.

21 Reserved 0 Reserved
20 RLOAD Reload Options

 0 No Reload after transfer is completed
 1 Reload active element counter, active SRC, and DST addresses when transfer is completed. If the

PP control bit in the Transfer entry is equal to one, reference set zero (SRC0 and DST0) is loaded
in the active address registers. If the PP control bit in the transfer entry is equal to zero, reference
set one (SRC1 and DST1) is loaded in the active address registers.

19-18 CC[1:0] Counter Configuration
 00 Counter bit field sizes within the transfer entry are defined as: COUNT2 =15-bits, COUNT1 = 8 bits,
 COUNT0 = 8 bits
 01 Counter bit field sizes within the transfer entry are defined as: COUNT2 =7-bits, COUNT1 = 8 bits,
 COUNT0 = 16 bits
 10 Counter bit field sizes within the transfer entry are defined as: COUNT2 =7-bits, COUNT1 = 16 bits,
 COUNT0 = 8 bits
 11 Reserved

Reserved PTE Reserved ETYPE

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

58 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Parameter RAM (PaRAM)

Table 2-1. Event Entry for General Purpose Data Transfer Field Descriptions (continued)

Bit Field Value Description
17-16 ESIZE[1:0] Element Size

 00 8-bit element
 01 16-bit element
 10 32-bit element
 11 Reserved

15 Reserved 0 Reserved
14-8 PTE Pointer to Transfer Entry (PTE)

 0x75
 0x6A
 0x5F
 0x54

0x49
These seven bits are used as a pointer to the location in the PaRAM where the transfer entry that
corresponds to the event is stored.

 0x3E
 0x33
 0x28

7-5 Reserved 0 Reserved
4-0 ETYPE 00011 Event type: General purpose data transfer

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 59

www.ti.com

Parameter RAM (PaRAM)

2.1.1.2 Event Entry for FIFO Transfers
The event entry for FIFO transfers is presented in Figure 2-4 and described in Table 2-2.

Figure 2-4. Event Entry for FIFO Transfer

31 30 29 28 27 24 23 22 21 20 19 17 16

QTSL SYNC Reserved TCC ATCINT TCINT Reserved RLOAD Reserved EWM
R/W-0

15

14

R/W-0 R/W-0 R/W-0

8

 R/W-0

7

R/W-0 R/W-0

5

 R/W-0

4

 R/W-0

0

R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-2. Event Entry for FIFO Transfer Field Descriptions

Bit Field Value Description
31-30 QTSL[1:0]

00
01
10
11

Quantum Transfer Limit
During a quantum transfer the dMAX controller may not move more than one element.
During a quantum transfer the dMAX controller may not move more than four elements.
During a quantum transfer the dMAX controller may not move more than eight elements.
During a quantum transfer the dMAX controller may not move more than 16 elements.

29 SYNC
0
1

Transfer Synchronization
Transfer COUNT0 number of elements on every sync event
Transfer whole transfer on every sync event

28 Reserved 0 Reserved
27-24 TCC 15-0 Transfer Complete Code. Specifies code that is set in the DTCR0 or DTCR1 register after transfer

(or transfer phase) is completed. TCC codes 0-7 correspond to bits 0-7 of the DTCR0. TCC codes
8-15 correspond to bits zero to seven of the DTCR1.

23 ATCINT
0
1

Alternate Transfer Complete Interrupt enable
Alternate transfer mode disabled
The CPU gets notified after completion of each frame. A TCC pending bit is set in the DTCR0 or
DTCR1 register and, if the bit in the DTCR register was previously cleared, the CPU interrupt is
triggered at the end of each transfer phase.

22 TCINT
0
1

Transfer Complete Interrupt enable
TCC code and Transfer Complete Interrupt disabled
After completing a whole transfer, the dMAX controller sets a TCC pending bit, and if the bit in the
DTCR register was previously cleared, it triggers an interrupt to the CPU.

21 Reserved 0 Reserved
20 RLOAD

0
1

Reload Options
No Reload after transfer is completed
FIFO write case FIFO read case
Reload element active counter and active SRC
address when transfer is completed. If the PP
control bit in the Transfer entry is equal to one,
reference address zero (SRC0) is loaded in the
active address register. If the PP control bit in
the Transfer entry is equal to zero, reference
address one (SRC1) is loaded in the active
address registers.

Reload element active counter and active DST
address when transfer is completed. If the PP
control bit in the Transfer entry is equal to one,
reference address zero (DST0) is loaded in the
active address register. If the PP control bit in
the Transfer entry is equal to zero, reference
address one (DST1) is loaded in the active
address registers.

19-17 Reserved 0 Reserved
16 EWM

0

1

Enable Watermark Notifications
Watermark notifications disabled (If FIFO write, FIFO full watermark; if FIFO read, FIFO empty
watermark).
Watermark notifications enabled (If FIFO write, FIFO full watermark ; if FIFO read, FIFO empty
watermark).

Reserved PTE Reserved ETYPE

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

60 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Parameter RAM (PaRAM)

Table 2-2. Event Entry for FIFO Transfer Field Descriptions (continued)

Bit Field Value Description
15 Reserved 0 Reserved

14-8 PTE
0x75
0x6A
0x5F
0x54
0x49
0x3E
0x33
0x28

Pointer to Transfer Entry (PTE)
These seven bits are used as a pointer to the location in the PaRAM where the transfer entry that
corresponds to the event is stored.

7-5 Reserved 0 Reserved
4-0 ETYPE Event Type

 00100 Event Type: FIFO WRITE Transfer
 00101 Event Type: FIFO READ Transfer

2.1.1.3 Event Entry for Interrupt from dMAX Controller to the CPU

If an event is required to trigger an interrupt to the CPU, interrupt event entry is used. The interrupt event
entry does not have an associated entry in the transfer entry table. The interrupt event entry is shown in
Figure 2-5 and described in Table 2-3.

Figure 2-5. Event Entry for Interrupt from dMAX Controller to the CPU

31 19 18 16

R/W-0

15 5 4 0

R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-3. Event Entry for Interrupt from dMAX Controller to the CPU Field Descriptions

Bit Field Value Description
31-19 Reserved 0 Reserved bits should be initialized to zero when configuring the Interrupt Event entry.
18-16 INT 010 Generate interrupt on INT9

 011 Generate interrupt on INT10
 100 Generate interrupt on INT11
 101 Generate interrupt on INT12
 110 Generate interrupt on INT13
 111 Generate interrupt on INT15

15-5 Reserved 0 Reserved bits should be initialized to zero when configuring the Interrupt Event entry.
4-0 ETYPE 00111 Generate an Interrupt to the CPU

Depending on the priority group of an event, the CPU interrupt can be triggered either by the HiMAX or
LoMAX module.

Reserved

Reserved ETYPE

INT

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 61

www.ti.com

Parameter RAM (PaRAM)

2.1.1.4 Event Entry for One-Dimensional Burst Transfers
The event entry for one-dimensional burst transfers is presented in Figure 2-6 and described in Table 2-4.

Figure 2-6. Event Entry for One-Dimensional Burst Transfer

31 24 23 16

R/W-0 R/W-0

15 8 7 5 4 0
PTE Reserved ETYPE

R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-4. Table Describing Bit Fields of Event Entry for One-Dimensional Burst Transfer

Bit Field Value Description
31-24 Reserved 0 Reserved
23-8 PTE 0x1D4

0x1A8
These sixteen bits are used as a pointer to location in the PaRAM where the Transfer Entry that
corresponds to the event is stored.

 0x17C
 0x150
 0x124
 0xF8
 0xCC
 0xA0

7-5 Reserved 0 Reserved
4-0 ETYPE 00110 Event type: One-Dimensional Burst Transfer

PTE Reserved

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

62 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Parameter RAM (PaRAM)

2.1.1.5 Event Entry for SPI Slave Transfers
The event entry for SPI slave transfers is shown in Figure 2-7 and described in Table 2-5.

Figure 2-7. Event Entry for SPI Slave Transfers

31 30 29 28 27 24 23 16
Reserved SPI TCINT TCC PTE

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 8 7 6 5 4 0
PTE ESIZE RLOAD ETYPE

R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-5. Table Describing Bit Fields of Event Entry for SPI Slave Transfer

Bit Field Value Description
31-30 Reserved 0 Reserved

29 SPI SPI peripheral to use for the transfer
 0 SPI 0
 1 SPI 1

28 TCINT Transfer Completion Interrupt Enable
 0 TCC code and Transfer Complete Interrupt disabled
 1 After completing a whole transfer, the dMAX controller sets a TCC pending bit and triggers
 an interrupt to the CPU.

27-24 TCC 15-0 Transfer Complete Code. Specifies code that is set in the DTCR0 or DTCR1 register after
transfer is completed. TCC codes 0-7 correspond to bits 0-7 of the DTCR0. TCC codes 8-15
correspond to bits 0-7 of the DTCR1.

23-8 PTE Pointer to Transfer Entry (PTE)
 0x1D4
 0x1A8
 0x17C
 0x150
 0x124
 0xF8
 0xCC

0xA0
These sixteen bits are used as a pointer to location in the PaRAM where the Transfer Entry
that corresponds to the event is stored.

7-6 ESIZE Element Size
 00 Reserved
 01 8-bit Element
 10 16-bit Element
 11 Reserved

5 RLOAD Reload Options
 0 No Reload after the transfer is completed
 1 Reload active element counter, active SRC, and DST addresses when transfer is completed.
 If the PP control bit in the Transfer entry is equal to one, reference set zero (SRC0 and
 DST0) is loaded in the active address registers. If the PP control bit in the transfer entry is
 equal to zero, reference set one (SRC1 and DST1) is loaded in the active address registers.

4-0 ETYPE 00010 Event type: SPI slave data transfer

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 63

www.ti.com

Parameter RAM (PaRAM)

2.1.2 Transfer Entry Table

There are two transfer entry tables, each of which can hold up to eight transfer entries. One table is
associated with high-priority events and the other is associated with low-priority events. The size of the
transfer entry is fixed to 11 words. The format of the transfer entry varies, depending on the transfer type.
A dedicated transfer entry is available for general purpose data transfers, and FIFO read/write.
The different transfer entry formats are described in the following sections.

Note: It is not recommended to access an active register set, indexes, reference counter (within the
transfer entry), or event entry of a transfer in progress.

2.1.2.1 Transfer Entry for General Purpose Data Transfers

The transfer entry for general purpose data transfers is presented in Figure 2-8, Figure 2-9, and
Figure 2-10 and described in Table 2-6.

Figure 2-8. Transfer Entry for General Purpose Data Transfer for CC=01 or CC=11

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
1
2
3
4
5
6
7
8
9
10

SRC ADDRESS (ACTIVE)
DST ADDRESS (ACTIVE)

PP COUNT2 (ACTIVE) COUNT1 (ACTIVE) COUNT0 (ACTIVE)
DST INDX 0 SRC INDX 0
DST INDX 1 SRC INDX 1
DST INDX 2 SRC INDX 2

Reserved COUNT2 (REFERENCE) COUNT1 (REFERENCE) COUNT0 (REFERENCE)
SRC RELOAD ADDRESS0
DST RELOAD ADDRESS0
SRC RELOAD ADDRESS1
DST RELOAD ADDRESS1

Figure 2-9. Transfer Entry for General Purpose Data Transfer for CC=10
Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
1
2
3
4
5
6
7
8
9
10

SRC ADDRESS (ACTIVE)
DST ADDRESS (ACTIVE)

PP COUNT2 (ACTIVE) COUNT1 (ACTIVE) COUNT0 (ACTIVE)
DST INDX 0 SRC INDX 0
DST INDX 1 SRC INDX 1
DST INDX 2 SRC INDX 2

Reserved COUNT2 (REFERENCE) COUNT1 (REFERENCE) COUNT0 (REFERENCE)
SRC RELOAD ADDRESS0
DST RELOAD ADDRESS0
SRC RELOAD ADDRESS1
DST RELOAD ADDRESS1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

64 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Parameter RAM (PaRAM)

Figure 2-10. Transfer Entry for General Purpose Data Transfer for CC=00
Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
1
2
3
4
5
6
7
8
9
10

SRC ADDRESS (ACTIVE)
DST ADDRESS (ACTIVE)

PP COUNT2 (ACTIVE) COUNT1 (ACTIVE) COUNT0 (ACTIVE)
DST INDX 0 SRC INDX 0
DST INDX 1 SRC INDX 1
DST INDX 2 SRC INDX 2

Reserved COUNT2 (REFERENCE) COUNT1 (REFERENCE) COUNT0 (REFERENCE)
SRC RELOAD ADDRESS0
DST RELOAD ADDRESS0
SRC RELOAD ADDRESS1
DST RELOAD ADDRESS1

Table 2-6. Transfer Entry for General Purpose Data Field Descriptions

Word Bit Field Description
0 31-0 SRC ADDRESS

(ACTIVE)
Source address - updated by the dMAX controller during course of transfer

1 31-0 DST ADDRESS
(ACTIVE)

Destination address - updated by the dMAX controller during course of transfer

2 31 PP Reference bit. Keeps track of what was loaded in the active set of parameters during reload. It
gets updated by the dMAX controller only during reload of active parameters (if reload in the
event entry is enabled by setting RLOAD to one).

Variable COUNT2 (ACTIVE) Counter2 value - Counter for the third dimension of transfer, updated by the dMAX controller
during transfer. The size of this bit field depends on setting of the CC bit-field in the event entry.

Variable COUNT1 (ACTIVE) Counter1 value - Counter for the second dimension of transfer, updated by the dMAX controller
during transfer. The size of this bit field depends on setting of the CC bit-field in the event entry.

Variable COUNT0 (ACTIVE) Counter0 value - Counter for the first dimension of transfer, updated by the dMAX controller
during course of transfer. The size of this bit field depends on setting of the CC bit-field in the
event entry.

3 31-16 DSTINDX0 Value used to update destination address after value in the first dimension element counter is
decremented. The index represents the lower 16-bits of 32-bit offset that will be added to active
address (upper 16 bits will be sign extended). Index is expressed in number of elements.

15-0 SRCINDX0 Value used to update source address after value in the first dimension element counter is
decremented. The index represents the lower 16-bits of 32-bit offset that will be added to active
address (upper 16 bits will be sign extended). Index is expressed in number of elements.

4 31-16 DSTINDX1 Value used to update destination address after value in the second dimension element counter is
decremented. The index represents the lower 16-bits of 32-bit offset that will be added to active
address (upper 16 bits will be sign extended). Index is expressed in number of elements.

15-0 SRCINDX1 Value used to update source address after value in the second dimension element counter is
decremented. The index represents the lower 16-bits of 32-bit offset that will be added to active
address (upper 16 bits will be sign extended). Index is expressed in number of elements.

5 31-16 DSTINDX2 Value used to update destination address after value in the third dimension element counter is
decremented. The index represents the lower 16-bits of 32-bit offset that will be added to active
address (upper 16 bits will be sign extended). Index is expressed in number of elements.

15-0 SRCINDX2 Value used to update source address after value in the third dimension element counter is
decremented. The index represents the lower 16-bits of 32-bit offset that will be added to active
address (upper 16 bits will be sign extended). Index is expressed in number of elements.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 65

www.ti.com

Parameter RAM (PaRAM)

Table 2-6. Transfer Entry for General Purpose Data Field Descriptions (continued)

Word Bit Field Description
6 31 Reserved Reserved

Variable COUNT2
(REFERENCE)

Counter2 Reference- This value is used to reload counter for the third dimension of transfer (in
case reload is enabled). Size of this bit field depends on setting of the CC bit-field in the event
entry.

Variable COUNT1
(REFERENCE)

Counter1 Reference - This value used to reload counter for the second dimension of transfer.
Size of this bit field depends on setting of the CC bit-field in the event entry.

Variable COUNT0
(REFERENCE)

Counter0 Reference - This value used to reload active counter for the first dimension of transfer.
Size of this bit field depends on setting of the CC bit-field in the event entry.

7 31-0 SRC RELOAD
ADDRESS0

Source Address Reload 0 - Used by the dMAX controller to reload the active source address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

8 31-0 DST RELOAD
ADDRESS0

Destination Address Reload 0 - Used by the dMAX controller to reload the active destination
address parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

9 31-0 SRC RELOAD
ADDRESS1

Source Address Reload 1 - Used by the dMAX controller to reload the active source address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

10 31-0 DST RELOAD
ADDRESS1

Destination Address Reload 1 - Used by the dMAX controller to reload the active destination
address parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

Active entries are modified during the transfer; at the end of the transfer they could be reloaded. If reload
is not enabled, the transfer will complete as specified in the active register set and stop. When reload is
enabled, the dMAX controller will still use the active register set. When the first transfer is completed, if the
PP bit value is set to one, the dMAX controller will load the active address registers with a value from the
reload0 set of registers and flip the PP bit to zero. After the transfer is complete, the dMAX controller will
load the active address set with the value from reload1 set of registers, and flip the PP bit value to one.
The PP bit always indicates the last set of reload registers that was loaded in the active set of address
registers.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

66 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Parameter RAM (PaRAM)

2.1.2.2 Transfer Entry for FIFO Write
The FIFO transfer entry is presented in Figure 2-11 and described in Table 2-7.

Figure 2-11. Transfer Entry for FIFO Write

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
1
2
3
4
5
6
7
8
9
10

SRC ADDRESS (ACTIVE)
PFD (Pointer to FIFO Descriptor)

PP COUNT1 (ACTIVE) COUNT0 (ACTIVE)
Reserved SRC INDX 0
Reserved SRC INDX 1

Reserved COUNT1 (REFERENCE) COUNT0 (REFERENCE)
SRC RELOAD ADDRESS0
SRC RELOAD ADDRESS1

Pointer to Delay Table 0 (used with Reload0)
Pointer to Delay Table 1 (used with Reload1)

Reserved

Table 2-7. Transfer Entry for FIFO Write Field Descriptions

Word Bit Field Description
0 31-0 SRC ADDRESS

(ACTIVE)
Source address - updated by the dMAX controller during course of transfer.

1 31-0 PFD Specifies pointer to description of destination FIFO. The source FIFO descriptor can be
placed anywhere in the DSP memory space.

2 31 PP Reference bit. Keeps track of what was loaded in the active set of parameters during reload.
It gets updated by the dMAX controller only during parameter reload (if reload is enabled in
the event entry by setting RLOAD to one).

30-16 COUNT1 (ACTIVE) Counter1 value - Counter for the second dimension of transfer, updated by the dMAX
controller during transfer. Transfer Entry will be ignored by the dMAX controller when: (active
COUNT1) > (reference COUNT1).

15-0 COUNT0 (ACTIVE) Counter0 value - Counter for the first dimension of transfer, updated by the dMAX controller
during course of transfer.

3 31-16 Reserved Reserved
15-0 SRC INDX 0 Value used to update source address after value in the first dimension element counter is

decremented. The index represents the lower 16 bits of 32-bit offset that will be added to
active address (upper 16 bits will be sign extended). Index is expressed in number of
elements.

4 31-16 Reserved Reserved
15-0 SRC INDX 1 Value used to update source address after value in the second dimension element counter

is decremented. The index represents the lower 16 bits of 32-bit offset that will be added to
active address (upper 16 bits will be sign extended). Index is expressed in number of
elements.

5 31 Reserved Reserved
30-16 COUNT1 (REFERENCE) Counter1 Reference - This value used to reload active counter for the second dimension of

transfer.
15-0 COUNT0 (REFERENCE) Counter0 Reference - This value used to reload active counter for the first dimension of

transfer.
6 31-0 SRC RELOAD

ADDRESS0
Source Address Reload 0 - Used by the dMAX controller to reload the active source address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

7 31-0 SRC RELOAD
ADDRESS1

Source Address Reload 1 - Used by the dMAX controller to reload the active source address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

8 31-0 POINTER TO DELAY
TABLE 0

This parameter is used as a pointer to table of delays used for non-sequential multi-tap
delay. Table pointed by this entry is used in combination with reload0 register.

9 31-0 POINTER TO DELAY
TABLE 1

This parameter is used as a pointer to table of delays used for non-sequential multi-tap
delay. Table pointed by this entry is used in combination with reload1 register.

10 31-0 Reserved Reserved

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 67

www.ti.com

Parameter RAM (PaRAM)

Active entries are modified during the course of a transfer; at the end of the transfer they could be
reloaded.
If reload is not enabled, the transfer will complete as specified in the active register set, and stop. If reload
is enabled, on the first execution, dMAX will use a set of active registers, and after transfer completion,
dMAX will flip the PP bit and reload the active registers. When the first transfer is completed, if the PP bit
value is set to one, dMAX will load the active address register with the value from the reload0 register and
flip the PP bit to zero. After the transfer is complete, dMAX will load the active address parameter with the
value from the reload1 register and flip the PP bit value to one. The PP bit always indicates which reload
register was loaded in the active address register, and which delay table should be used.
If the PP control bit is zero, reload is enabled, and if the frame counter is greater than zero, dMAX will use
a delay table pointed to by the pointer to Delay Table 0 zero from the FIFO transfer entry. If the PP control
bit is one, reload is enabled, and if the frame counter is greater than zero, dMAX will use a delay table
pointed to by the pointer to Delay Table 1 from the FIFO transfer entry. The maximum number of entries in
a delay table is 32767 (since number of entries in a delay table equals to value of the reference value of
the COUNT1).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

68 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Parameter RAM (PaRAM)

2.1.2.3 Transfer Entry for FIFO Read
The transfer entry for moving data from circular buffer is presented in Figure 2-12 and described in
Table 2-8.

Figure 2-12. Transfer Entry for FIFO Read

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
1
2
3
4
5
6
7
8
9
10

DST ADDRESS (ACTIVE)
PFD (Pointer to FIFO Descriptor)

PP COUNT1 (ACTIVE) COUNT0 (ACTIVE)
Reserved DST INDX 0
Reserved DST INDX 1

Reserved COUNT1 (REFERENCE) COUNT0 (REFERENCE)
DST Reload Address0
DST Reload Address1

Pointer to Delay Table 0 (used with Reload0)
Pointer to Delay Table 1 (used with Reload1)

Reserved

Table 2-8. Transfer Entry for FIFO READ Field Descriptions

Word Bit Field Description
0 31-0 DST Address

(ACTIVE)
Destination address - updated by the dMAX controller during the transfer.

1 31-0 PFD Specifies pointer to description of destination FIFO; can be placed anywhere in the DSP memory space.

2 31 PP Reference bit. Keeps track of what was loaded in the active set of parameters during reload. Gets updated by
dMAX only during parameter reload (in case reload is enabled in the event entry by setting RLOAD to one).

30-16 COUNT1 (ACTIVE) Counter1 value - Counter for the second dimension of transfer, updated by dMAX during course transfer.
Transfer Entry will be ignored by dMAX when: (active COUNT1) > (reference COUNT1).

15-0 COUNT0 (ACTIVE) Counter0 value - Counter for the first dimension of transfer, updated by dMAX during the transfer.

3 31-16 Reserved Reserved

15-0 DST INDX 0 Value used to update destination address after value in the first dimension element counter is decremented.
The index represents the lower 16-bits of 32-bit offset that will be added to active address (upper 16 bits will
be sign extended). Index is expressed in number of elements.

4 31-16 Reserved Reserved

15-0 DST INDX 1 Value used to update destination address after value in the second dimension element counter is
decremented. The index represents the lower 16-bits of 32-bit offset that will be added to active address
(upper 16 bits will be sign extended). Index is expressed in number of elements.

5 31 Reserved Reserved

30-16 COUNT1
(REFERENCE)

Counter1 Reference - This value is used to reload active counter for the second dimension of transfer.

15-0 COUNT0
(REFERENCE)

Counter0 Reference - This value is used to reload active counter for the first dimension of transfer.

6 31-0 DST Reload
Address0

Destination Address Reload 0 - Used by the dMAX controller to reload the active destination address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

7 31-0 DST Reload
Address1

Destination Address Reload 1 - Used by the dMAX controller to reload the active destination address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry).

8 31-0 Pointer to Delay
Table 0

This parameter is used as a pointer to table of delays used for non-sequential multi-tap delay. Table pointed
by this entry is used in combination with reload0 register.

9 31-0 Pointer to Delay
Table 1

This parameter is used as a pointer to table of delays used for non-sequential multi-tap delay. Table pointed
by this entry is used in combination with reload1 register.

10 31-0 Reserved Reserved

If reload is not enabled, the transfer will complete as specified in the active register set and stop. In case
reload is enabled, on the first execution, dMAX will use a set of active registers, and after transfer
completion, dMAX will flip the PP bit, and reload active registers. When the first transfer is completed, if
the PP bit value is set to one, dMAX will load the active address register with the value from the reload0
register and flip the PP bit to zero. After the transfer is complete, dMAX will load the active address
parameter with the value from the reload1 register and flip the PP bit value to one. The PP bit always
indicates which reload register was loaded in the active address register, and which delay table should be
used.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 69

www.ti.com

Parameter RAM (PaRAM)

If the PP control bit is zero, reload is enabled, and if the frame counter is greater than 0, dMAX will use
Delay Table 0 from the FIFO transfer entry. If the PP control bit is 1, reload is enabled, and if the frame
counter is greater than 0, dMAX will use Delay Table 1 from the FIFO transfer entry. The maximum
number of entries in a delay table is 32767 (the number of entries in a delay table equals to the value of
the reference value of COUNT1).

2.1.2.4 Transfer Entry for One-Dimensional Burst Transfers

The transfer entry for One-Dimensional burst data transfers is presented in Figure 2-13 and described in
Table 2-9.

Figure 2-13. Transfer Entry for One-Dimensional Burst Transfer

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
0
1
2
3

4-10

EVNT TCC Reserved NBURST Reserved TCINT
SRC
DST

Reserved BURSTLEN CNT
 Reserved

Table 2-9. Transfer Entry for One-Dimensional Burst Transfer Description

Word Bit Field Value Description
0 31-24 EVNT Event number (0-31)- Specifies the event number of the transfer.

 23-16 TCC Transfer Complete Code. Specifies code that is set in the DTCR0 or DTCR1 register after
 transfer is completed. TCC codes 0-7 correspond to bits 0-7 of the DTCR0. TCC codes 8-15
 correspond to bits 0-7 of the DTCR1.
 15-8 Reserved Reserved
 7-4 NBURST Number of bursts (0-15) – 1 to 16 bursts each of length BURSTLEN - updated by the dMAX
 controller during course of transfer
 3-1 Reserved Reserved
 0 TCINT Transfer Completion Interrupt Enable
 0 TCC code and Transfer Complete Interrupt disabled
 1 After completing a whole transfer, the dMAX controller sets a TCC pending bit and triggers an
 interrupt to the CPU.

1 31-0 SRC Source address - updated by the dMAX controller during course of transfer.
2 31-0 DST Destination address - updated by the dMAX controller during course of transfer
3 31-24 Reserved Reserved

23-15 BURSTLEN Burst length in units of bytes (1-64)
15-0 CNT Count in unit of bytes - updated by the dMAX controller during course of transfer

4-10 31-0 Reserved Reserved

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

70 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Parameter RAM (PaRAM)

2.1.2.5 Transfer Entry for SPI Slave Transfers
The transfer entry for SPI Slave transfers is presented in Figure 2-14 and described in Table 2-10.

Figure 2-14. Transfer Entry for SPI Slave Transfer

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
1
2
3
4
5
6
7

8-10

SRC ADDRESS (ACTIVE)
DST ADDRESS (ACTIVE)

PP Reserved COUNT (ACTIVE)
Reserved COUNT (REFERENCE)

SRC RELOAD ADDRESS0
DST RELOAD ADDRESS0
SRC RELOAD ADDRESS1
DST RELOAD ADDRESS1

Reserved

Table 2-10. Transfer Entry for SPI Slave Transfer Description

Word Bit Field Description
0 31-0 SRC ADDRESS

(ACTIVE)
Source address - updated by the dMAX controller during course of transfer

1 31-0 DST ADDRESS
(ACTIVE)

Destination address - updated by the dMAX controller during course of transfer

2 31 PP Reference bit. Keeps track of what was loaded in the active set of parameters during reload. It gets
updated by the dMAX controller only during reload of active parameters (if reload in the event entry
is enabled by setting RLOAD to one).

30-16 Reserved Reserved
15-0 COUNT (ACTIVE) Count in unit of elements - updated by the dMAX controller during course of transfer

3 31-16 Reserved Reserved
15-0 COUNT

(REFERENCE)
Reference Count in unit of elements. This value is used to reload the active count at the end of
transfer (if specified by RLOAD bit filed of the event entry)

4 31-0 SRC RELOAD
ADDRESS0

Source Address Reload 0 - Used by the dMAX controller to reload the active source address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry)

5 31-0 DST RELOAD
ADDRESS0

Destination Address Reload 0 - Used by the dMAX controller to reload the active destination
address parameter at the end of transfer (if specified by RLOAD bit filed of the event entry)

6 31-0 SRC RELOAD
ADDRESS1

Source Address Reload 1 - Used by the dMAX controller to reload the active source address
parameter at the end of transfer (if specified by RLOAD bit filed of the event entry)

7 31-0 DST RELOAD
ADDRESS1

Destination Address Reload 1 - Used by the dMAX controller to reload the active destination
address parameter at the end of transfer (if specified by RLOAD bit filed of the event entry)

8-10 31-0 Reserved Reserved

Active entries are modified during the transfer; at the end of the transfer they could be reloaded. If reload
is not enabled, the transfer will complete as specified in the active register set and stop. When reload is
enabled, the dMAX controller will still use the active register set. When the first transfer is completed, if the
PP bit value is set to one, the dMAX controller will load the active address registers with a value from the
reload0 set of registers and flip the PP bit to zero. After the transfer is complete, the dMAX controller will
load the active address set with the value from reload1 set of registers, and flip the PP bit value to one.
The PP bit always indicates the last set of reload registers that was loaded in the active set of address
registers.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 71

www.ti.com

FIFO Descriptor

2.2 FIFO Descriptor
A FIFO (circular buffer) descriptor specifies:
• FIFO base address
• FIFO element size
• FIFO size (in number of elements)
• A read and write pointer
• Two status codes used to indicate FIFO full and FIFO empty conditions
• Two level marks (empty mark EMARK and full mark FMARK)
• Error Field (EFIELD) used to describe an error condition to the CPU
A FIFO descriptor is referenced by the pointer from a transfer entry (FIFO read transfer and FIFO write
transfer can both use the same FIFO by referencing the same FIFO descriptor).
The FIFO descriptor is shown in Figure 2-15 and described in Table 2-11.

Figure 2-15. FIFO Descriptor

Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
1
2
3
4
5
6

FIFO BASE ADDRESS
Reserved WRITE POINTER

Reserved ES ZE Reserved FIFO SIZE
Reserved READ POINTER

Reserved FM SC Reserved FMARK
Reserved EM SC Reserved EMARK

Reserved FF Reserved EF2 Reserved EF1 Reserved EF0

Table 2-11. FIFO Descriptor Field Descriptions

Word Bit Field Value Description
0 31-0 FIFO BASE

ADDRESS
 FIFO Base Address. Must be word-aligned.

1 31-20 Reserved 0 Reserved
19-0 Write Pointer Write Pointer

2 31-26 Reserved 0 Reserved
 25-24 ESIZE FIFO Element Size
 00 8-bit element
 01 16-bit element
 10 32-bit element
 11 Reserved
 23-20 Reserved 0 Reserved
 19-0 FIFO SIZE FIFO size in number of elements

3 31-20 Reserved 0 Reserved
19-0 Read Pointer FIFO Read Pointer

4 31-28 Reserved 0 Reserved
27-24 FMSC Full mark status code. This bit is set in the DFSR0 or DFSR1 register when number of

samples in the FIFO is equal or larger than number specified by FMARK bit field.
FMSC codes zero to seven correspond to bits zero to seven of the DFSR0. FMSC
codes eight to 15 correspond to bits zero to seven of the DFSR1.

23-20 Reserved 0 Reserved
19-0 FMARK If the number of new samples becomes equal or grows above full mark (FMARK), the

condition is signaled by FMSC code of the buffer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

72 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Descriptor

Table 2-11. FIFO Descriptor Field Descriptions (continued)

Word Bit Field Value Description
5 31-28 Reserved 0 Reserved

27-24 EMSC Empty mark status code. This bit is set in the DFSR0 or DFSR1 register when the
number of samples in the FIFO is equal or smaller than number specified by EMARK
bit field. EMSC codes zero to seven correspond to bits zero to seven of the DFSR0.
EMSC codes eight to 15 correspond to bits zero to seven of the DFSR1.

23-20 Reserved 0 Reserved
19-0 EMARK If the number of new samples becomes equal or falls below empty mark (EMARK), the

condition is signaled by EMSC code of the buffer.
6 31-25 Reserved 0 Reserved

24 FF 0-1 FIFO Full Flag. If the FIFO becomes full, this bit is automatically set by dMAX.
23-17 Reserved 0 Reserved

16 EF2 0-1h Error Flag 2 bit gets set to indicate an overflow error. The overflow error is indicated if
a FIFO write transfer is attempted and COUNT0 active is larger than the number of
empty slots in the FIFO. In this case, the transfer will be aborted, the EF2 bit will be
automatically set, and INT7 will be generated to the CPU, and both FIFO mark flags
will be set in the DFSR.

15-9 Reserved 0 Reserved
8 EF1 0-1h Error Flag 1 (EF1) bit gets set in case of a table-based multi-tap delay read transfer,

and if a delay specified in the delay table is larger than the number of samples stored
in the FIFO. In this case, the transfer will be aborted, the EF1 bit will be automatically
set, and INT7 will be generated to the CPU and both FIFO mark flags will be set in the
DFSR.

7-1 Reserved 0 Reserved
0 EFO 0-1h Error flag 0 bit gets set if there is an underflow error condition. A FIFO read transfer is

attempted, and the COUNT0 active of the attempted transfer is larger than the number
of samples available for read in the FIFO. In this case, the transfer will be aborted, the
EFO bit will be automatically set, and INT7 will be generated to the CPU and both FIFO
mark flags will be sent in the DFSR.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 73

www.ti.com

dMAX Control Registers

2.3 dMAX Control Registers
The list of dMAX control registers is shown in Table 2-12.

Table 2-12. dMAX Control Registers

dMAX
Register Register
Address Name See Register Description
0x6000 0008 DEPR Section 2.3.7 The dMAX event polarity register (DEPR) controls the polarity-rising edge (low

to high) or falling edge (high to low)-that sets the flag in the EFR register.
0x6000 000C DEER Section 2.3.5 The events can be enabled by writing a 1 to dMAX Event Enable Register

(DEER).
0x6000 0010 DEDR Section 2.3.6 The events can be disabled by writing a 1 to dMAX Event Disable Register

(DEDR).
0x6000 0014 DEHPR Section 2.3.8 An event is assigned to the high priority event group when the bit, which

corresponds to the event, is set in the dMAX Event High Priority Register
(DEHPR).

0x6000 0018 DELPR Section 2.3.9 An event is assigned to the low priority event group when the bit, which
corresponds to the event, is set in the dMAX Event Low Priority Register
(DELPR).

0x6000 001C DEFR Section 2.3.4 The dMAX Event Flag Register (DEFR) indicates that an appropriate
transition edge (specified in the Event Polarity Register) has occurred on the
event signals. All events are captured in the event flag register, even when
the events are disabled.

0x6000 0034 DER0 Section 2.3.1 The dMAX event register (DER0) reflects current value of the event signals
7-0.

0x6000 0054 DER1 Section 2.3.2 The dMAX event register (DER1) reflects current value of the event signals
15-8.

0x6000 0074 DER2 Section 2.3.3 The dMAX event register (DER2) reflects current value of the event signals
23-16.

0x6000 0094 DER3 Table 2-16 The dMAX event register (DER3) reflects current value of the event signals
31-24.

0x6000 0040 DFSR0 Section 2.3.10 dMAX FIFO status register 0. Writing a 1 to the DFSR0 register clears the
corresponding bit. Writing 0 has no effect.

0x6000 0060 DFSR1 Section 2.3.11 dMAX FIFO status register 1. Writing a 1 to the DFSR1 register clears the
corresponding bit. Writing 0 has no effect.

0x6000 0080 DTCR0 Section 2.3.12 dMAX transfer completion register 0. Writing a 1 to the DTCR0 register clears
the corresponding bit. Writing 0 has no effect.

0x6000 00A0 DTCR1 Section 2.3.13 dMAX transfer completion register 1. Writing a 1 to the DTCR1 register clears
the corresponding bit. Writing 0 has no effect.

- DETR Section 2.3.14 dMAX event trigger register. By toggling a bit in this register the CPU can
trigger an event. To facilitate faster CPU access, the dMAX Event Trigger
Register is not memory-mapped and is placed inside the CPU module.

- DESR Section 2.3.15 dMAX event status register. To facilitate low CPU access overhead this
register mirrors TCC bits from DTCR0 and DTCR1 registers. The register also
keeps track of dMAX controller activity. To facilitate faster CPU access, the
dMAX Event Status Register is not memory-mapped and is placed inside the
CPU module.

A set of two registers is provided to set event priority (DEHPR and DELPR), and to enable/disable events
(DEER and DEDR). This eliminates the need for read/modify/write when enabling/disabling events or
when setting event priorities. For example, writing '1' to DEHPR puts the corresponding event in the
high-priority group, while writing '0' has no effect.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

74 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Control Registers

2.3.1 dMAX Event Register 0 (DER0)
Values in the DER0 reflect the current state (high or low) on the event signals zero to seven. The DER0 is
a read-only register, and is shown in Figure 2-6 and described in Table 2-13.

Figure 2-16. dMAX Event Register 0 (DER0)

31 16
Reserved

15 8 7 6 5 4 3 2 1 0

Reserved EVT7 EVT6 EVT5 EVT4 EVT3 EVT2 EVT1 EVT0
R-x R-x R-x R-x R-x R-x R-x R-x

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-13. dMAX Event Register 0 (DER0) Field Descriptions

Bit Field Description
31-8 Reserved Reserved
7-0 EVTn Event 0-7 bits. This is a read-only register.

2.3.2 dMAX Event Register 1 (DER1)

Values in the DER1 reflect the current state (high or low) on the event signals eight to 15. The DER1 is a
read-only register.
The dMAX event register 1 (DER1) is shown in Figure 2-17 and described in Table 2-14.

Figure 2-17. dMAX Event Register 1 (DER1)

31 16
Reserved

15 8 7 6 5 4 3 2 1 0

Reserved EVT15 EVT14 EVT13 EVT12 EVT11 EVT10 EVT9 EVT8
R-x R-x R-x R-x R-x R-x R-x R-x

LEGEND: R = Read only; -n = value after reset

Table 2-14. dMAX Event Register 1 (DER1) Field Descriptions

Bit Field Description
31-8 Reserved Reserved
7-0 EVTn Event 15-8 bits. This is a read-only register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 75

www.ti.com

dMAX Control Registers

2.3.3 dMAX Event Register 2 (DER2)
Values in the DER2 reflect the current state (high or low) on the event signals 16 to 23.
The DER2 is shown in Figure 2-18 and described in Table 2-15.

Figure 2-18. dMAX Event Register 2 (DER2)

31 16
Reserved

15 8 7 6 5 4 3 2 1 0

Reserved EVT23 EVT22 EVT21 EVT20 EVT19 EVT18 EVT17 EVT16
R-x R-x R-x R-x R-x R-x R-x R-x

LEGEND: R = Read only; -n = value after reset

Table 2-15. dMAX Event Register 2 (DER2) Field Descriptions

Bit Field Description
31-8 Reserved Reserved
7-0 EVTn Event 23-16 bits. This is a read-only register.

Table 2-16. dMAX Event Register 3 (DER3) Field Descriptions

Bit Field Description
31-8 Reserved Reserved
7-0 EVTn Event 31-24 bits. This is a read only register.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

76 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Control Registers

2.3.4 dMAX Event Flag Register (DEFR)
A transition on the event signal (event) is captured in the dMAX Event Flag Register (DEFR), even when
the events are disabled.
Once an event has been posted in the DEFR, and the event is enabled in the DEER, the event flag is
automatically cleared by dMAX, immediately after it starts processing the request. CPU can also clear the
event flag by writing 1 to the DEFR register.
The DEFR register is shown in Figure 2-19 and described in Table 2-17.

Figure 2-19. dMAX Event Flag Register (DEFR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EF31 EF30 EF29 EF28 EF27 EF26 Reserved EF24 EF23 EF22 EF21 EF20 EF19 EF18 EF17 EF16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EF15 EF14 EF13 EF12 EF11 EF10 EF9 EF8 EF7 EF6 EF5 EF4 EF3 EF2 EF1 EF0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-17. dMAX Event Flag Register (DEFR) Field Descriptions

Bit Field Value Description
31-26 EFn 0 Transition has not occurred since last clear

 1 Transition has occurred since last clear
 0 No changes in flag register
 1 Clears the corresponding bit to 0

25 Reserved 0 Reserved
24-0 EFn 0 Transition has not occurred since last clear

 1 Transition has occurred since last clear
 0 No changes in flag register
 1 Clears the correpsonding bit to 0

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 77

www.ti.com

dMAX Control Registers

2.3.5 dMAX Event Enable Register (DEER)
To enable an event, the corresponding bit must be set in dMAX Event Enable Register (DEER). Any of the
event bits in the DEER can be set to 1 to enable that corresponding event (writing 0 has no effect).
The event registers latch all events that are captured by dMAX, even if that event is disabled. Event
processing procedure is analogous to an interrupt enable and interrupt pending processing, thus ensuring
that dMAX does not drop any events. Re-enabling an event with a pending event signaled in the event
flag register forces dMAX to process that event.
The DEER is shown in Figure 2-20and described in Table 2-18.

Figure 2-20. dMAX Event Enable Register (DEER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EE31 EE30 EE29 EE28 EE27 EE26 Reserved EE24 EE23 EE22 EE21 EE20 EE19 EE18 EE17 EE16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EE15 EE14 EE13 EE12 EE11 EE10 EE9 EE8 EE7 EE6 EE5 EE4 EE3 EE2 EE1 EE0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-18. dMAX Event Enable Register (DEER) FIELD Descriptions

Bit Field Value Description
31-26 EEn[31-26] Event 26-31 enable bits.

 0 Writing a 0 has no effect.
 1 Any of the event bits can be set to 1 to enable that event.

25 Reserved 0 Reserved
24-0 EEn[24-0] Event 0-24 enable bits.

 0 Writing a 0 has no effect.
 1 Any of the event bits can be set to 1 to enable that event.

2.3.6 dMAX Event Disable Register (DEDR)

In order to disable an event, the corresponding bit must be set in the dMAX Event Disable Register
(DEDR). Any of the event bits in the DEDR can be set to 1 to disable that corresponding event (writing 0
has no effect).
The DEDR is shown in Figure 2-21 and described in Table 2-19.

Figure 2-21. dMAX Event Disable Register (DEDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ED31 ED30 ED29 ED28 ED27 ED26 Reserved ED24 ED23 ED22 ED21 ED20 ED19 ED18 ED17 ED16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ED15 ED14 ED13 ED12 ED11 ED10 ED9 ED8 ED7 ED6 ED5 ED4 ED3 ED2 ED1 ED0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-19. dMAX Event Disable Register (DEDR) Field Descriptions

Bit Field Value Description
31-0 EDn Event 0-31 disable bits.

 0 Writing a 0 has no effect.
 1 Any of the event bits can be set to 1 to disable that event.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

78 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Control Registers

2.3.7 dMAX Event Polarity (DEPR)

The dMAX Event Polarity Register (DEPR) controls the polarity-rising edge (low to high) or falling edge
(high to low) that sets the event flag in the DEFR register. To ensure recognition of the signal as an edge,
the signal must maintain the new level for at least one dMAX clock cycle.
Each bit in the DEPR corresponds to one dMAX event. Writing a 1 to one of the event bits makes the
event sensitive to a rising edge. Writing a 0 to one of the event bits makes the event sensitive to a falling
edge.
The DEPR is shown in Figure 2-22 and described in Table 2-20.

Figure 2-22. dMAX Event Polarity (DEPR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EP31 EP30 EP29 EP28 EP27 EP26 Reserved EP24 EP23 EP22 EP21 EP20 EP19 EP18 EP17 EP16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8 EP7 EP6 EP5 EP4 EP3 EP2 EP1 EP0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-20. dMAX Event Polarity Register (DEPR) Field Descriptions

Bit Field Value Description
31-0 EPn Event 0-31 polarity select bits.

 0 Event flag is set on falling edge.
 1 Event flag is set on rising edge.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 79

www.ti.com

dMAX Control Registers

2.3.8 dMAX Event High Priority (DEHPR)
In the dMAX Event High-Priority Register (DEHPR), each event can be individually configured as a
high-priority event by writing a 1 into the corresponding bit of the DEHPR. Writing 0 has no effect. The
DEHPR is shown in Figure 2-23 and described in Table 2-21. The way to handle events that are placed in
the high priority group is determined by the event with the lowest bit value. The event assigned to the
lowest bit has the highest priority (within the high priority group, the event assigned to bit 0 position has
the highest priority; the event assigned to bit 31 has the lowest priority).
Since only one dMAX register can be accessed at one time, an event will be sorted in the high or low
priority group depending on the last write to the corresponding bit of either the DEHPR or DELPR.

Figure 2-23. dMAX Event High Priority (DEHPR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EHP31 EHP30 EHP29 EHP28 EHP27 EHP26 Reserved EHP24 EHP23 EHP22 EHP21 EHP20 EHP19 EHP18 EHP17 EHP16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EHP15 EHP14 EHP13 EHP12 EHP11 EHP10 EHP9 EHP8 EHP7 EHP6 EHP5 EHP4 EHP3 EHP2 EHP1 EHP0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-21. dMAX Event High Priority Register (DEHPR) Field Descriptions

Bit Field Value Description
31-0 EHPn Event 0-31 high-priority select bits.

 0 No effect
 1 Event set as a high-priority event.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

80 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Control Registers

2.3.9 dMAX Event Low Priority (DELPR)
In the dMAX event low-priority register (DELPR), each event can be individually configured as a
low-priority event by writing a 1 into its corresponding bit. Writing zero has no effect. The DELPR is shown
in Figure 2-24 and described in Table 2-22. Bit 0 position has the highest priority; bit 31 has the lowest
priority. The way to handle of events that are placed in the low priority group is determined by the event
with the lowest bit value. The event assigned to the lowest bit has the highest priority (bit 0 position has
the highest priority; and the event assigned to bit 31 has the lowest priority within the low priority group).
Since only one dMAX controller register can be accessed at one time, an event will be sorted into the high
or low priority group depending on the last write to the corresponding bit of either the DEHPR or DELPR.

Figure 2-24. dMAX Event Low Priority (DELPR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ELP31 ELP30 ELP29 ELP28 ELP27 ELP26 Reserved ELP24 ELP23 ELP22 ELP21 ELP20 ELP19 ELP18 ELP17 ELP16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ELP15 ELP14 ELP13 ELP12 ELP11 ELP10 ELP9 ELP8 ELP7 ELP6 ELP5 ELP4 ELP3 ELP2 ELP1 ELP0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-22. dMAX Event Low Priority Register (DELPR) Field Descriptions

Bit Field Value Description
31-0 ELPn Event 0-31 high- priority select bits.

 0 No effect.
 1 Event set as a low-priority event.

2.3.10 dMAX FIFO Status Register 0 (DFSR0)

The dMAX FIFO Status Register (DFSR) is used by dMAX to report FIFO status codes (FSC) to the CPU.
From the DFSR, the CPU reads the code set by dMAX. The CPU clears the DFSR pending bits by writing
1, writing 0 has no effect. The DFSR0 is shown in Figure 2-25 and described in Table 2-23.

Figure 2-25. dMAX FIFO Status Register 0 (DFSR0)

31 16
Reserved

15 8 7 6 5 4 3 2 1 0

Reserved FSC7 FSC6 FSC5 FSC4 FSC3 FSC2 FSC1 FSC0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-23. dMAX FIFO Status Register 0 (DFSR0) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 FSCn FIFO status flags 7-0. The CPU reads status bit set by the dMAX controller. The CPU clears the

 flags by writing to this register.
 0 No effect
 1 Clears corresponding flag.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 81

www.ti.com

dMAX Control Registers

The FSC value programmed in the FIFO descriptor dictates the DFSR bit number that gets set. The
FMSC and EMSC bit fields specify the FIFO Full and FIFO Empty conditions, respectively, with values
between 0-15. The FIFO status codes 0-7 correspond to bits 0-7 of the DFSR0.
If the FSC pending bit is not cleared by the CPU before dMAX attempts to set the bit again, dMAX will not
generate a FIFO status interrupt.

2.3.11 dMAX FIFO Status Register 1 (DFSR1)
The dMAX FIFO Status Register (DFSR1) is used by dMAX to report FIFO status codes to the CPU. From
the DFSR, the CPU reads the code set by the dMAX controller. The CPU clears the DFSR bits by writing
1; writing 0 has no effect. The DFSR1 is shown in Figure 2-26 and described in Table 2-24.

Figure 2-26. dMAX FIFO Status Register 1 (DFSR1)

31 16
Reserved

15 8 7 6 5 4 3 2 1 0

Reserved FSC15 FSC14 FSC13 FSC12 FSC11 FSC10 FSC9 FSC8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-24. dMAX FIFO Status Register 1 (DFSR1) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 FSCn FIFO status flags 16-8. The CPU reads status bit set by the dMAX controller. The CPU clears the

 flags by writing to this register.
 0 No effect
 1 Clears corresponding flag

The FSC value programmed in the FIFO descriptor dictates the DFSR bit number that gets set. The
FMSC and EMSC bit fields specify the FIFO Full and FIFO empty conditions respectively, with values
between 0-15. The FIFO Status codes 8-15 correspond to bits 0-7 of the DFSR1.
If the FSC pending bit is not cleared by the CPU before dMAX attempts to set the bit again, dMAX will not
generate a FIFO status interrupt.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

82 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Control Registers

2.3.12 dMAX Transfer Completion Register 0 (DTCR0)
In the dMAX Transfer Completion Register (DTCR), the CPU clears the code set by dMAX. The CPU
clears the DTCR bits by writing 1; writing 0 has no effect. The DTCR is shown in Figure 2-27 and
described in Table 2-25.

Figure 2-27. dMAX Transfer Completion Register 0 (DTCR0)

31 16
Reserved

15 8 7 6 5 4 3 2 1 0

Reserved TCC7 TCC6 TCC5 TCC4 TCC3 TCC2 TCC1 TCC0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Table 2-25. dMAX Transfer Completion Register 0 (DTCR0) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 TCCn Pending request flags 7-0. The CPU reads pending requests set by the dMAX controller from the

 DESR. The CPU clears the flags by writing to this register.
 0 No effect
 1 Clears corresponding flag

The TCC value programmed in the event entry dictates the DTCR bit number that gets set. The TCC field
specifies the transfer complete pending bit, with values between 0-15. The TCC codes 0-7 correspond to
bits 0-7 of DTCR0. If the TCC pending bit is not cleared by the CPU before dMAX attempts to set the bit
again, dMAX will not generate a CPU interrupt. To determine which TCC values are set by the dMAX
controller, the CPU may either read DTCR, or read the DESR (reading from the DESR is more efficient).

2.3.13 dMAX Transfer Completion Register 1 (DTCR1)

The DTCR Register (DTCR1) is used by the CPU to clear transfer completion codes set by dMAX. The
CPU clears the DTCR bits by writing 1, writing 0 has no effect. The DTCR1 is shown in Figure 2-28 and
described in Table 2-26.

Figure 2-28. dMAX Transfer Completion Register 1 (DTCR1)

31 16
Reserved

15 8 7 6 5 4 3 2 1 0

Reserved TCC15 TCC14 TCC13 TCC12 TCC11 TCC10 TCC9 TCC8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-26. dMAX Transfer Completion Register 1 (DTCR1) Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 TCCn Pending request flags 15-8. The CPU reads pending requests set by the dMAX controller from the

 DESR. The CPU clears the flags by writing to this register.
 0 No effect
 1 Clears the corresponding flag

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 83

www.ti.com

dMAX Control Registers

The TCC value programmed in the event entry dictates the DTCR bit number that gets set. The TCC field
specifies the transfer complete pending bit, with values between 0-15. The TCC codes eight to 15
correspond to bits zero to seven of the DTCR1. If the TCC pending bit is not cleared by the CPU before
dMAX attempts to set the bit again, dMAX will not generate a CPU interrupt. To determine which TCC
values are set by dMAX, the CPU may either read the DTCR, or read the DESR (reading from the DESR
is more efficient).

2.3.14 dMAX Event Trigger Register (DETR)
The dMAX Event Trigger Register (DETR) is used by the CPU to trigger events. To facilitate faster CPU
access, the DETR is not memory-mapped and is placed inside CPU module (there is no CPU overhead
when writing to the DETR). The DETR is presented in Figure 2-29 and described in Table 2-27.

Figure 2-29. dMAX Event Trigger Register (DETR)

31 22 21 20 19 18 17 16

Rese rved ET21 ET20 ET19 ET18 ET17 ET16

15

 R/W-0 R/W-0

4

R/W-0

3

R/W-0

2

R/W-0

1

R/W-0

0
 Reserved ET3 ET2 ET1 ET0
 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-27. dMAX Event Trigger (DET) Register Field Descriptions

Bit Field Description
31-22 Reserved Reserved

21 ET21 This bit is mapped to EVENT31 in the dMAX Event Register. Creating an appropriate edge on this bit in
the DETR will trigger an EVENT31.

20 ET20 This bit is mapped to EVENT30 in the dMAX Event Register. Creating an appropriate edge on this bit in
the DETR will trigger an EVENT30.

19 ET19 This bit is mapped to EVENT24 in the dMAX Event Register. Creating an appropriate edge on this bit in
the DETR will trigger an EVENT24.

18 ET18 This bit is mapped to EVENT18 in the dMAX Event Register. Creating an appropriate edge on this bit in
the DETR will trigger an EVENT18.

17 ET17 This bit is mapped to EVENT11 in the dMAX Event Register. Creating an appropriate edge on this bit in
the DETR will trigger an EVENT11.

16 ET16 This bit is mapped to EVENT1 in the dMAX Event Register. Creating an appropriate edge on this bit in the
DETR will trigger an EVENT1.

15-4 Reserved Reserved
3 ET3 This bit is mapped to EVENT23 in the dMAX Event Register. Creating an appropriate edge on this bit in

the DETR will trigger an EVENT23.
2 ET2 This bit is mapped to EVENT17 in the dMAX Event Register. Creating an appropriate edge on this bit in

the DETR will trigger an EVENT17.
1 ET1 This bit is mapped to EVENT10 in the dMAX Event Register. Creating an appropriate edge on this bit in

the DETR will trigger an EVENT10.
0 ET0 This bit is mapped to EVENT0 in the dMAX Event Register. Creating an appropriate edge on this bit in the

DETR will trigger an EVENT0.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

84 Register and Memory Description SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

dMAX Control Registers

To trigger an event, the CPU must create an appropriate edge on a DETR bit which is mapped to the
DER. The appropriate edge depends on the polarity set for the event (programmed in the DEPR).
Toggling bits in the DETR will trigger the dMAX events only if the CPU is not halted by emulation.
If the chip support library (CSL) for TMS320C672x is not used and it is necessary to access the DET
register from the C program, the register must be declared as:
extern far cregister volatile unsigned int DETR;

An example of DETR usage to trigger an event zero is shown in Example 2-1.

Example 2-1. Triggering Event0 by Writing to the DET Register

A simplified timing diagram of triggering an event by writing to the DETR is shown in Figure 2-30. In this
case, dMAX Event Polarity for event zero is set to '1' (even flag is set on rising edge of DET[0]). The CPU
toggles the DET[0] by consecutively writing '1' and then '0' to bit0 of the DETR. The event flag zero in the
dMAX Event Flag register (DEFR) gets set when the rising edge on DETR[0] is detected by dMAX (dMAX
samples the DETR on every dMAX clock).

Figure 2-30. CPU Triggers Event by Writing to the DETR (when DEPR[0]=1) Timing Diagram

CPU clock

DETR[0]

dMAX clock

DEFR[0]

...

DETR = 0x00000001;

asm(” nop”);

asm(” nop”);

asm(” nop”);

DETR = 0x00000000;

...

DETR = 0x1 DETR = 0x0

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Register and Memory Description 85

www.ti.com

dMAX Control Registers

2.3.15 dMAX Event Status Register (DESR)
To facilitate faster CPU access, the dMAX Event Status register is not memory-mapped and is placed
inside the CPU module. Unlike when reading the DTC0 and DTC1 registers, there is no CPU overhead
when reading the DESR. The DESR is read-only and has the following application:
• To mirror DTCR0 and DTCR1 (dMAX Transfer Completion Register) bits. By reading the DESR[15:8]

and DESR[31:24], the CPU has a fast way of accessing bits from the DTCR0 and DTCR1 registers.
Organization of the DES register is presented in Figure 2-31 and explained in Table 2-28.

Figure 2-31. dMAX Event Status (DES) Register

31 30 29 28 27 26 25 24 23 18 17 16

TCC15 TCC14 TCC13 TCC12 TCC11 TCC10 TCC9 TCC8 Reserved

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 0
TCC7 TCC6 TCC5 TCC4 TCC3 TCC2 TCC1 TCC0 Reserved

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-28. dMAX Event Status Register (DESR) Field Descriptions

Bit Field Description
31-24 TCC[15:8] These bits are read-only and correspond to the TCC bits from DTCR1 register.
23-16 Reserved Reserved
15-8 TCC[7:0] These bits are read-only and correspond to the TCC bits from DTCR0 register.
7-0 Reserved Reserved

The DESR is read-only and the CPU can clear a transfer completion bit only by writing to the DTC0 or
DTC1 registers. To access the DESR from the C program, if the Chip Support Library (CSL) for
TMS320C672x is not used, the register must be declared as:
extern far cregister volatile unsigned int DESR;

An example of DESR register usage is shown in Example 2-2.

Example 2-2. Reading the DES Register

...

unsigned int IPR_val;

IPR_val = DESR;

...

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

Submit Documentation Feedback

86 Register and Memory Description SPRU795D – November 2005 – Revised October 2007

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 101

Chapter 3
SPRU795D – November 2005 – Revised October 2007

Transfer Examples

This chapter provides examples for various dMAX transfer types.

Topic Page

CAUTION
1DN and SPI slave transfers require System Patch v2.00 or later. You can

download the patch at http://focus.ti.com/docs/toolsw/folders/print/sprc203.html.

3.1 Transfer Synchronization ... 88
3.2 General Purpose Transfer Examples .. 88
3.3 FIFO Transfer Examples ... 102
3.4 One-Dimensional Burst Transfers ... 126
3.5 SPI Slave Transfer ... 129
3.6 Examples of Servicing Peripherals ... 131
3.7 Example of Using dMAX Events to Generate a CPU Interrupt 145
3.8 Examples of dMAX Usage for Delay-Based Effects 145

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://focus.ti.com/docs/toolsw/folders/print/sprc203.html

www.ti.com

88 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Synchronization

3.1 Transfer Synchronization

The dMAX transfer can be frame-synchronized, or whole transfer can be performed after receiving a
synchronization event. If frame synchronization is enabled (in the event entry the SYNC bit field is cleared)
one event is required for the transfer of each frame. If frame synchronization is disabled (in the event entry
the SYNC bit field is set) only one event is required to synchronize the whole transfer.
When frame synchronization is enabled (SYNC='0'), and the ATCINT bit field within the event entry is set,
dMAX will notify the CPU after transfer of each frame is completed. When frame synchronization is
enabled (SYNC='0'), and the ATCINT bit field within the event entry is cleared, dMAX will require a
synchronization event to transfer each frame, but it will not notify the CPU after a frame transfer is
complete. When frame synchronization is disabled (SYNC='1'), dMAX will notify the CPU after whole
transfer is completed only if the TCINT (or ATCINT) bit field within the event entry is set.
The dMAX controller notifies the CPU about transfer status by using interrupt (INT8), and by setting a bit
in the DTCR register. A bit that gets set is specified by the TCC bit field of the event entry.

3.2 General Purpose Transfer Examples

General-purpose data transfer covers 1-dimensional (1D), 2-dimensional (2D) and 3-dimensional (3D)
transfer. The 1D and 2D transfers are implemented as special cases of 3D transfers, where counters for
the higher dimensions are equal to zero. A 3D transfer with the third dimension counter equal to zero
becomes a 2D transfer. For a general-purpose data transfer, an independent set of indexes for source and
destination can be specified for each transfer dimension. This facilitates 1D-2D, 1D-3D, and 2D-3D
element sorting.

3.2.1 Steps Required to Set Up a General Purpose Transfer
The following steps are required to set up a general-purpose dMAX transfer:
1. Priority of an event that will be used to trigger the general-purpose data transfer must be defined. To

put the event into the high-priority group, a bit corresponding to the event in the DEHPR should be set
to one. To put the event into the low-priority group, a bit corresponding to the event in the DELPR
should be set to one.

2. The event signal edge (rising/falling) that will be used to trigger an event must be defined. To trigger an
event on the rising edge of the event signal, a bit corresponding to the event in the DEPR should be
set to one. To trigger an event on the falling edge of the event signal, a bit corresponding to the event
in the DEPR should be cleared to zero.

3. If the event is sorted to the high-priority group, its event entry in the HiMAX PaRAM must be defined. If
the event is sorted to the low-priority group, its event entry in the LoMAX PaRAM must be defined. The
following bit fields in the event entry must be configured:
• ETYPE bit field must be set to '00011' for general-purpose data transfer.
• PTE bit field is used as a pointer to a location in the PaRAM where a transfer entry that

corresponds to the event is stored.
• ESIZE should define correct element size.
• CC should define configuration of the counter field (correct widths of COUNT0, COUNT1 and

COUNT2 bit fields) within the transfer entry.
• If the RLOAD bit is set when a transfer is complete, an active counter and an active address

register will be reloaded from one of two sets of address reference registers. If the RLOAD bit is
cleared, dMAX will ignore new events after a transfer is complete.

• When a transfer is complete, the TCINT bit should be set if a notification to the CPU is required.
The ATCINT bit should be set if notification to the CPU is required after transfer of each frame.

• The TCC indicates which bit in the DTCR is going to be set to indicate transfer status to the CPU.
• If SYNC=1, dMAX will require one event to complete the transfer. If SYNC=0, dMAX will move only

one frame of data after receiving each synchronization event.
• The QTSL bit field defines granularity with which dMAX breaks up a large transfer into a number of

smaller sub-transfers.
4.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

General Purpose Transfer Examples

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 89

Transfer entry must be properly configured (transfer must be defined by source/destination address,
source/destination indexes and counter bit fields). The PTE bit field of the event entry points to the
transfer entry.
When the event entry reload is enabled (RLOAD='1'), the PP bit in the transfer entry must be properly
configured. When PP='0', after the transfer is completed, reload register set one is loaded in the set of
active registers. When PP='1', after the transfer is completed, reload register set zero is loaded in the
set of active registers.

5. The event must be enabled by setting a corresponding bit in the DEER.
Once an event is enabled, dMAX will perform a data transfer after an appropriate transition is detected on
the event signal.
If ATCINT = '1' or TCINT='1', dMAX will signal transfer status to the CPU by using an interrupt (INT8), and
by setting a bit, specified by the TCC bit field of the event entry, in the DTCR. The DTCR bits are mirrored
in the DESR. The read-only DESR is located inside the CPU module and the CPU can access the register
with minimum overhead (the fastest way of monitoring the DTCR is to read its copy from the DESR).
To keep receiving the notifications from a particular dMAX channel, after each notification, the CPU must
clear the transfer completion bit used by the dMAX channel. The CPU should use the read-only DESR to
find out which transfer completion bits were set, and it should clear them by writing '1' to the
corresponding bits from the DTCR.
After enabling the event, it is not recommended to access the event entry, active register set, indexes, and
the reference counter bit fields within the transfer entry.

3.2.2 EXAMPLE: 1D Block Move Transfer
Often during device operation it is necessary to transfer a block of data from one location to another,
usually between on- and off-chip memories. The most basic transfer that can be performed by dMAX is a
block move transfer.
In this example, a section of data is to be copied from external memory to internal memory. The data
block is 255 half-words and resides at address 0x80000000. It is to be transferred to internal address
0x10001000. The data transfer is shown in Figure 3-1.

Figure 3-1. Block Move Diagram

0x80000000

0x80000002

0x80000004

0x80000006

0x80000008

0x800001F6

0x800001F8

0x800001FA

0x800001FC

0x10001000

0x10001004

0x10001008

0x1000100C

0x10001010

0x100011F0

0x100011F4

0x100011F8

0x100011FC

1

2

3

4

5

252

253

254

255

2 1

4 3

6 5

8 7

10 9

250 249

252 251

254 253

 255

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

90 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

General Purpose Transfer Examples

The parameters for this transfer are shown in Figure 3-2. Event 10 is used to trigger this transfer. Here,
Event 10 is triggered by CPU write '0', followed by CPU write '1', to bit one of the DETR register (rising
edge of the event signal 10 triggers an event since DEPR[10] = '1'). The event is processed by the LoMAX
since DELPR[10] = '1'.

Figure 3-2. Event Entry and Transfer Entry for 1D Block Transfer

DEPR[10] = ’1’
DELPR[10] = ’1’
DEER[10] = ’1’

Event#10 entry:

0x6200 8028

Transfer entry:

0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 8 7 5 4 0

11 1 0 1111 0 1 0 0 10 01 0 0111110 000 00011

0x8000 0000 (SRC)
0x1000 1000 (DST)

0 0x0 (COUNT2A) 0x0 (COUNT1A) 0xFF (COUNT0A)
0x1 (DINDX0) 0x1 (SINDX0)

The whole transfer is completed after receiving one synchronization event (SYNC = '1' in the event entry);
subsequent synchronization events will be ignored (reload is disabled RLOAD = '0' in the event entry).
After completing the transfer, dMAX will notify the CPU by triggering an interrupt (INT8) and by setting a
bit 7 in the DTCR1 (TCC bit field within the event entry is equal to 15).
The dMAX controller will split the transfer into 16 quantum transfers (QTSL='11' in the event entry). The
first 15 quantum transfers will be 16 elements long, while the last quantum transfer size will move 15
elements.

3.2.3 EXAMPLE: Element- Synchronized 1D Transfer
When the synchronization bit field within the event entry is set to zero (SYNC = '0'), dMAX requires a
synchronization event to transfer each frame (frame size is equal to COUNT0 elements). Therefore, to
implement an element-synchronized transfer (only one element is transferred after receiving a
synchronization event) two-dimensional transfers must be used.
In this example, six data elements are to be copied from the external memory to internal memory. The six
half-words of source data starts at address 0x80000000, with source index equal to two (source elements
to be transferred are spaced by one element). The data are to be transferred to contiguous destination
memory block starting at the internal address 0x10001000.

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

C
C

ES
IZ

E

PT
E

ET
YP

E

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 91

www.ti.com

General Purpose Transfer Examples

A memory snapshot of the data transfer after receiving the first synchronization event is shown in
Figure 3-3.

Figure 3-3. Element-Synchronized 1D Transfer Diagram (After Receiving the First Synchronization Event)

0x80000000

0x80000002

0x80000004

0x80000006

0x80000008

0x8000000A

0x8000000C

0x8000000E

0x80000010

0x80000012

0x80000014

0x10001000

0x10001004

0x10001008

A memory snapshot for the data transfer after receiving the first two synchronization events is shown in
Figure 3-4.

Figure 3-4. Element-Synchronized 1D Transfer Diagram (After Receiving the Second Synchronization

Event)

0x80000000

0x80000002

0x80000004

0x80000006

0x80000008

0x8000000A

0x8000000C

0x8000000E

0x80000010

0x80000012

0x80000014

0x10001000

0x10001004

0x10001008

1

2

3

4

5

6

 1

1

2

3

4

5

6

2 1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

92 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

General Purpose Transfer Examples

A memory snapshot for the data transfer after receiving all synchronization events is shown in Figure 3-5.

Figure 3-5. Element-Synchronized 1D Transfer Diagram (After Receiving Six Synchronization Events)

0x80000000

0x80000002

0x80000004

0x80000006

0x80000008

0x8000000A

0x8000000C

0x8000000E

0x80000010

0x80000012

0x80000014

0x10001000

0x10001004

0x10001008

The parameters for this transfer are shown in Figure 3-6. Event zero is triggered by CPU write '0' followed
by CPU write '1' to bit zero of the DETR (rising edge of the event signal 10 triggers an event since
DEPR[0] = '1'). The event is processed by the HiMAX since DEHPR[0] = '1'.

Figure 3-6. Event Entry and Transfer Entry for Element-Synchronized 1D Transfer

DEPR[0] = ’1’
DEHPR[0] = ’1’
DEER[0] = ’1’

Event#0 entry:

0x6200 8028

Transfer entry:

0x6100 80F8
0x6100 80FC
0x6100 8100
0x6100 8104
0x6100 8108
0x6100 810C
0x6100 8110
0x6100 8114
0x6100 8118
0x6100 811C
0x6100 8120

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 8 7 5 4 0

01 0 0 0001 1 0 0 0 10 01 0 0111110 000 00011

0x8000 0000 (SRC)
0x1000 1000 (DST)

0 0x0 (COUNT2A) 0x6 (COUNT1A) 0x01 (COUNT0A)
DINDX0 not used since COUNT0A=0x1 SINDX0 not used since COUNT0A=0x1

0x1 (DINDX1) 0x2 (SINDX1)

 0x0 (COUNT2R) 0x0006 (COUNT1R) 0x01 (COUNT0R)

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

C
C

ES
IZ

E

PT
E

ET
YP

E

1

2

3

4

5

6

2 1

4 3

6 5

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 93

www.ti.com

General Purpose Transfer Examples

Since frame size in this transfer is equal to one, source and destination zero indexes (SINDX0/DINDX0)
are not used. Spacing between frames (in this case frame size is equal to one element) is dictated by
source/destination one indexes (SINDX1/DINDX1).
Here, the dMAX controller will move one element after receiving a synchronization event; a total of six
synchronization events are required to complete the transfer. Since frame synchronization is enabled and
ATCINT='1', dMAX will notify the CPU after transfer of each element has been complete, by triggering an
interrupt and by setting bit one in the DTCR0 (TCC = 0x1 in the event entry).
After whole transfer is completed, dMAX will ignore subsequent synchronization events (reload is disabled
RLOAD = '0' in the event entry).

3.2.4 EXAMPLE: Sub-frame Extraction
The dMAX controller has an efficient way of extracting a small frame of data from a larger one; by
performing a 2-D to 1-D transfer, it can retrieve a portion of data for the CPU to process. In this example,
a 640x480 sample frame of data is stored in external memory. Each sample is represented by a 16-bit half
word. A 16 x 12 sub-frame is extracted for processing by the CPU. To facilitate more efficient processing
time by the CPU, dMAX places the sub-frame in internal RAM. Figure 3-7 depicts the transfer of the
sub-frame from external memory to internal DSP memory.

Figure 3-7. Sub-Frame Extraction

0X80000000 0

0X80000788

0X80025580
0

479
639

0X10002000

0_1 0_2 0_3 0_4 0_5 0_6 0_7 0_8 0_9 0_A 0_B 0_C 0_D 0_E 0_F 0_10

1_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9 1_A 1_B 1_C 1_D 1_E 1_F 1_10

2_1 2_2 2_3 2_4 2_5 2_6 2_7 2_8 2_9 2_A 2_B 2_C 2_D 2_E 2_F 2_10

3_1 3_2 3_3 3_4 3_5 3_6 3_7 3_8 3_9 3_A 3_B 3_C 3_D 3_E 3_F 3_10

4_1 4_2 4_3 4_4 4_5 4_6 4_7 4_8 4_9 4_A 4_B 4_C 4_D 4_E 4_F 4_10

5_1 5_2 5_3 5_4 5_5 5_6 5_7 5_8 5_9 5_A 5_B 5_C 5_D 5_E 5_F 5_10

6_1 6_2 6_3 6_4 6_5 6_6 6_7 6_8 6_9 6_A 6_B 6_C 6_D 6_E 6_F 6_10

7_1 7_2 7_3 7_4 7_5 7_6 7_7 7_8 7_9 7_A 7_B 7_C 7_D 7_E 7_F 7_10

8_1 8_2 8_3 8_4 8_5 8_6 8_7 8_8 8_9 8_A 8_B 8_C 8_D 8_E 8_F 8_10

9_1 9_2 9_3 9_4 9_5 9_6 9_7 9_8 9_9 9_A 9_B 9_C 9_D 9_E 9_F 9_10

A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_A A_B A_C A_D A_E A_F A_10

B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_A B_B B_C B_D B_E B_F B_10

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

94 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

General Purpose Transfer Examples

To perform this transfer, the CPU will trigger an event by creating a rising edge on a bit0 in DETR (by
writing a '0', followed by writing a '1' to DETR[0]). The parameters required for dMAX to request this
transfer are shown in Figure 3-8.

Figure 3-8. Event Entry and Transfer Entry for Sub-Frame Extraction Transfer

DEPR[0] = ’1’
DEHPR[0] = ’1’
DEER[0] = ’1’

Event#0 entry:

0x6100 8000

Transfer entry:

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 8 7 5 4 0

10 1 0 0000 0 1 0 0 01 01 0 1110101 000 00011

0x6100 81D4
0x6100 81D8
0x6100 81DC
0x6100 81E0
0x6100 81E4
0x6100 81E8
0x6100 81EC
0x6100 81F0
0x6100 81F4
0x6100 81F8
0x6100 81FC

The whole transfer is completed after receiving one synchronization event (SYNC = '1' in the event entry),
and subsequent synchronization events will be ignored (reload is disabled RLOAD = '0' in the event entry).
After completing the transfer, dMAX will notify the CPU by triggering an interrupt (INT8) and by setting a
bit zero in the DTCR0 (TCC bit field within the event entry is equal to zero).
Since the maximum quantum transfer size is limited to eight elements (QTSL='10'), dMAX will split the
transfer into 32 quantum transfers. The first quantum transfer will move the first eight elements from
source to destination. The second quantum transfer will move the remaining four words of the first frame
from the source to the destination. The third quantum transfer will move the first eight elements of the
second frame, while the fourth quantum transfer moves the remaining four elements of the second frame.
The last (32nd) quantum transfer will move the remaining four elements of the last (16th) frame.
At the destination, the frames are contiguous; therefore, both destination indexes, DINDX0 and DINDX1,
are equal to one. At the source, elements within a frame are contiguous, while the last element of current
frame is separated by 624 elements from the first element of the next frame. Therefore, SINDX0 = '1' and
SINDX1 = 0x271.

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

C
C

ES
IZ

E

PT
E

ET
YP

E

0x8000 0000 (SRC)
0x1000 2000 (DST)

0 0x0 (COUNT2A) 0x0C (COUNT1A) 0x0010 (COUNT0A)
0x1 (DINDX0) 0x1 (SINDX0)
0x1 (DINDX1) 0x0271 (SINDX1)

 0x0 (COUNT2R) 0x0C (COUNT1R) 0x0010 (COUNT0R)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 95

www.ti.com

General Purpose Transfer Examples

3.2.5 EXAMPLE: Three Dimensional (3D) Data De-Interleaving
The dMAX controller supports three-dimensional (3D) transfers which are useful for sorting data and for
servicing peripherals such as the McASP. In this example, dMAX is used to de-interleave the samples
stored in the internal memory. Also, source and destination are both in the internal data memory.
Figure 3-9 depicts the data de-interleaving transfer for this example.

Figure 3-9. 3D Data De-Interleaving

SINDX1=−3

0x10001000
0x10001004
0x10001008

0x10002000

SINDX0=2 0x10002004
0x10002008

DINDX0=4

0x1000100C
0x10001010
0x10001014
0x10001018
0x1000101C
0x10001020
0x10001024
0x10001028
0x1000102C
0x10001030
0x10001034
0x10001038
0x1000103C
0x10001040
0x10001044
0x10001048
0x1000104C
0x10001050
0x10001054
0x10001058
0x1000105C

SINDX0=2

SINDX2=3

DINDX2=−19

0x1000200C
0x10002010
0x10002014
0x10002018
0x1000201C
0x10002020
0x10002024
0x10002028
0x1000202C
0x10002030
0x10002034
0x10002038
0x1000203C
0x10002040
0x10002044
0x10002048
0x1000204C
0x10002050

 0x10002054
0x10002058
0x1000205C
0x10002060

DINDX0=4

DINDX1=4

DINDX0=4

DINDX0=4

A0
D0
B0
E0
C0
F0

A1
D1
B1
E1
C1
F1

A2
D2
B2
E2
C2
F2

A0
A1
A2

B0
B1
B2

C0
C1
C2

D0
D1
D2

E0
E1
E2

F0
F1
F2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

96 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

General Purpose Transfer Examples

To perform this transfer, the CPU will trigger an event by creating a falling edge on a bit18 in DETR (by
writing a '1', followed by writing a '0' to DETR[18]). The parameters required for dMAX to request this
transfer are shown in Figure 3-10. The event is classified to the low-priority group by setting
DELPR[18]='1', and is processed by the LoMAX module.

Figure 3-10. Event Entry and Transfer Entry for 3D Data De-Interleaving

DEPR[18] = ’0’
DELPR[18] = ’1’
DEER[18] = ’1’

Event#18 entry:

0x6200 8048

Transfer entry:

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 8 7 5 4 0

10 1 0 0011 0 1 0 0 01 10 0 1110101 000 00011

0x6200 81D4
0x6200 81D8
0x6200 81DC
0x6200 81E0
0x6200 81E4
0x6200 81E8
0x6200 81EC
0x6200 81F0
0x6200 81F4
0x6200 81F8
0x6200 81FC

The whole transfer is completed after receiving one synchronization event (SYNC = '1' in the event entry);
subsequent synchronization events will be ignored (reload is disabled RLOAD = '0' in the event entry).
After completing the transfer, dMAX will notify the CPU by triggering an interrupt (INT8) and by setting bit
three in the DTCR0 (TCC bit field within the event entry is equal to three).

3.2.6 EXAMPLE: Ping-Pong Data Buffering Example
The CPU input and output buffers are continuously being filled or emptied in order for the CPU to process
the data; therefore, it must match the pace of the dMAX controller very closely. The receive data must
always be placed in memory before the CPU accesses it, and the CPU must provide the output data
before dMAX transfers it. This is an unnecessary challenge. A simple technique which allows the CPU
activity to be distanced from the dMAX controller activity is to use ping-pong buffering. This means that
there are two sets of data buffers for all incoming and outgoing data streams. While dMAX is transferring
data in to and out of the ping buffers, the CPU is manipulating the data in the pong buffers. When both the
CPU and dMAX activity completes, they switch; dMAX then writes over the old input data and transfers
the new output data.
The support for ping-pong buffering is built into the transfer parameters. The transfer entry describing a
transfer has an active register set, and two reload parameter sets, ping and pong. After completing a
transfer described by the active register set, dMAX will reload the active parameters with parameters from
the reload set 1, if the PP bit is clear. If the PP bit is set, dMAX will reload the active parameter set with
parameters from reload set 1.

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

C
C

ES
IZ

E

PT
E

ET
YP

E

0x1000 1000 (SRC)
0x1000 2000 (DST)

0 0x3 (COUNT2A) 0x02 (COUNT1A) 0x0003 (COUNT0A)
0x4 (DINDX0) 0x2 (SINDX0)
0x4 (DINDX1) 0xFFFD (SINDX1)

0xFFED (DINDX2) 0x3 (SINDX2)
 0x3 (COUNT2R) 0x02 (COUNT1R) 0x0003 (COUNT0R)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 97

www.ti.com

General Purpose Transfer Examples

In this example, transfers are triggered by the CPU writes to DETR. The rising edge of the DETR[18]
triggers a transfer of one frame. Also in this example, dMAX uses ping-pong buffering; it is moving data
from the DSP memory to two 16-bit wide FIFOs connected to asynchronous EMIF. One FIFO is mapped
to address 0x9000 0000 and the second FIFO is mapped to address 0x9000 0002. After each
synchronization event, dMAX moves one element from the DSP internal memory to each FIFO. The event
entry and transfer entry for the configuration is shown in Figure 3-11.

Figure 3-11. Event Entry and Transfer Entry for Ping-Pong Data Buffering

DEPR[18] = ’1’
DELPR[18] = ’1’
DEER[18] = ’1’

Event#18 entry:

0x6200 8048

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 8 7 5 4 0

Transfer entry:

0x6200 81D4
0x6200 81D8
0x6200 81DC
0x6200 81E0
0x6200 81E4
0x6200 81E8
0x6200 81EC
0x6200 81F0
0x6200 81F4
0x6200 81F8
0x6200 81FC

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

C
C

ES
IZ

E

PT
E

ET
YP

E

10 0 0 1111 0 1 0 1 01 01 0 1110101 000 00011

0x1000 1000 (SRC)
0x9000 0000 (DST)

0 0x0 (COUNT2A) 0x04 (COUNT1A) 0x0002 (COUNT0A)
0x1 (DINDX0) 0x4 (SINDX0)

0xFFFF (DINDX1) 0xFFFD (SINDX1)
0x0 (DINDX2) 0x0 (SINDX2)

 0x0 (COUNT2R) 0x04 (COUNT1R) 0x0002 (COUNT0R)
0x1000 1000 (SRC0)
0x9000 0000 (DST0)
0x1000 1010 (SRC1)
0x9000 0000 (DST1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

98 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

General Purpose Transfer Examples

The data in the internal memory is organized in two ping and two pong buffers. The first ping buffer starts
at address 0x10001000 and the second ping buffer starts at address 0x10001008. The data from the first
ping buffer should be moved to the first FIFO. The data from the second ping buffer should be moved to
the second FIFO. The pong buffers are organized similarly.
After receiving the first synchronization event, dMAX moves the first frame of two elements from the
source ping buffers to the destination. The first frame consists of the first element from the first ping buffer
and the first element from the second ping buffer. The first element is transferred to the FIFO at address
0x9000 0000, and the second element is transferred to the FIFO mapped at address 0x9000 0002. A
memory snapshot after receiving the first synchronization event is shown in Figure 3-12.

Figure 3-12. Ping-Pong Data Buffering After Receiving the First Synchronization Event

SINDX1

0x10001000
0x10001002
0x10001004
0x10001006
0x10001008

SINDX0

DINDX1

 0x9000 0000
0x9000 0002

DINDX0

0x1000100A
0x1000100C
0x1000100D
0x10001010
0x10001012
0x10001014
0x10001016
0x10001018
0x1000101A
0x1000101C
0x1000101D

Transfer entry after receiving one synchronization event:

1
2

1
3
5
7
2
4
6
8

0x1000 1002 (SRC)
0x9000 0000 (DST)

0 0x0 0x03 0x0002 (CNT0A)
0x1 (DINDX0) 0x0004 (SINDX0)

0xFFFF (DINDX1) 0xFFFD (SINDX1)
0x0 (DINDX2) 0x0 (SINDX2)

 0x0 0x04 0x0002 (CNT0R)
0x1000 1000 (SRC0)
0x9000 0000 (DST0)
0x1000 1010 (SRC1)
0x9000 0000 (DST1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 99

www.ti.com

General Purpose Transfer Examples

After receiving the second synchronization event, dMAX will move the second frame of two elements from
source ping buffers to destination. The second frame consists of the second element from the first ping
buffer and the second element from the second ping buffer. The first frame element is transferred to the
FIFO at address 0x9000 0000, and the second frame element is transferred to the FIFO mapped at
address 0x9000 0002. A memory snapshot after receiving the second synchronization event is shown in
Figure 3-13.

Figure 3-13. Ping-Pong Data Buffering After Receiving the Second Synchronization Event

SINDX1

0x10001000
0x10001002
0x10001004
0x10001006
0x10001008
0x1000100A

SINDX0

DINDX1

 0x9000 0000
0x9000 0002

DINDX0

0x1000100C
0x1000100D
0x10001010
0x10001012
0x10001014
0x10001016
0x10001018
0x1000101A
0x1000101C
0x1000101D

Transfer entry after receiving two synchronization events:

3
4

1
3
5
7
2
4
6
8

0x1000 1004 (SRC)
0x9000 0000 (DST)

0 0x0 0x02 0x0002 (CNT0A)
0x1 (DINDX0) 0x4 (SINDX0)

0xFFFF (DINDX1) 0xFFFD (SINDX1)
0x0 (DINDX2) 0x0 (SINDX2)

 0x0 0x04 0x0002 (CNT0R)
0x1000 1000
0x9000 0000
0x1000 1010
0x9000 0000

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

100 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

General Purpose Transfer Examples

After receiving the fourth synchronization event, dMAX will move the fourth frame of two elements from
source ping buffers to destination. The fourth frame consists of the fourth element from the first ping buffer
and the fourth element from the second ping buffer. The first frame element is transferred to the FIFO at
address 0x9000 0000, and the second frame element is transferred to the FIFO mapped at address
0x9000 0002. A memory snapshot after receiving the fourth synchronization event is shown in
Figure 3-14.

Figure 3-14. Ping-Pong Data Buffering After Receiving the Fourth Synchronization Event

0x10001000
0x10001002
0x10001004

0x9000 0000
0x9000 0002

DINDX0

0x10001006
0x10001008
0x1000100A
0x1000100C
0x1000100D
0x10001010
0x10001012
0x10001014
0x10001016
0x10001018
0x1000101A
0x1000101C
0x1000101D

SINDX0

Transfer entry after receiving four synchronization events:

0x1000 1010 (SRC)
0x9000 0000 (DST)

1 0x0 0x04 0x0002 (CNT0A)
0x0001 (DINDX0) 0x0004 (SINDX0)
0xFFFF (DINDX1) 0xFFFD (SINDX1)

0x0 (DINDX2) 0x0 (SINDX2)
 0x0 0x04 0x0002 (CNT0R)

0x1000 0000 (SRC0)
0x9000 0000 (DST0)
0x1000 1010 (SRC1)
0x9000 0000 (DST1)

After transfer of the fourth ping frame, the transfer is complete and the counters of all three dimensions
are expired. The dMAX controller sets bit 7 in the DTCR1 (since the TCC code specified in the event entry
is equal to 15), and it triggers a CPU interrupt (INT8). Since reload is enabled (RLOAD bit is set to one in
the event entry), dMAX reloads active counter values from the counter reference register.
Reload register set 0 (SRC0 and DST0) specifies the ping buffer, while reload register set 1 (SRC1 and
DST1) specifies the pong buffer. During reload, dMAX swaps between the ping and pong buffers. The PP
bit is used to determine which reload register set should be loaded in the set of active registers.
In this example, the PP bit was cleared prior to enabling the event; therefore, during the first reload, dMAX
will load active source and destination registers from reload register set 1 (SRC1 and DST1 will be loaded
in the active SRC and DST registers respectively). After reload is performed, dMAX sets the PP bit to 1.

8
7

1
3
5
7
2
4
6
8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 10

www.ti.com

General Purpose Transfer Examples

After receiving the fifth synchronization event, dMAX will move the first frame of two elements from source
pong buffers to destination. The frame consists of the first element from the first pong buffer and the first
element from the second pong buffer. A memory snapshot after receiving the fifth synchronization event is
shown in Figure 3-15.

Figure 3-15. Ping-Pong Data Buffering After Receiving the Fifth Synchronization Event

0x10001000
0x10001002
0x10001004

0x9000 0000
0x9000 0002

DINDX0

SINDX1

0x10001006
0x10001008
0x1000100A
0x1000100C
0x1000100D
0x10001010
0x10001012
0x10001014
0x10001016
0x10001018
0x1000101A
0x1000101C
0x1000101D

SINDX0

Transfer entry after receiving five synchronization events:

0x1000 1012 (SRC)
0x9000 0000 (DST)

1 0x0 0x03 0x0002 (CNT0A)
0x0001 (DINDX0) 0x0004 (SINDX0)
0xFFFF (DINDX1) 0xFFFD (SINDX1)

0x0 (DINDX2) 0x0 (SINDX2)
 0x0 0x04 0x0002 (CNT0R)

0x1000 1000 (SRC0)
0x9000 0000 (DST0)
0x1000 1010 (SRC1)
0x9000 0000 (DST1)

After receiving synchronization Event 8, dMAX moves the fourth frame of two elements from source pong
buffers to destination. The frame consists of the fourth element from the first pong buffer and the fourth
element from the second pong buffer. The first frame element is transferred to the FIFO at address
0x9000 0000, and the second frame element is transferred to the FIFO mapped to the FIFO at address
0x9000 0002.
After transfer of the fourth pong frame, the transfer is complete and the counters of all three dimensions
are expired. The dMAX controller sets bit seven in the DTCR1 (since the TCC code specified in the event
entry is equal to 15), and it triggers a CPU interrupt (INT8). Since reload is enabled (RLOAD bit is set to
one in the event entry), the dMAX controller reloads active counter values from the counter reference
register.
Since the PP bit is set, dMAX loads active source and destination registers from reload register set zero
(SRC0 and DST0 will be loaded in the active SRC and DST registers, respectively). After reload is
performed, dMAX clears the PP bit to zero .

10

DINDX1
9

9
11
13
15
10
12
14
16

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

102 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

3.3 FIFO Transfer Examples
The FIFO write and FIFO read transfers are used to write-to and read-from a software-defined FIFO in the
device memory map. The FIFO transfers can be 1-dimensional (1D) or 2-dimensional (2D), with 1D
transfers implemented as special cases of 2D transfers where the counter for the second dimension is
equal to zero. Indexes for source (FIFO write) and destination (FIFO read) can be specified for each
transfer dimension. In addition, a table of delay-tap offsets is used for 2D FIFO transfers to facilitate
indexing into the FIFO. All FIFO transfers support reloading of the active address and counters at the
completion of a transfer. A different set of delay-tap offset can also be reloaded to add further flexibility.
The following sections present the proper setup procedure for FIFO transfers and provide various example
configurations. They include complete register configurations, along with graphical representations of each
example transfer.

3.3.1 Steps Required to Set Up a FIFO Transfer
The following steps are required to set up a dMAX FIFO transfer:
1. The priority of an event that will be used to trigger the FIFO data transfer must be defined. To put the

event into the high-priority group, the corresponding bit in the DEHPR should be set to one. To put the
event into the low-priority group the corresponding bit in the DELPR should be set to one.

2. The event signal edge (rising/falling) that will be used to trigger an event must be defined. To trigger an
event on the rising edge of the event signal, the corresponding bit in the DEPR should be set to one.
To trigger an event on the falling edge of the event signal, the corresponding bit in the DEPR should
be cleared to zero.

3. If the event is sorted to the high-riority group, its event entry in the HiMAX PaRAM must be defined. If
the event is sorted to the low-priority group, its event entry in the LoMAX PaRAM must be defined. The
following bit fields in the event entry must be configured:
• The ETYPE bit field must be set to '00100' for a FIFO write transfer, or '00101' for a FIFO read

transfer.
• The PTE bit field must be set to point to the location in the PaRAM where the event's transfer entry

will be stored.
• The EWM bit field should be set to either enable (EWM == 1) or disable (EWM == 0) FIFO

watermark notifications.
• The RLOAD bit field should be set to 1 to enable reloading of the active counters and address

when the transfer is complete, or set to 0 to avoid reloading.
• The TCINT bit should be set if a notification to the CPU is required (only when the transfer is

complete). The ATCINT bit should be set if notification to the CPU is required after transfer of each
frame.

• The TCC field should be set to indicate the desired bit to be set in the DTCR to report transfer
status to the CPU.

• The SYNC bit should be set to have the entire transfer complete after one event. Alternatively, the
SYNC bit should be cleared to have only one frame complete after each event.

• The QTSL bit field should be set to define the granularity with which dMAX breaks up a large
transfer into a number of smaller sub-transfers.

4. The following fields in the transfer entry must be properly configured:
• The active and reference address and counters should be programmed, along with the element

indexes.
• The pointer to the FIFO descriptor (PFD) should be programmed to point to the FIFO descriptor's

base address.
• Pointers to delay tables should be programmed if performing a 2D transfer. 1D transfers do not

use delay tables and instead always read and write directly from/to the FIFO read and write pointer
locations.

• If RLOAD is enabled in the associated event entry, the PP bit in the transfer entry must also be
properly configured. When PP='0', reload register set one is loaded in the set of active registers
after the transfer is completed. When PP='1', reload register set zero is loaded in the set of active
registers after the transfer is completed.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 10

www.ti.com

FIFO Transfer Examples

5. A FIFO descriptor should be placed somewhere in the device memory to define the characteristics of
the FIFO. The following fields of the FIFO descriptor should be programmed:
• The FIFO base address (FBA) field should be programmed to specify where the FIFO should

begin in memory.
• The FIFO element size (ESIZE) field should be programmed to select the size of elements the

FIFO will hold.
• The FIFO SIZE field should be programmed to specify the number of elements that the FIFO can

hold.
• The read pointer (RP) and write pointer (WP) should be programmed to the desired initial values,

in terms of element offsets from the base element.
• The two status codes, FMSC and EMSC, should be programmed to select the code to report when

indicating FIFO full and FIFO empty conditions. These fields should still be set to facilitate error
reporting even if watermarks are disabled. If watermarks are not enabled, these fields should be
set to the same value to conserve codes.

• The two level marks, EMARK and FMARK, should be programmed to select the desired watermark
levels. It is not required to program these fields if watermarks are not enabled.

• Finally, the FIFO Full bit (FF) should be set to 1 if WP = RP and it is desired to start with the FIFO
in the full state. Otherwise (and in most instances) FF should be cleared to 0. The FF bit should
not be subsequently modified.

6. Delay tables should be placed somewhere in the device memory to define the delay-tap offset values
to be used for a 2D transfer. These tables simply consist of a list of 20-bit values aligned on 32-bit
boundaries. Delay tables are not required for 1D transfers.

7. The event must be enabled by setting the event's corresponding bit in the DEER register.
Once an event is enabled, dMAX will begin the data transfer when it detects the appropriate transition in
the event signal.
If ATCINT = '1' or TCINT='1', dMAX will signal the transfer status to the CPU by generating an interrupt on
line INT8. In addition, dMAX will set a bit, specified by the TCC bit field of the event entry, in the DTCR.
The DTCR bits are mirrored in the DESR. The read-only DESR is located inside the CPU module and can
be accessed by the CPU with minimum overhead. The fastest way of monitoring the DTCR is to read its
copy from the DESR.
To keep receiving notifications from a particular dMAX channel, the CPU must clear the transfer
completion bit used by the dMAX channel after each notification. The CPU should use the read-only
DESR to find out which transfer completion bits have been set, and it should clear them by writing '1' to
the corresponding bits in the DTCR.
The dMAX controller will also generate an interrupt, INT7, to the CPU when the FIFO status changes in
the following ways:
• A FIFO error occurs
• A FIFO watermark is reached and watermarks are enabled in the event entry
Along with generating INT7, dMAX will also set notification bits in one or more places. For watermark
notifications, the programmed bit in one of the DFSRs will be set. For error notifications, both EMSC and
FMSC bits will be set in the appropriate DFSR, along with an error code in the error field (EFIELD) within
the corresponding FIFO descriptor.
To keep receiving FIFO status notifications, the CPU must clear the FIFO status bit(s) used by the dMAX
channel after each notification. The CPU should clear these bits by writing '1' to the corresponding bits in
the appropriate DFSR.
After enabling the event, it is not recommended to access the event entry, active register set, indexes, and
the reference counter bit fields within the transfer entry.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

104 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004 3
0x1000 1006 4

3.3.2 EXAMPLE: 1D FIFO Write Transfer
A 1D FIFO write transfer is the most basic transfer that can be performed by dMAX to move data into a
FIFO. This transfer simply copies data from the source address into the FIFO in a continuous stream,
starting at the write pointer.
In this example, a section of data is copied from internal memory to a FIFO in external memory. The FIFO
is programmed in the FIFO descriptor to have a size of 20 elements and an element size of 16-bits. In
addition, the write pointer and the read pointer are both set to 0 at the start of the transfer. The data block
to be placed into the FIFO is four half-words and resides at address 0x10001000. The base address of the
FIFO is set to 0x80000000. The state of the FIFO before the transfer is shown in Figure 3-16, and the
state of the FIFO after the transfer is shown in Figure 3-17.

Figure 3-16. 1D FIFO Write Diagram (Before Transfer)

WP=RP=0
0x80000000

Figure 3-17. 1D FIFO Write Diagram (After Transfer)

RP=0
0x80000000

WP=4
0x80000008

3
2 1

4

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004 3
0x1000 1006 4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 10

www.ti.com

FIFO Transfer Examples

The parameters for this transfer are shown in Figure 3-18. Event 10 is used by the transfer, and the event
is triggered by a CPU writing a '0' followed by a '1' to bit one of the DETR. A rising edge on event signal
10 triggers the event because DEPR[10] = '1'. The event is processed by the LoMAX because DELPR[10]
= '1'.

Figure 3-18. Event Entry, Transfer Entry, and FIFO Descriptor for 1D FIFO Write
DEPR[10] = ’1’
DELPR[10] = ’1’
DEER[10] = ’1’

Event#10 entry:

0x6200 8028

Transfer entry:

0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

11 1 0 0000 0 1 0 0 000 0 0 0111110 000 00100

31 30 16 15 0
0x1000 1000 (SRC)
0x1000 F000 (PFD)

0 0x0 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)

 0x0 (COUNT1R) 0x4 (COUNT0R)

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 0

0x8000 0000 (FIFO base address)
 0x0 (WP)
 0 x1 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x0 <−(FMSC)
 0 x0 <−(EMSC)
 0 <−(FF)

The entire transfer completes on receiving one synchronization event (SYNC = '1' in the event entry), and
subsequent synchronization events will be ignored because reload is disabled in the event entry. After
completing the transfer, dMAX notifies the CPU by generating an interrupt (INT8) and by setting bit zero in
the DTCR (TCC bit field within the event entry is equal to zero).
Because WP = RP, the FF bit must be programmed as 0 to tell dMAX that the FIFO is empty, not full.
Although watermarks are disabled in the event entry, the FMSC and EMSC should still be programmed
because they are also used for error reporting. FMSC and EMSC are set to the same value in this
example to conserve status bits. If watermarks are used, these fields should instead be set to different
values.
The dMAX controller will complete this transfer using one quantum transfer (QTSL='11' in the event entry).

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

106 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

3.3.3 EXAMPLE: 2D FIFO Write Transfer with Reload
Two-dimensional (2D) FIFO write transfers allow data to be written into a FIFO at user-programmed
delay-tap offsets from the write pointer (WP). In this example, four data elements are to be copied from
the internal memory to the FIFO in external memory using a set of delay-tap offsets (0, 2). The transfer is
then reloaded, and another four data elements are copied into the FIFO using a different set of delay-tap
offsets (0, 6). The eight half-words of source data to be transferred start at address 0x10001000, and the
20-element FIFO starts at address 0x8000000. A source index of 1 is used for the first dimension of the
transfer, while a source index of two is used for the second dimension. Finally, SRC RELOAD ADDRESS
1 is set to 0x1000100A to provide a new active address for the reloaded (second) transfer.
A memory snapshot of the data transfer before receiving the first synchronization event is shown in
Figure 3-19.

Figure 3-19. 2D FIFO Write Transfer Diagram (Before First Synchronization Event)

WP=RP=0
0x80000000

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004
0x1000 1006 3
0x1000 1008 4
0x1000 100A 5
0x1000 100C 6
0x1000 100E
0x1000 1010 7
0x1000 1012 8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 10

www.ti.com

FIFO Transfer Examples

A memory snapshot of the data transfer after receiving the first synchronization event is shown in
Figure 3-20. A delay-tap offset of 0 is used when writing this frame into the FIFO.

Figure 3-20. 2D FIFO Write Transfer Diagram (After Receiving the First Synchronization Event)

WP=RP=0
0x80000000

INDEX0=1

A memory snapshot of the data transfer after receiving the second synchronization event is shown in
Figure 3-21. A delay-tap offset of 2 is used when writing this frame into the FIFO. This means that the first
element in this frame is written two slots behind the location of the WP. After transferring this frame, the
WP is incremented by 2.

Figure 3-21. 2D FIFO Write Transfer Diagram (After Receiving the Second Synchronization Event)

RP=0
WP=2 0x80000000

0x80000004 0x80000026

2 1 4 3
INDEX1=2

INDEX0=1

2 1

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004
0x1000 1006 3
0x1000 1008 4
0x1000 100A 5
0x1000 100C 6
0x1000 100E
0x1000 1010 7
0x1000 1012 8

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004

0x1000 1006 3
0x1000 008 4

0x1000 100A 5
0x1000 100C 6
0x1000 100E

0x1000 1010 7
0x1000 1012 8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

108 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

After the second frame has been transferred, the active address is reloaded with SRC RELOAD
ADDRESS 1, and the counters are reloaded with the reference counters. In addition, the second delay
table is used for the next transfer. A memory snapshot for the data transfer after receiving the third
synchronization event is shown in Figure 3-22. A delay-tap offset of 0 is used when writing this frame into
the FIFO.

Figure 3-22. 2D FIFO Write Transfer Diagram (After Receiving Three Synchronization Events)

RP=0
0x80000000

WP=2
0x80000004

5

SRC RELOAD 6
ADDRESS1

INDEX0=1

2 1 4 3

0x80000026

A memory snapshot for the data transfer after receiving the fourth and final synchronization event is
shown in Figure 3-23. A delay-tap offset of 6 is used when writing this frame into the FIFO. This means
that the first element in this frame is written six slots behind the location of the WP. After transferring this
frame, the WP is incremented by 2.

Figure 3-23. 2D FIFO Write Transfer Diagram (After Receiving All Synchronization Events)

RP=0
0x80000000

WP=4
0x80000008

INDEX1=2

INDEX0=1

2 1 4 3

5
6

0x80000026

8

7

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004

0x1000 1006 3
0x1000 1008 4
0x1000 100A 5
0x1000 100C 6
0x1000 100E

0x1000 1010 7
0x1000 1012 8

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004

0x1000 1006 3
0x1000 1008 4
0x1000 100A 5
0x1000 100C 6
0x1000 100E

0x1000 1010 7
0x1000 1012 8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 10

www.ti.com

FIFO Transfer Examples

The parameters for this transfer are shown in Figure 3-24. Event zero is used to trigger this transfer. In
this case, the event zero is triggered by a CPU write '0' followed by a CPU write '1' to bit zero of the DETR
(rising edge of the event signal ten triggers an event since DEPR[0] = '1'). The event is processed by the
LoMAX since DELPR[0] = '1'.

Figure 3-24. Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for 2D FIFO Write Transfer

DEPR[0] = ’1’
DELPR[0] = ’1’
DEER[0] = ’1’

Event#0 entry:

0x6200 8000

Transfer entry:

0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

11 0 0 0001 1 1 0 1 000 0 0 0111110 000 00100

31 30 16 15 0

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 0

0x8000 0000 (FIFO base address)
 0x0 (WP)
 0 x1 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x0 <−(FMSC)
 0 x0 <−(EMSC)
 0 <−(FF)

Delay
table 0:

0x1000 3000

20 0

Delay
table 1: 20 0

0x1000 3010
0x1000 3004 0x1000 3014

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

0x1000 1000 (SRC)
0x1000 F000 (PFD)

0 0x2 (COUNT1A) 0x2 (COUNT0A)
 0x1 (SINDX0)
 0x2 (SINDX1)
 0x2 (COUNT1R) 0x2 (COUNT0R)

0x1000 1000 (SRC RELOAD ADDRESS0)
0x1000 100A (SRC RELOAD ADDRESS1)

0x1000 3000 (Pointer to Delay Table 0)
0x1000 3010 (Pointer to Delay Table 1)

 0x0
 0x2

 0x0
 0x6

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

110 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

Here, dMAX will move two elements after receiving each synchronization event; a total of two
synchronization events are required to complete the transfer. Since frame synchronization is enabled and
ATCINT='1', dMAX will notify the CPU after completion of each frame of the transfer by triggering an
interrupt and by setting bit 1 in the DTCR (TCC =0x1 in the event entry).
As in the previous example, the FF bit must be programmed as 0 to tell the dMAX that the FIFO is empty,
not full. Although watermarks are disabled in the event entry, the FMSC and EMSC should still be
programmed because they are also used for error reporting. FMSC and EMSC are set to the same value
in this example to conserve status bits. If watermarks are used, these fields should instead be set to
different values.
After the whole transfer is completed dMAX will reload the active address and counters and wait for
subsequent synchronization events. This example only shows one reload and the following two
synchronization events. In practice, dMAX will continue to reload the source address and counters at the
completion of each subsequent transfer.

3.3.4 EXAMPLE: 1D FIFO Read Transfer
A 1D FIFO read transfer is the most basic transfer that can be performed by dMAX to move data out of a
FIFO. This transfer simply copies data from the FIFO to the destination address in a continuous stream
starting at the read pointer.
This example shows how to retrieve the FIFO data that was written to the FIFO in the 1D FIFO write
transfer example. It picks up at the completion of the 1D FIFO write transfer example and uses the same
FIFO descriptor. The FIFO has a size of 20 elements and an element size of 16 bits. In addition, the write
pointer points to element 4 and the read pointer points to element 0 at the start of this transfer. The data
block to be moved from the FIFO is four half-words and will be placed at address 0x10002000. The base
address of the FIFO is 0x80000000. The state of the memory before the transfer is shown in Figure 3-25,
and the state of the memory after the transfer is shown in Figure 3-26.

Figure 3-25. 1D FIFO Read Diagram (Before Transfer)

RP=0
0x80000000

2 1
3

4
WP=4

0x80000008

Figure 3-26. 1D FIFO Read Diagram (After Transfer)

WP=RP=4
0x80000008

3
2 1

4

Dest address Data
0x1000 2000
0x1000 2002
0x1000 2004
0x1000 2006

Dest address Data
0x1000 2000 1
0x1000 2002 2
0x1000 2004 3
0x1000 2006 4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 11

www.ti.com

FIFO Transfer Examples

The parameters for this transfer are shown in Figure 3-27. The FIFO descriptor does not need to be
reprogrammed if this transfer is performed directly after the transfer in the 1D FIFO write transfer example.
Event 0 is used by the transfer, and the event is triggered by the CPU writing a '0' followed by a '1' to bit
zero of the DETR. A rising edge on event signal 0 triggers the event because DEPR[0] = '1'. The event is
processed by the HiMAX because DEHPR[0] = '1'.

Figure 3-27. Event Entry, Transfer Entry, and FIFO Descriptor for 1D FIFO Read

DEPR[0] = ’1’
DEHPR[0] = ’1’
DEER[0] = ’1’

Event#0 entry:

0x6100 8000

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

Transfer entry:

31 30 16 15 0
0x6100 80A0
0x6100 80A4
0x6100 80A8
0x6100 80AC
0x6100 80B0
0x6100 80B4
0x6100 80B8
0x6100 80BC
0x6100 80C0
0x6100 80C4
0x6100 80C8

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 0x1 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x1 <−(FMSC)

 0 x1 <−(EMSC)

The entire transfer completes on receiving one synchronization event (SYNC = '1' in the event entry);
subsequent synchronization events will be ignored because reload is disabled in the event entry. After
completing the transfer, dMAX notifies the CPU by generating an interrupt (INT8) and by setting bit 1 in
the DTCR (TCC bit field within the event entry is equal to 1).
Although watermarks are disabled in the event entry, the FMSC and EMSC fields should still be
programmed because they are also used for error reporting. FMSC and EMSC are set to the same value
in this example to conserve status bits. If watermarks are used, these fields should instead be set to
different values.
The dMAX controller will complete this transfer using one quantum transfer (QTSL='11' in the event entry).

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0001 0 1 0 0 000 0 0 0101000 000 00101

0x1000 2000 (DST)
0x1000 F000 (PFD)

0 0x0 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)

 0x0 (COUNT1R) 0x4 (COUNT0R)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

112 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

3.3.5 EXAMPLE: 2D FIFO Read Transfer with Reload
2D FIFO read transfers allow data to be read from the FIFO at user-programmed, delay-tap offsets from
the read pointer (RP). This example picks up where the 2D FIFO write transfer leaves off, draining the
eight elements that were copied into the FIFO. The same FIFO descriptor is used. In the first transfer, four
data elements are copied from the FIFO into internal memory using a set of delay-tap offsets (0, 2). The
transfer is then reloaded, and another four data elements are copied from the FIFO using a different set of
delay-tap offsets (0, 6). The eight half-words are transferred to address 0x10002000, and the 20-element
FIFO starts at address 0x8000000. A destination index of 1 is used for the first dimension of the transfer,
while a destination index of 2 is used for the second dimension. Finally, DST RELOAD ADDRESS 1 is set
to 0x1000200A to provide a new active address for the reloaded (second) transfer.
A memory snapshot of the data transfer before receiving the first synchronization event is shown in
Figure 3-28.

Figure 3-28. 2D FIFO Read Transfer Diagram (Before First Synchronization Event)

RP=0
0x80000000

WP=4
0x80000008

2 1 4 3

5
6

0x80000026

8

7

A memory snapshot of the data transfer after receiving the first synchronization event is shown in
Figure 3-29. A delay-tap offset of 0 is used when reading this frame from the FIFO.

Figure 3-29. 2D FIFO Read Transfer Diagram (After Receiving the First Synchronization Event)

RP=0
0x80000000

INDEX0=1

WP=4

0x80000008

2 1 4 3

5
6

0x80000026

8
7

Source address Data
0x1000 2000

0x1000 2002

0x1000 2004

0x1000 2006

0x1000 2008

0x1000 200A

0x1000 200C

0x1000 200E

0x1000 2010

0x1000 2012

Source address Data
0x1000 2000 1
0x1000 2002 2
0x1000 2004

0x1000 2006

0x1000 2008

0x1000 200A

0x1000 200C

0x1000 200E

0x1000 2010

0x1000 2012

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 11

www.ti.com

FIFO Transfer Examples

A memory snapshot for the data transfer after receiving the second synchronization event is shown in
Figure 3-30. A delay-tap offset of 2 is used when reading this frame from the FIFO. This means that the
first element in this frame is read from two slots behind the RP. After transferring this frame, the RP is
incremented by 2.

Figure 3-30. 2D FIFO Read Transfer Diagram (After Receiving the Second Synchronization Event)

RP=2
0x80000004

WP=4

2 1 4 3

0x80000026

INDEX1=2

INDEX0=1

0x80000008 5 8
6 7

After the second frame has been transferred, the active address is reloaded with DST RELOAD
ADDRESS 1, and the counters are reloaded with the reference counters. In addition, the second delay
table is used for the next transfer. A memory snapshot for the data transfer after receiving the third
synchronization event is shown in Figure 3-31. A delay-tap offset of 0 is used when reading this frame
from the FIFO.

Figure 3-31. 2D FIFO Read Transfer Diagram (After Receiving Three Synchronization Events)

RP=2
0x80000004

WP=4

2 1 4 3

0x80000026

SRC RELOAD
ADDRESS1

INDEX0=1

0x80000008 5 8
6 7

A memory snapshot for the data transfer after receiving the fourth and final synchronization event is
shown in Figure 3-32. A delay-tap offset of 6 is used when reading this frame from the FIFO. This means
that the first element in this frame is read from six slots behind the location of the RP. After transferring
this frame, the RP is incremented by 2.

Figure 3-32. 2D FIFO Read Transfer Diagram (After Receiving All Synchronization Events)

0x80000026

INDEX1=2

INDEX0=1

WP=RP=4

0x80000008

2 1 4 3
5 8

6 7

Source address Data
0x1000 2000 1
0x1000 2002 2
0x1000 2004

0x1000 2006 3
0x1000 2008 4
0x1000 200A

0x1000 200C

0x1000 200E

0x1000 2010

0x1000 2012

Source address Data
0x1000 2000 1
0x1000 2002 2
0x1000 2004

0x1000 2006 3
0x1000 2008 4
0x1000 200A 5
0x1000 200C 6
0x1000 200E

0x1000 2010

0x1000 2012

Source address Data
0x1000 2000 1
0x1000 2002 2
0x1000 2004

0x1000 2006 3
0x1000 2008 4
0x1000 200A 5
0x1000 200C 6
0x1000 200E

0x1000 2010 7
0x1000 2012 8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

114 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

The parameters for this transfer are shown in Figure 3-33. Event 10 is used to trigger this transfer. In this
case the Event 10 is triggered by a CPU write '0,' followed by a CPU write '1' to bit one of the DETR
(rising edge of the event signal ten triggers an event since DEPR[10] = '1'). The event is processed by the
LoMAX since DELPR[10] = '1'.

Figure 3-33. Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for 2D FIFO Read Transfer

DEPR[10] = ’1’
DELPR[10] = ’1’
DEER[10] = ’1’

Event#10 entry:

0x6200 8028

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

Transfer entry:

31 30 16 15 0
0x6200 80A0
0x6200 80A4
0x6200 80A8
0x6200 80AC
0x6200 80B0
0x6200 80B4
0x6200 80B8
0x6200 80BC
0x6200 80C0
0x6200 80C4
0x6200 80C8

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 0x1 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x0 <−(FMSC)
 0 x0 <−(EMSC)

Delay
table 0:

0x1000 3000

20 0

Delay
table 1: 20 0

0x1000 3010
0x1000 3004 0x1000 3014

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 0 0 0001 1 1 0 1 000 0 0 0101000 000 00101

0x1000 2000 (DST)
0x1000 F000 (PFD)

0 0x2 (COUNT1A) 0x2 (COUNT0A)
 0x1 (DINDX0)
 0x2 (DINDX1)
 0x2 (COUNT1R) 0x2 (COUNT0R)

0x1000 2000 (SRC RELOAD ADDRESS0)
0x1000 200A (SRC RELOAD ADDRESS1)

0x1000 3000 (Pointer to Delay Table 0)
0x1000 3010 (Pointer to Delay Table 1)

 0x0
 0x2

 0x0
 0x6

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 11

www.ti.com

FIFO Transfer Examples

In this example, dMAX will move two elements after receiving each synchronization event; a total of two
synchronization events are required to complete the transfer. Since frame synchronization is enabled and
ATCINT='1,' dMAX will notify the CPU after completion of each frame of the transfer, by triggering an
interrupt and by setting bit 1 in the DTCR (TCC =0x1 in the event entry).
Although watermarks are disabled in the event entry, the FMSC and EMSC should still be programmed
because they are also used for error reporting. FMSC and EMSC are set to the same value in this
example to conserve status bits. If watermarks are used, these fields should instead be set to different
values.
After the whole transfer is completed, dMAX will reload the active address and counters and wait for
subsequent synchronization events. This example only shows one reload and the following two
synchronization events. In practice, dMAX controller will continue to reload the destination address and
counters at the completion of each subsequent transfer.

3.3.6 EXAMPLE: FIFO Overflow Error
A FIFO overflow error occurs when a FIFO write transfer attempts to transfer more elements to the FIFO
than there are free slots to be written. When this occurs, the FIFO write transfer will be terminated prior to
transferring any elements and dMAX will notify the CPU by generating an interrupt (INT7). In addition,
both EMSC and FMSC bits will be set in the appropriate DFSR along with the EF2 bit within the FIFO
descriptor.
In this example, a FIFO overflow error is demonstrated by attempting to copy a section of data from
internal memory to a FIFO without enough free slots in external memory. The FIFO is programmed in the
FIFO descriptor to have a size of 20 elements and an element size of 16 bits. In addition, the write pointer
is set to 0 and the read pointer is set to 4 at the start of the transfer. This leaves four slots in the FIFO free
to be written. The data block to be placed into the FIFO is five half-words and resides at address
0x10001000. The base address of the FIFO is set to 0x80000000.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

116 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

The parameters for this transfer are shown in Figure 3-34. Event 10 is used by the transfer, and the event
is triggered by a CPU writing a '0,' followed by a '1' to bit one of the DETR. A rising edge on event signal
10 triggers the event because DEPR[10] = '1'. The event is processed by the LoMAX because DELPR[10]
= '1'.

Figure 3-34. Event Entry, Transfer Entry, and FIFO Descriptor for FIFO Overflow Error

DEPR[10] = ’1’
DELPR[10] = ’1’
DEER[10] = ’1’

Event#10 entry:

0x6200 8028

Transfer entry:

0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

00 1 0 0000 0 1 0 0 000 0 0 0111110 000 00100

31 30 16 15 0
0x1000 1000 (SRC)
0x1000 F000 (PFD)

0 0x0 (COUNT1A) 0x5 (COUNT0A)
 0x1 (SINDX0)

 0x0 (COUNT1R) 0x5 (COUNT0R)

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 0

0x8000 0000 (FIFO base address)
 0x0 (WP)
 0x1 <−(ESIZE) 0x14 (FIFO size)
 0x4 (RP)
 0 x1 <−(FMSC)
 0 x1 <−(EMSC)

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 11

www.ti.com

FIFO Transfer Examples

Although watermarks are disabled in the event entry, the FMSC and EMSC should still be programmed
because they are also used for error reporting. FMSC and EMSC are set to the same value in this
example to conserve status bits. If watermarks are used, these fields should instead be set to different
values.
The state of the FIFO before the transfer is shown in Figure 3-35, and the state of the FIFO after the
transfer is shown in Figure 3-36.

Figure 3-35. FIFO Overflow Error Diagram (Before Receiving Synchronization Event)

WP=0
0x80000000

RP=4
0x80000008

Figure 3-36. FIFO Overflow Error Diagram (After Receiving Synchronization Event)
WP=0

0x80000000

RP=4
0x80000008

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004 3
0x1000 1006 4
0x1000 1008 5

Source address Data
0x1000 1000 1
0x1000 1002 2
0x1000 1004 3
0x1000 1006 4
0x1000 1008 5

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

118 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

Because there are not enough free slots in the FIFO to perform the transfer, no elements are written to
this FIFO and the read and write pointer remain unchanged. Instead, dMAX generates INT7 to the CPU,
writes a 1 to the bits in the DFSR specified by the EMSC and FMSC fields, and sets the FIFO overflow
error bit in the FIFO descriptor. It is important to note that even though there are enough elements in the
FIFO to complete one quantum transfer (QTSL = 0, 4 elements), no elements are written because the
entire transfer cannot be successfully completed. The state of the FIFO status registers before the transfer
is shown in Figure 3-37, and their state after the transfer is shown in Figure 3-38.

Figure 3-37. dMAX FIFO Status Registers Before FIFO Overflow Error Occurs

DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

Figure 3-38. dMAX FIFO Status Registers After FIFO Overflow Error Occurs
DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

Only the FSC1 bit is set because both EMSC and FMSC are equal to 1. After the error occurs, this bit
should be manually cleared to 0 in order to receive error notifications on subsequent transfers.
The state of the FIFO descriptor after the FIFO overflow error occurs is shown in Figure 3-39.

Figure 3-39. FIFO Descriptor After FIFO Overflow Error Occurs

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 16 0

0x8000 0000 (FIFO base address)
 0x0 (WP)
 0x1 <−(ESIZE) 0x14 (FIFO size)
 0x4 (RP)
 0 x1 <−(FMSC)
 0 x1 <−(EMSC)
 1 <−(EF2)

Note that the only field that has changed is EF2. It is set to 1 to indicate the FIFO overflow error has
occurred. This bit and FIFO status bits should be cleared by the CPU after the error occurs.

3.3.7 EXAMPLE: FIFO Underflow Error
A FIFO underflow error occurs when a FIFO read transfer attempts to read more elements from the FIFO
than are available. When this occurs, the FIFO read transfer will be terminated prior to reading any
elements and dMAX will notify the CPU by generating an interrupt (INT7). In addition, both EMSC and
FMSC bits will be set in the appropriate DFSR along with the EF0 bit within the FIFO descriptor.
In this example, a FIFO underflow error is demonstrated. The FIFO is programmed in the FIFO descriptor
to have a size of 20 elements and an element size of 16 bits. In addition, the write pointer is set to 4 and
the read pointer is set to 0 at the start of the transfer. Therefore, there are only four elements available to
read. The data block to be read from the FIFO is five half-words and will be placed at address
0x10001000. The base address of the FIFO is set to 0x80000000.

0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 11

www.ti.com

FIFO Transfer Examples

The parameters for this transfer are shown in Figure 3-40. Event 0 is used by the transfer, and the event
is triggered by a CPU writing a '0,' followed by a '1' to bit 0 of the DETR. A rising edge on event signal 0
triggers the event because DEPR[0] = '1'. The event is processed by the LoMAX because DELPR[0] = '1'.

Figure 3-40. Event Entry, Transfer Entry, and FIFO Descriptor for FIFO Underflow Error

DEPR[0] = ’1’
DELPR[0] = ’1’
DEER[0] = ’1’

Event#0 entry:

0x6200 8000

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

Transfer entry:

31 30 16 15 0
0x6200 80A0
0x6200 80A4
0x6200 80A8
0x6200 80AC
0x6200 80B0
0x6200 80B4
0x6200 80B8
0x6200 80BC
0x6200 80C0
0x6200 80C4
0x6200 80C8

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 0x1 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x9 <−(FMSC)
 0 x9 <−(EMSC)

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

00 1 0 0001 0 1 0 0 000 0 0 0101000 000 00101

0x1000 1000 (DST)
0x1000 F000 (PFD)

0 0x0 (COUNT1A) 0x5 (COUNT0A)
 0x1 (SINDX0)

 0x0 (COUNT1R) 0x5 (COUNT0R)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

120 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

Although watermarks are disabled in the event entry, the FMSC and EMSC should still be programmed
because they are also used for error reporting. FMSC and EMSC are set to the same value in this
example to conserve status bits. If watermarks are used, these fields should instead be set to different
values.
The state of the FIFO before the transfer is shown in Figure 3-41, and the state of the FIFO after the
transfer is shown in Figure 3-42.

Figure 3-41. FIFO Underflow Error Diagram (Before Receiving Synchronization Event)

RP=0
0x80000000

2 1
3

4
WP=4

0x80000008

Figure 3-42. FIFO Underflow Error Diagram (After Receiving Synchronization Event)
RP=0

0x80000000

2 1
3

4
WP=4

0x80000008

Source address Data
0x1000 1000

0x1000 1002

0x1000 1004

0x1000 1006

0x1000 1008

Source address Data
0x1000 1000

0x1000 1002

0x1000 1004

0x1000 1006

0x1000 1008

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 12

www.ti.com

FIFO Transfer Examples

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

Because there are not enough elements in the FIFO to perform the entire read transfer, no elements are
read from this FIFO and the read pointer and write pointer remain unchanged. Instead, dMAX generates
INT7 to the CPU, writes a 1 to the bits in the DFSR specified by the EMSC and FMSC fields, and sets the
FIFO underflow error bit in the FIFO descriptor. It is important to note that even though there are enough
elements in the FIFO to complete one quantum transfer (QTSL = 0, 4 elements), no elements are read
because the entire transfer cannot be successfully completed. The state of the FIFO status registers
before the transfer is shown in Figure 3-43, and their state after the transfer is shown in Figure 3-44.

Figure 3-43. dMAX FIFO Status Registers Before FIFO Underflow Error Occurs

DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

Figure 3-44. dMAX FIFO Status Registers After FIFO Underflow Error Occurs
DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

Only the FSC9 bit is set because both EMSC and FMSC are equal to 9. After the error occurs, this bit
should be manually cleared to 0 in order to receive error notifications on subsequent transfers.
The state of the FIFO descriptor after the FIFO overflow error occurs is shown in Figure 3-45.

Figure 3-45. FIFO Descriptor After FIFO Overflow Error Occurs

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 16 0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 0x1 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)

 0 x9 <−(FMSC)
 0 x9 <−(EMSC)
 (EF0)−> 1

Note that the only field that has changed is EF0. It is set to 1 to indicate that the FIFO underflow error has
occurred. This bit and the FIFO status bits should be manually cleared by the CPU.

0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

122 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

3.3.8 EXAMPLE: FIFO Delay-Tap Error
A FIFO delay-tap error occurs when a FIFO read transfer attempts to read from a delay-tap that is larger
than the number of old samples stored in the FIFO. When this occurs, the FIFO read transfer will be
terminated prior to reading any elements from that delay-tap and any subsequent delay-taps. The dMAX
controller will then notify the CPU by generating an interrupt (INT7), setting the EMSC and FMSC bits in
the appropriate DFSR, and setting the EF1 bit within the FIFO descriptor.
In this example, a FIFO delay-tap error is demonstrated by attempting to perform a 2D FIFO read transfer
using a delay-table that contains a delay-tap larger than the number of old samples in the FIFO. The FIFO
is programmed in the FIFO descriptor to have a size of 20 elements and an element size of 16 bits. In
addition, the write pointer is set to 17 and the read pointer is set to 0 at the start of the transfer. Therefore,
the largest valid delay-tap value is 4. The data block to be read from the FIFO is four half-words and will
be placed at address 0x1000 2000. The base address of the FIFO is set to 0x80000000.
In the transfer, four data elements are to be copied from the FIFO into internal memory using a set of
delay-tap offsets (0, 4). The four half-words are to be transferred to address 0x10002000, and the
20-element FIFO starts at address 0x8000000. A destination index of 1 is used for the first dimension of
the transfer, while a destination index of 2 is used for the second dimension. The parameters for this
transfer are shown in Figure 3-46. Event 10 is used to trigger this transfer. In this case, event 10 is
triggered by a CPU write '0' followed by a CPU write '1' to bit one of the DETR register (the rising edge of
event signal ten triggers an event since DEPR[10] = '1'). The event is processed by the LoMAX since
DELPR[10] = '1'.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 12

www.ti.com

FIFO Transfer Examples

Figure 3-46. Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for FIFO Delay-Tap Error
DEPR[10] = ’1’
DELPR[10] = ’1’
DEER[10] = ’1’

Event#10 entry:

0x6200 8028

Transfer entry:

0x6200 80A0
0x6200 80A4
0x6200 80A8
0x6200 80AC
0x6200 80B0
0x6200 80B4
0x6200 80B8
0x6200 80BC
0x6200 80C0
0x6200 80C4
0x6200 80C8

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

11 0 0 0001 1 1 0 0 000 0 0 0101000 000 00101

31 30 16 15 0

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 0

0x8000 0000 (FIFO base address)
 0x11 (WP)
 0x1 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x4 <−(FMSC)
 0 x4 <−(EMSC)

Delay
Table 0:

0x1000 3000
0x1000 3004

20 0

In this example, dMAX will attempt to move two elements after receiving each synchronization event, and
a total of two synchronization events are required to complete the transfer. Since frame synchronization is
enabled and ATCINT='1,' dMAX will notify the CPU after completion of each frame of the transfer by
triggering an interrupt and by setting bit 1 in the DTCR (TCC =0x1 in the event entry).
The FMARK and EMARK do not need to be programmed because watermarks are disabled in the event
entry. However, the FMSC and EMSC should still be programmed because they are also used for error
reporting. FMSC and EMSC are set to the same value in this example to conserve status bits. If
watermarks are used, these fields should instead be set to different values.

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

0x1000 2000 (DST)
0x1000 F000 (PFD)

0 0x2 (COUNT1A) 0x2 (COUNT0A)
 0x1 (DINDX0)
 0x2 (DINDX1)
 0x2 (COUNT1R) 0x2 (COUNT0R)

0x1000 2000 (DST RELOAD ADDRESS0)

0x1000 3000 (Pointer to Delay Table 0)

 0x0
 0x4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

124 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Examples

A memory snapshot of the data transfer before receiving the first synchronization event is shown in
Figure 3-47.

Figure 3-47. FIFO Delay-tap Error Diagram (Before First Synchronization Event)

RP=0
0x80000000

WP=17
0x80000022

5 4 3 2 1 6
7 20

 8 19
18

A memory snapshot of the data transfer after receiving the first synchronization event is shown in
Figure 3-48. A delay-tap offset of 0 is used when reading this frame from the FIFO.

Figure 3-48. FIFO Delay-Tap Error Diagram (After Receiving the First Synchronization Event)

RP=0
0x80000000

WP=17
0x80000022

5 4 3 2 1 INDEX0=1 6
7 20

 8 19
18

A memory snapshot for the data transfer after receiving the second synchronization event is shown in
Figure 3-49. A delay-tap offset of 4 is used when attempting to read this frame from the FIFO. This means
that the first element in the frame is attempted to be read from four slots behind the RP.

Figure 3-49. FIFO Delay-Tap Error Diagram (After Receiving the Second Synchronization Event)

RP=0
0x80000000

WP=17
0x80000022

5 4 3 2 1 6
7 20

 8 19
18

Source address Data
0x1000 2000

0x1000 2002

0x1000 2004

0x1000 2006

0x1000 2008

Source address Data
0x1000 2000 4
0x1000 2002 5
0x1000 2004

0x1000 2006

0x1000 2008

Source address Data
0x1000 2000 4
0x1000 2002 5
0x1000 2004

0x1000 2006

0x1000 2008

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 12

www.ti.com

FIFO Transfer Examples

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

Because there are not enough old samples in the FIFO to perform a read using a delay-tap of 4, no
further elements are read from this FIFO and the read pointer and write pointer remain unchanged.
Instead, dMAX generates INT7 to the CPU, writes a 1 to the bits in the DFSR specified by the EMSC and
FMSC fields, and sets the FIFO delay-tap error bit (EF1) in the FIFO descriptor. The state of the FIFO
status registers before the transfer is shown in Figure 3-50, and their state after the transfer is shown in
Figure 3-51.

Figure 3-50. dMAX FIFO Status Registers Before FIFO Delay-Tap Error Occurs

DFSR0 DFSR1

31 8 7 6 5 4 3 2 1 0 31 8 7 6 5 4 3 2 1 0

Reserved Reserved

Figure 3-51. dMAX FIFO Status Registers After FIFO Delay-Tap Error Occurs
DFSR0 DFSR1

31 8 7 6 5 4 3 2 1 0 31 8 7 6 5 4 3 2 1 0

Reserved Reserved

Only the FSC4 bit is set because both EMSC and FMSC are equal to 4. After the error occurs, this bit
should be manually cleared to 0 in order to receive error notifications on subsequent transfers.
The state of the FIFO Descriptor after the FIFO delay-tap error occurs is shown in Figure 3-52.

Figure 3-52. FIFO Descriptor After FIFO Delay-Tap Error Occurs

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

27 25 24 19 16 0

0x8000 0000 (FIFO base address)
 0x11 (WP)
 0x1 <−(ESIZE) 0x14 (FIF O s ze)
 0x0 (RP)
 0 x4 <−(FMSC)
 0 x4 <−(EMSC)
 1 <−(EF1)

Note that the only field that has changed is EF1. It is set to 1 to indicate that the FIFO delay-tap error has
occurred. This bit and the FIFO status bits should be cleared by the CPU.

0 0 0 0 1 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

126 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

One-Dimensional Burst Transfers

3.4 One-Dimensional Burst Transfers
The one-dimensional burst transfer (1DN) is optimized for doing fast transfer of sequential data from one
memory location to the other. The 1DN transfer happens in bursts. The burst length (BURSTLEN) can be
configured in the transfer entry to be between 1-64 bytes. The number of bursts (NBURSTS) can be
configured in the transfer entry and can be between 1-16 bursts. The 1DN transfer does not yield to a
higher priority pending transfer after transferring one burst. The 1DN transfer only yields after a burst if
there is a new event that has arrived. The 1DN transfer yields to a higher priority pending transfer after
performing NBURSTS.

3.4.1 Steps Required to Set Up a One-Dimensional Burst Transfer
The following steps are required to set up a One-Dimensional burst dMAX transfer:
1. Priority of an event that will be used to trigger the general-purpose data transfer must be defined. To

put the event into the high-priority group, a bit corresponding to the event in the DEHPR should be set
to one. To put the event into the low-priority group, a bit corresponding to the event in the DELPR
should be set to one.

2. The event signal edge (rising/falling) that will be used to trigger an event must be defined. To trigger an
event on the rising edge of the event signal, a bit corresponding to the event in the DEPR should be
set to one. To trigger an event on the falling edge of the event signal, a bit corresponding to the event
in the DEPR should be cleared to zero.

3. If the event is sorted to the high-priority group, its event entry in the HiMAX PaRAM must be defined. If
the event is sorted to the low-priority group, its event entry in the LoMAX PaRAM must be defined. The
following bit fields in the event entry must be configured:
a. ETYPE bit field must be set to '00110' for 1DN data transfer.
b. PTE bit field is used as a pointer to a location in the PaRAM where a transfer entry that

corresponds to the event is stored.
4. Transfer entry must be properly configured. The PTE bit field of the event entry points to the transfer

entry. The following fields in the transfer entry must be configured.
a. When a transfer is complete, the TCINT bit should be set if a notification to the CPU is required.

The TCC indicates which bit in the DTCR is going to be set to indicate transfer status to the CPU.
b. NBURST field must be set to specify the number of bursts after which the 1DN transfer will yield to

any higher priority pending transfer.
c. BURSTLEN should be set to specify the number of bytes transferred for each burst. Please note

the unit for BURSTLEN field is bytes and not elements.
d. SRC (Source address pointer), DST (Destination address pointer) and CNT (Transfer length in

number of bytes) fields should be specified to describe the transfer. Please note the unit for CNT is
number of bytes and not number of elements.

e. EVNT field must be set to indicate the event number of the transfer. The valid values are 0-31.
5. The event must be enabled by setting a corresponding bit in the DEER.
Once an event is enabled, dMAX will perform a data transfer after an appropriate transition is detected on
the event signal. If TCINT='1', dMAX will signal transfer status to the CPU by using an interrupt (INT8),
and by setting a bit, specified by the TCC bit field of the transfer entry, in the DTCR. The DTCR bits are
mirrored in the DESR. The read-only DESR is located inside the CPU module and the CPU can access
the register with minimum overhead (the fastest way of monitoring the DTCR is to read its copy from the
DESR).
To keep receiving the notifications from a particular dMAX channel, after each notification, the CPU must
clear the transfer completion bit used by the dMAX channel. The CPU should use the read-only DESR to
find out which transfer completion bits were set, and it should clear them by writing '1' to the
corresponding bits from the DTCR.
After enabling the event, it is not recommended to access the event entry and the transfer entry. Please
note the One-Dimensional burst transfer is frame synchronized transfer in essence and the entire transfer
is completed after receiving the event signal.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 12

www.ti.com

3.4.2 Example: One-Dimensional Burst Transfer
One-Dimensional Burst Transfers

Often during device operation it is necessary to transfer a block of data from one location to another,
usually between on- and off-chip memories. The most efficient transfer that can be performed by dMAX to
perform a block move is the 1DN transfer. In this example, a section of data is to be copied from external
memory to internal memory. The data block is 255 half-words and resides at address 0x80000000. It is to
be transferred to internal address 0x10001000. The data transfer is shown in Figure 3-53.

Figure 3-53. 1DN Block Move Diagram

0x80000000

0x80000002

0x80000004

0x80000006

0x80000008

0x800001F6

0x800001F8

0x800001FA

0x800001FC

0x10001000

0x10001004

0x10001008

0x1000100C

0x10001010

0x100011F0

0x100011F4

0x100011F8

0x100011FC

1

2

3

4

5

252

253

254

255

2 1

4 3

6 5

8 7

10 9

250 249

252 251

254 253

 255

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

128 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

One-Dimensional Burst Transfers

The parameters for this transfer are shown in Figure 3-54. Event 10 is used to trigger this transfer. Here,
Event 10 is triggered by CPU write '0', followed by CPU write '1', to bit one of the DETR register (rising
edge of the event signal 10 triggers an event since DEPR[10] = '1'). The event is processed by the LoMAX
since DELPR[10] = '1'.

Figure 3-54. Event Entry and Transfer Entry for 1DN Transfer

DEPR[10] = ’1’
DELPR[10] = ’1’
DEER[10] = ’1’

Event#10 entry: 31 24 23 16 8 7 5 4 0

0x6200 8028 0 0000000011111000 0 00110

Transfer entry:

0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

The whole transfer is completed after receiving one synchronization event. Subsequent synchronization
events will be ignored. After completing the transfer, dMAX will notify the CPU by triggering an interrupt
(INT8) and by setting bit 7 in the DTCR1 (TCC bit field within the event entry is equal to 15).
The dMAX controller will split the transfer into burst transfers. The NBURST setting is 4 (5 bursts) and the
BURSTLEN is 64. First 320bytes will be transferred as 5 bursts of 64bytes. After every burst, the dMAX
will check if a new event has arrived. If a new event has arrived, the dMAX will yield to perform the
transfer for the new event. If no new event arrives, the dMAX will check if there is any higher priority
pending transfer after the initial 5 bursts. If a higher priority transfer is pending, the dMAX will yield to
perform the higher priority transfer. If no higher priority transfer is pending, the dMAX will continue
performing the 1DN transfer and will transfer the remaining 190bytes as 2 bursts of 64bytes and one burst
of 62bytes.

TC
C

PT

E

N
BU

R
ST

ET
YP

E

TC
IN

T

00001010 (EVNT) 00001111 0100 1
0x8000 0000 (SRC)
0x1000 1000 (DST)

 01000000 (BURSTLEN) 0000000111111110 (CNT)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 12

www.ti.com

3.5 SPI Slave Transfer
SPI Slave Transfer

SPI slave transfer allows for servicing the SPI peripheral when used in slave mode. The peripheral
servicing requires that for each input event, one element is read from the SPI input shift register (SPIBUF)
and is stored in the destination address. Also, one element is read from the input address and moved to
the SPI output shift register (SPIDAT0).

3.5.1 Steps Required to Set Up a SPI Slave Transfer
The following steps are required to set up a SPI Slave dMAX transfer:
1. Priority of an event that will be used to trigger the SPI slave data transfer must be defined. To put the

event into the high-priority group, a bit corresponding to the event in the DEHPR should be set to one.
To put the event into the low-priority group, a bit corresponding to the event in the DELPR should be
set to one.

2. The event signal edge (rising/falling) that will be used to trigger an event must be defined. To trigger an
event on the rising edge of the event signal, a bit corresponding to the event in the DEPR should be
set to one. To trigger an event on the falling edge of the event signal, a bit corresponding to the event
in the DEPR should be cleared to zero.

3. If the event is sorted to the high-priority group, its event entry in the HiMAX PaRAM must be defined. If
the event is sorted to the low-priority group, its event entry in the LoMAX PaRAM must be defined. The
following bit fields in the event entry must be configured:
a. ETYPE bit field must be set to '00010' for SPI slave data transfer.
b. If the RLOAD bit is set, when a transfer is complete, an active counter and an active address

register set will be reloaded from one of two sets of address reference registers. If the RLOAD bit is
cleared, dMAX will ignore new events after a transfer is complete.

c. ESIZE defines the element size for the transfer. Element size can be 8-bit element or 16-bit
element.

d. PTE bit field is used as a pointer to a location in the PaRAM where a transfer entry that
corresponds to the event is stored.

e. The TCC indicates which bit in the DTCR is going to be set to indicate transfer status to the CPU.
f. When a transfer is complete, the TCINT bit should be set if a notification to the CPU is required.
g. The SPI field indicates which SPI peripheral to use for the data transfer.

4. Transfer entry must be properly configured (transfer must be defined by source/destination address,
and count bit fields). The PTE bit field of the event entry points to the transfer entry. When the event
entry reload is enabled (RLOAD='1'), the PP bit in the transfer entry must be properly configured.
When PP='0', after the transfer is completed, reload register set one is loaded in the set of active
registers. When PP='1', after the transfer is completed, reload register set zero is loaded in the set of
active registers.

5. The event must be enabled by setting a corresponding bit in the DEER.
Once an event is enabled, dMAX will perform a data transfer after an appropriate transition is detected on
the event signal. If TCINT='1', dMAX will signal transfer status to the CPU by using an interrupt (INT8),
and by setting a bit, specified by the TCC bit field of the event entry, in the DTCR. The DTCR bits are
mirrored in the DESR. The read-only DESR is located inside the CPU module and the CPU can access
the register with minimum overhead (the fastest way of monitoring the DTCR is to read its copy from the
DESR).
To keep receiving the notifications from a particular dMAX channel, after each notification, the CPU must
clear the transfer completion bit used by the dMAX channel. The CPU should use the read-only DESR to
find out which transfer completion bits were set, and it should clear them by writing '1' to the
corresponding bits from the DTCR.
After enabling the event, it is not recommended to access the event entry, and the active register set in
the transfer entry.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

130 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

SPI Slave Transfer

3.5.2 Example: SPI Slave Transfer
In this example, SPI0 is configured as the SPI slave. The SPI is configured to do 8bit element transfers. A
section of data memory at 0x10001000 is updated with the data being received from the SPI master. A
section of data memory at 0x10002000 contains the data that needs to be transmitted back to the SPI
master. The data block is 255 8-bit-words. The data transfer is shown in Figure 3-55.

Figure 3-55. SPI Slave Transfer Diagram

SPIBUF SPIDAT0

0x4700 0040 0x4700 0038

0x1000 1000 0x1000 2000
0x1000 1001 0x1000 2001
0x1000 1002 0x1000 2002
0x1000 1003 0x1000 2003

0x1000 10FB 0x1000 20FB
0x1000 10FC 0x1000 20FC
0x1000 10FD 0x1000 20FD
0x1000 10FE 0x1000 20FE

The parameters for this transfer are shown in Figure 3-56. Event 13 is the dMAX event generated by the
SPI0 peripheral. Event entry 13 is used for the SPI slave transfer to support SPI0 peripheral.

Figure 3-56. Event Entry and Transfer Entry for SPI Slave Transfer

DEPR[13] = ’1’
DELPR[13] = ’1’
DEER[13] = ’1’

Event#13 entry:

0x6200 8034

31 29 28 27 24 23 16 8 7 5 4 0

Transfer entry:

0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

SP
I

TC
IN

T

TC
C

PT
E

ES
IZ

E

R
LO

AD

ET
YP

E

0 0 1 1111 11111000 01 0 00010

0x1000 2000 (SRC ACTIVE)
0x1000 1000 (DST ACTIVE)

0 0x00FF (CNT Active)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 13

www.ti.com

Examples of Servicing Peripherals

After receiving one synchronization event, the dMAX will read one element from the SPIBUF register and
move it to the destination address. Also, one element will be read from the source address and written to
the SPIDAT0 register. After the transfer, the source and the destination address are incremented by 1 and
the active count is decremented by 1. The transfer is complete when the active count becomes 0. After
completing the transfer, dMAX will notify the CPU by triggering an interrupt (INT8) and by setting bit 7 in
the DTCR1 (TCC bit field within the event entry is equal to 15). As the RLOAD is not enabled, any
subsequent synchronization events will be ignored.

3.6 Examples of Servicing Peripherals

An important capability of the dMAX controller is its ability to service peripherals in the background of the
CPU operation, without requiring any CPU intervention. Through proper initialization of the dMAX
channels, they can be configured to continuously service on- and off-chip peripherals throughout the
device operation. Each event available to dMAX has its own dedicated channel, and all channels operate
simultaneously. This means that all data streams can be handled independently with little or no
consideration for what else is going on in dMAX.
Since all dMAX channels are always synchronized, there are no special setups required to configure a
channel to properly service a particular event. The only requirements are to use the proper channel and
configure event entry and transfer entry for a particular transfer and to enable the channel's event in the
DEER.
When programming a dMAX channel to service a peripheral, it is necessary to know how data is to be
presented to the DSP. Data is always provided with some kind of synchronization event, and is either one
element per event (non-bursting), or multiple elements per event (bursting).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

132 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of Servicing Peripherals

3.6.1 EXAMPLE: Servicing McASP Peripheral
Higher bandwidth applications require that multiple data elements be presented to the DSP for every sync
event. This frame of data can either be from multiple sources that are working simultaneously or a single
high-throughput peripheral that streams data to/from the DSP.
In this example, a McASP receives samples from three stereo audio channels and presents them to the
DSP. Each sample is represented by a 24-bit element, so a whole 32-bit word is read from McASP
(element size is 32 bits). On each event the McASP receives either three samples from left or three
samples from right channel. On subsequent events, samples from left and from right channels alternate.
For example, on every odd event, samples from the left channels are received, while on every even event
samples from the right channels are received.

The dMAX controller must sort the McASP data for processing by the CPU. The data is sorted into two
separate buffers (left and right buffer) per each stereo channel.
The McASP has a FIFO style programmer's model in that each read from the McASP DMA port results in
reading each successive serializer programmed as a receiver, and each write to the McASP port results in
a write to each successive serializer programmed as a transmitter, regardless of the address used. The
McASP includes the logic to automatically cycle through the serializers after each DMA request (skipping
over any serializers that are either disabled or programmed the 'opposite' way). It also includes logic to
make sure that there are exactly as many reads per receive DMA event as there are serializers
programmed to receive, and exactly as many writes per transmit DMA event as there are serializers
programmed to transmit.
This example utilizes the ping-pong buffering scheme. This way, dMAX can keep fetching a next block of
data, while the current block is being processed by the CPU.
The event entry and transfer entry for configuration is shown in Figure 3-57.

Figure 3-57. Event Entry and Transfer Entry for McASP Transfer

DEPR[18] = ’0’
DEHPR[18] = ’1’
DEER[18] = ’1’

Event#18 entry:

0x6100 8048

Transfer entry:

0x6100 81D4
0x6100 81D8
0x6100 81DC
0x6100 81E0
0x6100 81E4
0x6100 81E8
0x6100 81EC
0x6100 81F0
0x6100 81F4
0x6100 81F8
0x6100 81FC

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 8 7 5 4 0

10 0 0 0011 0 1 0 1 01 10 0 1110101 000 00011

0x5400 0000 (SRC)
0x1000 1000 (DST)

0 0x4 (COUNT2A) 0x02 (COUNT1A) 0x0003 (COUNT0A)
0x4 (DINDX0) 0x1 (SINDX0)
0x4 (DINDX1) 0xFFFE (SINDX1)

0xFFED (DINDX2) 0xFFFE (SINDX2)
0 0x4 (COUNT2R) 0x02 (COUNT1R) 0x0003 (COUNT0R)

0x5400 0000 (SRC0)
0x1000 1000 (DST0)
0x5400 0000 (SRC1)
0x1000 1060 (DST1)

CAUTION
Only 32-bit transfers are supported to and from the McASP DMA ports.

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

C
C

ES
IZ

E

PT
E

ET
YP

E

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 13

www.ti.com

Examples of Servicing Peripherals

The McASP0 is configured to receive samples from three stereo channels. Here, McASP0 channels zero,
one, and five are used.
After receiving the first three left samples from the three channels (L0(0), L1(0) and L5(0)) the McASP
triggers an event to dMAX, which then moves the three samples from McASP and sorts them to the left
ping buffers of each of the three channels. A memory snapshot after receiving the first event is shown in
Figure 3-58.

Figure 3-58. McASP Receive Example After Receiving the First Synchronization Event

SINDX1
0x54000000
0x54000004
0x54000008

SINDX0

SINDX0

0x10001000
0x10001004
0x10001008
0x1000100C
0x10001010
0x10001014
0x10001018
0x1000101C
0x10001020
0x10001024
0x10001028

DINDX0

DINDX0

DINDX1

0x10001060
0x10001064
0x10001068
0x1000106C
0x10001070
0x10001074
0x10001078
0x1000107C
0x10001080
0x10001084
0x10001088

Transfer entry after receiving
the first synchronization event:

0x1000102C
0x10001030
0x10001034
0x10001038
0x1000103C
0x10001040
0x10001044
0x10001048
0x1000104C
0x10001050
0x10001054
0x10001058
0x1000105C

0x1000108C
0x10001090
0x10001094
0x10001098
0x1000109C
0x10001100
0x10001104
0x10001108
0x1000110C
0x10001110
0x10001114
0x10001118
0x1000111C

L0(0)

L1(0)

L5(0)

L0(0)
L1(0)
L5(0)

0x5400 0000 (SRC)
0x1000 1030 (DST)

0 0x4 0x01 0x0003 (CNT0A)
0x4 (DINDX0) 0x1 (SINDX0)
0x4 (DINDX1) 0xFFFE (SINDX1)

0xFFED (DINDX2) 0xFFFE (SINDX2)
 0x4 0x02 0x0003 (CNT0R)

0x5400 0000 (SRC0)
0x1000 1000 (DST0)
0x5400 0000 (SRC1)
0x1000 1060 (DST1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

134 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of Servicing Peripherals

 0x10001000 0x10001060
 0x10001004 0x10001064
 0x10001008 0x10001068

SINDX2 SINDX0 0x1000100C 0x1000106C
0x54000000 0x10001010 0x10001070
0x54000004 0x10001014 0x10001074
0x54000008

SINDX0

DIND

Transfer entry after receiving
the second synchronization event:

X2

0x10001018
0x1000101C
0x10001020
0x10001024
0x10001028
0x1000102C
0x10001030
0x10001034
0x10001038
0x1000103C
0x10001040
0x10001044
0x10001048
0x1000104C
0x10001050
0x10001054
0x10001058
0x1000105C

DI

DI

0x10001078
0x1000107C
0x10001080
0x10001084
0x10001088

NDX0 0x1000108C
0x10001090
0x10001094
0x10001098
0x1000109C
0x10001100
0x10001104
0x10001108
0x1000110C
0x10001110

NDX0 0x10001114
0x10001118
0x1000111C

After receiving the first three right samples from the three channels (R0(0), R1(0) and R5(0)) the McASP
triggers a second event to dMAX, which then transfers and sorts the three samples to the right ping
buffers of each of the three channels. A memory snapshot after receiving the second event is shown in
Figure 3-59.

Figure 3-59. McASP Receive Example After Receiving the Second Synchronization Event

L0(0)

L1(0)

L5(0)

R0(0)

R1(0)

R5(0)

R0(0)
R1(0)
R5(0)

0x5400 0000 (SRC)
0x1000 1004 (DST)

0 0x3 0x02 0x0003 (CNT0A)
0x4 (DINDX0) 0x1 (SINDX0)
0x4 (DINDX1) 0xFFFE (SINDX1)

0xFFED (DINDX2) 0xFFFE (SINDX2)
 0x4 0x02 0x0003 (CNT0R)

0x5400 0000 (SRC0)
0x1000 1000 (DST0)
0x5400 0000 (SRC1)
0x1000 1060 (DST1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 13

www.ti.com

Examples of Servicing Peripherals

After receiving the next three left samples from the three channels (L0(1), L1(1) and L5(1)) the McASP will
trigger a third event to dMAX, which then transfersand sorts the three samples to the left ping buffers of
each of the three channels. A memory snapshot after receiving the second event is shown in Figure 3-60.

Figure 3-60. McASP Receive Example After Receiving the Third Synchronization Event

SINDX1
0x54000000
0x54000004
0x54000008

SINDX0

SINDX0

0x10001000
0x10001004
0x10001008
0x1000100C
0x10001010
0x10001014
0x10001018
0x1000101C
0x10001020
0x10001024
0x10001028

0x10001060
0x10001064
0x10001068
0x1000106C
0x10001070
0x10001074
0x10001078
0x1000107C
0x10001080
0x10001084
0x10001088

Transfer entry after receiving
the third synchronization event:

0x1000102C
0x10001030
0x10001034
0x10001038
0x1000103C
0x10001040
0x10001044
0x10001048
0x1000104C
0x10001050
0x10001054
0x10001058
0x1000105C

0x1000108C
0x10001090
0x10001094
0x10001098
0x1000109C
0x10001100
0x10001104
0x10001108
0x1000110C
0x10001110
0x10001114
0x10001118
0x1000111C

After receiving eight synchronization events, the McASP will receive four samples from both the left and
right channels in each block. A memory snapshot after receiving eight synchronization events is shown in
Figure 3-61.

Figure 3-61. McASP Receive Example After Receiving the Eight Synchronization Events

0x54000000
0x54000004
0x54000008

SINDX0

SINDX0

0x10001000
0x10001004
0x10001008
0x1000100C
0x10001010
0x10001014
0x10001018
0x1000101C
0x10001020
0x10001024
0x10001028

0x10001060
0x10001064
0x10001068
0x1000106C
0x10001070
0x10001074
0x10001078
0x1000107C
0x10001080
0x10001084
0x10001088

Transfer entry after receiving
the eight synchronization event:

0x1000102C
0x10001030
0x10001034
0x10001038
0x1000103C
0x10001040
0x10001044
0x10001048
0x1000104C
0x10001050
0x10001054
0x10001058
0x1000105C

DINDX0

DINDX0

0x1000108C
0x10001090
0x10001094
0x10001098
0x1000109C
0x10001100
0x10001104
0x10001108
0x1000110C
0x10001110
0x10001114
0x10001118
0x1000111C

D
IN

D
X1

D

IN
D

X0

D
IN

D
X0

L0(0)
L0(1)

L1(0)
L1(1)

L5(0)
L5(1)

R0(0)

R1(0)

R5(0)

L0(1)
L1(1)
L5(1)

0x5400 0000 (SRC)
0x1000 1034 (DST)

0 0x3 0x01 0x0003 (CNT0A)
0x4 (DINDX0) 0x1 (SINDX0)
0x4 (DINDX1) 0xFFFE (SINDX1)

0xFFED (DINDX2) 0xFFFE (SINDX2)
 0x4 0x02 0x0003 (CNT0R)

0x5400 0000 (SRC0)
0x1000 1000 (DST0)
0x5400 0000 (SRC1)
0x1000 1060 (DST1)

L0(0)
L0(1)
L0(2)
L0(3)
L1(0)
L1(1)
L1(2)
L1(3)
L5(0)
L5(1)
L5(2)
L5(3)
R0(0)
R0(1)
R0(2)
R0(3)
R1(0)
R1(1)
R1(2)
R1(3)
R5(0)

R5(1)
R5(2)
R5(3)

R0(3)
R1(3)
R5(3)

0x5400 0000 (SRC)
0x1000 1060 (DST)

1 0x4 0x02 0x0003 (CNT0A)
0x4 (DINDX0) 0x1 (SINDX0)
0x4 (DINDX1) 0xFFFE (SINDX1)

0xFFED (DINDX2) 0xFFFE (SINDX2)
 0x4 0x02 0x0003 (CNT0R)

0x5400 0000 (SRC0)
0x1000 1000 (DST0)
0x5400 0000 (SRC1)
0x1000 1060 (DST1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

136 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of Servicing Peripherals

After receiving eight synchronization events all active counters will expire, the transfer is complete, and
dMAX sets the bit three in the DTCR0 (TCC is equal to three in the event entry), and it triggers a CPU
interrupt. Now, the CPU can start processing block of data in the ping buffers.
Since reload is enabled (RLOAD set to one in the event entry), dMAX will load the active counter from the
reference counter, and it will load set of active registers from reload register set one (since the PP bit was
cleared before enabling the event). The dMAX controller will also flip the PP bit to one during reload.
After receiving three left samples L0(4), L1(4) and L5(4), dMAX generates Event 9. A memory snapshot
after receiving this event is shown in Figure 3-62. The following seven synchronization events will be used
to fill the pong buffers.

Figure 3-62. McASP Receive Example After Receiving the Nine Synchronization Event

0x54000000
0x54000004
0x54000008

SINDX0

SINDX0

0x10001000
0x10001004
0x10001008
0x1000100C
0x10001010
0x10001014
0x10001018
0x1000101C
0x10001020
0x10001024
0x10001028

0x10001060
0x10001064
0x10001068
0x1000106C
0x10001070
0x10001074
0x10001078
0x1000107C
0x10001080
0x10001084
0x10001088

Transfer entry after receiving
the nineth synchronization event:

0x1000102C
0x10001030
0x10001034
0x10001038
0x1000103C
0x10001040
0x10001044
0x10001048
0x1000104C
0x10001050
0x10001054
0x10001058
0x1000105C

0x1000108C
0x10001090
0x10001094
0x10001098
0x1000109C
0x10001100
0x10001104
0x10001108
0x1000110C
0x10001110
0x10001114
0x10001118
0x1000111C

Once pong buffers are full and the counters of all three dimensions are expired, dMAX sets bit 3 in the
DTCR0 (since the TCC code specified in the event entry is equal to three), and it triggers a CPU interrupt
(INT8). Since reload is enabled (RLOAD bit is set to one in the event entry), dMAX reloads active counter
values from the counter reference register.
Since the PP bit is set, dMAX loads active source and destination registers from reload register set zero
(SRC0 and DST0 will be loaded in the active SRC and DST registers, respectively). The dMAX controller
clears the PP bit to zero after reload is performed.

3.6.2 EXAMPLE: Servicing I2C Peripherals (FIFO FMARK Watermark)
The FIFO FMARK watermark can be used to detect when the number of samples in a FIFO reaches or
exceeds a programmed value. At the completion of a FIFO write transfer in which EWM = 1 in the event
entry, dMAX compares the read and write pointers to determine if the number of samples in the FIFO is
greater-than or equal-to the value programmed into the FMARK field. If so, dMAX sets a specified bit in
one of the DFSRs and generates an interrupt (INT7) to the CPU. The CPU can then trigger a FIFO read
transfer to drain the samples from the FIFO.
This example demonstrates using a FIFO write transfer to copy data from an I2C peripheral that has been
set up to generate an event to dMAX on each element that it receives. An FMARK watermark is used by
the FIFO write transfer to notify the CPU when a sufficient number of samples have been placed in the
FIFO. In processing the FMARK interrupt, the CPU manually triggers a FIFO read transfer to drain a block
of data from the FIFO. At the completion of the FIFO read transfer, the CPU is again notified that the block
of data has been read from the FIFO and is ready for processing.

D
IN

D
X1

D

IN
D

X0

D
IN

D
X0

L0(4)

L1(4)

L5(4)

L0(4)
L1(4)
L5(4)

0x5400 0000 (SRC)
0x1000 1090 (DST)

1 0x4 0x01 0x0003 (CNT0A)
0x4 (DINDX0) 0x1 (SINDX0)
0x4 (DINDX1) 0xFFFE (SINDX1)

0xFFED (DINDX2) 0xFFFE (SINDX2)
 0x4 0x02 0x0003 (CNT0R)

0x5400 0000 (SRC0)
0x1000 1000 (DST0)
0x5400 0000 (SRC1)
0x1000 1060 (DST1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 13

www.ti.com

Examples of Servicing Peripherals

Dest. address Data
0x1000 1000
0x1000 1001
0x1000 1002
0x1000 1003

Figure 3-63 shows the state of the memories before the I2C has received any data.

Figure 3-63. FIFO FMARK Example Diagram (Before First I2C Event)
WP=RP=0

0x80000000

FIFO read FIFO write
transfer transfer

Upon receiving the first data element, the I2C generates an event to dMAX, which in turn performs a FIFO
write transfer to place the received data into the FIFO. Figure 3-64 shows the state of the memories at the
completion of this transfer.

Figure 3-64. FIFO FMARK Example Diagram (After First Synchronization Event from the I2C)

RP=0
0x80000000

WP=1
0x80000001

1

After the first element is transferred into the FIFO, the FIFO write transfer reloads its counters and address
and waits for subsequent events to be generated by the I2C. On each new event from the I2C, the FIFO
write transfer will be triggered to copy the new data element into the FIFO. Following receipt of the first
element, seven more elements are transferred into the FIFO in the same fashion. At the completion of the
eighth transfer, the FMARK watermark is reached and dMAX notifies the CPU. Figure 3-65 shows the
state of the memories immediately after the eighth transfer completes.

Figure 3-65. FIFO FMARK Example (After the Eighth Element Has Been Transferred)

RP=0
0x80000000

WP=8

0x80000008

1

I2C receive
buffer

Dest. address Data
0x1000 1000

0x1000 1001
0x1000 1002

0x1000 1003

8

I2C receive
buffer

I2C receive
buffer

2 1
3

4
 5

6
7

8

Dest. address Data
0x1000 1000

0x1000 1001

0x1000 1002

0x1000 1003

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

138 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of Servicing Peripherals

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

At this point, dMAX notifies the CPU by posting the FMSC (set to 1 in this example) to the DFSR and
generating an interrupt (INT7) to the CPU. Figure 3-66 shows the state of the DFSRs before posting the
FMSC, and Figure 3-67 shows their state after posting.

Figure 3-66. dMAX FIFO Status Registers Before FIFO FMARK is Reached

DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

Figure 3-67. dMAX FIFO Status Registers After FIFO FMARK is Reached
DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

The ISR (not shown) that processes the FMARK interrupt then clears the FSC1 bit and triggers a FIFO
read transfer to drain four samples from the FIFO. Figure 3-68 shows the state of the memories after the
completion of the FIFO read transfer.

Figure 3-68. FIFO FMARK Example (After FIFO Read Transfer)

RP=4 2 1
0x80000004 3

4
 5
6
7

8

WP=8
0x80000008

The CPU can now process the block of four elements while the FIFO write transfer continues to fill the
FIFO with data from the I2C. When the number of elements in the FIFO again reaches 8, another FMARK
interrupt will be generated to the CPU, and the next block of data can be drained from the FIFO.
Ping-pong buffering is not used in this example but could be easily implemented by changing the DST
RELOAD ADDRESS 1 field to point to a second buffer.

0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

0 0

8

I2C receive
buffer

0 0 0 0 1 0 0 0

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

Dest. address Data
0x1000 1000 1
0x1000 1001 2
0x1000 1002 3
0x1000 1003 4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 13

www.ti.com

Examples of Servicing Peripherals

Figure 3-69 and Figure 3-70 show the event entries and transfer entries for the FIFO write transfer and
FIFO read transfer, respectively. Figure 3-71 shows the FIFO descriptor that is common to both transfers.

Figure 3-69. Event Entry and Transfer Entry for FIFO FMARK Example (FIFO Write Transfer)
DEPR[20] = ’1’
DELPR[20] = ’1’
DEER[20] = ’1’

Event#20 entry:

0x6200 8050

Transfer entry:

0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

11 1 0 0000 0 0 0 1 000 1 0 0111110 000 00100

31 30 16 15 0

Figure 3-70. Event Entry and Transfer Entry for FIFO FMARK Example (FIFO Read Transfer)
DEPR[0] = ’1’
DELPR[0] = ’1’
DEER[0] = ’1’

Event#0 entry:

0x6200 8000

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

Transfer entry:

0x6200 80A8
0x6200 80A4
0x6200 80A8
0x6200 80AC
0x6200 80B0
0x6200 80B4
0x6200 80B8
0x6200 80BC
0x6200 80C0
0x6200 80C4
0x6200 80C8

31 30 16 15 0
0x1000 1000 (DST)
0x1000 F000 (PFD)

0 0x0 (COUNT1A) 0x4 (COUNT0A)
 0x1 (DINDX0)

 0x0 (COUNT1R) 0x4 (COUNT0R)
0x1000 1000 (DST RELOAD ADDRESS0)
0x1000 1000 (DST RELOAD ADDRESS1)

0
0x1000 F000 (PFD)
0x4900 0018 (SRC)

0x0 (COUNT1R)

0x4900 0018 (SRC RELOAD ADDRESS1)

00101 000 0101000 0 0 000 1 0 1 0 0001 0 1 11

0x4900 0018 (SRC RELOAD ADDRESS0)
0x1 (COUNT0R)

0x1 (COUNT0A) 0x0 (COUNT1A)

Q
TS

L
Q

TS
L

SY
N

C

SY
N

C

TC
C

TC

C

AT
C

IN
T

TC
IN

T
AT

C
IN

T
TC

IN
T

R
LO

AD

R
LO

AD

EW
M

EW

M

PT
E

PT
E

ET
YP

E
ET

YP
E

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

140 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of Servicing Peripherals

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

Figure 3-71. FIFO Descriptor for FIFO FMARK Example

27 25 24 19 16 0

0x8000 0000 (FIFO base address)
 0x0 (WP)
 0 x0 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x1 <−(FMSC) 0x8 (FMARK)
 0 x0 <−(EMSC)
 0 <−(FF)

Event Entry 20, which corresponds to the I2C 0 Receive Event signal, is configured as the FIFO write
transfer, and Event Entry 0, which corresponds to a CPU generated event, is configured as the FIFO read
transfer. Watermarks are enabled in the FIFO write transfer by setting the WME field to 1, and watermarks
are disabled in the FIFO read transfer. Instead, the transfer complete interrupt is enabled for the FIFO
read transfer by setting the TCINT field to 1. Reload is enabled for both transfers to allow continuous
operation.
The source address field for the FIFO write transfer should point to the receive buffer of the desired I2C
peripheral. In this example, address 0x49000018 is used, but the I2C peripheral and device data manual
should be consulted to verify the correct address. In addition, the SRC RELOAD ADDRESS0 and SRC
RELOAD ADDRESS1 fields in the FIFO write transfer entry are both set to the I2C receive buffer so that
each reloaded transfer reads from the same memory location.
The FMARK field in the FIFO descriptor is set to 8 to notify the CPU when there are eight new elements in
the FIFO. Also, the FF bit is set to 0 to indicate to dMAX that the FIFO is empty at the start of the transfer.
This is necessary because the read and write pointers are equal at the start of the transfer.

3.6.3 EXAMPLE: Servicing I2C Peripherals (FIFO EMARK Watermark)
The FIFO EMARK watermark can be used to detect when the number of samples in a FIFO reaches or
falls below a programmed value. At the completion of a FIFO read transfer in which EWM = 1 in the event
entry, dMAX compares the read and write pointers to determine if the number of samples in the FIFO is
less-than or equal-to the value programmed into the EMARK field. If so, dMAX sets a specified bit in one
of the DFSRs and generates an interrupt (INT7) to the CPU. The CPU can then trigger a FIFO write
transfer to fill more samples into the FIFO.
This example demonstrates using a FIFO read transfer to copy data from a FIFO to an I2C peripheral that
has been set up to generate an event to dMAX when it is ready to accept the next element. An EMARK
watermark is used by the FIFO read transfer to notify the CPU when the number of elements in FIFO is
running low. In processing the EMARK interrupt, the CPU triggers a FIFO write transfer to fill the FIFO
with a block of data. At the completion of the FIFO write transfer, the CPU is again notified that the block
of data has been placed into the FIFO.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 14

www.ti.com

Examples of Servicing Peripherals

Source address Data
0x1000 1000 9
0x1000 1001 10
0x1000 1002 11
0x1000 1003 12

Figure 3-72 shows the state of the memories before the I2C requests any data.

Figure 3-72. FIFO EMARK Example Diagram (Before First I2C Event)
RP=0

0x80000000

FIFO write
transfer

FIFO read
transfer

WP=8
0x80000008

When the I2C is ready for a new data element, it generates an event to dMAX, which in turn performs a
FIFO read transfer to copy one element from the FIFO to the I2C transmit buffer. Figure 3-73 shows the
state of the memories at the completion of this transfer.

Figure 3-73. FIFO EMARK Example Diagram (After First Synchronization Event from the I2C)

RP=1
0x80000001

WP=8

0x80000008

After the first element is transferred from the FIFO, the FIFO read transfer reloads its counters and
address and waits for subsequent events to be generated by the I2C. On each new event from the I2C,
the FIFO read transfer will be triggered to copy another data element from the FIFO to the I2C. After
reading the first element, three more elements are read one-by-one from the FIFO in the same fashion. At
the completion of the fourth transfer, the EMARK watermark is reached and dMAX notifies the CPU.
Figure 3-74 shows the state of the memories immediately after the fourth transfer completes.

Figure 3-74. FIFO EMARK Example (After the Fourth Element has been Transferred)

RP=4 2 1
0x80000004 3

4
 5
6
7

8

WP=8
0x80000008

1

I2C transmit
buffer

3
2 1

4
 5
6
7

8

I2C transmit
buffer

2 1
3

4
 5

6
7

8

4

I2C transmit
buffer

Source address Data
0x1000 1000 9
0x1000 1001 10
0x1000 1002 11
0x1000 1003 12

Source address Data
0x1000 1000 9
0x1000 1001 10
0x1000 1002 11
0x1000 1003 12

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

142 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of Servicing Peripherals

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

FS
C7

FS

C6

FS
C5

FS

C4

FS
C3

FS

C2

FS
C1

FS

C
0

At this point, dMAX notifies the CPU by posting the EMSC (set to 0 in this example) to the DFSR and
generating an interrupt (INT7) to the CPU. Figure 3-75 shows the state of the DFSRs before posting the
EMSC, and Figure 3-76 shows their state after posting.

Figure 3-75. dMAX FIFO Status Registers Before FIFO EMARK is Reached

DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

Figure 3-76. dMAX FIFO Status Registers After FIFO EMARK is Reached
DFSR0 DFSR1

31 8

7 6 5 4

3 2 1 0 31

8 7 6

5 4 3

2 1 0

Reserved Reserved

The ISR (not shown) processes the EMARK interrupt then clears the FSC0 bit and triggers a FIFO write
transfer to fill four more samples into the FIFO. Figure 3-77 shows the state of the memories after the
completion of the FIFO write transfer.

Figure 3-77. FIFO EMARK Example (After FIFO Write Transfer)

RP=4 2 1
0x80000004 3

4
 5

6
7

8
9 10 11 12 WP=12

0x8000000C

0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

0 0

8

I2C transmit
buffer

0 0 0 0 1 0 0 0

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

FS
C1

5
FS

C1
4

FS
C1

3
FS

C1
2

FS
C

11

FS
C1

0
FS

C
9

FS
C

8

Source address Data
0x1000 1000 9
0x1000 1001 10
0x1000 1002 11
0x1000 1003 12

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 14

www.ti.com

Examples of Servicing Peripherals

The CPU can now place the next block of data into the source address buffer while the FIFO read transfer
continues to drain the FIFO to the I2C. When the number of elements in the FIFO again falls to 4, another
EMARK interrupt will be generated to the CPU, and the next block of data can be filled into the FIFO. Ping-
pong buffering is not used in this example but could be easily implemented by changing the SRC RELOAD
ADDRESS 1 field to point to a second buffer.
Figure 3-78 and Figure 3-79 show the event entries and transfer entries for the FIFO read transfer and
FIFO write transfer, respectively. Figure 3-80 shows the FIFO descriptor that is common to both transfers.

Figure 3-78. Event Entry and Transfer Entry for FIFO EMARK Example (FIFO Read Transfer)
DEPR[19] = ’1’
DELPR[19] = ’1’
DEER[19] = ’1’

Event#19 entry:

0x6200 804C

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

Transfer entry:

31 30 16 15 0
0x6200 80F8
0x6200 80FC
0x6200 8100
0x6200 8104
0x6200 8108
0x6200 810C
0x6200 8110
0x6200 8114
0x6200 8118
0x6200 811C
0x6200 8120

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0000 0 0 0 1 000 1 0 0111110 000 00101

0x4900 0020 (DST)
0x1000 F000 (PFD)

0 0x0 (COUNT1A) 0x1 (COUNT0A)

 0x0 (COUNT1R) 0x1 (COUNT0R)

0x4900 0020 (DST RELOAD ADDRESS0)
0x4900 0020 (DST RELOAD ADDRESS1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

144 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of Servicing Peripherals

Figure 3-79. Event Entry and Transfer Entry for FIFO EMARK Example (FIFO Write Transfer)
DEPR[0] = ’1’
DELPR[0] = ’1’
DEER[0] = ’1’

Event#0 entry:

0x6200 8000

Transfer entry:

0x6200 80A0
0x6200 80A4
0x6200 80A8
0x6200 80AC
0x6200 80B0
0x6200 80B4
0x6200 80B8
0x6200 80BC
0x6200 80C0
0x6200 80C4
0x6200 80C8

FIFO
descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

31 30 29 28 27 24 23 22 21 20 19 17 16 15 14 8 7 5 4 0

11 1 0 0001 0 1 0 1 000 0 0 0101000 000 00100

31 30 16 15 0
0x1000 1000 (SRC)
0x1000 F000 (PFD)

0 0x0 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)

 0x0 (COUNT1R) 0x4 (COUNT0R)
0x1000 1000 (SRC RELOAD ADDRESS0)
0x1000 1000 (SRC RELOAD ADDRESS1)

Figure 3-80. FIFO Descriptor for FIFO FMARK Example

27 25 24 19 16 0

0x8000 0000 (FIFO base address)
 0x8 (WP)
 0x0 <−(ESIZE) 0x14 (FIFO size)
 0x0 (RP)
 0 x1 <−(FMSC)

 0 x0 <−(EMSC) 0x4 (EMARK)

Event Entry 19, which corresponds to the I2C transmit event signal, is configured as the FIFO read
transfer, and Event Entry 0, which corresponds to a CPU generated event, is configured as the FIFO write
transfer. Watermarks are enabled in the FIFO read transfer by setting the WME field to 1, and watermarks
are disabled in the FIFO write transfer. Instead, the transfer complete interrupt is enabled for the FIFO
Write Transfer by setting the TCINT field to 1. Reload is enabled for both transfers to allow continuous
operation.
The destination address field for the FIFO read transfer should point to the transmit buffer of the desired
I2C peripheral. In this example, address 0x49000020 is used, but the device data manual should be
consulted to verify the correct address. In addition, the DST RELOAD ADDRESS0 and DSDT RELOAD
ADDRESS1 fields in the FIFO read transfer entry are both set to the I2C transmit buffer so that each
reloaded transfer writes to the same memory location.
The EMARK field in the FIFO descriptor is set to 4 to notify the CPU when there are only four elements
left in the FIFO.

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

ES
IZ

E

PT
E

ET
YP

E

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 14

www.ti.com

Example of Using dMAX Events to Generate a CPU Interrupt

3.7 Example of Using dMAX Events to Generate a CPU Interrupt
Instead of triggering a data transfer, a dMAX event can be used to trigger a CPU interrupt. In other words,
a transition of the event signal (rising or falling edge) can be used to trigger a CPU interrupt.
In order to interpret an event as an interrupt to the CPU, a dedicated event entry is used. In the example,
a rising edge of EVENT26 is used to trigger CPU interrupt INT13 (DEPR[26]='1'). An event entry is
illustrated in Figure 3-81. In this case the event priority is sorted into the high priority group (DEHPR[26] =
'1'), so the event will be processed, and the interrupt will be generated by the HiMAX.

Figure 3-81. Event Used to Trigger CPU Interrupt INT13 Example

DEPR[26] = ’1’
DEHPR[26] = ’1’
DEER[26] = ’1’

Event#26 entry:

31

0x6100 8068

19 18

16 15

5 4 0

INT ETYPE

The HiMAX module will trigger a CPU interrupt INT13 for a rising edge on the event signal 26.

3.7.1 Using External Signals to Trigger a CPU Interrupt
The McASP has an AMUTEIN signal which is not intended to be a fully controlled GIO pin, but rather to
be connected in parallel to one of the device level general purpose interrupt pins. The TMS320C672x has
no dedicated general-purpose interrupt pins. Therefore, there is a multiplexer for each McASP which
allows the AMUTEIN input for that McASP to be sourced from one of the other I/O pins on the device.
Eight different choices are available, and at least one of these should be a spare pin in most applications.
Also, it is possible on TMS320C672x to use only one GIO pin to source AMUTEIN to all three McASP
modules simultaneously to further conserve pins.
By configuring the CFGMCASP0 register, an external signal can be selected to drive the event signal 26.
This way a transition of the external signal can be used to trigger a CPU interrupt.
By configuring the CFGMCASP1 register, an external signal can be selected to drive the event signal 27.
This way a transition of the external signal can be used to trigger a CPU interrupt.
By configuring the CFGMCASP2 register, an external signal can be selected to drive the event signal 28.
This way a transition of the external signal can be used to trigger a CPU interrupt.

3.8 Examples of dMAX Usage for Delay-Based Effects

The dMAX controller is a powerful engine that offloads the CPU by bringing the data required to produce
delay-based effects into the internal DSP memory. dMAX supports circular addressing and table-guided,
multi-tap delay FIFO transfers.
Support for the table-guided, multi-tap delay FIFO transfer enables dMAX to split one FIFO into multiple
sections (each section can correspond to either a different channel or to different audio effects). This
means that support for the table-guided, multi-tap delay FIFO transfers lets dMAX use only one FIFO per
system, such that all required FIFO reads can be handled by only one FIFO read transfer parameter entry,
and all required FIFO writes can be handled by only one FIFO write transfer parameter entry. Therefore,
two FIFO transfer parameters are required to describe all required FIFO transfers in the system.
An example of using dMAX in a simple, real application is given in this section, using a delay effect on
four channels of audio. This basic example is used to illustrate dMAX usage, but the methodology can be
extended to the most complicated delay-based effects.

0000000000000 110 000 00111

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

146 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

Delay line 4 (10ms)

Delay line 3 (10ms)

Delay line 2 (5ms)

Delay line 1 (5ms)

A block diagram of a delay effect on four channels is shown in Figure 3-82. Samples from four input
channels L0, L1, R0, and R1 are fed into four delay lines. Each delay line delays the input channel data by
a different amount. The output data from the delay lines LD0, LD1, RD0, and RD1 are sent out.

Figure 3-82. Block Diagram of the Delay Effect on Four Input Channels

L0 LD0

L1 LD1

R0 RD0

R1 RD1

The data samples are received and sent out by McASP. Since this example is used to illustrate typical
dMAX usage to produce delay-based effects, the McASP dMAX transfers are not discussed in detail. For
more information on how to set up dMAX to receive/send data from the McASP please refer to the
example covered in Section 4.7, Servicing the McASP.
To improve dMAX efficiency, data received from the input channels is transferred to the delay lines in
blocks. In this example, a block size of four samples is used. When this block of input data (four samples)
is received from each input channel, the McASP notifies the CPU by an interrupt. The CPU then initiates a
dMAX transfer to store the fresh samples to the FIFO. The CPU also initiates a dMAX transfer to fetch the
required delays from the FIFO (the data retrieved from the delay lines will be sent out).
The sequence of events in this example is presented in Figure 3-83.

Figure 3-83. Sequence of Events for Processing

The double-buffering scheme is utilized. Double buffering consists of two input buffers (input ping and
pong buffers) and two output buffers (output ping and pong buffers). The fresh samples are stored by the
McASP into the input ping (pong) buffer while dMAX is transferring data from the input pong (ping) buffer
to the FIFO. The output data is sent out by the McASP from the output ping (pong) buffer while the dMAX
is filling the output pong (ping) buffer.
Note in Figure 3-83, that the CPU triggers two FIFO transfers sequentially. The CPU first triggers the FIFO
write transfer (executed by the MAX1), followed by the FIFO read transfer (executed by the MAX0). The
FIFO transfers are triggered sequentially in this example for clarity only.
When FIFO read and FIFO write transfers are handled by different MAX sub-modules, then both transfers
can be triggered by the CPU at the same time, and the two MAX sub-modules will execute the two
transfers concurrently. When both FIFO read and FIFO write transfers are handled by the same MAX
module, the transfers can be triggered at the same time by the CPU, but the MAX sub-module will execute
the transfers sequentially.

McASP fills PING input buffers McASP fills PONG input buffers McASP fills PING input buffers

MAX1 writes input
PONG buffers to

FIFO

MAX1 writes input
PING buffers to

FIFO

MAX1 writes input
PONG buffers to

FIFO

MAX0 reads
output PONG buffers

from FIFO

MAX0 reads
output PING buffers

from FIFO

MAX0 reads
output PONG buffers

from FIFO

McASP sends out PING output buffers McASP sends out PONG output buffers McASP sends out PING output buffers

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 14

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

To accommodate four different delay lines, the FIFO is split into four sections. Each of the four sections
operates as a separate delay line and is assigned to a different input channel. If the sample rate is 48KHz,
it is more than enough to reserve space for 1024 elements for each delay line (1024 elements at a sample
rate of 48KHz gives the maximum delay of ~21ms). Since there are four delay lines, and each delay line is
1024 elements long, the FIFO size is equal to 4096 elements. In this example, the incoming samples are
16 bits wide; therefore, the FIFO size is 8192 bytes.
A block diagram of the FIFO divided into four sections (four delay lines) is presented in Figure 3-84. By
using appropriate delays in the delay guide table for the table-guided, multi-tap delay FIFO transfer, dMAX
is capable of accessing each FIFO quadrant. Therefore, only one FIFO read transfer entry is required to
complete all FIFO reads, and only one FIFO write transfer entry is required to complete all FIFO writes in
the system.

Figure 3-84. FIFO Descriptor and Block Diagram of FIFO

WP=RP=0 0x8000 1FFF 0x8000 0000

Delay line 2 Delay line 1

0x8000 1800

0x8000 0800

FIFO descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

Delay line 3 Delay line 4

0x8000 1000

In this example the FIFO is placed in the external SDRAM starting from 0x8000 0000 and the FIFO
descriptor is placed in the internal data memory starting from 0x1000 F000. The FIFO is split into four
quadrants of 1024 elements (Figure 3-84). Each FIFO quadrant corresponds to one delay line from
Figure 3-83. In this example, element size is equal to 16 bits.
This example illustrates how to, by using table-guided, multi-tap delay FIFO transfers:
• Set up one FIFO write transfer entry to move four blocks of fresh samples on all four channels to their

appropriate delay lines
• Set up one FIFO read transfer entry to retrieve four blocks of delayed samples from the appropriate

delay lines
The dMAX controller transfers a block of the fresh samples received from each channel to the
corresponding FIFO quadrant, retrieves the required delays from each FIFO section, and prepares blocks
of the delayed data to be sent out.
To begin operation, the FIFO content should be initialized to zero. The FIFO read poiner (RP) and write
pointer (WP) are pointing to the beginning of the FIFO in the FIFO descriptor (Figure 3-84).
A FIFO read transfer can easily be aborted due to FIFO transfer error, so it is important to pay close
attention when initializing FIFO pointers RP and WP. Two cases should be considered: reading from an
empty FIFO, and trying to read delayed old samples from a FIFO full of new samples. For instance, if both
pointers are pointing to the same location (e.g., RP=WP=0), and the FIFO read transfer executes first, the
transfer will be aborted because the FIFO is empty and FIFO read attempts a read from an empty FIFO.
Another example of when multi-tap delay FIFO read is aborted, is when both pointers are pointing to the
same location (e.g., RP=WP=0), and the FIFO Full bit is set in the FIFO descriptor. In this case, the FIFO
is full of new samples, and the multi-tap delay FIFO read transfer attempts to retrieve old samples, so the
transfer is aborted.

0x8000 0000 (FIFO base address)
 0x0 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

148 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

3.8.1 Writing a Block of Fresh Samples to Each FIFO Quadrant
To write a block of fresh samples to the beginning of each of four delay lines (each FIFO quadrant) the
CPU initiates a table-guided, multi-tap delay FIFO write transfer.
Only one FIFO write transfer entry is required to move the four blocks of fresh data to the FIFO. After the
CPU triggers Event 18, dMAX moves four taps of data (each tap/block is four samples) from the ping/pong
input buffers in the linear memory to the FIFO locations listed in the delay table. Each entry in the FIFO
write delay table specifies the location to which block of data must be written. The locations in the FIFO
write delay table are specified as offsets from the FIFO write pointer. Each of these four delays represents
the beginning of one of the four delay lines.
The FIFO is split in the four quadrants and each quadrant corresponds to one delay line. The fresh block
of data is always stored at the beginning of the delay line and each delay line is 0x400 elements deep.
Therefore, the FIFO write delay table entries for the delay lines zero, one, two, and three are 0x000,
0xC00,0x800, and 0x400, respectively.
In this example, the CPU uses Event 18 to trigger the table-guided, multi-tap delay FIFO write. Event 18 is
assigned to the low-priority group (processed by MAX1). The block size is equal to four, so the first
counter dimension (tap size) in the FIFO write transfer entry is set to four. Since one block of fresh
samples is moved to the beginning of each delay line, the second counter dimension (number of taps) in
the FIFO write transfer entry is set to four.
The SYNC bit field in the event entry is set to one, therefore only one synchronization event is required to
complete the whole transfer. The TCINT bit field is set to one, therefore, dMAX will notify the CPU when
all four taps are stored to the FIFO by triggering INT8 and by setting the TCC code one in the DESR (and
DTCR0). Since reload is enabled (RLOAD is set to one in the event entry), the FIFO write transfer will
alternate between input ping and input pong buffers in each subsequent transfer. After the FIFO write is
complete, dMAX will use the source address of the pong buffer (0x1000 1060) in the subsequent transfer
as a starting address from which data will be moved to the FIFO.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 14

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The event entry, FIFO write descriptor and the FIFO transfer descriptor prior to transfer are shown in
Figure 3-85.
The data received from the McASP is stored starting from location 0x10001000 (ping buffer), or
0x10001060 (pong buffer). After a block of four samples is received from each of four channels, the
McASP notifies the CPU by an interrupt.

Figure 3-85. Table-Guided Multi-tap Delay FIFO Write Transfer. Situation Before Transfer Start

0x1000 1000
0x1000 1002
0x1000 1004
0x1000 1006
0x1000 1008
0x1000 100A
0x1000 100C
0x1000 100E
0x1000 1010
0x1000 1012
0x1000 1014
0x1000 1016

Input
PING
buffer

Event#18 entry:

0x6200 8048

FIFO write
transfer entry:

DEPR[18] = ’1’
DELPR[18] = ’1’
DEER[18] = ’1’

11 1 0 0001 0 1 0 1 000 0 0 1001001 000 00100

0x1000 1018
0x1000 101A
0x1000 101C
0x1000 101E

0x1000 1060
0x1000 1062
0x1000 1064
0x1000 1066
0x1000 1068
0x1000 106A
0x1000 106C
0x1000 106E
0x1000 1070
0x1000 1072
0x1000 1074
0x1000 1076
0x1000 1078
0x1000 107A
0x1000 107C
0x1000 107E

RP=0
WP=0

Input
PONG
buffer

0x6200 8124
0x6200 8128
0x6200 812C
0x6200 8130
0x6200 8134
0x6200 8138
0x6200 813C
0x6200 8140
0x6200 8144
0x6200 8148
0x6200 814C

Delay table 0:
0x1000 0100
0x1000 0104
0x1000 0108
0x1000 010C

Delay table 1:

0x1000 0110
0x1000 0114
0x1000 0118
0x1000 011C

0x8000 0000
FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

L0(0)
L0(1)
L0(2)
L0(3)
L1(0)
L1(1)
L1(2)
L1(3)
R0(0)
R0(1)
R0(2)
R0(3)
R1(0)
R1(1)
R1(2)
R1(3)

0x1000 1000 (SRC)
0x1000 F000 (PFD)

0 0x4 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 1000 (SRC RELOAD ADDRESS0)
0x1000 1060 (SRC RELOAD ADDRESS1)

0x1000 0100 (Pointer to delay table 0)
0x1000 0110 (Pointer to delay table 1)

0x000
0xC00
0x800
0x400

0x000
0xC00
0x800
0x400

0x8000 0000 (FIFO base address)
 0x0 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

150 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The condition after the first block of data is transferred to the FIFO is shown in Figure 3-86 (FIFO is
growing in the counter clock wise direction). The first block of fresh samples from the input ping buffer is
written to the beginning of the first delay line. The first entry in the FIFO write delay table is used as a
pointer to the FIFO location to which the block of fresh data received from the first channel needs to be
stored (the beginning of the first FIFO quadrant).

Figure 3-86. Condition After Fresh Block of Data from the First Channel Moved to the First Delay Line

0x1000 1000
0x1000 1002
0x1000 1004
0x1000 1006
0x1000 1008
0x1000 100A
0x1000 100C
0x1000 100E
0x1000 1010
0x1000 1012
0x1000 1014
0x1000 1016
0x1000 1018
0x1000 101A
0x1000 101C
0x1000 101E

0x1000 1060
0x1000 1062
0x1000 1064
0x1000 1066
0x1000 1068
0x1000 106A
0x1000 106C
0x1000 106E
0x1000 1070
0x1000 1072
0x1000 1074
0x1000 1076
0x1000 1078
0x1000 107A
0x1000 107C
0x1000 107E

L0(0)
L0(1)
L0(2)
L0(3)
L1(0)
L1(1)
L1(2)
L1(3)
R0(0)
R0(1)
R0(2)
R0(3)
R1(0)
R1(1)
R1(2)
R1(3)

RP=0, WP=0,

DEPR[18] = ’1’
DELPR[18] = ’1’
DEER[18] = ’1’

Event#18 entry:

0x6200 8048

FIFO write
transfer entry:

0x6200 8124
0x6200 8128
0x6200 812C
0x6200 8130
0x6200 8134
0x6200 8138
0x6200 813C
0x6200 8140
0x6200 8144
0x6200 8148
0x6200 814C

Delay table 0:
 0x1000 0100

0x1000 0104
0x1000 0108
0x1000 010C

Delay table 1:

0x1000 0110
0x1000 0114
0x1000 0118

L0(0)
L0(1)
L0(2)
L0(3)

 0x8000 0000 0x1000 011C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

SI
N

D
X1

SI

N
D

X0

Q
TS

L

SY
N

C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0001 0 1 0 1 000 0 0 1001001 000 00100

0x1000 1008 (SRC)
0x1000 F000 (PFD)

0 0x3 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 1000 (SRC RELOAD ADDRESS0)
0x1000 1060 (SRC RELOAD ADDRESS1)

0x1000 0100 (Pointer to delay table 0)
0x1000 0110 (Pointer to delay table 1)

0x000
0xC00
0x800
0x400

0x000
0xC00
0x800
0x400

0x8000 0000 (FIFO base address)
 0x0 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 15

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

SI
N

D
X0

The condition after the second block of data is transferred to the FIFO is shown in Figure 3-87 (FIFO is
growing in the counter clock wise direction). The second block of fresh samples is written to the beginning
of the second delay line. The second entry in the FIFO write delay table is used as a pointer to the FIFO
location to which the block of fresh data, received from the second channel, needs to be stored (the
beginning of the second FIFO quadrant).

Figure 3-87. Condition After Fresh Block of Data From the Second Channel Moved to the Second Delay

Line

0x1000 1000
0x1000 1002
0x1000 1004
0x1000 1006
0x1000 1008
0x1000 100A
0x1000 100C
0x1000 100E
0x1000 1010
0x1000 1012
0x1000 1014
0x1000 1016
0x1000 1018
0x1000 101A
0x1000 101C
0x1000 101E

0x1000 1060
0x1000 1062
0x1000 1064
0x1000 1066
0x1000 1068
0x1000 106A
0x1000 106C
0x1000 106E
0x1000 1070

DEPR[18] = ’1’
 DELPR[18] = ’1’

DEER[18] = ’1’

Event#18 entry:

0x6200 8048

FIFO write
transfer entry:

0x6200 8124
0x6200 8128
0x6200 812C
0x6200 8130
0x6200 8134
0x6200 8138
0x6200 813C
0x6200 8140
0x6200 8144
0x6200 8148
0x6200 814C

Delay table 0:
0x1000 0100

0x1000 1072
0x1000 1074
0x1000 1076
0x1000 1078
0x1000 107A
0x1000 107C
0x1000 107E

RP=0, WP=0,

0x1000 0104
0x1000 0108
0x1000 010C

Delay table 1:
0x1000 0110
0x1000 0114
0x1000 0118

L0(0)
L0(1)
L0(2)
L0(3)

L1(0)
L1(1)
L1(2)
L1(3)

 0x8000 0000 0x1000 011C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

SI
N

D
X1

SI

N
D

X1

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

L0(0)
L0(1)
L0(2)
L0(3)
L1(0)
L1(1)
L1(2)
L1(3)
R0(0)
R0(1)
R0(2)
R0(3)
R1(0)
R1(1)
R1(2)
R1(3)

11 1 0 0001 0 1 0 1 000 0 0 1001001 000 00100

0x1000 1010 (SRC)
0x1000 F000 (PFD)

0 0x2 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 1000 (SRC RELOAD ADDRESS0)
0x1000 1060 (SRC RELOAD ADDRESS1)

0x1000 0100 (Pointer to delay table 0)
0x1000 0110 (Pointer to delay table 1)

0x000
0xC00
0x800
0x400

0x000
0xC00
0x800
0x400

0x8000 0000 (FIFO base address)
 0x0 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

152 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The condition after the third block of data is transferred to the FIFO is shown in Figure 3-88 (FIFO is
growing in the counter-clockwise direction). The third block of fresh samples is written to the beginning of
the third delay line. The third entry in the FIFO write delay table is used as a pointer to the FIFO location
to which the block of fresh data, received from the third channel, needs to be stored (the beginning of the
third FIFO quadrant).

Figure 3-88. Condition After Fresh Block of Data From the Third Channel is Moved to the Third Delay

Line

0x1000 1000
0x1000 1002
0x1000 1004
0x1000 1006
0x1000 1008
0x1000 100A
0x1000 100C
0x1000 100E
0x1000 1010
0x1000 1012
0x1000 1014
0x1000 1016
0x1000 1018
0x1000 101A
0x1000 101C
0x1000 101E

0x1000 1060
0x1000 1062
0x1000 1064
0x1000 1066
0x1000 1068
0x1000 106A
0x1000 106C
0x1000 106E
0x1000 1070
0x1000 1072
0x1000 1074
0x1000 1076
0x1000 1078
0x1000 107A
0x1000 107C
0x1000 107E

L0(0)
L0(1)
L0(2)
L0(3)

L1(0)
L1(1)
L1(2)
L1(3)

R0(0)
R0(1)
R0(2)
R0(3)

RP=0, WP=0,
0x8000 0000

DEPR[18] = ’1’
DELPR[18] = ’1’
DEER[18] = ’1’

Event#18 entry:

0x6200 8048

FIFO write
transfer entry:

0x6200 8124
0x6200 8128
0x6200 812C
0x6200 8130
0x6200 8134
0x6200 8138
0x6200 813C
0x6200 8140
0x6200 8144
0x6200 8148
0x6200 814C

Delay table 0:
0x1000 0100
0x1000 0104
0x1000 0108
0x1000 010C

Delay table 1:
0x1000 0110
0x1000 0114
0x1000 0118
0x1000 011C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

L0(0)
L0(1)
L0(2)
L0(3)
L1(0)
L1(1)
L1(2)
L1(3)
R0(0)
R0(1)
R0(2)
R0(3)
R1(0)
R1(1)
R1(2)
R1(3)

SI
N

D
X1

SI

N
D

X1

SI
N

D
X1

SI

N
D

X0

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0001 0 1 0 1 000 0 0 1001001 000 00100

0x1000 1010 (SRC)
0x1000 F000 (PFD)

0 0x1 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 1000 (SRC RELOAD ADDRESS0)
0x1000 1060 (SRC RELOAD ADDRESS1)

0x1000 0100 (Pointer to delay table 0)
0x1000 0110 (Pointer to delay table 1)

0x000
0xC00
0x800
0x400

0x000
0xC00
0x800
0x400

0x8000 0000 (FIFO base address)
 0x0 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 15

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The condition after the last block of data is transferred to the FIFO is shown in Figure 3-89 (FIFO is
growing in the counter-clockwise direction). The last block of fresh samples is written to the beginning of
the fourth delay line which has an offset of 0x400 samples from the FIFO Write Pointer (during transfer of
the last block of data the WP is still equal to zero). The fourth entry in the FIFO write delay table is used
as a pointer to the FIFO location to which the block of fresh data, received from the fourth channel, needs
to be stored (the beginning of the fourth FIFO quadrant).
After completion of the last phase, dMAX sets the TCC bit to 1 in the DESR and DTCR0 register and
triggers INT8 to the CPU. dMAX also updates the FIFO Write Pointer, and reloads the pong source
address (0x1000 1060) to be used as source for the next transfer.
By setting RLOAD bit field to 1, dMAX can move fresh data from the ping or pong input buffer to the delay
lines within the FIFO. This double buffering comes in handy since dMAX can move data from the input
ping (pong) buffer to the FIFO while the McASP is filling the input pong (ping) buffer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

154 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

Figure 3-89. Condition After a Fresh Block of Data From the Fourth Channel is Moved to the Fourth Delay
Line

WP=4

0x1000 1000
0x1000 1002
0x1000 1004
0x1000 1006
0x1000 1008
0x1000 100A
0x1000 100C
0x1000 100E
0x1000 1010
0x1000 1012
0x1000 1014
0x1000 1016
0x1000 1018
0x1000 101A
0x1000 101C
0x1000 101E

0x1000 1060
0x1000 1062
0x1000 1064
0x1000 1066
0x1000 1068
0x1000 106A
0x1000 106C
0x1000 106E
0x1000 1070
0x1000 1072
0x1000 1074
0x1000 1076
0x1000 1078
0x1000 107A
0x1000 107C
0x1000 107E

L0(0)
L0(1)
L0(2)
L0(3)

RP=0
0x8000 0000

DEPR[18] = ’1’
DELPR[18] = ’1’
DEER[18] = ’1’

Event#18 entry:

0x6200 8048

FIFO write
transfer entry:

0x6200 8124
0x6200 8128
0x6200 812C
0x6200 8130
0x6200 8134
0x6200 8138
0x6200 813C
0x6200 8140
0x6200 8144
0x6200 8148
0x6200 814C

Delay table 0:
0x1000 0100
0x1000 0104
0x1000 0108

 0x1000 010C

Delay table 1:
0x1000 0110
0x1000 0114
0x1000 0118
0x1000 011C

FIFO descriptor:
0x1000 F000

L1(0)
L1(1)
L1(2)
L1(3)

R0(0)
R0(1)
R0(2)
R0(3)

R1(3)
R1(2)
R1(1)
R1(0)

0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

R1(3)
R1(2)
R1(1)
R1(0)
R0(3)
R0(2)
R0(1)
R0(0)
L1(3)
L1(2)
L1(1)
L1(0)
L0(3)
L0(2)
L0(1)
L0(0)

SI
N

D
X1

SI

N
D

X1

SI
N

D
X1

 S
IN

D
X0

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0001 0 1 0 1 000 0 0 1001001 000 00100

0x1000 1060 (SRC)
0x1000 F000 (PFD)

0 0x4 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 1000 (SRC RELOAD ADDRESS0)
0x1000 1060 (SRC RELOAD ADDRESS1)

0x1000 0100 (Pointer to delay table 0)
0x1000 0110 (Pointer to delay table 1)

0x000
0xC00
0x800
0x400

0x000
0xC00
0x800
0x400

0x8000 0000 (FIFO base address)
 0x4 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 15

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

3.8.2 Reading a Block of Delayed Samples from Each FIFO Quadrant
To read a block of delayed samples from each of four delay lines (each FIFO quadrant) the CPU initiates
a table-guided, multi-tap delay FIFO read transfer.
In this example, the CPU uses Event 17 to trigger a table-guided, multi-tap delay FIFO read. Event 17 is
assigned to the high-priority group and is processed by MAX0. Since block size is equal to four, in this
example, the first counter dimension (tap size) in the FIFO read transfer entry is set to four. The FIFO
contains four delay lines, and one block of delayed samples is required from each FIFO quadrant;
therefore, the second counter dimension (number of taps) in the FIFO read transfer entry is set to four.
After the CPU triggers Event 17, dMAX will read four taps of data (each tap is four samples long) from the
FIFO locations specified by the delay table. Each entry in the FIFO read delay table specifies
location/offset from which the block of data must be read (the entries from the FIFO read delay table
specify offsets from the FIFO RP).
A delay of 5ms, at a sample rate of 48KHz, translates into a delay of 0xF0 samples. A delay of 10ms, at a
sample rate of 48KHz, translates into delay of 0x1E0 samples. Since the FIFO is divided into four
quadrants of 0x400 elements, positions of the four delays (LD0,LD1, RD0, and RD1) relative to the FIFO
RP are consecutive: 0x0F0, 0xCF0, 0x9E0 and 0x5E0 elements behind the RP (the FIFO is growing
counter-clockwise).
Only one transfer entry is required to retrieve all required delays from the FIFO. The SYNC bit field in the
event entry is set to 1, so only one synchronization event is required for the whole transfer. The TCINT bit
field is set to 1, so dMAX will notify the CPU when all four taps are retrieved from the FIFO by triggering
INT8 and by setting the TCC code to zero in the DESR (and DTCR0). Since reload is enabled (RLOAD is
set to 1 in the event entry), in the subsequent transfer, dMAX will use the destination address of the pong
buffer (0x1000 2060) to store delayed samples read from the FIFO.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

156 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The output ping buffer, FIFO descriptor, and FIFO read transfer descriptor prior to transfer start are
presented in Figure 3-90.

Figure 3-90. Reading Delayed Block of Samples From the FIFO Using Table Guided Multi-tap Delay FIFO

Read Transfer. Situation Before Transfer Start

WP=4

LD1(0)
LD1(1)

RP=0
0x8000 0000

LD0(3)
LD0(2)
LD0(1)

DEPR[17] = ’1’
DELPR[17] = ’1’
DEER[17] = ’1’

Event#17 entry:
LD1(2)
LD1(3)

LD0(0) 33 2 2 2 2 2 2 2 2 1 1 1 1 1 8 7 5 4 0
0x6100 8044

RD0(0)
RD0(1)
RD0(2)
RD0(3)

0x1000 2000
0x1000 2002
0x1000 2004
0x1000 2006
0x1000 2008
0x1000 200A
0x1000 100C
0x1000 200E
0x1000 2010
0x1000 2012
0x1000 2014
0x1000 2016
0x1000 2018
0x1000 201A
0x1000 201C
0x1000 201E

0x1000 2060
0x1000 2062
0x1000 2064
0x1000 2066
0x1000 2068
0x1000 206A
0x1000 206C
0x1000 206E
0x1000 2070
0x1000 2072
0x1000 2074
0x1000 2076
0x1000 2078
0x1000 207A
0x1000 207C
0x1000 207E

RD1(3)
RD1(2)
RD1(1)
RD1(0)

Output
PING
buffer

Output
PONG
buffer

FIFO read
transfer entry:

0x6100 80F8
0x6100 80FC
0x6100 8100
0x6100 8104
0x6100 8108
0x6100 810C
0x6100 8110
0x6100 8114
0x6100 8118
0x6100 811C
0x6100 8120

Delay table 0:
0x1000 0000
0x1000 0004
0x1000 0008
0x1000 000C

Delay table 1:
0x1000 0010
0x1000 0014
0x1000 0018
0x1000 001C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0000 0 1 0 1 000 0 0 0111110 000 00101

0x1000 2000 (DST)
0x1000 F000 (PFD)

0 0x4 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 2000 (DST RELOAD ADDRESS0)
0x1000 2060 (DST RELOAD ADDRESS1)

0x1000 0000 (Pointer to delay table 0)
0x1000 0010 (Pointer to delay table 1)

0x0F0
0xCF0
0x9E0
0x5E0

0x0F0
0xCF0
0x9E0
0x5E0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 15

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The condition after the first block of delayed data is read from the FIFO is shown in Figure 3-91 (FIFO is
growing in the counter-clockwise direction). The first block of delayed samples (output from the delay line
1) is retrieved from the FIFO, and copied to the output ping buffer.

Figure 3-91. Condition After Delayed Block of Data is Retrieved From the First Delay Line

RP=0

WP=4

LD1(0)
LD1(1)

0x8000 0000
LD0(3)
LD0(2)
LD0(1)

DEPR[17] = ’1’
DELPR[17] = ’1’
DEER[17] = ’1’

Event#17 entry:
LD1(2)
LD1(3)

LD0(0) 33 2 2 2 2 2 2 2 2 1 1 1 1 1 8 7 5 4 0
0x6100 8044

RD0(0)
RD0(1)
RD0(2)
RD0(3)

0x1000 2000
0x1000 2002
0x1000 2004
0x1000 2006
0x1000 2008
0x1000 200A
0x1000 100C
0x1000 200E
0x1000 2010
0x1000 2012
0x1000 2014
0x1000 2016
0x1000 2018
0x1000 201A
0x1000 201C
0x1000 201E

0x1000 2060
0x1000 2062
0x1000 2064
0x1000 2066
0x1000 2068
0x1000 206A
0x1000 206C
0x1000 206E
0x1000 2070
0x1000 2072
0x1000 2074
0x1000 2076
0x1000 2078
0x1000 207A
0x1000 207C
0x1000 207E

RD1(3)
RD1(2)
RD1(1)
RD1(0)

FIFO read
transfer entry:

0x6100 80F8
0x6100 80FC
0x6100 8100
0x6100 8104
0x6100 8108
0x6100 810C
0x6100 8110
0x6100 8114
0x6100 8118
0x6100 811C
0x6100 8120

Delay table 0:
 0x1000 0000

0x1000 0004
0x1000 0008
0x1000 000C

Delay table 1:
0x1000 0010
0x1000 0014
0x1000 0018
0x1000 001C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

D
IN

D
X1

D

IN
D

X0

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0000 0 1 0 1 000 0 0 0111110 000 00101

0x1000 2008 (DST)
0x1000 F000 (PFD)

0 0x3 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 2000 (DST RELOAD ADDRESS0)
0x1000 2060 (DST RELOAD ADDRESS1)

0x1000 0000 (Pointer to delay table 0)
0x1000 0010 (Pointer to delay table 1)

LD0(0)
LD0(1)
LD0(2)
LD0(3)

0x0F0
0xCF0
0x9E0
0x5E0

0x0F0
0xCF0
0x9E0
0x5E0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

158 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The condition after the second block of delayed data is read from the FIFO is shown in Figure 3-92 (FIFO
is growing in the counter-clockwise direction). The second block of delayed samples (output from the
delay line 2) is retrieved from the FIFO, and copied to the output ping buffer. The second entry in the FIFO
read-delay table is used as a pointer to the FIFO location from which the second block of data needs to be
retrieved. The second block of data resides within the second FIFO quadrant.

Figure 3-92. Condition After Delayed block of Data is Retrieved From the Second Delay Line

RP=0

WP=4

LD1(0)
LD1(1)

0x8000 0000
LD0(3)
LD0(2)
LD0(1)

DEPR[17] = ’1’
DELPR[17] = ’1’
DEER[17] = ’1’

Event#17 entry:
LD1(2)
LD1(3)

LD0(0) 33 2 2 2 2 2 2 2 2 1 1 1 1 1 8 7 5 4 0
0x6100 8044

RD0(0)
RD0(1)
RD0(2)
RD0(3)

0x1000 2000
0x1000 2002
0x1000 2004
0x1000 2006
0x1000 2008
0x1000 200A
0x1000 100C
0x1000 200E
0x1000 2010
0x1000 2012
0x1000 2014
0x1000 2016
0x1000 2018
0x1000 201A
0x1000 201C
0x1000 201E

0x1000 2060
0x1000 2062
0x1000 2064
0x1000 2066
0x1000 2068
0x1000 206A
0x1000 206C
0x1000 206E
0x1000 2070
0x1000 2072
0x1000 2074
0x1000 2076
0x1000 2078
0x1000 207A
0x1000 207C
0x1000 207E

RD1(3)
RD1(2)
RD1(1)
RD1(0)

FIFO read
transfer entry:

0x6100 80F8
0x6100 80FC
0x6100 8100
0x6100 8104
0x6100 8108
0x6100 810C
0x6100 8110
0x6100 8114
0x6100 8118
0x6100 811C
0x6100 8120

Delay table 0:
0x1000 0000

 0x1000 0004
0x1000 0008
0x1000 000C

Delay table 1:
0x1000 0010
0x1000 0014
0x1000 0018
0x1000 001C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

LD1(3)
LD1(2)
LD1(1)
LD1(0)
LD0(3)
LD0(2)
LD0(1)
LD0(0)

D
IN

D
X1

D

IN
D

X1

D
IN

D
X0

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0000 0 1 0 1 000 0 0 0111110 000 00101

 0x1000 2010 (DST)
 0x1000 F000 (PFD)
0 0x2 (COUNT1A) 0x4 (COUNT0A)

 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)
 0x1000 2000 (DST RELOAD ADDRESS0)
 0x1000 2060 (DST RELOAD ADDRESS1)
 0x1000 0000 (Pointer to delay table 0)
 0x1000 0010 (Pointer to delay table 1)

0x0F0
0xCF0
0x9E0
0x5E0

0x0F0
0xCF0
0x9E0
0x5E0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 15

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The condition after the third block of delayed data is read from the FIFO is shown in Figure 3-93 (FIFO is
growing in the counter-clockwise direction). The third block of delayed samples (output from the delay line
3) is retrieved from the FIFO, and copied to the output ping buffer. The third entry in the FIFO read-delay
table is used as a pointer to the FIFO location from which the third block of data needs to be retrieved.
The third block of data resides within the third FIFO quadrant.

Figure 3-93. Condition After Delayed Block of Data is Retrieved From the Third Delay Line

RP=0

WP=4

LD1(0)
LD1(1)

0x8000 0000
LD0(3)
LD0(2)
LD0(1)

DEPR[17] = ’1’
DELPR[17] = ’1’
DEER[17] = ’1’

Event#17 entry:
LD1(2)
LD1(3)

LD0(0) 33 2 2 2 2 2 2 2 2 1 1 1 1 1 8 7 5 4 0
0x6100 8044

RD0(0)
RD0(1)
RD0(2)
RD0(3)

0x1000 2000
0x1000 2002
0x1000 2004
0x1000 2006
0x1000 2008
0x1000 200A
0x1000 100C
0x1000 200E
0x1000 2010
0x1000 2012
0x1000 2014
0x1000 2016
0x1000 2018
0x1000 201A
0x1000 201C
0x1000 201E

0x1000 2060
0x1000 2062
0x1000 2064
0x1000 2066
0x1000 2068
0x1000 206A
0x1000 206C
0x1000 206E
0x1000 2070
0x1000 2072
0x1000 2074
0x1000 2076
0x1000 2078
0x1000 207A
0x1000 207C
0x1000 207E

RD1(3)
RD1(2)
RD1(1)
RD1(0)

FIFO read
transfer entry:

0x6100 80F8
0x6100 80FC
0x6100 8100
0x6100 8104
0x6100 8108
0x6100 810C
0x6100 8110
0x6100 8114
0x6100 8118
0x6100 811C
0x6100 8120

Delay table 0:
0x1000 0000
0x1000 0004

 0x1000 0008
0x1000 000C

Delay table 1:
0x1000 0010
0x1000 0014
0x1000 0018
0x1000 001C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

RD0(3)
RD0(2)
RD0(1)
RD0(0)
LD1(3)
LD1(2)
LD1(1)
LD1(0)
LD0(3)
LD0(2)
LD0(1)
LD0(0)

D
IN

D
X1

D

IN
D

X1

D
IN

D
X1

D

IN
D

X0

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0000 0 1 0 1 000 0 0 0111110 000 00101

0x1000 2018 (DST)
0x1000 F000 (PFD)

0 0x1 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 2000 (DST RELOAD ADDRESS0)
0x1000 2060 (DST RELOAD ADDRESS1)

0x1000 0000 (Pointer to delay table 0)
0x1000 0010 (Pointer to delay table 1)

0x0F0
0xCF0
0x9E0
0x5E0

0x0F0
0xCF0
0x9E0
0x5E0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x0 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

160 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

The condition after the last block of delayed data is read from the FIFO is shown in Figure 3-94 (FIFO is
growing in the counter-clockwise direction). The fourth block of delayed samples (output from the delay
line 4) is retrieved from the FIFO, and copied to the output ping buffer. The fourth entry in the FIFO read
delay table is used as a pointer to the FIFO location from which the fourth block of data needs to be
retrieved. During the read of the last block of data, the RP is still equal to zero. The fourth block of data
resides within the fourth FIFO quadrant.
After completion of the last phase, dMAX sets the TCC bit to zero in the DTCR0 (bit 8 in the DESR) and
triggers INT8 to the CPU. dMAX also updates the FIFO RP, and reloads the pong destination address
(0x1000 2060) to be used as destination for the next transfer.
The four delayed blocks of data LD0, LD1, RD0 and RD1 (each block contains four samples) are now
ready to be sent out by the McASP. Since this example is used to illustrate typical dMAX usage to
produce delay-based effects, the McASP dMAX transfers are not discussed in detail. For more information
on how to set up dMAX to send data to the McASP please refer to example given in Section 3.6.1.
By setting RLOAD bit field to 1, each subsequent transfer alternates between the ping and pong output
buffer (ping and pong buffers are switched after each transfer). This double buffering comes in handy
since dMAX can move data from the FIFO to the ping output buffer while the McASP is moving data out
from the pong output buffer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Transfer Examples 16

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

Figure 3-94. condition After a Block of Data is Retrieved From the Fourth Delay Line
RP=4
WP=4

LD1(0)
LD1(1)

LD0(3)
LD0(2)
LD0(1)

DEPR[17] = ’1’
DELPR[17] = ’1’
DEER[17] = ’1’

Event#17 entry:
LD1(2)
LD1(3)

LD0(0)
33 2 2 2 2 2 2 2 2 1 1 1 1 1 8 7 5 4 0

0x6100 8044

RD0(0)
RD0(1)
RD0(2)
RD0(3)

0x1000 2000
0x1000 2002
0x1000 2004
0x1000 2006
0x1000 2008
0x1000 200A
0x1000 100C
0x1000 200E
0x1000 2010
0x1000 2012
0x1000 2014
0x1000 2016
0x1000 2018
0x1000 201A
0x1000 201C
0x1000 201E

0x1000 2060
0x1000 2062
0x1000 2064
0x1000 2066
0x1000 2068
0x1000 206A
0x1000 206C
0x1000 206E
0x1000 2070
0x1000 2072
0x1000 2074
0x1000 2076
0x1000 2078
0x1000 207A
0x1000 207C
0x1000 207E

RD1(3)
RD1(2)
RD1(1)
RD1(0)

FIFO read
transfer entry:

0x6100 80F8
0x6100 80FC
0x6100 8100
0x6100 8104
0x6100 8108
0x6100 810C
0x6100 8110
0x6100 8114
0x6100 8118
0x6100 811C
0x6100 8120

Delay table 0:
0x1000 0000
0x1000 0004
0x1000 0008

 0x1000 000C

Delay table 1:
0x1000 0010
0x1000 0014
0x1000 0018
0x1000 001C

FIFO descriptor:
0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

Q
TS

L
SY

N
C

TC
C

AT
C

IN
T

TC
IN

T

R
LO

AD

EW
M

PT
E

ET
YP

E

11 1 0 0000 0 1 0 1 000 0 0 0111110 000 00101

0x1000 2060 (DST)
0x1000 F000 (PFD)

0 0x4 (COUNT1A) 0x4 (COUNT0A)
 0x1 (SINDX0)
 0x1 (SINDX1)
 0x4 (COUNT1R) 0x4 (COUNT0R)

0x1000 2000 (DST RELOAD ADDRESS0)
0x1000 2060 (DST RELOAD ADDRESS1)

0x1000 0000 (Pointer to delay table 0)
0x1000 0010 (Pointer to delay table 1)

LD0(0)
LD0(1)
LD0(2)
LD0(3)
LD1(0)
LD1(1)
LD1(2)
LD1(3)
RD0(0)
RD0(1)
RD0(2)
RD0(3)
RD1(0)
RD1(1)
RD1(2)
RD1(3)

0x0F0
0xCF0
0x9E0
0x5E0

0x0F0
0xCF0
0x9E0
0x5E0

0x8000 0000 (FIFO base address)
 0x4 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x4 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

162 Transfer Examples SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Examples of dMAX Usage for Delay-Based Effects

After a pair of multi-tap delay FIFO read and multi-tap delay FIFO write transfers is complete, the four
quadrants representing the four delay lines are rotated as shown in Figure 3-95 (beginning of each delay
line within the FIFO moved counter-clockwise by four samples).

Figure 3-95. FIFO Descriptor and Block Diagram of FIFO After Moving Four Delay TAPS to Four Delay

Lines

WP=RP=4
0x8000 0008

Delay line 2

0x8000 0810

FIFO base
0x8000 0000

Delay line 3

Delay line 1

0x8000 1810

Delay line 4

0x8000 1010

FIFO descriptor:

0x1000 F000
0x1000 F004
0x1000 F008
0x1000 F00C
0x1000 F010
0x1000 F014
0x1000 F018

In this example, the FIFO is split into four quadrants and each FIFO quadrant is used as an independent
delay line. The advantage of splitting a FIFO into several sections is that one FIFO write transfer entry,
and only one FIFO read transfer entry are sufficient to describe all FIFO transfers in the system.
An inefficient alternative to this approach would be to have four independent FIFO descriptors and four
pairs of FIFO read and FIFO write transfer entries for each of four delay lines.
The same methodology used in this example can be extended to any number of effects applied to any
number of channels. The methodology from this example can also be extended to a case where a
cascade of different effects is applied to the input data. The FIFO can be divided into a number of different
sections and each of these sections can be assigned to hold different data. Each audio effect from the
cascade can be assigned to a different FIFO section. In this case, the CPU should be used to calculate
the outputs from each processing stage in the cascade, while dMAX should be used to maintain the FIFO.
Maintaining the FIFO entails fetching data required by the CPU to process the next block, and storing the
latest outputs from each processing stage to the appropriate FIFO sections. Only one pair of FIFO transfer
descriptors is required to describe all FIFO transfers in the system.
The double buffering is built into the FIFO transfers. If the reload option is enabled in the FIFO transfer
event entry, dMAX will alternate between the ping and pong buffers in each subsequent FIFO transfer.
Each of the two buffers used for double buffering is associated with a different delay table (ping and pong
buffer can have different delay tables). When dMAX alternates between the ping and pong buffers, it also
alternates between the two delay tables used during the FIFO transfer. This feature comes in handy when
it is required to change the delay table on the fly during FIFO transfer (e.g., to implement the low
frequency oscillator-LFO effect). The CPU can only modify the pointer to the FIFO delay table used by the
ping (pong) buffer while dMAX is performing pong (ping) transfer.

0x8000 0000 (FIFO base address)
 0x4 (WP)
 1 ESIZE 0x1000 (FIFO size)
 0x4 (RP)
 0x1 FMSC 0x1000 (FMARK)
 0x0 EMSC 0x0000 (EMARK)

0 FF

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 163

Chapter 4
SPRU795D – November 2005 – Revised October 2007

dMAX Controller Performance

This chapter provides performance and throughput data for dMAX, along with guidelines to follow to obtain
the best performance. Also, the attached spreadsheet contains performance calculations and can be
downloaded from this link http://www-s.ti.com/sc/techlit/spru795d.zip.

Topic Page

4.1 Overview ... 164
4.2 Guidelines for Getting the Best dMAX Performance 164
4.3 General Performance Transfer Performance 167
4.4 Transfer Duration and Latency .. 168
4.5 General Purpose Transfer Latency ... 169
4.6 Transfers within the Internal Memory ... 170
4.7 Transfers Between the Internal Memory and McASP 176
4.8 Transfers Between Internal Memory and EMIF SDRAM 179
4.9 One-Dimensional Burst Transfer Performance.................................... 188
4.10 SPI Slave Transfer Performance ... 195
4.11 FIFO Transfer Performance .. 196
4.12 Transfer Duration and Latency .. 197
4.13 FIFO Read .. 198
4.14 FIFO Write Transfer ... 200

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www-s.ti.com/sc/techlit/spru795d.zip

164 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Overview

4.1 Overview

The dMAX controller handles user-programmed data transfers between the internal data memory
controller and the device peripherals on the C672x DSP. The performance data is given in the number of
dMAX clocks required to perform a specific transfer, which enables you to easily scale and calculate data
throughput for different dMAX clock frequencies.
The dMAX performance is characterized by:
• The maximum data throughput (in Mbytes/s)
• Number of dMAX clocks required to perform a transfer
• Latencies required to start a transfer
System performance is affected by a variety of factors:
• The number of tasks handled by the dMAX controller. All the tasks compete for the dMAX controller

resources
• dMAX controller clock to EMIF clock ratio and dMAX controller clock to CPU clock ratio
• dMAX controller competes with the CPU and the UHPI for resources (external memory interface

(EMIF)), internal memory
• If the resource accessed is within the EMIF, it is susceptible to stalls such as SDRAM page misses,

and asynchronous, not-ready conditions
The data presented in this chapter represents the best-case scenario when there are no resource conflicts
during transfer. Many of these factors are within the system designer’s control. This chapter uses a
best-case performance to give the system designer an idea of the upper band of available bandwidth.
The performance discussed below is for only one MAX module; however, using both MAX modules can
effectively double the performance.

4.2 Guidelines for Getting the Best dMAX Performance

The dMAX controller includes features such as the capability to:
• Perform three-dimensional data transfers for advanced data sorting
• Manage a section of the memory as a circular buffer/FIFO, with delay tap based reading and writing

data
• Concurrently process two transfer requests (provided that they are to/from different

source/destinations)
When splitting tasks between MAX0 and MAX1 modules during the system design process, the tasks
should be split between the two dMAX modules to minimize system latency
The Transfer Completion Code (TCC) bit field is used to notify the Interrupt Service Routine (ISR) which
data transfer has been completed. The CPU can read the TCC from the DESR, DTRC0, and DTCR1, and
each read provides the same information. However, since the DESR is internal and the CPU access to it
is minimal, reads from it are more efficient. The DESR is read-only and to clear a TCC code, the CPU
must perform a write to the DTCR0 or DTCR1 (depending on the TCC that needs to be cleared).
The data required by the CPU should be placed in the fast internal memory. To obtain the maximum
performance, the CPU should access only data from the fast internal memory. The activities should be
divided so that dMAX and the CPU complement each other. While the CPU is processing a current block
of data from the internal memory, the dMAX controller should bring to the internal memory, the next block
of data that will be required by the CPU.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 165

www.ti.com

4.2.1 General Purpose Transfer: Best Performance Tips
Guidelines for Getting the Best dMAX Performance

The following are tips on generating the best performance from general-purpose transfers.
• To get the highest throughput, use large QTSL values and maximize COUNT0. If COUNT0 is greater

than the QTSL specified in the event entry, the transfer will be split in several quantum transfers.
Specifying a large QTSL value will allow dMAX to move more data during each quantum transfer, and
therefore to achieve higher performance.

• Use of small QTSL values works better if low latency is required. If a new dMAX request arrives in the
middle of a data transfer, small QTSL values can help to reduce the dMAX reaction time. If small
QTSL values are used, dMAX will use smaller quantum transfers. Smaller quantum transfers take less
time to complete so the new request is processed more quickly.

• The burst type of transfers (where INDEX0 is equal to one) have the maximum throughput. To achieve
the maximum performance, the burst transfers should be used wherever possible. Data sorting
transfers (where INDEX0 ≠ 1) are slower than moving sequential data.

4.2.2 FIFO Transfer: Best Performance Tips
The following are tips on generating the best performance from FIFO transfers:
• When specifying a FIFO transfer use a block size (tap size) larger than one. Elements within the block

(tap) should be consecutive (use INDX0=1). Fulfilling this requirement helps to maximize utilization of
dMAX, external memory interface (EMIF) and the CPU for the following reasons:
1. The SDRAM memory is optimized for burst accesses of consecutive data. The circular buffer

(FIFO) holding long delay-line samples is usually placed in the external memory (SDRAM).
2. The dMAX controller is optimized to achieve the maximum performance when moving blocks of

consecutive data (INDEX0=1).
3. The CPU is most efficient when processing data in blocks.

• When possible, use large QTSL values for higher performance. Use of small QTSL values works better
in case low dMAX latency is required

• Specify the block size (tap size) top be a multiple of the QTSL value. This helps to best utilize dMAX
bandwidth to move the maximum amount of data in minimum number of quantum transfers.

• Specify the FIFO size to be a multiple of the block size.
Data is moved to/from FIFO in blocks; therefore, if a FIFO size is not a multiple of block size, a transfer
crossing the upper FIFO boundary will be split into two quantum transfers. The first quantum transfer
will move the first part of block data and will end at the upper FIFO boundary; and the second quantum
transfer would wrap around the upper FIFO boundary back to the FIFO base and move the remaining
data. This helps to best utilize dMAX bandwidth to move the maximum amount of data in the minimum
number of quantum transfers.

• Specify the value for each entry within the delay table to be a multiple of the block size. The entries
from the delay table specify offsets relative to the FIFO pointer. The data block should be transferred
to/from the FIFO locations pointed to by the delay table entries.
If a specified delay value is not a multiple of block size, the data transfer might cross the upper FIFO
boundary. If that happens, the transfer will be split into two quantum transfers. The first quantum
transfer will move the first part of block data and it will end at the upper FIFO boundary; the second
quantum transfer will wrap around the upper FIFO boundary back to the FIFO base and move the
remaining data.
If the delay value is a multiple of block size, transfer of a block of data always aligns with the FIFO
boundary. This helps to best utilize dMAX bandwidth to move the maximum amount of data in the
minimum number of quantum transfers.

• Put the FIFO descriptor in the internal memory for faster access by dMAX.
• Put delay tables (tables that guide the 2D FIFO transfer) in the internal memory for faster access by

dMAX.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

166 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Guidelines for Getting the Best dMAX Performance

4.2.3 One-Dimensional Burst Transfer: Best Performance Tips
The following are tips on generating the best performance from One-Dimensional burst transfers.
• To get the highest throughput, use large BURSTLEN. If CNT is greater than the BURSTLEN specified

in the transfer entry, the transfer will be split in several burst transfers. Specifying a large BURSTLEN
value will allow dMAX to move more data during each burst transfer, and therefore to achieve higher
performance.

• Use large NBURST. Specifying a large NBURST will allow dMAX to perform more burst transfers
before it checks for any higher priority pending transfer. This allows the dMAX to achieve higher
performance.

• Use of small BURSTLEN values works better if low latency is required. If a new dMAX request arrives
in the middle of a data transfer, small BURSTLEN values can help to reduce the dMAX reaction time.

• Use of small NBURST values avoids blocking higher priority pending transfers. Chose the NBURST
carefully to not starve the higher priority pending transfers and also to achieve maximum performance.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 167

www.ti.com

A

B

C

D

D
C
B
A

4.3 General Performance Transfer Performance
General Performance Transfer Performance

General-purpose data transfer performance is evaluated for three types of transfers, all of which have
different levels of performance:
• Sequential data copy form source to destination (SINDX0=1 and DINDX0=1)
• Sorting of sequential data (SINDX0=1 and DINDX0≠1 or SINDX0≠1 and DINDX0=1)
• Sorting of non-sequential Data (SINDX0≠1 and DINDX0≠1)
The three type of transfers are depicted in Figure 4-1.

Figure 4-1. Three Transfer Types Used to Collect Performance Data
SINDX0=1
DINDX0≠1

Source

SINDX0=1
DINDX0=1

Copy of

sequential
data

Source

Destination

SINDX0≠1
DINDX0=1

Destination

Source

SINDX0≠1
DINDX0≠1

Sorting of

non−sequential
data

Source

Destination

Destination

Two cases of
sorting sequential

data

C

D

A

B

A

B

C

D

A
B
C
D

A
B
C
D

D
C
B
A

D

A

B

C

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

168 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Transfer Duration and Latency

For sequential data copy, dMAX moves a block of sequential data from the source to the destination
(shown in the left panel).
For sequential data sorting (presented in the middle panel), dMAX either sorts a block of sequential data
from the source to the non-sequential locations at the destination, or sorts non-sequential source data to
sequential locations at the destination.
Sequential data sorting covers two cases:
• The sequential source data (SINDX0 =1) is sorted out to non-sequential destination locations

(DINDX0≠1), illustrated by the upper-middle panel.
• The non-sequential source data (SINDX0 ≠1) is sorted out to sequential destination locations

(DINDX0=1), illustrated by the lower-middle panel.
In non-sequential data sorting, both source and destination locations are non-sequential: SINDX0≠1 and
DINDX0≠1 (shown in the right panel).
The transfer duration is expressed in the number of dMAX clocks required to complete the transfer. The
following formula can be used to calculate bandwidth in bytes/s:

Data_Tput[Bytes/s] = dMAX_Clock_Freq[MHz] x Transfer_Size[Number of Elements] x Element_SIZE[Bytes]
Transfer Duration[Number of dMAX clocks]

where Data_Tput is data throughput expressed in Bytes/s, dMAX_Clock_Freq is frequency of the dMAX
controller in MHz, Transfer_Size is length of transfer in number of elements, and Element_SIZE is element
size expressed in bytes.

4.4 Transfer Duration and Latency

The transfer duration is measured in the number of dMAX clocks required to complete a data transfer. For
performance measurements purposes, the transfers are synchronized by using one synchronization event
(only one synchronization event is used to synchronize the complete data transfer). The transfer duration
is counted from the moment the event flag is cleared to the moment the CPU receives transfer-completed
notification, as shown in Figure 4-2. Transfer E0 presented in Figure 4-2 consists of quantum transfers
(E0(Q0), E0(Q1), E0(Q2) and E0(Q3)), and is synchronized to Event0.
The delay that the MAX module requires to respond to an event is described by latency. If the MAX
module is not busy, a new transfer request is serviced quickly with very low latency. If the MAX module is
in the middle of a transfer and another transfer request arrives, the new request will have to wait until
completion of the quantum transfer currently in progress.
The transfer latency measured in dMAX clocks is shown in Figure 4-2. In this example, the Event0 is used
to trigger a transfer E0. The MAX0 module is busy at the time when the Event0 arrives, so the new event
must wait until the current quantum transfer E1(Q0) completes. The latency is measured (expressed in
number of dMAX clocks) from the triggering to the moment when dMAX starts processing the new event
(the moment when the event flag gets cleared by dMAX).

Figure 4-2. Transfer Latency and Duration Measured in Number of dMAX Clocks

dMAX
clock

EventFlag0

MAX0 data
traffic

INT8

E1 (Q0) E0 (Q0) E0 (Q1) E0 (Q2) E0 (Q3)

Transfer latency measured in
number of dMAX clocks Transfer duration measured in

number of dMAX clocks

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 169

www.ti.com

General Purpose Transfer Latency

The transfer duration measurements are collected by using the Real Time Interrupt (RTI) module. The RTI
counter value is recorded immediately after triggering a dMAX transfer. The interrupt flag is polled by the
CPU. Immediately after dMAX indicates transfer completion by setting the interrupt flag, the CPU records
the new RTI counter value. A transfer duration is then calculated by subtracting the two recorded counter
values. Measured values are averaged over several runs, and the average value is used as transfer
duration

4.5 General Purpose Transfer Latency

The latency is not fixed and depends on overall dMAX loading. When the dMAX controller is busy, the
new event must wait to be processed until dMAX completes the current quantum transfer. If several
events in the same priority group arrive at the same time, the latency for the lowest priority event will be
equal to sum of quantum transfer durations of all higher-priority pending events.
The dMAX controller transfers throttled by the EMIF asynchronous ready signal, or dMAX transfers with
large QTSL values, increase dMAX latency by extended use of the MAX module resources. To improve
dMAX latency, granularity with which the dMAX controller breaks a long transfer into a number of small
quantum transfers can be increased, and a smaller quantum transfer size limit can be used. The
granularity is controlled by the QTSL value within the event entry. Using small quantum transfers allows
dMAX to evaluate the queue of events waiting to be processed more frequently. More frequent checking
of the event queue reduces latency, but increases the overall transfer time. The overall transfer time is
longer when the QTSL value is small, because dMAX moves a large number of small quantum transfers.
In other words, using smaller QTSL values improves system latency, but worsens system throughput.
Using large QTSL values improves system throughput, but worsens system latency. The overall transfer
time is shorter when the QTSL value is large because dMAX moves a small number of large quantum
transfers.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

170 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Transfers within the Internal Memory

4.6 Transfers within the Internal Memory
The internal memory is clocked at the same frequency as the CPU. Therefore, when both source and
destination are in the internal memory, dMAX transfers result in the highest throughput.

4.6.1 Copy of Sequential Data (SINDX0=1 and DINDX0=1)
The number of dMAX clock cycles required to copy a sequential data block from source in the internal
data memory, to a different location in the internal data memory of the DSP is presented in Table 4-1. The
cycle numbers are presented for different transfer counts, and different QTSL numbers. Figure 4-3 shows
the MAX module data throughput for copy of a sequential block of data when both source and destination
are in the internal memory (element size is 32-bit and QTSL is equal to 16).

Figure 4-3. MAX Module Data Throughput for Copy of a Sequential Block of Data when Both Source and

Destination are in Internal Memory (SINDX0=1 and DINDX0=1)
x 107 Internal memory data throughput for QTSL=16 and ESIZE=32

9

8

7

6

5

4

3

2

1

0 0 100 200 300 400 500 600
Transfer size (number of elements)

Note that MAX module performance does not steadily increase with the burst size increase. Performance
for dMAX can be described as an exponential saw tooth (Figure 4-3). The performance reaches peaks
when the first dimension of the transfer counter (COUNT0) is a multiple of the QTSL value. If the COUNT0
value is not a multiple of QTSL, the last quantum transfer will not completely utilize the MAX bandwidth.
When this is the case, all the quantum transfers except the last one moves QTSL number of elements,
while the last quantum transfer moves the remaining elements of the transfer - which is smaller than the
QTSL value. To clarify, the MAX module performance reaches the local maximums for transfers that move
QTSL number of elements in each quantum transfer. The MAX module performance reaches the local
minimums for transfers that move only one element in the last quantum transfer.
For example, it takes ~156 dMAX clocks (QTSL is set to 16) to transfer a burst of 16 sequential 32-bit
elements from source to destination in the internal memory. In this case, the transfer size is equal to the
QTSL value, and the MAX module will move all the elements in one quantum transfer. Increasing the
transfer size by four elements (from 16 to 20 elements) requires splitting the transfer into two quantum
transfers (the first quantum transfer of 16 elements and the second quantum transfer of four elements),
and this increases total transfer duration to ~250 of dMAX clocks. Increasing the transfer size by another
12 elements (from 20 to 32 elements) still requires splitting the transfer into two quantum transfers (now
both quantum transfers move 16 elements), and this increases total transfer duration to ~273 of dMAX
clocks.

M
ax

 m
od

ul
e

da
ta

 th
ro

ug
pu

t (
By

te
s/

s)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

www.ti.com

Transfers within the Internal Memory

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 171

Table 4-1. MAX Module Performance for Copy of a Block of Sequential Elements when both Source and Destination are in Internal Memory

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1
Q 379 714 1052 1385 1725 2057 2397 2730 3070 3403 3740 4075 4411 4748 5083 5417 10796 21546 43054 86057

T 4 130 215 301 305 475 561 645 730 821 901 990 1075 1160 1245 1335 1421 2795 5545 11051 22061
S 8
L

16

130

130

131

131

217

131

218

132

308

223

304

224

394

224

395

225

482

314

483

316

572

316

570

317

658

408

659

408

747

408

746

409

1451

778

2858

1513

5676

2989

11306

5929

ESIZE = 16 bits

1
Q
T 4

379

130

714

218

1052

309

1385

395

1725

483

2057

570

2397

660

2730

745

3070

837

3403

923

3740

1010

4075

1098

4411

1188

4748

1273

5083

1365

5417

1451

10796

2858

21546

5675

43054

11307

86057

22571
S 8
L

16

130

130

132

132

225

140

225

143

316

232

317

233

407

242

409

243

500

332

501

335

592

341

593

344

684

433

685

433

775

441

777

440

1518

844

2985

1640

5932

3244

11817

6441

ESIZE = 32 bits

1
Q
T 4

379

138

715

225

1052

318

1385

409

1725

503

2057

593

2397

689

2730

777

3070

871

3403

961

3740

1056

4075

1145

4411

1243

4748

1329

5083

1423

5417

1513

10796

2989

21546

5929

43054

11822

86057

23593
S 8
L

16

138

138

143

143

235

151

243

156

334

250

339

256

435

270

441

273

536

368

543

374

637

384

640

392

735

482

741

490

837

501

841

507

1641

974

3240

1900

6442

3754

12840

7465

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers within the Internal Memory

172 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

4.6.2 Sorting of Sequential Data (SINDX0≠1 and DINDX0=1, or SINDX0=1 and DINDX0≠1)
The number of dMAX clock cycles required to sort sequential data blocks to non-sequential locations,
when both source and destination locations are in the internal DSP memory, is presented in Table 4-2.
The cycle numbers are presented for different transfer counts, and different QTSL numbers.

Figure 4-4 shows the MAX module data throughput for sorting a sequential block of data when both
source and destination are in the internal memory (element size is 32-bit and QTSL is equal to 16).

Figure 4-4. MAX Module Data Throughput for Sorting of Sequential Block of Data when both Source and

Destination are in Internal Memory (SINDX0≠1, DINDX0=1)
x 107 Internal memory data throughput for QTSL=16 and ESIZE=32

6

5

4

3

2

1

0 0 100 200 300 400 500 600
Transfer size (number of elements)

Note that MAX module performance does not steadily increase with the burst size increase. Performance
for dMAX can be described as an exponential saw tooth. The performance reaches peaks when the first
dimension of the transfer counter (COUNT0) is a multiple of the QTSL value. If COUNT0 value is not a
multiple of QTSL, the last quantum transfer will not completely utilize the MAX bandwidth. When this is the
case, all quantum transfers except the last one have size equal to QTSL, while the last quantum transfer
moves the remaining elements of the transfer - which is smaller than QTSL value. To restate this, the
MAX module performance reaches the local maximums for transfers that move QTSL number of elements
in each quantum transfer. The MAX module performance reaches the local minimums for transfers that
move only one element in the last quantum transfer.

M
ax

 m
od

ul
e

da
ta

 th
ro

ug
pu

t (
By

te
s/

s)

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers within the Internal Memory

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 173

Table 4-2. MAX Module Performance for Sorting of Sequential Elements when both Source and Destination are in Internal Memory

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1
Q 409 768 1138 1496 1865 2224 2589 2952 3318 3680 4046 4408 4776 5136 5502 5864 11690 23336 46635 93224

T 4 150 250 359 460 569 673 779 883 989 1091 1199 1302 1409 1509 1619 1724 3404 6762 13484 26923
S 8
L

16

150

150

164

164

269

176

283

192

390

300

401

311

511

326

520

340

630

448

642

461

749

476

763

489

870

596

881

609

991

623

1000

636

1965

1233

3880

2425

7725

4813

15400

9577

ESIZE = 16 bits

1
Q
T 4

410

150

768

254

1138

360

1496

465

1866

575

2224

676

2594

785

2952

889

3322

1000

3680

1101

4050

1210

4408

1315

4778

1420

5136

1525

5506

1635

5864

1739

11694

3435

23336

6825

46638

13610

93224

27177
S 8
L

16

150

150

165

165

274

185

288

195

393

303

410

320

515

337

532

351

638

455

654

473

762

491

774

504

881

608

897

626

1002

643

1019

657

1997

1271

3949

2493

7854

4943

15658

9837

ESIZE = 32 bits

1
Q
T 4

410

150

771

257

1138

369

1500

475

1866

582

2226

690

2594

800

2956

905

3322

1017

3683

1123

4050

1231

4407

1337

4778

1448

5136

1553

5506

1665

5864

1771

11694

3498

23339

6955

46638

13868

93227

27691
S 8
L

16

150

150

166

166

278

189

295

205

403

312

422

331

528

351

546

363

655

473

671

488

784

512

800

527

906

634

922

653

1034

673

1050

685

2062

1335

4073

2617

8110

5198

16170

10345

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers within the Internal Memory

174 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

4.6.3 Sorting of Non-Sequential Data (SINDX0≠1 and DINDX0≠1)
The number of dMAX clock cycles required to sort non-sequential data when both source and destination
locations are in the internal data memory of the DSP is presented in Table 4-3. The cycle numbers are
presented for different transfer counts, and different QTSL numbers.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers within the Internal Memory

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 175

Table 4-3. MAX Module Performance for Sorting of Non-Sequential Elements when both Source and Destination are in Internal Memory

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1
Q 443 834 1231 1629 2026 2417 2816 3211 3608 4004 4404 4794 5191 5589 5985 6377 12715 25389 50731 101419

T 4 182 315 458 589 732 863 1006 1137 1280 1411 1554 1685 1828 1959 2102 2233 4432 8809 17583 35113
S 8
L

16

183

183

222

222

359

271

402

307

543

448

585

488

721

536

764

577

905

718

947

755

1083

806

1126

844

1267

985

1309

1022

1445

1073

1489

1111

2940

2181

5832

4315

11628

8589

23208

17131

ESIZE = 16 bits

1
Q
T 4

443

183

834

315

1231

455

1629

589

2026

728

2417

863

2816

1002

3211

1137

3608

1279

4004

1411

4404

1552

4794

1685

5191

1826

5589

1959

5985

2099

6377

2233

12715

4430

25389

8809

50731

17581

101419

35113
S 8
L

16

183

183

223

223

365

271

403

312

544

448

587

493

727

537

769

576

906

717

948

760

1085

805

1128

843

1268

984

1310

1027

1448

1072

1489

1110

2940

2180

5836

4314

11629

8588

23212

17130

ESIZE = 32 bits

1
Q
T 4

443

183

833

314

1231

458

1628

588

2026

732

2416

862

2817

1006

3212

1136

3608

1280

4005

1410

4403

1554

4793

1684

5191

1828

5588

1958

5986

2102

6376

2232

12717

4431

25388

8808

50731

17583

101419

35112
S 8
L

16

183

183

224

224

361

271

402

311

545

449

587

492

722

537

764

575

907

716

949

759

1084

804

1126

842

1269

983

1311

1026

1446

1071

1488

1109

2942

2179

5832

4313

11630

8587

23208

17129

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

176 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

Transfers Between the Internal Memory and McASP

4.7 Transfers Between the Internal Memory and McASP
To evaluate data throughput between the McASP and the internal memory, two cases of transfers are
considered:
1. In the first case, the burst of sequential data is moved between the McASP DMA port and sequential

locations in the internal memory; the dMAX throughput is higher. In this case, CPU involvement is
required to interleave/deinterleave data. For McASP receive, the CPU must de-interleave data since
subsequent elements transferred from the McASP DMA port belong to different serializers. With a
McASP transmit, the CPU must interleave data since consecutive elements to be sent to the McASP
DMA port belong to different serializers.

2. In the second case, a burst of sequential data is moved from the McASP DMA port to non-sequential
locations in the internal memory for McASP receive (or data from non-sequential locations in the
internal memory is moved to the McASP DMA port for McASP transmit). In this case the dMAX
controller throughput is lower. For a McASP receive, dMAX moves and de-interleaves data from the
McASP DMA port to a set of receive buffers (since subsequent elements transferred from the McASP
DMA port belong to different serializers). For a McASP transmit, dMAX interleaves data from a set of
transmit buffers and moves the data to the McASP DMA port (since consecutive elements to be sent to
the McASP DMA port belong to different serializers).

MAX module performance is presented in the number of dMAX clocks required to complete a transfer.
The data presented can be used to determine the loading of dMAX when servicing the McASP peripheral
and/or the maximum sampling rate in the system.
For example, if dMAX is performing data interleave/de-interleave, the tables from Section 4.6.2 should be
used. In this case, each serializer pin has an associated buffer in the DSP memory, and dMAX moves the
data between the buffer and the McASP peripheral. If one serializer pin is used per each clock domain
(total of six pins), the total number of dMAX clocks required to move the McASP data for all six clock
domains can be calculated from Table 4-4 and Table 4-5. It takes ~137 dMAX clocks to receive a sample
from the McASP DMA port, and it takes ~142 dMAX clocks to send a sample to the McASP DMA port.
Assuming that there are three receive and three transmit McASP pins, it will take ~837 dMAX clocks to
service all six clock domains (one serializer pin per clock domain). If dMAX runs at 150MHz, it takes
~5.58s to execute 837 dMAX clocks.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

www.ti.com

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 177

Transfers Between the Internal Memory and McASP

4.7.1 Copy of Sequential Data (SINDX0=1 and DINDX0=1)
In this case only one receive buffer, and one transmit buffer is used for all serializer pins from the same
clock domain. The dMAX controller achieves higher throughput since it is bursting on both ends (source
and destination). The data in the buffers is interleaved, so before processing the CPU must perform data
sorting.

4.7.1.1 McASP Receive
The number of dMAX clock cycles required to copy sequential data from McASP DMA port to sequential
destination locations in the internal data memory is presented in Table 4-4. The cycle numbers are
presented for different transfer counts, and different QTSL numbers.
Since the dMAX controller bursts on both ends (source and destination) the throughput is higher.
However, the CPU must de-interleave the data before processing, since subsequent elements transferred
from the McASP DMA port belong to different serializers.

Table 4-4. MAX Module Performance for Copy of Block of Sequential Elements from McASP DMA

Port Source to Destination in Internal Memory

No. dMAX
Clocks

1

2

3

4

5

Transfer Size (COUNT0) in Number of Elements
6 7 8 9 10 11

12

13

14

15

16

ESIZE = 32 bits
1

Q
T 4

130

130

208

130

293

131

378

132

462

222

540

223

625

222

705

223

794

310

872

314

957

314

1038

314

1126

402

1204

405

1289

406

1369

405
S 8
L

16

130

130

130

130

131

131

132

132

138

138

139

139

143

143

140

140

231

147

231

147

231

148

231

148

238

155

239

156

239

156

241

156

4.7.1.2 McASP Transmit

The number of dMAX clock cycles required to copy sequential data from source in the internal data
memory to McASP DMA port is presented in Table 4-5. The cycle numbers are presented for different
transfer counts, and different quantum transfer size limit (QTSL) numbers.
Since the dMAX controller bursts on both ends (source and destination) the throughput is higher, but
before start the CPU must prepare and order data in the internal memory so that each subsequent
element, within a block to be transferred, belongs to different serializer

Table 4-5. MAX Module Performance for Copy of a Block of Sequential Elements from Source in

the Internal Memory to McASP DMA Port Destination

No. dMAX
Clocks

1

2

3

4

5

Transfer Size (COUNT0) in Number of Elements
6 7 8 9 10 11

12

13

14

15

16

ESIZE = 32 bits
1

Q
T 4

130

130

215

130

304

137

385

137

476

228

560

226

645

232

729

230

821

320

905

321

990

327

1074

323

1163

417

1249

413

1336

419

1420

419
S 8
L

16

130

130

130

130

137

137

137

137

137

137

138

138

145

145

146

146

235

147

236

147

238

153

238

154

242

154

240

155

246

162

247

163

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers Between the Internal Memory and McASP

178 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

4.7.2 Sorting of Sequential Data (SINDX0=1 and DINDX0≠1 or SINDX0≠1 and DINDX0=1)
The dMAX controller achieves lower throughput than discussed in Section 4.7.1 since it is bursting on the
McASP DMA port end and it is sorting data on the memory end. In this case each serializer pin has
associated buffer in the DSP memory, and dMAX moves the data between the buffer and the McASP
peripheral

4.7.2.1 McASP Receive
The number of dMAX clock cycles required to sort sequential data from source in the McASP to
non-sequential locations in the internal data memory of the DSP is presented in Table 4-6. The cycle
numbers are presented for different transfer counts, and different QTSL numbers.

Table 4-6. MAX Module Performance for Sorting of Sequential Elements from McASP DMA Port

Source to Non-Sequential Destination in Internal Memory

No. dMAX
Clocks

1

2

3

4

5

Transfer Size (COUNT0) in Number of Elements
6 7 8 9 10 11

12

13

14

15

16

ESIZE = 32 bits
1

Q
T 4

137

137

221

140

312

147

403

150

494

241

585

248

677

255

762

256

853

353

945

352

1036

359

1121

365

1212

457

1303

463

1395

470

1484

469
S 8
L

16

137

137

140

140

147

147

150

150

156

156

157

157

164

164

169

169

261

173

263

178

274

184

274

183

282

190

283

194

288

198

294

204

4.7.2.2 McASP Transmit

The number of dMAX clock cycles required to sort non-sequential data from source in the internal DSP
memory to McASP DMA port destinations is presented in Table 4-7. The cycle numbers are presented for
different transfer counts, and different QTSL numbers.

Table 4-7. MAX Module Performance for Sorting of Non-Sequential Data from Source in the Internal

Memory to McASP DMA Port Destination

No. dMAX
Clocks

1

2

3

4

5

Transfer Size (COUNT0) in Number of Elements
6 7 8 9 10 11

12

13

14

15

16

ESIZE = 32 bits
1

Q
T 4

137

142

228

150

325

159

416

166

515

260

606

270

703

280

795

287

892

384

983

392

1078

403

1172

411

1264

508

1359

515

1452

528

1544

535
S 8
L

16

139

142

150

150

159

160

166

166

176

176

183

183

191

191

199

199

294

209

307

216

314

225

321

232

334

242

341

249

348

262

354

264

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 179

Transfers Between Internal Memory and EMIF SDRAM

4.8 Transfers Between Internal Memory and EMIF SDRAM
Throughput to the SDRAM interface depends on the SDRAM setting and on clock ratio between dMAX
and the external memory interface (EMIF). In the following sections, the assumption is that ratio between
dMAX and the EMIF clock domains is 1.5.

4.8.1 Copy of Sequential Data (SINDX0=1 and DINDX0=1)
The number of dMAX clock cycles required to copy a block of sequential data from source (SINDX0 = 1)
in the internal data memory to different location in the SDRAM memory (DINDX0 = 1) when EMIF is 32-bit
wide is presented in Table 4-8. The cycle numbers are presented for different transfer counts, and
different QTSL numbers. Note that for writes to the SDRAM performance numbers look very similar to
performance numbers from Table 4-1 describing writes to the internal memory. Writes to the SDRAM and
to the internal memory have similar performance due to the internal FIFOs inside bus bridges.
The number of dMAX clock cycles required to copy a block of sequential data from source (SINDX0 = 1)
in the SDRAM memory to sequential locations in the internal memory (DINDX0 = 1) when EMIF is 32-bit
wide is presented in Table 4-9. The cycle numbers are presented for different transfer counts, and
different QTSL numbers.
The number of dMAX clock cycles required to copy a block of sequential data from source (SINDX0 = 1)
in the internal data memory to different location in the SDRAM memory (DINDX0 = 1) when EMIF is 16-bit
wide is presented in Table 4-10. The cycle numbers are presented for different transfer counts, and
different QTSL numbers.
The number of dMAX clock cycles required to copy a block of sequential data from source (SINDX0 = 1)
in the SDRAM memory to different location in the internal memory (DINDX0 = 1) when EMIF is 16-bit wide
is presented in Table 4-11. The cycle numbers are presented for different transfer counts, and different
QTSL numbers.
Note that the MAX module performance doesn’t steadily increase with the burst size increase. dMAX
performance can be described as an exponential sawtooth. The performance reaches peaks when the first
dimension of the transfer counter (COUNT0) is a multiple of the QTSL value. In case COUNT0 value is
not a multiple of the QTSL, the last quantum transfer will not completely utilize the MAX module
bandwidth. In this case, all quantum transfers except the last one have size equal to QTSL, while the last
quantum transfer moves the remaining elements of the transfer - which is smaller than the QTSL value. In
other words, the MAX module performance reaches the local maximums for transfers that move the QTSL
number of elements in each quantum transfer. The MAX module performance reaches the local minimums
for transfers that move only one element in the last quantum transfer.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers Between Internal Memory and EMIF SDRAM

180 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Table 4-8. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in Internal Memory and Destination is in the
SDRAM (EMIF is 32-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1
Q 379 714 1052 1385 1725 2057 2397 2730 3070 3403 3740 4075 4411 4748 5083 5417 10796 21546 43054 86057

T 4 130 215 301 305 475 561 645 730 821 901 990 1075 1160 1245 1335 1421 2795 5545 11051 22061
S 8
L

16

130

130

130

131

216

131

217

132

307

223

307

224

392

224

397

225

483

314

483

316

568

316

570

317

659

408

659

408

744

408

748

409

1454

778

2859

1513

5678

2989

11308

5929

ESIZE = 16 bits

1
Q
T 4

379

130

714

218

1052

309

1385

395

1725

483

2057

570

2397

660

2730

745

3070

837

3403

923

3740

1010

4075

1098

4411

1188

4748

1273

5083

1365

5417

1451

10796

2858

21546

5675

43054

11307

86057

22571
S 8
L

16

130

130

138

138

223

138

225

139

315

232

317

234

406

239

410

241

498

331

505

337

591

339

594

340

683

430

685

437

774

439

777

441

1518

841

2989

1641

5934

3244

11817

6442

ESIZE = 32 bits

1
Q
T 4

378

137

716

226

1054

322

1387

413

1726

506

2057

593

2396

690

2728

781

3067

874

3400

962

3738

1058

4076

1147

4412

1242

4747

1329

5086

1426

5417

1516

10796

2990

21547

5932

43050

11822

86057

23594
S 8
L

16

137

137

139

139

238

154

240

156

338

254

343

257

438

266

440

273

538

371

540

375

638

383

642

392

738

485

742

487

838

502

842

504

1642

973

3242

1897

6443

3757

12842

7466

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers Between Internal Memory and EMIF SDRAM

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 181

Table 4-9. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in SDRAM and Destination is in Internal
Memory (EMIF is 32-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1 Q 449 850 1254 1652 2056 2458 2863 3260 3664 4067 4470 4867 5272 5674 6078 6477 12917 25790 51538 103030

T 4 150 247 356 455 560 657 761 865 969 1067 1171 1269 1373 1476 1578 1679 3314 6567 13112 26180
S 8
L

16

150

150

150

150

254

151

254

154

358

259

358

260

464

262

463

263

568

369

568

368

674

374

674

374

779

480

778

479

884

485

883

485

1726

930

3404

1817

6766

3594

13494

7145

ESIZE = 16 bits

1
Q
T 4

449

150

851

254

1254

362

1652

463

2056

572

2459

673

2863

781

3260

883

3664

992

4067

1094

4471

1202

4867

1303

5272

1412

5674

1513

6078

1621

6476

1724

12915

3407

25768

6763

51535

13494

103030

26941
S 8
L

16

150

150

153

153

262

163

263

163

372

270

374

274

482

284

485

284

591

285

595

391

704

394

706

404

813

509

818

514

926

524

928

525

1817

1006

3593

1965

7145

3885

14254

7725

ESIZE = 32 bits

1
Q
T 4

449

157

851

262

1254

376

1652

485

2056

599

2459

707

2863

821

3260

928

3664

1043

4067

1151

4471

1265

4867

1372

5272

1487

5674

1595

6078

1710

6476

1817

12915

3594

25768

7146

51535

14256

103030

28466
S 8
L

16

157

157

164

165

277

174

285

182

397

296

404

303

517

318

525

326

637

437

645

443

758

456

765

465

877

577

885

584

997

598

1005

606

1966

1171

3885

2298

7727

4555

15411

9066

ESIZE = 64 bits

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers Between Internal Memory and EMIF SDRAM

182 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Table 4-10. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in Internal Memory and Destination is in the

SDRAM (EMIF is 16-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1 Q 378 716 1053 1387 1726 2057 2396 2728 3067 3403 3738 4076 4413 4747 5086 5417 10796 21547 43050 86057

T 4 130 215 300 384 475 560 644 730 820 904 990 1075 1160 1244 1335 1420 2794 5544 11822 22060
S 8
L

16

130

130

130

130

220

137

219

137

307

222

307

223

392

227

396

229

483

314

483

315

568

317

570

319

659

406

659

407

711

412

747

409

1454

782

2860

1517

6445

3758

11307

5933

ESIZE = 16 bits

1
Q
T 4

379

130

714

218

1052

309

1385

395

1725

483

2057

570

2397

660

2730

745

3070

837

3403

923

3740

1010

4075

1098

4411

1188

4748

1273

5083

1365

5417

1451

10796

2858

21546

5675

43054

11307

86057

22571
S 8
L

16

130

130

137

137

222

138

225

139

314

230

317

237

406

239

410

241

498

331

505

337

591

339

594

340

683

430

685

437

774

439

777

441

1518

841

2989

1641

5934

3244

11817

6442

ESIZE = 32 bits

1
Q
T 4

378

137

716

225

1054

322

1387

413

1726

506

2057

594

2396

690

2728

777

3067

874

3400

961

3738

1058

4076

1148

4412

1242

4747

1332

5086

1426

5417

1517

10796

2990

21547

5930

43050

11822

86057

23596
S 8
L

16

137

137

139

139

238

154

240

156

338

254

341

257

438

267

440

274

538

371

540

375

638

384

642

392

738

485

742

489

838

502

842

504

1642

974

3242

1899

6443

3755

12842

7466

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers Between Internal Memory and EMIF SDRAM

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 183

Table 4-11. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in SDRAM and Destination is in Internal
Memory (EMIF is 16-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1 Q 455 859 1269 1677 2088 2493 2903 3307 3717 4127 4535 4941 5351 5755 6165 6576 13108 26172 52313 104580

T 4 150 254 358 462 568 670 780 881 990 1091 1198 1302 1407 1510 1621 1721 3405 6761 13486 26929
S 8
L

16

150

150

150

150

260

156

260

158

365

267

369

268

475

273

476

275

583

384

586

386

690

390

691

392

800

497

801

503

904

504

910

510

1777

979

3501

1913

6960

3787

13875

7530

ESIZE = 16 bits

1
Q
T 4

455

156

859

260

1269

371

1677

476

2088

587

2493

693

2903

801

3307

910

3717

1021

4127

1126

4535

1236

4941

1341

5351

1451

5755

1556

6165

1666

6576

1772

13108

3501

26172

6956

52313

13877

104580

27712
S 8
L

16

156

156

158

158

270

170

274

173

388

288

393

291

504

303

510

306

622

420

626

423

738

436

744

438

856

552

861

555

972

568

977

570

1914

1103

3785

2154

7532

4270

15022

8493

ESIZE = 32 bits

1
Q
T 4

455

163

859

275

1270

395

1678

510

2087

629

2492

743

2903

864

3307

977

3717

1097

4127

1212

4535

1331

4941

1446

5351

1565

5755

1680

6165

1800

6576

1915

13108

3787

26172

7530

52313

15024

104580

30005
S 8
L

16

163

157

173

173

295

194

305

209

427

327

437

341

560

358

570

372

691

490

702

505

824

524

833

536

955

654

966

668

1088

689

1097

700

2159

1363

4265

2681

8500

5323

16946

10604

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

Transfers Between Internal Memory and EMIF SDRAM

www.ti.com

4.8.2 Sorting of Sequential Data (SINDX0≠1 and DINDX0=1 or SINDX0 = 1 and DINDX0≠1)
The number of dMAX clock cycles required to sort non-sequential data from source (SINDX0 ≠ 1) in the
internal data memory to sequential locations in the SDRAM (DINDX0 = 1) is presented in Table 4-12 for
32-bit EMIF and in Table 4-14 for 16-bit EMIF. The cycle numbers are presented for different transfer
counts, and different QTSL numbers.

The number of dMAX clock cycles required to sort sequential data from source (SINDX0 = 1) in the
SDRAM to non-sequential locations in the internal data memory (DINDX0 ≠ 1) is presented in Table 4-13
for 32-bit EMIF and in Table 4-15 for 16-bit EMIF. The cycle numbers are presented for different transfer
counts, and different QTSL numbers.
Note that dMAX module performance doesn’t steadily increase with the burst size increase. dMAX
performance can be described as an exponential sawtooth. The performance reaches peaks when the first
dimension of the transfer counter (COUNT0) is a multiple of the QTSL value. If the COUNT0 value is not a
multiple of the QTSL, the last quantum transfer will not completely utilize the MAX module bandwidth. In
this case, all quantum transfers except the last one have size equal to the QTSL, while the last quantum
transfer moves the remaining elements of the transfer - which is smaller than the QTSL value. The MAX
module performance reaches the local maximums for transfers that move the QTSL number of elements
in each quantum transfer. The MAX module performance reaches the local minimums for transfers that
move only one element in the last quantum transfer.

184 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers Between Internal Memory and EMIF SDRAM

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 185

Table 4-12. MAX Module Performance for Sorting Block of Non-Sequential Elements from Source in Internal Memory to Sequential Locations at
Destination in SDRAM (EMIF is 32-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1
Q 410 776 1146 1513 1882 2250 2618 2985 3354 3724 4090 4460 4826 5194 5562 5931 11821 23597 47149 94249

T 4 163 280 398 516 634 752 870 988 1106 1224 1342 1460 1578 1696 1814 1932 3820 7596 15148 30252
S 8
L

16

163

163

190

190

313

224

340

252

458

373

491

401

609

434

635

461

760

583

787

611

905

644

938

672

1056

793

1082

821

1207

854

1234

881

2430

1727

4810

3401

9582

6767

19114

13481

ESIZE = 16 bits

1
Q
T 4

410

163

780

280

1146

403

1512

519

1882

638

2251

755

2618

880

2984

997

3354

1114

3724

1231

4090

1356

4460

1473

4826

1590

5194

1707

5562

1832

5931

1949

11821

3852

23597

7661

47149

15277

94249

30509
S 8
L

16

163

163

196

196

314

229

346

256

465

379

497

407

615

440

648

472

766

591

799

624

917

654

950

684

1068

805

1101

834

1220

867

1252

900

2460

1757

4876

3468

9708

6893

19372

13740

ESIZE = 32 bits

1
Q
T 4

410

166

780

2876

1146

410

1512

528

1882

652

2251

770

2618

894

2984

1012

3354

1136

3724

1252

4090

1378

4460

1496

4826

1620

5194

1736

5562

1862

5931

1978

11821

3915

23597

7786

47149

15531

94249

31019
S 8
L

16

166

166

196

196

320

236

354

263

478

386

510

419

628

458

662

485

785

610

819

643

943

676

975

710

1093

834

1127

861

1250

901

1284

928

2527

1818

5004

3592

9967

7146

19884

14248

Table 4-13. MAX Module Performance for Sorting of Block of Sequential Locations from Source in SDRAM to Non-Sequential Destination

Locations in Internal Memory (EMIF is 32-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1
Q 475 907 1340 1770 2205 2634 3070 3500 3934 4365 4796 5228 5661 6089 6525 6954 13874 27709 55375 110708

T 4 169 287 411 528 652 775 898 1017 1140 1256 1383 1504 1627 1745 1869 1985 3933 7819 15605 31163
S 8
L

16

169

169

181

181

305

196

317

209

442

334

453

347

579

367

591

375

718

504

729

513

855

532

867

546

993

669

1005

683

1131

704

1143

710

2252

1387

4455

2726

8878

5419

17714

10795

ESIZE = 16 bits

1
Q
T 4

476

169

908

293

1340

417

1770

535

2205

660

2634

784

3070

908

3500

1029

3934

1154

4365

1274

4796

1399

5228

1523

5661

1647

6089

1765

6525

1890

6954

2014

13874

3983

27709

7918

55375

15794

110708

31544
S 8
L

16

169

169

183

183

310

204

326

218

451

341

465

357

592

376

607

389

733

517

747

530

873

551

890

563

1016

689

1029

706

1155

722

1170

740

2302

1438

4554

2827

9071

5614

18097

11181

ESIZE = 32 bits

1
Q
T 4

476

171

908

299

1340

424

1770

549

2205

678

2634

801

3070

931

3500

1055

3934

1180

4365

1305

4796

1434

5228

1557

5661

1686

6089

1810

6525

1936

6954

2060

13874

4080

27709

8110

55375

16179

110708

32320
S 8
L

16

172

171

190

190

319

210

334

231

464

357

484

374

611

396

629

416

758

541

778

559

905

581

922

600

1053

727

1072

745

1199

766

1217

787

2395

1533

4744

3019

9451

5997

18866

11950

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

Transfers Between Internal Memory and EMIF SDRAM

www.ti.com

Table 4-14. MAX Module Performance for Sorting Block of Non-Sequential Elements from Source in Internal Memory to Sequential Locations at

Destination in SDRAM (EMIF is 16-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1 Q 410 776 1146 1513 1882 2250 2618 2985 3354 3724 4090 4460 4826 5194 5562 5931 11821 23597 47149 94249

T 4 163 280 398 516 634 752 870 988 1106 1224 1342 1460 1578 1696 1814 1932 3820 7596 15148 30252
S 8
L

16

163

163

189

190

313

222

340

252

458

373

491

401

609

434

635

461

760

583

787

611

905

644

938

672

1056

793

1082

821

1207

854

1234

881

2430

1727

4810

3401

9582

6767

19114

13481

ESIZE = 16 bits

1
Q
T 4

410

163

780

281

1146

401

1512

519

1882

638

2251

755

2618

880

2984

997

3354

1114

3724

1231

4090

1356

4460

1473

4826

1590

5194

1707

5562

1852

5931

1949

11821

3852

23597

7661

47149

15277

94249

30509
S 8
L

16

163

163

196

196

313

229

346

256

465

379

497

407

615

440

648

472

766

591

799

624

917

654

950

684

1068

805

1101

834

1220

867

1252

900

2460

1757

4876

3468

9708

6893

19372

13740

ESIZE = 32 bits

1
Q
T 4

410

165

780

287

1146

410

1512

528

1882

652

2251

770

2618

894

2984

1012

3354

1136

3724

1252

4090

1378

4460

1496

4826

1620

5194

1736

5562

1862

5931

1978

11821

3915

23597

7786

47149

15531

94249

31019
S 8
L

16

166

165

196

196

320

236

354

263

478

386

510

419

628

458

662

485

785

610

819

643

943

676

975

710

1093

834

1127

861

1250

901

1284

928

2527

1819

5004

3592

9967

7146

19884

14248

186 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

Transfers Between Internal Memory and EMIF SDRAM

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 187

Table 4-15. MAX Module Performance for Sorting of Block of Sequential Locations from Source in the SDRAM to Non-Sequential Destination
Locations in Internal Memory (EMIF is 16-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

28

Transfer Size
32 36

(COUNT0)
40

in Number of Elements
44 48 52

56

60

64

128

256

512

1024

ESIZE = 8 bits

1 Q 484 917 1360 1795 2235 2672 3110 3545 3988 4423 4862 5299 5738 6174 6616 7052 14067 28095 56183 112321

T 4 169 291 417 535 659 784 908 1027 1154 1275 1398 1520 1647 1765 1889 2014 3983 7917 15799 31546
S 8
L

16

169

169

183

183

307

204

322

216

450

339

465

355

589

373

603

388

728

512

747

530

871

546

885

564

1010

688

1029

702

1154

722

1166

734

2297

1432

4551

2823

9068

5609

18094

11179

ESIZE = 16 bits

1
Q
T 4

484

171

917

297

1360

424

1795

547

2235

678

2672

801

3110

929

3545

1054

3988

1180

4423

1303

4862

1434

5299

1557

5738

1683

6174

1809

6616

1936

7052

2059

14067

4080

28095

8110

56183

16180

112321

32318
S 8
L

16

171

171

190

190

320

212

336

231

464

358

485

375

611

399

629

417

755

543

779

561

904

583

923

602

1052

728

1072

746

1198

768

1217

788

2397

1534

4745

3020

9457

5998

18865

11950

ESIZE = 32 bits

1
Q
T 4

483

176

918

310

1360

443

1795

574

2235

706

2672

835

3110

973

3545

1103

3988

1234

4423

1364

4862

1500

5299

1627

5738

1763

6174

1894

6616

2027

7052

2155

14067

4273

28095

8496

56183

16951

112321

33852
S 8
L

16

177

177

203

203

334

230

360

254

494

386

518

412

654

440

676

462

812

595

836

622

971

650

996

673

1131

806

1155

831

1290

859

1311

882

2585

1725

5128

3403

10221

6765

20391

13483

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

188 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

4.9 One-Dimensional Burst Transfer Performance
To evaluate data throughput for One-Dimensional Burst transfers, four cases of transfers are considered:
• In the first case, the burst of sequential data is moved between sequential locations in the internal

memory; the dMAX throughput is higher.
• In the second case, the burst of sequential data is moved between sequential locations in the internal

memory to sequential locations in the external memory.
• In the third case, the burst of sequential data is moved between sequential locations in the external

memory to sequential locations in the internal memory.
• In the fourth case, the burst of sequential data is moved between sequential locations in the external

memory.
MAX module performance is presented in the number of dMAX clocks required to complete a transfer.
The data presented can be used to determine the loading of dMAX when performing 1DN transfers using
different NBURSTS, BURSTLEN and different combination of source and destination locations.
Throughput to the SDRAM interface depends on the SDRAM setting and on clock ratio between dMAX
and the external memory interface (EMIF). In the following sections, the assumption is that ratio between
dMAX and the EMIF clock domains is 1.5. For transfer cases that involve SDRAM, throughput numbers
are provided for the case when EMIF is 16-bit wide and for the case when EMIF is 32-bit wide.

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 189

www.ti.com

One-Dimensional Burst Transfer Performance

Table 4-16. MAX Module Performance for Moving Sequential Data - Both Source and Destination are in Internal Memory

No. dMAX
Clocks

4

16

32

64

Transfer Size (CNT) in Number of Bytes
128 256

384

512

768

1024

Burst Length = 4 bytes

N
U

B
U

S
T

Burst Length = 16 bytes
N
U

B
U

S
T

Burst Length = 32 bytes
N
U

B
U

S
T

Burst Length = 64 bytes
N
U

B
U

S
T

R

M

R

M

R

M

R

M

1 57 216 428 849 1700 3397 5091 6785 10180 13572

4 57 107 212 419 835 1668 2500 3331 4997 6659

8 57 107 177 345 692 1380 2067 2757 4132 5508

16 57 107 177 310 618 1234 1850 2466 3698 4930

1 57 62 121 240 475 947 1420 1892 2837 3779

4 57 62 86 132 261 513 772 1028 1539 2052

8 58 62 86 132 223 443 664 884 1325 1763

16 58 62 86 132 223 408 629 811 1217 1619

1 58 62 72 135 272 540 807 1077 1612 2148

4 58 62 72 100 163 324 485 643 965 1283

8 58 62 72 100 163 288 447 573 856 1140

16 57 62 72 100 163 288 412 534 820 1066

1 58 62 72 86 170 335 503 667 1000 1332

4 58 62 72 86 135 226 359 450 674 898

8 58 62 72 86 135 226 321 415 639 828

16 58 62 72 86 135 226 321 415 604 792

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

190 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Table 4-17. MAX Module Performance for Moving Sequential Data - Source is in Internal Memory
and Destination is in External Memory (EMIF is 32 bits Wide)

No. dMAX
Clocks

4

16

32

Transfer Size (CNT) in Number of Bytes
64 128 256 384

512

768

1024

Burst Length = 4 bytes
N
U

B
U

S
T

Burst Length = 16 bytes
N
U

B
U

S
T

Burst Length = 32 bytes
N
U

B
U

S
T

Burst Length = 64 bytes
N
U

B
U

S
T

R

M

R

M

R

M

R

M

1 55 216 427 850 1700 3396 5091 6787 10180 13572

4 55 107 212 419 835 1668 2499 3331 4995 6659

8 55 107 175 347 692 1379 2067 2754 4132 5508

16 55 107 175 310 618 1234 1850 2466 3698 4930

1 55 62 121 240 475 947 1420 1892 2835 3779

4 55 62 86 132 259 514 772 1028 1539 2051

8 55 62 86 132 223 443 664 884 1323 1763

16 55 62 86 132 223 408 626 811 1215 1619

1 55 62 70 136 272 539 807 1074 1612 2148

4 55 62 70 100 163 324 483 643 963 1283

8 55 62 70 100 163 287 447 571 856 1140

16 55 62 70 100 163 287 412 534 819 1066

1 55 62 70 86 170 335 501 667 1000 1332

4 55 62 70 86 132 226 357 450 674 898

8 55 62 70 86 133 226 321 415 639 828

16 55 62 70 86 133 226 321 415 604 792

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

www.ti.com

One-Dimensional Burst Transfer Performance

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 191

Table 4-18. MAX Module Performance for Moving Sequential Data - Source is in Internal Memory
and Destination is in External Memory (EMIF is 16 bits Wide)

No. dMAX
Clocks

4

16

32

Transfer Size (CNT) in Number of Bytes
64 128 256 384

512

768

1024

Burst Length = 4 bytes
N
U

B
U

S
T

Burst Length = 16 bytes
N
U

B
U

S
T

Burst Length = 32 bytes
N
U

B
U

S
T

Burst Length = 64 bytes
N
U

B
U

S
T

R

M

R

M

R

M

R

M

1 55 216 427 849 1700 3395 5091 6787 10180 13572

4 55 107 212 419 835 1668 2499 3331 4996 6659

8 55 107 174 346 692 1379 2067 2755 4132 5508

16 55 107 175 310 618 1234 1850 2466 3698 4930

1 55 62 121 240 475 947 1420 1892 2835 3779

4 55 62 86 132 260 515 772 1028 1539 2051

8 55 62 86 132 223 443 664 884 1323 1763

16 55 62 86 132 223 408 627 811 1213 1619

1 55 62 70 137 272 539 807 1075 1612 2148

4 55 62 70 100 163 324 483 643 963 1283

8 55 62 70 100 163 287 447 571 856 1140

16 55 62 70 100 163 287 412 534 818 1066

1 55 62 70 86 170 335 500 667 1000 1332

4 55 62 70 86 142 253 393 504 753 1005

8 55 62 70 86 142 253 365 476 728 950

16 55 62 70 86 142 254 365 476 699 922

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

One-Dimensional Burst Transfer Performance

192 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Table 4-19. MAX Module Performance for Moving sequential Data - Source is in External Memory
and Destination is in Internal Memory (EMIF is 32 bits Wide)

No. dMAX
Clocks

4

16

32

Transfer Size (CNT) in Number of Bytes
64 128 256 384

512

768

1024

Burst Length = 4 bytes
N
U

B
U

S
T

Burst Length = 16 bytes
N
U

B
U

S
T

Burst Length = 32 bytes
N
U

B
U

S
T

Burst Length = 64 bytes
N
U

B
U

S
T

R

M

R

M

R

M

R

M

1 72 282 556 1110 2215 4425 6631 8845 13262 17687

4 72 173 341 677 1349 2696 4039 5383 8071 10772

8 72 173 304 606 1207 2409 3607 4804 7207 9619

16 72 173 303 567 1134 2264 3393 4517 6773 9039

1 72 81 156 316 628 1251 1876 2500 3747 4994

4 72 82 122 206 410 821 1227 1636 2451 3266

8 72 81 121 206 375 746 1120 1493 2235 2979

16 72 82 122 206 375 712 1083 1419 2128 2835

1 72 81 91 177 352 701 1049 1397 2093 2788

4 72 81 91 142 245 484 724 965 1444 1926

8 72 82 91 142 245 448 690 892 1337 1780

16 72 81 91 142 245 450 655 856 1301 1709

1 72 82 91 111 218 434 652 868 1300 1731

4 72 82 91 111 181 327 507 652 975 1299

8 72 81 91 111 181 327 471 616 939 1227

16 72 81 91 111 182 327 471 616 903 1191

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

One-Dimensional Burst Transfer Performance

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 193

Table 4-20. MAX Module Performance for Moving Sequential Data - Source is in External Memory
and Destination is in Internal Memory (EMIF is 16-bit wide)

No. dMAX
Clocks

4

16

32

Transfer Size (CNT) in Number of Bytes
64 128 256 384

512

768

1024

Burst Length = 4 bytes
N
U

B
U

S
T

Burst Length = 16 bytes
N
U

B
U

S
T

Burst Length = 32 bytes
N
U

B
U

S
T

Burst Length = 64 bytes
N
U

B
U

S
T

R

M

R

M

R

M

R

M

1 73 291 577 1156 2308 4610 6917 9223 13836 18446

4 73 182 361 722 1442 2884 4325 5763 8650 11529

8 73 181 325 653 1300 2594 3893 5191 7782 10380

16 73 181 325 614 1227 2453 3678 4901 7349 9806

1 73 86 170 338 674 1347 2020 2690 4035 5378

4 73 86 134 231 461 916 1372 1829 2739 3651

8 73 86 133 230 423 842 1262 1682 2523 3362

16 73 86 133 231 422 807 1227 1611 2416 3219

1 73 86 102 202 400 796 1192 1589 2381 3173

4 73 86 102 165 292 580 870 1157 1732 2309

8 73 86 102 166 292 544 833 1088 1625 2165

16 73 86 102 166 292 544 797 1049 1589 2093

1 73 86 102 135 266 531 795 1059 1586 2115

4 73 86 102 135 230 423 650 843 1263 1683

8 73 86 102 135 230 423 616 807 1227 1611

16 73 86 102 135 230 423 614 807 1190 1575

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

www.ti.com

One-Dimensional Burst Transfer Performance

194 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Table 4-21. MAX Module Performance for Moving Sequential Data - Source is in External Memory
and Destination is in External memory (EMIF is 32-bit Wide)

No. dMAX
Clocks

4

16

32

Transfer Size (CNT) in Number of Bytes
64 128 256 384

512

768

1024

Burst Length = 4 bytes
N
U

B
U

S
T

Burst Length = 16 bytes
N
U

B
U

S
T

Burst Length = 32 bytes
N
U

B
U

S
T

Burst Length = 64 bytes
N
U

B
U

S
T

R

M

R

M

R

M

R

M

1 79 303 602 1204 2404 4806 7207 9610 14412 19212

4 79 194 385 772 1538 3079 4614 6154 9228 12305

8 79 195 351 699 1396 2791 4186 5579 8363 11151

16 79 196 350 664 1324 2644 3968 5292 7939 10584

1 79 85 167 328 653 1301 1949 2601 3897 5194

4 79 86 135 233 464 927 1389 1852 2779 3704

8 79 86 135 233 431 861 1291 1722 2580 3453

16 79 86 135 233 432 829 1258 1657 2484 3310

1 79 86 95 188 369 737 1102 1468 2202 2933

4 79 86 95 160 293 583 874 1165 1744 2326

8 79 86 96 160 293 555 847 1113 1669 2223

16 79 86 96 160 293 556 823 1091 1643 2173

1 79 86 95 114 226 447 670 891 1337 1782

4 79 86 95 113 212 408 618 813 1218 1626

8 79 86 95 113 212 408 602 800 1205 1594

16 79 86 95 113 212 408 603 799 1189 1580

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 195

www.ti.com

SPI Slave Transfer Performance

Table 4-22. MAX Module Performance for Moving Sequential Data - Source is in External Memory
and Destination is in External Memory (EMIF is 16-bit Wide)

No. dMAX
Clocks

4

16

32

Transfer Size (CNT) in Number of Bytes
64 128 256 384

512

768

1024

Burst Length = 4 bytes

N
U
M
B
U
R
S
T

Burst Length = 16 bytes
N
U
M
B
U
R
S
T

Burst Length = 32 bytes
N
U
M
B
U
R
S
T

Burst Length = 64 bytes
N
U
M
B
U
R
S
T

4.10 SPI Slave Transfer Performance

SPI slave transfer allows for servicing the SPI peripheral when used in slave mode. The peripheral
servicing requires that for each input event, one element is read from the SPI input shift register (SPIBUF)
and is stored in the destination address. Also, one element is read from the input address and moved to
the SPI output shift register (SPIDAT0).
The performance data in Table 4-23 provides the dMAX clocks taken to service one event from the SPI
peripheral. The dMAX clocks are provided for various combinations of source and destination locations
(IRAM or SDRAM).

Table 4-23. MAX Module Performance for Handling One SPI Event

No dMAX Clocks Destination Location
IRAM SDRAM

Source Location

8 bit Element IRAM
SDRAM

63
81

63
84

16bit Element IRAM
SDRAM

63
81

63
84

1 78 304 604 1205 2406 4809 7211 9613 14417 19220

4 78 198 3989 793 1590 3176 4762 6352 9524 12700

8 79 199 363 724 1446 2888 4333 5774 8657 11544

16 79 198 363 687 1374 2744 4116 5489 8231 10973

1 79 91 177 352 699 1397 2096 2792 4184 5578

4 79 90 153 276 549 1096 1642 2191 3284 4376

8 79 91 153 275 520 1040 1562 2086 3123 4162

16 79 90 153 275 521 1016 1535 2030 3043 4054

1 79 91 107 209 419 832 1247 1662 2490 3318

4 79 90 106 196 377 752 1127 1501 2251 3000

8 79 91 107 196 377 739 1112 1477 2212 2948

16 79 91 106 196 377 739 1101 1462 2199 2919

1 79 91 107 139 285 576 868 1160 1744 2327

4 78 91 106 139 286 576 868 1159 1744 2327

8 79 91 107 139 285 577 868 1159 1744 2326

16 79 90 106 139 286 577 868 1160 1744 2326

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

196 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Transfer Performance

4.11 FIFO Transfer Performance

A table-guided, multi-tap delay FIFO transfer usually moves a number of taps between the FIFO and the
linear memory. The transfer performance depends on a number of factors such as element size, QTSL
value, number of taps (blocks), and tap (block) size. If the FIFO is in the external memory, the
performance also depends on ratio between dMAX and the EMIF clock.
The table-guided FIFO transfer is presented in Figure 4-5.

Figure 4-5. Table-Guided Multi-tap Delay FIFO Transfer

FIFO

Tap2

FIFO base FIFO size

FIFO pointer

Tap0

Tap1

Linear memory

INDX0=1

INDX1≥1

Tap1

Tap0

Tap2

Delay table
Delay_Tap0
Delay_Tap1
Delay_Tap2

In a FIFO read, a delay table guides dMAX to retrieve only taps at specified offsets from the FIFO Read
Pointer (RP). In a FIFO write, a delay table guides dMAX to write taps at specified offsets from the FIFO
Write Pointer (WP).
In Figure 4-5 three taps of three elements are moved between the FIFO and the linear memory. The delay
table in Figure 4-5 contains three entries, and each entry is associated with one of the three taps. In a
FIFO read transfer, the data flow direction is from left to right and a FIFO RP is used. In a FIFO write
transfer, data flow direction is from right to left and an FIFO WP is used.
In the following sections, sequential element spacing within a tap (INDX0=1) in the linear memory is
assumed. Taps in the linear memory can be either sequential (INDX1=1), or there could be some spacing
between the taps (INDX1>1).
Since the number of taps can vary from application to application in this section, performance is evaluated
per tap. The FIFO transfer performance is evaluated by the number of dMAX clocks required to transfer
one data block (one tap) between linear memory and the FIFO.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 197

www.ti.com

4.12 Transfer Duration and Latency
Transfer Duration and Latency

The performance is measured by number of dMAX clocks required to complete transfer of one tap (block
of data). For performance measurements purposes, the FIFO transfers of ten or more taps are
synchronized by using one synchronization event (one sync event is used to synchronize the complete
transfer). The transfer duration is measured in number of dMAX clocks and is counted from the moment
the event flag is cleared to the moment the CPU received notification that transfer completed as shown in
Figure 4-6. The number of dMAX clocks required for transfer of one tap is calculated by dividing the
number of dMAX clocks required for the whole transfer by number of taps. The data presented represents
the best case scenario when there are no resource conflicts during transfer.
The FIFO Transfer E0 presented in Figure 4-6 consists of three taps. In this example, tap size is eight
elements, and the QTSL value is set to four. Therefore, each tap transfer has two quantum transfers. The
whole FIFO transfer consists of three taps and is broken into six quantum transfers. During the fourth
quantum transfer E0(Q3), a new event arrives (Event1). The new event will be processed after completion
of the quantum transfer E0(Q3). The delay that the MAX module requires to respond to an event is
described by latency. If the MAX module is not busy, a new transfer request is serviced quickly with very
low latency. If the MAX module is in the middle of a transfer and another transfer request arrives, the new
request will have to wait until completion of the quantum transfer currently in progress.
In FIFO transfers, the latency depends on the QTSL value specified in the event entry. A new event will
have to wait until the current quantum transfer in progress is completed. How long the new event will have
to wait depends on the size of the quantum transfer currently in progress, and on quantum transfer sizes
of all events with higher priority than the current event (in case higher priority events are also waiting to be
processed).

Figure 4-6. Transfer Latency and Tap Transfer Duration Measured in Number of dMAX Clocks

dMAX
clock

EventFlag0

EventFlag1

MAX0 data
traffic

INT8

E1 transfer latency
measured in

number of dMAX clocks

Tap transfer duration
measured in

number of dMAX clocks

The latency is not fixed and depends on overall dMAX controller loading. If dMAX is busy, the new event
must wait to be processed until dMAX completes the current quantum transfer. If several events in the
same priority group arrive at the same time, the latency for the lowest priority event will be equal to sum of
quantum transfer durations of all higher priority pending events.
Using large QTSL values improves system throughput, but worsens system latency. The overall transfer
time is shorter when the QTSL value is large, since MAX moves a small number of large quantum
transfers.

E0 (Q0) E0 (Q1) E0 (Q2) E0 (Q3) E1 (Q0) E0 (Q4) E0 (Q5)

First tap Second tap Third tap

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

198 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Read

4.13 FIFO Read
Performance numbers in this section are given in number of dMAX clocks required to move one tap/block
of data from the source FIFO to the destination. The performance data is collected using the following
assumptions:
• The destination locations within a tap are assumed to be consecutive (DINDX0 = 1).
• The FIFO size is a multiple of tap size
• Entries from the delay table- Tap delays (offsets to the tap location calculated from the Read Pointer)

are multiple of the tap size
The number of dMAX clocks required to move multiple blocks of data from the FIFO can be calculated
from the tables given in the following sections. For a specific block size (tap size), time required to read
one tap from the FIFO is given in Table 4-24, Table 4-25, or Table 4-26 depending on location of the FIFO
and the EMIF size (time required to transfer one tap is expressed in number of dMAX clocks). The number
of dMAX clocks required to transfer N taps from the FIFO can be calculated by simply multiplying by N the
number read from these same tables.
The FIFO read transfers of ten or more taps are used to measure performance. The per tap performance
was calculated by dividing total number of dMAX clocks required to transfer all the taps by number of taps
transferred.

4.13.1 FIFO Read Transfers Within Internal Memory
The average number of dMAX clock cycles required to transfer one tap (block) of data from the FIFO in
the internal data memory of the DSP to destination in the internal data memory is presented in Table 4-24.

Table 4-24. FIFO Read MAX Module Performance for Moving Various Tap Sizes When Both Source

FIFO and Destination Locations are in Internal Memory

No. dMAX
Clocks

4

8

12

16

20

24

Tap Size (COUNT0) in Number of Elements
28 32 36 40 44 48

52

56

60

64

128

256

ESIZE = 8 bits
1

Q
T 4

555

156

1090

293

1626

430

2162

567

2697

704

3232

841

3767

977

4303

1114

4837

1251

5372

1388

5907

1524

6442

1661

6976

1798

7511

1934

8045

2070

8579

2207

17138

4389

34256

8741
S 8
L

16

156

156

158

158

295

160

297

162

434

299

436

301

572

303

575

305

711

441

714

444

850

446

852

448

988

584

991

586

1127

588

1129

590

2236

1160

4445

2296

ESIZE = 16 bits
1

Q
T 4

555

158

1090

297

1626

436

2162

575

2697

714

3232

853

3767

992

4303

1130

4837

1269

5372

1408

5907

1546

6442

1685

6976

1824

7511

1962

8045

2101

8579

2239

17138

4453

34256

8869
S 8
L

16

158

158

162

162

301

166

305

170

444

309

448

313

587

317

591

321

730

460

733

464

872

468

876

471

1015

610

1019

614

1157

619

1161

622

2300

1223

4572

2423

ESIZE = 32 bits
1

Q
T 4

559

162

1098

305

1638

448

2178

591

2717

734

3256

877

3795

1019

4334

1162

4873

1305

5412

1447

5951

1590

6490

1733

7028

1875

7567

2018

8105

2161

8643

2303

17266

4581

34512

9125
S 8
L

16

162

162

170

169

313

178

321

186

464

329

472

336

615

346

623

352

766

495

774

503

916

511

924

519

1067

662

1074

670

1217

678

1225

686

2428

1351

4828

3679

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 199

www.ti.com

4.13.2 FIFO Read Transfers Between Internal Memory and EMIF SDRAM
FIFO Read

Throughput to the SDRAM interface depends on the SDRAM setting and on clock ratio between dMAX
and the EMIF. In the following sections, the assumption is that ratio between dMAX and the EMIF clock
domains is 1.5.
The average number of dMAX clock cycles required to transfer one tap (block) of data from the FIFO in
the SDRAM to destination in the internal data memory of the DSP is presented in Table 4-25 for a 32-bit
EMIF and in Table 4-26 for a 16-bit EMIF.

Table 4-25. FIFO Read MAX Module Performance for Moving Various Tap Sizes When Source FIFO

is in SDRAM and Destination is in Internal Memory (EMIF is 32-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

Tap Size (COUNT0) in Number of Elements
28 32 36 40 44 48

52

56

60

64

128

256

ESIZE = 8 bits
1

Q
T 4

619

171

1219

324

1820

477

2419

630

3021

784

3620

937

4222

1090

4822

1243

5422

1396

6022

1549

6623

1703

7223

1856

7823

2008

8423

2162

9024

2314

9625

2468

19233

4916

38447

9815
S 8
L

16

171

171

174

174

327

176

330

179

483

333

486

336

639

336

642

339

795

495

798

498

952

498

954

501

1108

658

1111

660

1264

660

1267

663

2515

1312

5013

2594

ESIZE = 16 bits
1

Q
T 4

619

174

1219

330

1819

486

2419

642

3020

798

3621

954

4222

1110

4822

1266

5422

1423

6022

1579

6623

1734

7223

1890

7823

2046

8423

2230

9024

2359

9625

2515

19233

5012

38447

9937
S 8
L

16

174

174

179

179

336

183

339

189

498

345

501

350

660

355

664

360

823

516

825

521

986

525

987

531

1146

687

1151

692

1308

696

1311

702

2607

1387

5169

2758

ESIZE = 32 bits
1 Q 642 1230 1837 2443 3049 3656 4261 4868 5476 6080 6684 7294 7898 8506 9112 9718 19413 38791

T 4 178 339 501 663 825 987 1151 1312 1474 1636 1798 1960 2122 2283 2446 2608 5200 10380
S 8
L

16

178

178

189

189

350

198

360

208

512

369

532

381

692

390

702

399

863

561

873

575

1034

582

1044

591

1205

753

1215

767

1376

774

1386

783

2755

1551

5493

3086

Table 4-26. FIFO Read MAX Module Performance for Moving Various Tap Sizes when Source FIFO
Is In the SDRAM and Destination is in Internal Memory (EMIF is 16-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

Tap Size (COUNT0) in Number of Elements
28 32 36 40 44 48

52

56

60

64

128

256

ESIZE = 8 bits
1 Q 627 1239 1852 2464 3076 3687 4300 4914 5528 6142 6757 7371 7985 8599 9213 9827 19648 39282

T 4 173 327 483 639 795 951 1180 1264 1420 1576 1732 1888 2044 2200 2356 2513 5006 10198
S 8
L

16

173

173

177

177

332

180

336

185

491

339

495

345

650

348

654

352

809

508

813

513

969

516

973

519

1128

676

1132

681

1286

684

1291

687

2564

1359

5109

2691

ESIZE = 16 bits
1 Q 627 1239 1852 2464 3076 3687 4300 4914 5528 6142 6757 7371 7985 8599 9213 9828 19648 39282

T 4 177 336 495 654 814 973 1132 1291 1450 1609 1769 1927 2086 2244 2404 2563 5108 10198
S 8
L

16

177

177

185

185

345

192

352

201

513

360

519

368

681

376

687

384

850

543

855

551

1018

559

1024

567

1185

726

1192

734

1353

742

1360

751

2704

1483

5362

2948

ESIZE = 32 bits
1 Q 630 1243 1855 2468 3080 3691 4303 4914 5530 6144 6758 7373 7986 8600 9216 9831 19661 39321

T 4 185 352 520 688 856 1024 1192 1360 1528 1696 1864 2032 2200 2367 2536 2704 5393 10766
S 8
L

16

185

185

201

201

368

217

384

233

551

400

568

417

734

432

750

448

917

616

934

633

1100

649

1117

664

1284

831

1300

849

1466

864

1483

880

2948

1744

5878

3471

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

200 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Write Transfer

4.14 FIFO Write Transfer
Performance numbers in this section are given in number of dMAX clocks required to move one tap/block
of data from the source to the FIFO. The performance data is collected using the following assumptions:
• It is also assumed that FIFO size is multiple of tap size.
• The elements within source taps are assumed to be consecutive (SINDX0 = 1).
• Entries from the delay table-Tap delays (offsets to the tap location calculated from the WP) are multiple

of the tap size.
The number of dMAX clocks required to move multiple blocks of data to the FIFO can be calculated from
the tables given in the following sections. For a specific block size (tap size), time required to write one tap
to the FIFO is given in Table 4-27, Table 4-28, or Table 4-29 depending on location of the FIFO and EMIF
size (time required to transfer one tap is expressed in number of dMAX clocks). The number of dMAX
clocks required to transfer N taps to the FIFO can be calculated by simply multiplying by N the number
read from these same tables.

4.14.1 FIFO Write Transfers Within the Internal Memory
The average number of dMAX clock cycles required to transfer one tap (block) of data to the FIFO in the
SDRAM from source in the internal data memory is presented in Table 4-27.

Table 4-27. FIFO Write MAX Module Performance for Various Tap Sizes when Source Data and

Destination FIFO are in Internal Memory

No. dMAX
Clocks

4

8

12

16

20

24

Tap Size (COUNT0) in Number of Elements
28 32 36 40 44 48

52

56

60

64

128

256

ESIZE = 8 bits
1

Q
T 4

560

158

1100

296

1639

434

2179

572

2718

710

3257

848

3797

985

4336

1123

4874

1261

5413

1399

5952

1536

6491

1674

7029

1812

7568

1949

8106

2987

8645

2224

17269

4422

34517

8806
S 8
L

16

158

158

160

160

298

162

300

165

438

302

440

304

578

307

580

308

717

446

719

448

857

450

859

452

997

589

999

592

1136

594

1138

596

2253

1169

4477

2313

ESIZE = 16 bits
1

Q
T 4

560

160

1100

300

1639

440

2179

580

2718

720

3257

860

3797

999

4336

1139

4874

1279

5413

1418

5952

1558

6491

1698

7029

1837

7568

1977

8106

2117

8645

2256

17270

4486

34517

8934
S 8
L

16

160

160

165

165

305

168

308

173

448

312

452

317

592

320

596

324

736

464

740

468

880

472

883

476

1023

615

1027

620

1167

624

1171

627

2317

1233

4606

2441

ESIZE = 32 bits
1

Q
T 4

564

165

1108

308

1651

452

2195

596

2738

740

3281

884

3824

1028

4368

1171

4910

1315

5427

1459

5996

1602

6539

1746

7081

1890

7624

2033

8166

2177

8709

2321

17397

4614

34773

9192
S 8
L

16

165

165

173

173

317

181

324

189

468

332

476

340

620

348

628

357

772

500

780

508

924

516

931

524

1075

668

1083

675

1227

684

1234

692

2445

1361

4867

2567

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

dMAX Controller Performance 201

www.ti.com

4.14.2 FIFO Write Transfers Between Internal Memory and EMIF SDRAM
FIFO Write Transfer

Throughput to the SDRAM interface depends on the SDRAM setting and on clock ratio between dMAX
and EMIF. In the following sections, the assumption is that the ratio between dMAX and the EMIF clock
domains is 1.5.
The average number of dMAX clock cycles required to transfer one tap (block) of data from source in the
internal data memory of the DSP to the destination FIFO in the SDRAM is presented in Table 4-28 for a
32-bit EMIF and in Table 4-29 for a 16-bit EMIF.

Table 4-28. FIFO Write MAX Module Performance for Various Tap Sizes when Source is in Internal

Memory and Destination FIFO is in SDRAM (EMIF is 32-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

Tap Size (COUNT0) in Number of Elements
28 32 36 40 44 48

52

56

60

64

128

256

ESIZE = 8 bits
Q 1 560 1100 1639 2179 2718 3257 3796 4335 4874 5413 5952 6490 7029 7567 8106 8644 17269 34517

T 4 158 296 434 572 710 847 985 1123 1260 1398 1536 1674 1811 1949 2086 2224 4422 8806

S 8 158 160 298 300 438 439 577 579 717 719 857 859 996 998 1136 1138 2253 4477

L 16 158 160 162 164 301 304 306 308 446 447 449 451 589 591 593 595 1169 2313

ESIZE = 16 bits

Q 1 557 1099 1639 2176 2718 3257 3796 4335 4874 5413 5952 6490 7029 7567 8106 8644 17270 34517

T 4 157 297 437 577 717 857 999 1139 1278 1418 1558 1697 1837 1977 2116 2256 4485 8934

S 8 157 161 301 305 445 449 589 593 733 737 877 881 1022 1027 1166 1170 2317 4605

L 16 157 161 165 169 309 313 317 321 461 465 469 473 613 617 621 625 1232 2441

ESIZE = 32 bits

Q 1 561 1108 1651 2195 2738 3281 3825 4367 4910 5453 5996 6538 7081 7623 8166 8709 17397 34773

T 4 161 305 449 593 737 881 1027 1171 1314 1459 1602 1746 1890 2033 2176 2320 4614 9190

S 8 161 169 313 321 465 473 617 625 769 777 921 929 1075 1083 1226 1234 2445 4861

L 16 161 169 177 185 329 337 345 353 497 505 513 521 665 673 681 689 1361 2397

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

202 dMAX Controller Performance SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

www.ti.com

FIFO Write Transfer

Table 4-29. FIFO Write MAX Module Performance for Various Tap Sizes when Source is in Internal
Memory and Destination FIFO is in SDRAM (EMIF is 16-bit wide)

No. dMAX
Clocks

4

8

12

16

20

24

Tap Size (COUNT0) in Number of Elements
28 32 36 40 44 48

52

56

60

64

128

256

ESIZE = 8 bits
Q 1 560 1100 1639 2179 2718 3257 3796 4335 4874 5413 5952 6490 7029 7567 8106 8644 17269 34517

T 4 158 296 434 572 710 847 985 1123 1260 1398 1536 1674 1811 1949 2086 2224 4422 8806

S 8 158 160 298 300 438 439 577 579 717 719 857 859 996 998 1136 1138 2253 4477

L 16 158 160 162 164 301 304 306 308 446 447 449 451 589 591 593 595 1169 2313

ESIZE = 16 bits

Q 1 557 1099 1639 2179 2718 3257 3796 4335 4874 5413 5952 6490 7029 7567 8106 8644 17270 34517

T 4 157 297 437 577 717 857 999 1139 1278 1418 1558 1697 1837 1977 2116 2256 4485 8934

S 8 157 161 301 305 445 449 589 593 733 737 877 881 1022 1027 1166 1170 2317 4605

L 16 157 161 165 169 309 313 317 321 461 465 469 473 613 617 621 625 1232 2441

ESIZE = 32 bits

Q 1 561 1108 1651 2195 2738 3281 3825 4367 4910 5453 5996 6538 7081 7623 8166 8709 17397 34773

T 4 161 305 449 593 737 881 1027 1171 1314 1459 1602 1746 1890 2033 2176 2320 4614 9190

S 8 161 169 313 321 465 473 617 625 769 777 921 929 1075 1083 1226 1234 2445 4861

L 16 161 169 177 185 329 337 345 353 497 505 513 521 665 673 681 689 1361 2697

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D
http://www.ti.com/

SPRU795D – November 2005 – Revised October 2007
Submit Documentation Feedback

Revision History 203

Appendix A
SPRU795D – November 2005 – Revised October 2007

Revision History

This document has been revised from SPRU795C to SPRU795D because of the following technical
change(s):

Table A-1. Changes in this Revision

Location Additions/Modifications/Deletions
Figure 3-56 Changed the PTE value from 0111110 to 11111000

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=%20SPRU795D

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Preface
	1.1 Overview
	Figure 1-1. TMS320C672x Block Diagram
	Figure 1-2. dMAX Controller Block Diagram
	Table 1-1. Differences Between the C621x/C671x EDMA and C672x dMAX

	1.2 dMAX Terminology
	1.3 Initiating dMAX Transfers
	1.4 FIFO Implementation
	Figure 1-3. Parameters Defining a FIFO: Read Pointer, Write Pointer, FIFO Base Address, FIFO Size, EMARK, FMARK, FMSC, EMSC, and EFIELD
	1.4.1 FIFO Watermarks
	1.4.2 FIFO Error Field

	1.5 Types of dMAX Transfers
	1.5.1 One-Dimensional Transfers
	Figure 1-4. One-Dimensional Transfer

	1.5.2 Two-Dimensional Transfers
	Figure 1-5. A Two-Dimensional Transfer

	1.5.3 Three-Dimensional Transfers
	Figure 1-6. A Three-Dimensional Transfer

	1.5.4 FIFO Transfers
	1.5.4.1 FIFO Write
	Figure 1-7. Three-Frame FIFO Write Transfer (Prior to Transfer Start)
	Figure 1-8. Three-Frame FIFO Write Transfer (After Transfer of the First Frame)
	Figure 1-9. Three-Frame FIFO Write Transfer (After Transfer of the Second Frame)
	Figure 1-10. Three-Frame FIFO Write Transfer (Immediately After Transfer of the Third Frame)
	Figure 1-11. Three-Frame FIFO Write Transfer (Transfer Complete)
	1.5.4.2 FIFO Read
	Figure 1-12. Three-Frame FIFO Read (Prior to Transfer Start)
	Figure 1-13. Three-Frame FIFO Read (After Reading the First Tap)
	Figure 1-14. Three-Tap FIFO Read (After Reading the Second Tap)
	Figure 1-15. Three-Tap FIFO Read (Immediately After Reading the Third Tap)
	Figure 1-16. Three-Tap FIFO Read (Transfer Complete)

	1.5.5 One-Dimensional Burst (1DN) Transfers
	1.5.6 SPI Slave Transfer
	Figure 1-17. SPI Slave Transfer

	1.6 Quantum Transfers
	Figure 1-18. An Example of a Long Transfer (Transfer Size is Equal to 15 Elements and Quantum Transfer Limit Size is Set to 4)

	1.7 Element Size and Alignment
	1.8 Source/Destination Address Updates
	1.9 Reloading dMAX Transfers
	1.10 dMAX Interrupt Generation
	1.10.1 Using an Event to Initiate a CPU Interrupt
	1.10.2 End of Transfer Notification Interrupt to the CPU
	1.10.2.1 Alternate Transfer Complete Interrupt
	1.10.2.2 Processing of End of Transfer dMAX Interrupt by the CPU
	1.10.3.1 FIFO Buffer Watermarks
	1.10.3.2 FIFO Buffer Error Notifications

	1.10.4 dMAX NMI Interrupt

	1.11 Emulation Operation
	1.12 Event Encoder
	1.12.1 Synchronization of dMAX Events
	Table 1-2. dMAX Channel Synchronization Events

	1.12.2 Event Priority Processing Within the Same Event Priority Group
	Figure 1-19. A Data Traffic Example: All Events Arrive from Three Event Signals Sorted to the Lower Priority Event Group
	Figure 1-20. A Data Traffic Example: A New Event Arrives During a Long Transfer

	2.1 Parameter RAM (PaRAM)
	Figure 2-1. PaRAM Memory Map
	Figure 2-2. PaRAM Memory Organization Block Diagram
	2.1.1 Event Entry Table
	2.1.1.1 Event Entry for General Purpose Data Transfers
	Figure 2-3. Event Entry for General Purpose Data Transfer
	Table 2-1. Event Entry for General Purpose Data Transfer Field Descriptions
	Table 2-1. Event Entry for General Purpose Data Transfer Field Descriptions (continued)
	2.1.1.2 Event Entry for FIFO Transfers
	Figure 2-4. Event Entry for FIFO Transfer
	Table 2-2. Event Entry for FIFO Transfer Field Descriptions
	Table 2-2. Event Entry for FIFO Transfer Field Descriptions (continued)
	2.1.1.3 Event Entry for Interrupt from dMAX Controller to the CPU
	Figure 2-5. Event Entry for Interrupt from dMAX Controller to the CPU
	Table 2-3. Event Entry for Interrupt from dMAX Controller to the CPU Field Descriptions
	2.1.1.4 Event Entry for One-Dimensional Burst Transfers
	Figure 2-6. Event Entry for One-Dimensional Burst Transfer
	Table 2-4. Table Describing Bit Fields of Event Entry for One-Dimensional Burst Transfer
	2.1.1.5 Event Entry for SPI Slave Transfers
	Figure 2-7. Event Entry for SPI Slave Transfers
	Table 2-5. Table Describing Bit Fields of Event Entry for SPI Slave Transfer

	2.1.2 Transfer Entry Table
	2.1.2.1 Transfer Entry for General Purpose Data Transfers
	Figure 2-8. Transfer Entry for General Purpose Data Transfer for CC=01 or CC=11
	Figure 2-9. Transfer Entry for General Purpose Data Transfer for CC=10
	Figure 2-10. Transfer Entry for General Purpose Data Transfer for CC=00
	Table 2-6. Transfer Entry for General Purpose Data Field Descriptions
	Table 2-6. Transfer Entry for General Purpose Data Field Descriptions (continued)
	2.1.2.2 Transfer Entry for FIFO Write
	Figure 2-11. Transfer Entry for FIFO Write
	Table 2-7. Transfer Entry for FIFO Write Field Descriptions
	2.1.2.3 Transfer Entry for FIFO Read
	Figure 2-12. Transfer Entry for FIFO Read
	Table 2-8. Transfer Entry for FIFO READ Field Descriptions
	2.1.2.4 Transfer Entry for One-Dimensional Burst Transfers
	Figure 2-13. Transfer Entry for One-Dimensional Burst Transfer
	Table 2-9. Transfer Entry for One-Dimensional Burst Transfer Description
	2.1.2.5 Transfer Entry for SPI Slave Transfers
	Figure 2-14. Transfer Entry for SPI Slave Transfer
	Table 2-10. Transfer Entry for SPI Slave Transfer Description

	2.2 FIFO Descriptor
	Figure 2-15. FIFO Descriptor
	Table 2-11. FIFO Descriptor Field Descriptions
	Table 2-11. FIFO Descriptor Field Descriptions (continued)

	2.3 dMAX Control Registers
	Table 2-12. dMAX Control Registers
	2.3.1 dMAX Event Register 0 (DER0)
	Figure 2-16. dMAX Event Register 0 (DER0)
	Table 2-13. dMAX Event Register 0 (DER0) Field Descriptions

	2.3.2 dMAX Event Register 1 (DER1)
	Figure 2-17. dMAX Event Register 1 (DER1)
	Table 2-14. dMAX Event Register 1 (DER1) Field Descriptions

	2.3.3 dMAX Event Register 2 (DER2)
	Figure 2-18. dMAX Event Register 2 (DER2)
	Table 2-15. dMAX Event Register 2 (DER2) Field Descriptions
	Table 2-16. dMAX Event Register 3 (DER3) Field Descriptions

	2.3.4 dMAX Event Flag Register (DEFR)
	Figure 2-19. dMAX Event Flag Register (DEFR)
	Table 2-17. dMAX Event Flag Register (DEFR) Field Descriptions

	2.3.5 dMAX Event Enable Register (DEER)
	Figure 2-20. dMAX Event Enable Register (DEER)
	Table 2-18. dMAX Event Enable Register (DEER) FIELD Descriptions

	2.3.6 dMAX Event Disable Register (DEDR)
	Figure 2-21. dMAX Event Disable Register (DEDR)
	Table 2-19. dMAX Event Disable Register (DEDR) Field Descriptions

	2.3.7 dMAX Event Polarity (DEPR)
	Figure 2-22. dMAX Event Polarity (DEPR)
	Table 2-20. dMAX Event Polarity Register (DEPR) Field Descriptions

	2.3.8 dMAX Event High Priority (DEHPR)
	Figure 2-23. dMAX Event High Priority (DEHPR)
	Table 2-21. dMAX Event High Priority Register (DEHPR) Field Descriptions

	2.3.9 dMAX Event Low Priority (DELPR)
	Figure 2-24. dMAX Event Low Priority (DELPR)
	Table 2-22. dMAX Event Low Priority Register (DELPR) Field Descriptions

	2.3.10 dMAX FIFO Status Register 0 (DFSR0)
	Figure 2-25. dMAX FIFO Status Register 0 (DFSR0)
	Table 2-23. dMAX FIFO Status Register 0 (DFSR0) Field Descriptions

	2.3.11 dMAX FIFO Status Register 1 (DFSR1)
	Figure 2-26. dMAX FIFO Status Register 1 (DFSR1)
	Table 2-24. dMAX FIFO Status Register 1 (DFSR1) Field Descriptions

	2.3.12 dMAX Transfer Completion Register 0 (DTCR0)
	Figure 2-27. dMAX Transfer Completion Register 0 (DTCR0)
	Table 2-25. dMAX Transfer Completion Register 0 (DTCR0) Field Descriptions

	2.3.13 dMAX Transfer Completion Register 1 (DTCR1)
	Figure 2-28. dMAX Transfer Completion Register 1 (DTCR1)
	Table 2-26. dMAX Transfer Completion Register 1 (DTCR1) Field Descriptions

	2.3.14 dMAX Event Trigger Register (DETR)
	Figure 2-29. dMAX Event Trigger Register (DETR)
	Table 2-27. dMAX Event Trigger (DET) Register Field Descriptions
	Example 2-1. Triggering Event0 by Writing to the DET Register

	Figure 2-30. CPU Triggers Event by Writing to the DETR (when DEPR[0]=1) Timing Diagram

	2.3.15 dMAX Event Status Register (DESR)
	Figure 2-31. dMAX Event Status (DES) Register
	Table 2-28. dMAX Event Status Register (DESR) Field Descriptions
	Example 2-2. Reading the DES Register

	3.1 Transfer Synchronization
	3.2 General Purpose Transfer Examples
	3.2.1 Steps Required to Set Up a General Purpose Transfer
	3.2.2 EXAMPLE: 1D Block Move Transfer
	Figure 3-1. Block Move Diagram
	Figure 3-2. Event Entry and Transfer Entry for 1D Block Transfer

	3.2.3 EXAMPLE: Element- Synchronized 1D Transfer
	Figure 3-3. Element-Synchronized 1D Transfer Diagram (After Receiving the First Synchronization Event)
	Figure 3-4. Element-Synchronized 1D Transfer Diagram (After Receiving the Second Synchronization Event)
	Figure 3-5. Element-Synchronized 1D Transfer Diagram (After Receiving Six Synchronization Events)
	Figure 3-6. Event Entry and Transfer Entry for Element-Synchronized 1D Transfer

	3.2.4 EXAMPLE: Sub-frame Extraction
	Figure 3-7. Sub-Frame Extraction
	Figure 3-8. Event Entry and Transfer Entry for Sub-Frame Extraction Transfer

	3.2.5 EXAMPLE: Three Dimensional (3D) Data De-Interleaving
	Figure 3-9. 3D Data De-Interleaving
	Figure 3-10. Event Entry and Transfer Entry for 3D Data De-Interleaving

	3.2.6 EXAMPLE: Ping-Pong Data Buffering Example
	Figure 3-11. Event Entry and Transfer Entry for Ping-Pong Data Buffering
	Figure 3-12. Ping-Pong Data Buffering After Receiving the First Synchronization Event
	Figure 3-13. Ping-Pong Data Buffering After Receiving the Second Synchronization Event
	Figure 3-14. Ping-Pong Data Buffering After Receiving the Fourth Synchronization Event
	Figure 3-15. Ping-Pong Data Buffering After Receiving the Fifth Synchronization Event

	3.3 FIFO Transfer Examples
	3.3.1 Steps Required to Set Up a FIFO Transfer
	3.3.2 EXAMPLE: 1D FIFO Write Transfer
	Figure 3-16. 1D FIFO Write Diagram (Before Transfer)
	Figure 3-17. 1D FIFO Write Diagram (After Transfer)
	Figure 3-18. Event Entry, Transfer Entry, and FIFO Descriptor for 1D FIFO Write

	3.3.3 EXAMPLE: 2D FIFO Write Transfer with Reload
	Figure 3-19. 2D FIFO Write Transfer Diagram (Before First Synchronization Event)
	Figure 3-20. 2D FIFO Write Transfer Diagram (After Receiving the First Synchronization Event)
	Figure 3-21. 2D FIFO Write Transfer Diagram (After Receiving the Second Synchronization Event)
	Figure 3-22. 2D FIFO Write Transfer Diagram (After Receiving Three Synchronization Events)
	Figure 3-23. 2D FIFO Write Transfer Diagram (After Receiving All Synchronization Events)
	Figure 3-24. Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for 2D FIFO Write Transfer

	3.3.4 EXAMPLE: 1D FIFO Read Transfer
	Figure 3-25. 1D FIFO Read Diagram (Before Transfer)
	Figure 3-26. 1D FIFO Read Diagram (After Transfer)
	Figure 3-27. Event Entry, Transfer Entry, and FIFO Descriptor for 1D FIFO Read

	3.3.5 EXAMPLE: 2D FIFO Read Transfer with Reload
	Figure 3-28. 2D FIFO Read Transfer Diagram (Before First Synchronization Event)
	Figure 3-29. 2D FIFO Read Transfer Diagram (After Receiving the First Synchronization Event)
	Figure 3-30. 2D FIFO Read Transfer Diagram (After Receiving the Second Synchronization Event)
	Figure 3-31. 2D FIFO Read Transfer Diagram (After Receiving Three Synchronization Events)
	Figure 3-32. 2D FIFO Read Transfer Diagram (After Receiving All Synchronization Events)
	Figure 3-33. Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for 2D FIFO Read Transfer

	3.3.6 EXAMPLE: FIFO Overflow Error
	Figure 3-34. Event Entry, Transfer Entry, and FIFO Descriptor for FIFO Overflow Error
	Figure 3-35. FIFO Overflow Error Diagram (Before Receiving Synchronization Event)
	Figure 3-36. FIFO Overflow Error Diagram (After Receiving Synchronization Event)
	Figure 3-37. dMAX FIFO Status Registers Before FIFO Overflow Error Occurs
	Figure 3-38. dMAX FIFO Status Registers After FIFO Overflow Error Occurs
	Figure 3-39. FIFO Descriptor After FIFO Overflow Error Occurs

	3.3.7 EXAMPLE: FIFO Underflow Error
	Figure 3-40. Event Entry, Transfer Entry, and FIFO Descriptor for FIFO Underflow Error
	Figure 3-41. FIFO Underflow Error Diagram (Before Receiving Synchronization Event)
	Figure 3-42. FIFO Underflow Error Diagram (After Receiving Synchronization Event)
	Figure 3-43. dMAX FIFO Status Registers Before FIFO Underflow Error Occurs
	Figure 3-44. dMAX FIFO Status Registers After FIFO Underflow Error Occurs
	Figure 3-45. FIFO Descriptor After FIFO Overflow Error Occurs

	3.3.8 EXAMPLE: FIFO Delay-Tap Error
	Figure 3-46. Event Entry, Transfer Entry, FIFO Descriptor, and Delay Tables for FIFO Delay-Tap Error
	Figure 3-47. FIFO Delay-tap Error Diagram (Before First Synchronization Event)
	Figure 3-48. FIFO Delay-Tap Error Diagram (After Receiving the First Synchronization Event)
	Figure 3-49. FIFO Delay-Tap Error Diagram (After Receiving the Second Synchronization Event)
	Figure 3-50. dMAX FIFO Status Registers Before FIFO Delay-Tap Error Occurs
	Figure 3-51. dMAX FIFO Status Registers After FIFO Delay-Tap Error Occurs
	Figure 3-52. FIFO Descriptor After FIFO Delay-Tap Error Occurs

	3.4 One-Dimensional Burst Transfers
	3.4.1 Steps Required to Set Up a One-Dimensional Burst Transfer
	3.4.2 Example: One-Dimensional Burst Transfer
	Figure 3-53. 1DN Block Move Diagram
	Figure 3-54. Event Entry and Transfer Entry for 1DN Transfer

	3.5 SPI Slave Transfer
	3.5.1 Steps Required to Set Up a SPI Slave Transfer
	3.5.2 Example: SPI Slave Transfer
	Figure 3-55. SPI Slave Transfer Diagram
	Figure 3-56. Event Entry and Transfer Entry for SPI Slave Transfer

	3.6 Examples of Servicing Peripherals
	3.6.1 EXAMPLE: Servicing McASP Peripheral
	Figure 3-57. Event Entry and Transfer Entry for McASP Transfer
	Figure 3-58. McASP Receive Example After Receiving the First Synchronization Event
	Figure 3-59. McASP Receive Example After Receiving the Second Synchronization Event
	Figure 3-60. McASP Receive Example After Receiving the Third Synchronization Event
	Figure 3-61. McASP Receive Example After Receiving the Eight Synchronization Events
	Figure 3-62. McASP Receive Example After Receiving the Nine Synchronization Event

	3.6.2 EXAMPLE: Servicing I2C Peripherals (FIFO FMARK Watermark)
	Figure 3-63. FIFO FMARK Example Diagram (Before First I2C Event)
	Figure 3-64. FIFO FMARK Example Diagram (After First Synchronization Event from the I2C)
	Figure 3-65. FIFO FMARK Example (After the Eighth Element Has Been Transferred)
	Figure 3-66. dMAX FIFO Status Registers Before FIFO FMARK is Reached
	Figure 3-67. dMAX FIFO Status Registers After FIFO FMARK is Reached
	Figure 3-68. FIFO FMARK Example (After FIFO Read Transfer)
	Figure 3-69. Event Entry and Transfer Entry for FIFO FMARK Example (FIFO Write Transfer)
	Figure 3-70. Event Entry and Transfer Entry for FIFO FMARK Example (FIFO Read Transfer)
	Figure 3-71. FIFO Descriptor for FIFO FMARK Example

	3.6.3 EXAMPLE: Servicing I2C Peripherals (FIFO EMARK Watermark)
	Figure 3-72. FIFO EMARK Example Diagram (Before First I2C Event)
	Figure 3-73. FIFO EMARK Example Diagram (After First Synchronization Event from the I2C)
	Figure 3-74. FIFO EMARK Example (After the Fourth Element has been Transferred)
	Figure 3-75. dMAX FIFO Status Registers Before FIFO EMARK is Reached
	Figure 3-76. dMAX FIFO Status Registers After FIFO EMARK is Reached
	Figure 3-77. FIFO EMARK Example (After FIFO Write Transfer)
	Figure 3-78. Event Entry and Transfer Entry for FIFO EMARK Example (FIFO Read Transfer)
	Figure 3-79. Event Entry and Transfer Entry for FIFO EMARK Example (FIFO Write Transfer)
	Figure 3-80. FIFO Descriptor for FIFO FMARK Example

	3.7 Example of Using dMAX Events to Generate a CPU Interrupt
	Figure 3-81. Event Used to Trigger CPU Interrupt INT13 Example
	3.7.1 Using External Signals to Trigger a CPU Interrupt

	3.8 Examples of dMAX Usage for Delay-Based Effects
	Figure 3-82. Block Diagram of the Delay Effect on Four Input Channels
	Figure 3-83. Sequence of Events for Processing
	Figure 3-84. FIFO Descriptor and Block Diagram of FIFO
	3.8.1 Writing a Block of Fresh Samples to Each FIFO Quadrant
	Figure 3-85. Table-Guided Multi-tap Delay FIFO Write Transfer. Situation Before Transfer Start
	Figure 3-86. Condition After Fresh Block of Data from the First Channel Moved to the First Delay Line
	Figure 3-87. Condition After Fresh Block of Data From the Second Channel Moved to the Second Delay Line
	Figure 3-88. Condition After Fresh Block of Data From the Third Channel is Moved to the Third Delay Line
	Figure 3-89. Condition After a Fresh Block of Data From the Fourth Channel is Moved to the Fourth Delay Line

	3.8.2 Reading a Block of Delayed Samples from Each FIFO Quadrant
	Figure 3-90. Reading Delayed Block of Samples From the FIFO Using Table Guided Multi-tap Delay FIFO Read Transfer. Situation Before Transfer Start
	Figure 3-91. Condition After Delayed Block of Data is Retrieved From the First Delay Line
	Figure 3-92. Condition After Delayed block of Data is Retrieved From the Second Delay Line
	Figure 3-93. Condition After Delayed Block of Data is Retrieved From the Third Delay Line
	Figure 3-94. condition After a Block of Data is Retrieved From the Fourth Delay Line
	Figure 3-95. FIFO Descriptor and Block Diagram of FIFO After Moving Four Delay TAPS to Four Delay Lines
	Figure 4-1. Three Transfer Types Used to Collect Performance Data
	Figure 4-2. Transfer Latency and Duration Measured in Number of dMAX Clocks
	Figure 4-3. MAX Module Data Throughput for Copy of a Sequential Block of Data when Both Source and Destination are in Internal Memory (SINDX0=1 and DINDX0=1)
	Table 4-1. MAX Module Performance for Copy of a Block of Sequential Elements when both Source and Destination are in Internal Memory
	Figure 4-4. MAX Module Data Throughput for Sorting of Sequential Block of Data when both Source and Destination are in Internal Memory (SINDX01, DINDX0=1)
	Table 4-2. MAX Module Performance for Sorting of Sequential Elements when both Source and Destination are in Internal Memory
	Table 4-3. MAX Module Performance for Sorting of Non-Sequential Elements when both Source and Destination are in Internal Memory
	4.7.1.1 McASP Receive
	Table 4-4. MAX Module Performance for Copy of Block of Sequential Elements from McASP DMA Port Source to Destination in Internal Memory
	4.7.1.2 McASP Transmit
	Table 4-5. MAX Module Performance for Copy of a Block of Sequential Elements from Source in the Internal Memory to McASP DMA Port Destination
	4.7.2.1 McASP Receive
	Table 4-6. MAX Module Performance for Sorting of Sequential Elements from McASP DMA Port Source to Non-Sequential Destination in Internal Memory
	4.7.2.2 McASP Transmit
	Table 4-7. MAX Module Performance for Sorting of Non-Sequential Data from Source in the Internal Memory to McASP DMA Port Destination
	Table 4-8. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in Internal Memory and Destination is in the SDRAM (EMIF is 32-bit wide)
	Table 4-9. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in SDRAM and Destination is in Internal Memory (EMIF is 32-bit wide)
	Table 4-10. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in Internal Memory and Destination is in the SDRAM (EMIF is 16-bit wide)
	Table 4-11. MAX Module Performance for Copy of a Block of Sequential Elements when Source is in SDRAM and Destination is in Internal Memory (EMIF is 16-bit wide)
	Table 4-12. MAX Module Performance for Sorting Block of Non-Sequential Elements from Source in Internal Memory to Sequential Locations at Destination in SDRAM (EMIF is 32-bit wide)
	Table 4-13. MAX Module Performance for Sorting of Block of Sequential Locations from Source in SDRAM to Non-Sequential Destination Locations in Internal Memory (EMIF is 32-bit wide)
	Table 4-14. MAX Module Performance for Sorting Block of Non-Sequential Elements from Source in Internal Memory to Sequential Locations at Destination in SDRAM (EMIF is 16-bit wide)
	Table 4-15. MAX Module Performance for Sorting of Block of Sequential Locations from Source in the SDRAM to Non-Sequential Destination Locations in Internal Memory (EMIF is 16-bit wide)
	Table 4-16. MAX Module Performance for Moving Sequential Data - Both Source and Destination are in Internal Memory
	Table 4-17. MAX Module Performance for Moving Sequential Data - Source is in Internal Memory and Destination is in External Memory (EMIF is 32 bits Wide)
	Table 4-18. MAX Module Performance for Moving Sequential Data - Source is in Internal Memory and Destination is in External Memory (EMIF is 16 bits Wide)
	Table 4-19. MAX Module Performance for Moving sequential Data - Source is in External Memory and Destination is in Internal Memory (EMIF is 32 bits Wide)
	Table 4-20. MAX Module Performance for Moving Sequential Data - Source is in External Memory and Destination is in Internal Memory (EMIF is 16-bit wide)
	Table 4-21. MAX Module Performance for Moving Sequential Data - Source is in External Memory and Destination is in External memory (EMIF is 32-bit Wide)
	Table 4-22. MAX Module Performance for Moving Sequential Data - Source is in External Memory and Destination is in External Memory (EMIF is 16-bit Wide)
	Table 4-23. MAX Module Performance for Handling One SPI Event
	Figure 4-5. Table-Guided Multi-tap Delay FIFO Transfer
	Figure 4-6. Transfer Latency and Tap Transfer Duration Measured in Number of dMAX Clocks
	Table 4-24. FIFO Read MAX Module Performance for Moving Various Tap Sizes When Both Source FIFO and Destination Locations are in Internal Memory
	Table 4-25. FIFO Read MAX Module Performance for Moving Various Tap Sizes When Source FIFO is in SDRAM and Destination is in Internal Memory (EMIF is 32-bit wide)
	Table 4-26. FIFO Read MAX Module Performance for Moving Various Tap Sizes when Source FIFO Is In the SDRAM and Destination is in Internal Memory (EMIF is 16-bit wide)
	Table 4-27. FIFO Write MAX Module Performance for Various Tap Sizes when Source Data and Destination FIFO are in Internal Memory
	Table 4-28. FIFO Write MAX Module Performance for Various Tap Sizes when Source is in Internal Memory and Destination FIFO is in SDRAM (EMIF is 32-bit wide)
	Table 4-29. FIFO Write MAX Module Performance for Various Tap Sizes when Source is in Internal Memory and Destination FIFO is in SDRAM (EMIF is 16-bit wide)
	Table A-1. Changes in this Revision
	IMPORTANT NOTICE

