
Dolby AC3 Version3 Decoder on
C64x+

User Guide

Literature Number: SPRUEI5A
April 2007

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of
this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is an
unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

iii

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) Dolby AC3 Version3 Decoder implementation on the C64x+ platform.
It also provides a detailed Application Programming Interface (API)
reference and information on the sample application that accompanies
this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI’s codecs with other software to build a multimedia system based on
the C64x+ platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

 Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the
codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these TI documents,
visit the Texas Instruments website at www.ti.com.

http://www.ti.com/

Read This First

iv

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Interoperability Standard (also known as XDAIS)
specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI’s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

 DMA Guide for eXpressDSP-Compliant Algorithm Producers and
Consumers (literature number SPRA445) describes the DMA
architecture specified by the TMS320 DSP Algorithm Standard
(XDAIS). It also describes two sets of APIs used for accessing DMA
resources: the IDMA2 abstract interface and the ACPY2 library.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

The following documents describe TMS320 devices and related support
tools:

 Design and Implementation of an eXpressDSP-Compliant DMA
Manager for C6X1X (literature number SPRA789) describes a
C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager.

 TMS320c64x+ Megamodule (literature number SPRAA68) describes
the enhancements made to the internal memory and describes the
new features which have been added to support the internal memory
architecture's performance and protection.

 TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871) describes the C64x+ megamodule peripherals.

 TMS320C64x to TMS320C64x+ CPU Migration Guide (literature
number SPRAA84) describes migration from the Texas Instruments
TMS320C64x™ digital signal processor (DSP) to the
TMS320C64x+™ DSP.

 TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide
(literature number SPRU187N) explains how to use compiler tools
such as compiler, assembly optimizer, standalone simulator, library-
build utility, and C++ name demangler.

 TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(literature number SPRU732) describes the CPU architecture,
pipeline, instruction set, and interrupts of the C64x and C64x+ DSPs.

Read This First

v

 TMS320DM6446 Digital Media System-on-Chip (literature number
SPRS283)

 TMS320DM6446 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ241) describes the known
exceptions to the functional specifications for the TMS320DM6446
Digital Media System-on-Chip (DMSoC).

 TMS320DM6443 Digital Media System-on-Chip (literature number
SPRS282)

 TMS320DM6443 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ240) describes the known
exceptions to the functional specifications for the TMS320DM6443
Digital Media System-on-Chip (DMSoC).

 TMS320DM644x DMSoC DSP Subsystem Reference Guide
(literature number SPRUE15) describes the digital signal processor
(DSP) subsystem in the TMS320DM644x Digital Media System-on-
Chip (DMSoC).

 TMS320DM644x DMSoC ARM Subsystem Reference Guide
(literature number SPRUE14) describes the ARM subsystem in the
TMS320DM644x Digital Media System on a Chip (DMSoC).

Related Documentation

You can use the following documents to supplement this user guide:

 ATSC A/52, Digital Audio Compression (AC-3), United States
Advanced Television Committee

 Dolby Digital Consumer Decoder (AC3) algorithm - 3 (7.1.0) of the
Dolby Digital C Simulator Decoder Source Code

 DolbySIP5_0.pdf – Dolby Software Interface Protocol version 5.0

Read This First

vi

Abbreviations

The following abbreviations are used in this document:

Table 1-1. List of Abbreviations
Abbreviation Description

API Application Programming Interface

AC3 Audio Coding 3

DRM Digital Rights Management

EVM Evaluation Module

PCM Pulse Coded Modulation

ATSC Advanced Television Systems Committee

HDTV High Definition Television

DVD Digital versatile Disc

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, please quote the product
name (Dolby AC3 Version3 Decoder on C64x+) and version number.
The version number of the codec is included in the Title of the Release
Notes that accompanies this codec.

Trademarks

Code Composer Studio, the DAVINCI Logo, DAVINCI, DSP/BIOS,
eXpressDSP, TMS320, TMS320C64x, TMS320C6000, TMS320DM644x,
and TMS320C64x+ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

vii

Contents

Read This First .. iii

About This Manual ...iii
Intended Audience ...iii
How to Use This Manual ..iii
Related Documentation From Texas Instruments..iii
Related Documentation.. v
Abbreviations .. vi
Text Conventions .. vi
Product Support .. vi
Trademarks ... vi

Contents.. vii
Figures ... ix
Tables... xi
Introduction ...1-1

1.1 Overview of XDAIS and XDM..1-2
1.1.1 XDAIS Overview ..1-2
1.1.2 XDM Overview ...1-2

1.2 Overview of Dolby AC3 Decoder...1-3
1.3 Supported Services and Features...1-4

Installation Overview ..2-1
2.1 System Requirements ...2-2

2.1.1 Hardware..2-2
2.1.2 Software ...2-2

2.2 Installing the Component...2-2
2.3 Before Building the Sample Test Application ..2-4

2.3.1 Installing DSP/BIOS ...2-4
2.4 Building and Running the Sample Test Application ..2-4
2.5 Configuration Files ..2-5

2.5.1 Generic Configuration File ...2-5
2.6 Standards Conformance and User-Defined Inputs ...2-7
2.7 Uninstalling the Component ..2-7
2.8 Evaluation Version ..2-7

Sample Usage..3-1
3.1 Overview of the Test Application...3-2

3.1.1 Parameter Setup ..3-3
3.1.2 Algorithm Instance Creation and Initialization..3-3
3.1.3 Process Call ...3-4
3.1.4 Algorithm Instance Deletion ...3-4

API Reference..4-1
4.1 Symbolic Constants and Enumerated Data Types..4-2
4.2 Data Structures ...4-5

4.2.1 Common XDM Data Structures..4-5
4.2.2 Dolby Digital AC3 Decoder Data Structures ..4-12

4.3 Interface Functions..4-19

viii

4.3.1 Creation APIs ...4-20
4.3.2 Initialization API..4-21
4.3.3 Control API ...4-22
4.3.4 Data Processing API ..4-24
4.3.5 Termination API ...4-27

ix

Figures

Figure 2-1. Component Directory Structure ...2-2
Figure 3-1. Test Application Sample Implementation..3-2

x

This page is intentionally left blank

xi

Tables

Table 1-1. List of Abbreviations... vi
Table 2-1. Component Directories...2-3
Table 4-1. List of Enumerated Data Types..4-2
Table 4-2. Decoder Error Status ..4-4
Table 4-3. Speaker Satellite Configuration ...4-16

xii

This page is intentionally left blank

1-1

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI’s implementation of the Dolby AC3 Version3
Decoder on the C64x+ platform and its supported features.

Topic Page

1.1 Overview of XDAIS and XDM 1-2

1.2 Overview of Dolby AC3 Decoder 1-3

1.3 Supported Services and Features 1-4

Introduction

1-2

1.1 Overview of XDAIS and XDM

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory
requirements to the client application. The algInit() API allows the
algorithm to initialize the memory allocated by the client application. The
algFree() API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algActivate() API provides a notification to the
algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algDeactivate() API prior
to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),
algNumAlloc(), and algMoved(). For more details on these APIs, see
TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs

Introduction

1-3

(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control() API replaces the algControl() API defined as part of the
IALG interface. The process() API does the basic processing
(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

1.2 Overview of Dolby AC3 Decoder

The Dolby AC3 Decoder is an audio coding technology used to store and
transmit high quality multi-channel sound.

This standard is used in movie and home theaters and has been chosen as
the audio standard for next-generation systems such as DVD, HDTV,
digital broadcasts, computer audio, and DVD ROMs for video games. The
technology has been adopted by the ATSC (Advanced Television Systems
Committee) as the audio service standard for HDTV in United States.

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Introduction

1-4

From this point onwards, all references to AC3 Decoder means Dolby AC3
Version3 Decoder only.

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of Dolby AC3 Decoder
on the C64x+ platform.

This version of the codec has the following supported features of the
standard:

 Supports 32, 44.1, and 48 kHz output sampling rates and 32-640 kbps
input bit rates

 Supports all specified audio coding modes namely Dual Mono (1+1),
1/0, 2/0, 3/0, 2/1, 3/1, 2/2, 3/2

 Supports Dialog Normalization, Dynamic Range Control, and Peak
Level Control features

 Supports dual-mono modes: Stereo, Ch1 Mono, Ch2 Mono, and Mixed
Mono

 Compliant with Dolby Digital Development Kit version 3.0 (7.1.0)

 Implementation is Karaoke Aware and Karaoke capable

 Supports the Dolby Digital Extended Bit Stream syntax provided in
Annex D of the ATSC specifications

 Supports output of 16-bit and 24-bit PCM samples. In case of 24-bit
output PCM samples, the samples are written as 32-bit words where
the 24-bit sample word is towards the MSB and LSB 8-bits are zero
padded which can be ignored. In case of 16-bit PCM samples, the
MSB 16-bit has the PCM data and the LSB 16-bits are zero-padded.

 Supports both block format data output and sample-interleaved data
format

 Does not support Digital Rights Management (DRM)

 Does not support Up-Mix and Pro-Logic processing

 eXpressDSP compliant

 eXpressDSP Digital Media (XDM) compliant

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-2

2.3 Before Building the Sample Test Application 2-4

2.4 Building and Running the Sample Test Application 2-4

2.5 Configuration Files 2-5

2.6 Standards Conformance and User-Defined Inputs 2-7

2.7 Uninstalling the Component 2-7

Installation Overview

2-2

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been built and tested on the DM644x EVM with XDS560
USB.

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

 Development Environment: This project is developed using Code
Composer Studio version 3.2.37.12.

 Code Generation Tools: This project is compiled, assembled,
archived, and linked using the code generation tools version 6.0.8.

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a directory called 100_A_AC3_D. Figure 2-1 shows
the sub-directories created in this directory, under which another directory
named DM644x_AC3 is created. Figure 2-1 shows the sub-directories
created in DM644x_AC3 directory.

Figure 2-1. Component Directory Structure

Installation Overview

2-3

Note:

If you are installing an evaluation version of this codec, the parent
directory name will be 100E_A_AC3_D.

Table 2-1 provides a description of the sub-directories created in the
DM644x_AC3 directory.

Table 2-1. Component Directories
Sub-Directory Description

\Inc Contains XDM related header files which allow interface to the
codec library

\Lib Contains the codec library files

\Docs Contains user guide, datasheet, and release notes

\Client\Build Contains the sample test application project (.pjt) file

\Client\Build\Map Contains the memory map generated on compilation of the
code

\Client\Build\Obj Contains the intermediate .asm and/or .obj file generated on
compilation of the code

\Client\Build\Out Contains the final application executable (.out) file generated
by the sample test application

\Client\Test\Src Contains application C files

\Client\Test\Inc Contains header files needed for the application code

\Client\Test\TestVecs\Input Contains input test vectors

\Client\Test\TestVecs\Output Contains output generated by the codec

\Client\Test\TestVecs\Reference Contains read-only reference output to be used for verifying
against codec output

\Client\Test\TestVecs\Config Contains configuration parameter files

Installation Overview

2-4

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need DSP/BIOS. This version of the codec has been
validated with DSP/BIOS version 5.21.

2.3.1 Installing DSP/BIOS

You can download DSP/BIOS from the TI external website:

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

Install DSP/BIOS at the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio_v3.2

The sample test application uses the following DSP/BIOS files:

 Header file, bcache.h available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages\ti\
bios\include directory.

 Library file, biosDM420.a64P available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages\ti\
bios\lib directory.

2.4 Building and Running the Sample Test Application

The sample test application that accompanies this codec component will
run in TI’s Code Composer Studio development environment. To build and
run the sample test application in Code Composer Studio, follow these
steps:

1) Verify that you have an installation of TI’s Code Composer Studio
version 3.2.37.12 and code generation tools version 6.0.8.

2) Verify that the codec object library, dolbyac3dec_ti.l64P exists in the
\Lib sub-directory.

3) Open the test application project file, TestAppDecoder.pjt in Code
Composer Studio. This file is available in the \Client\Build sub-
directory.

4) Select Project > Build to build the sample test application. This
creates an executable file, TestAppDecoder.out in the \Client\Build\Out
sub-directory.

5) Select File > Load, browse to the \Client\Build\Out sub-directory,
select the codec executable created in step 4, and load it into Code
Composer Studio in preparation for execution.

6) Select Debug > Run to execute the sample test application.

The sample test application takes the input files stored in the
\Client\Test\TestVecs\Input sub-directory, runs the codec, to generate

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

Installation Overview

2-5

an output file that will be stored in the \Client\Test\TestVecs\Output
sub-directory.

On successful completion, the application displays the following
message for each frame “Decoder frame dump completed”

7) Compare the output file stored in \Client\Test\TestVecs\Output sub-
directory with the reference file stored in the
\Client\Test\TestVecs\Reference sub-directory to verify that the codec
is functioning as expected.

2.5 Configuration Files

This codec is shipped along with a generic configuration file (Testvecs.cfg),
which specifies the input and output files for the sample test application.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and output files for
running the codec. The Testvecs.cfg file is available in the
\Client\Test\TestVecs\Config sub-directory.

The format of the Testvecs.cfg file is:

X
Input
Output
Bit precision
Satellite Channel configuration
Sub woofer
Auxiliary channel
Source dual
Source Karaoke
Operation Mode
Dynamic RangeLo
Dynamic RangeHi

where:

 X may be set to:
• 1 – for compliance checking, no output file is created
• 0 – for writing output to output file

 Input is the input file name (use complete path)

 Output is the root of the output stereo file’s name (use complete path).
For example, if output file name is output_001, the three stereo PCM
files will be output_001_lr.pcm, output_001_lsrs.pcm, and
output_001_csw.pcm.

 Bit precision
• 16 – 16-bit PCM output
• 24 – 24-bit PCM output

 Satellite Channel configuration is the Satellite channel
configuration value (See Table 4-3. Speaker Satellite Configuration

Installation Overview

2-6

for details)

 Sub Woofer is the user request for subwoofer channel or LFE
channel
• 0 – LFE absent
• 1 – LFE present

 Auxiliary Channel : User request for auxiliary channel
• 0 – Unknown
• 1 – Stereo Lo Ro
• 2 – Stereo Lt Rt
• 3 – Stereo Mono
• 4 – Stereo Dual

 Source Dual : Dual mono reproduction mode
• 0 – Stereo (default)
• 1 – Left mono
• 2 – Right mono
• 3 – Mixed mono

 Source Karaoke
• -1 – Kaware mode
• 0 – no vocal
• 1 – left vocal
• 2 – right vocal
• 3 – both vocals (default)

 Operation Mode : Indicates operational mode selected for decoding
• 0 – Custom 0 mode
• 1 – Custom 1 mode
• 2 – Lineout mode(default)
• 3 – RF mode

 Dynamic Range Lo : Dynamic range scale factor (low). Range: 0.0 to
1.0 in Q6 format i.e. 0x00 to 0x40. (The default value is 1.0)

 Dynamic Range Hi : Dynamic range scale factor (high). Range: 0.0 to
1.0 in Q6 format i.e. 0x00 to 0x40. (The default value is 1.0)

A sample Testvecs.cfg file is as shown:

1
..\..\Test\TestVecs\Input\default.ac3
..\..\Test\TestVecs\Reference\output_001
24
10
1
0
0
3
0
0.0
0.0

Installation Overview

2-7

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4.

To check the conformance of the codec for other input files of your choice,
follow these steps:

 Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory.

 Copy the reference files to the \Client\Test\TestVecs\Reference sub-
directory.

 Edit the configuration file, Testvecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the Testvecs.cfg file, see Section 2.5.1.

 Execute the sample test application. The application displays the
following message for each frame “Decoder compliance test passed for
the frame No x”.

You may use any standard file comparison utility to compare the codec
output with the reference output and check for conformance.

2.7 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2.8 Evaluation Version

If you are using an evaluation version of this codec there will be an audible
tone will be heard occasionally.

Installation Overview

2-8

This page is intentionally left blank

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IAUDDEC base class of the Decoder
library. The main test application files are TestAppDecoder.c and
TestAppDecoder.h. These files are available in the \Client\Test\Src and
\Client\Test\Inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application.

XDAIS-XDM Interface Codec Library

Al
go

rit
hm

In

st
an

ce

De
let

io
n

Al
go

rit
hm

In

st
an

ce
 C

re
at

io
n

an
d

In
iti

ali
za

tio
n

Pa
ra

m
et

er

Se
tu

p
Pr

oc
es

s
Ca

ll

algActivate
control()
process()
control()

algDeactivate()

algNumAlloc()

 algFree()

Test Application

algNumAlloc()

algAlloc()
 algInit()

Figure 3-1. Test Application Sample Implementation

Note:

Audio codecs do not use algActivate() and algDeactivate() APIs.

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, etc. The test application obtains the
required parameters from the Decoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, input file name, output/reference file
name, output samples bit precision, user satellite configuration request
parameters, dual mono mode and karaoke mode parameters

2) Reads the input bit stream into the application input buffer.

3) Assigns the corresponding parameters as extended input arguments.
The decoder assumes the default values (see Section 4.2) if these
parameters are not provided.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory
records it requires.

2) algAlloc() - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures
provided by the application.

A sample implementation of the create function that calls algNumAlloc(),
algAlloc(), and algInit() in sequence is provided in the
ALG_create() function implemented in the alg_create.c file.

Sample Usage

3-4

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run time) by
calling the control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the
process() function call. The input and output buffer descriptors are
obtained by calling the control() function with the XDM_GETBUFINFO
command.

3) Calls the process() function to encode/decode a single frame of data.
The behavior of the algorithm can be controlled using various dynamic
parameters (see Section 4.2.1.5). The inputs to the process function
are input and output buffer descriptors, pointer to the
IAUDDEC_InArgs and IAUDDEC_OutArgs structures.

There could be any ordering of control() and process() functions. The
following APIs are called in sequence:

1) control() (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

2) process() - To call the Decoder with appropriate input/output buffer
and arguments information.

3) control() (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

The do-while loop encapsulates frame level process() call by updating
the input buffer pointer to each frame every time before the next call. For
each frame, frame level decoding is achieved through the process() call.
The do-while loop breaks off whenever the input buffer exhausts. The do-
while loop also protects the process() call from file operations by placing
appropriate calls for cache operations as well. The test application does a
cache invalidate for the valid input buffers before process() and a cache
write back invalidate for output buffers after process().

In the sample test application, after calling process(), the output data is
either dumped to a file or compared with a reference file.

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application must delete the
current algorithm instance. The following APIs are called in sequence:

1) algNumAlloc() - To query the algorithm about the number of memory
records it used.

2) algFree() - To query the algorithm to get the memory record
information.

A sample implementation of the delete function that calls algNumAlloc()
and algFree() in sequence is provided in the ALG_delete() function
implemented in the alg_create.c file.

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-5

4.3 Interface Functions 4-5

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. Described alongside the
macro or enumeration is the semantics or interpretation of the same in
terms of what value it stands for and what it means.

Table 4-1. List of Enumerated Data Types
Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IAUDIO_MONO Single channel

IAUDIO_STEREO Two channel

IAUDIO_THREE_ZERO Three channel

IAUDIO_FIVE_ZERO Five channel

IAUDIO_FIVE_ONE 5.1 channel

IAUDIO_ChannelId

IAUDIO_SEVEN_ONE 7.1 channel.
Not supported in this version of AC3
Decoder.

IAUDIO_BLOCK Front Left, Front Right, Surround Left,
Surround Right, Centre, and LFE channels
data are output in block format in a single
output buffer.

IAUDIO_PcmFormat

IAUDIO_INTERLEAVED Front Left, Front Right, Surround Left,
Surround Right, Centre, and LFE channels
data are output in interleaved format in a
single output buffer.

XDM_BYTE Big endian stream

XDM_LE_16 16-bit little endian stream

XDM_DataFormat

XDM_LE_32 32-bit little endian stream

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill Status
structure

 XDM_SETPARAMS Set run-time dynamic parameters via the
DynamicParams structure.

 XDM_RESET Reset the algorithm

 XDM_SETDEFAULT Initialize all fields in Params structure to
default values specified in the library.

API Reference

4-3

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 XDM_FLUSH Handle end of stream conditions. This
command forces algorithm instance to output
data without additional input.
Not applicable for AC3 Decoder. Returns
IALG_EOK.

 XDM_GETBUFINFO Query algorithm instance regarding the
properties of input and output buffers.

 The bit fields in the 32-bit error code are
interpreted as shown.

XDM_APPLIEDCONCEALMENT Bit 9
 1 - Applied concealment
 0 - Ignore

Not supported for this version of AC3
Decoder.

XDM_INSUFFICIENTDATA Bit 10
 1 - Insufficient input data
 0 - Ignore

XDM_CORRUPTEDDATA Bit 11
 1 - Invalid data
 0 - Ignore

XDM_CORRUPTEDHEADER Bit 12
 1 - Corrupted frame header
 0 - Ignore

XDM_UNSUPPORTEDINPUT Bit 13
 1 - Unsupported feature/parameter in

input
 0 - Ignore

XDM_UNSUPPORTEDPARAM Bit 14
 1 - Unsupported input parameter or

configuration
 0 - Ignore

XDM_ErrorBit

XDM_FATALERROR Bit 15
 1- Fatal error (stop decoding)
 0 - Recoverable error

Note:

The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

 Bit 16-32: Reserved

 Bit 8: Reserved

 Bit 0-7: Codec and implementation specific

API Reference

4-4

The algorithm can set multiple bits to 1 depending on the error condition.

The AC3 Decoder specific error status messages are listed in Table 4-2.
The value column indicates the decimal value of the last 8-bits reserved for
codec specific error statuses.

Table 4-2. Decoder Error Status
Group or
Enumeration Class

Symbolic Constant Name Value Description or Evaluation if set

XDM_BADBITRATE 1 Unsupported bit rate

XDM_BADSAMPLERATE 2 Unsupported sampling rate

XDM_UNSUPPORTEDBSID 3 Unsupported bit stream
configuration ID

XDM_CRCFAILED 4 CRC failed

XDM_CPLSTRTGFAILED 5 Channel coupling strategy failed

XDM_SETCHBWCODHIGH 6 Channel bandwidth code too high

XDM_REMATRIXFAILED 7 Re-matrix failed

XDM_EXPDECODEFAILED 8 Exponent decoding failed

XDM_BITALLOCFAILED 9 Bit allocation failed

XDM_SYNCNOTFOUND 10 AC3 synchronization not found

XDM_INVALID_BUFFER_CONFI
G

11 Invalid I/O buffer configuration

XDM_INVALID_ARGUMENT 12 Invalid input argument.

AC3_ErrorBit

XDM_NULL_POINTER_DETECTE
D

13 Null pointer detected

API Reference

4-5

Note:
The AC3 errors are categorized based on the status of the decoder
based on whether,
(i) the application can proceed decoding with additional input data, or
(ii) the application can proceed decoding with the next frame or
(iii) decoder should be configured or initialized by the application.

 Decoder can continue with next frame or with additional input data
• XDM_SYNCNOTFOUND
• XDM_BADBITRATE
• XDM_BADSAMPLERATE
• XDM_SETCHBWCODHIGH

 Decoder cannot decode the present frame
• XDM_UNSUPPORTEDBSID
• XDM_CRCFAILED
• XDM_CPLSTRTGFAILED
• XDM_EXPDECODEFAILED
• XDM_BITALLOCFAILED
• XDM_REMATRIXFAILED

 Decoder is not configured or initialised properly by the application
• XDM_INVALID_BUFFER_CONFIG
• XDM_INVALID_ARGUMENT
• XDM_NULL_POINTER_DETECTED

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM_BufDesc

 XDM_AlgBufInfo

 IAUDDEC_Fxns

 IAUDDEC_Params

 IAUDDEC_DynamicParams

 IAUDDEC_InArgs

 IAUDDEC_Status

 IAUDDEC_OutArgs

API Reference

4-6

4.2.1.1 XDM_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Datatype Input/
Output

Description

**bufs XDAS_Int8 Input Pointer to the vector containing buffer addresses

numBufs XDAS_Int32 Input Number of buffers

*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control() function
with the XDM_GETBUFINFO command.

║ Fields

Field Datatype Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_
MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each input buffer

minOutBufSize[XDM
_MAX_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each output buffer

Note:

For AC3 Decoder, the buffer details are:

 Number of input buffer required is 1.

 Number of output buffer required is 1.

 The size of the input buffer should allow atleast one frame of
encoded data to be present in the input buffer. If the size of input
buffer is less than the minimum frame size of AC3 decoder (128
bytes), the decoder returns XDM_INVALID_BUFFER_CONFIG error.
The input buffer size (in bytes) for worst case is 4096 bytes.

API Reference

4-7

 The size of output buffer should be sufficient enough to hold the
decoded output of a complete frame for all six channels. The output
buffer size (in bytes) for worst case is 36864 bytes.

 The decoded output of all six channels are placed in channel order:
Front Left, Front Right, Surround Left, Surround Right, Centre, and
LFE. The channels are interleaved sample-wise or block-wise based
on output format. See IAUDIO_PcmFormat enumeration for details.

4.2.1.3 IAUDDEC_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Datatype Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

*control XDAS_Int32 Input Pointer to the control() function

4.2.1.4 IAUDDEC_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to
specify for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

maxSampleRate XDAS_Int32 Input Maximum sampling frequency to be supported in
Hertz (Hz). For example, if maximum sampling
frequency is 44.1 kHz, set this field to 44100.

maxBitrate XDAS_Int32 Input Maximum bit rate to be supported in bits per second.
For example, if maximum bit rate is 128 kbps, set
this field to 128000.

API Reference

4-8

Field Datatype Input/
Output

Description

maxNoOfCh XDAS_Int32 Input Maximum channels to be supported. See
IAUDIO_ChannelId enumeration for details.

dataEndianness XDAS_Int32 Input Endianness of input data. See XDM_DataFormat
enumeration for details.

Note:

 AC3 decoder implementation supports both little endian
(XDM_LE_16) and big endian (XDM_BYTE) format of input data. The
decoder detects the endianness of input data from the bitstream and
hence this field is ignored. However during initialization, the decoder
validates this field and returns error if this field is set values other
than XDM_LE_16 or XDM_BYTE.

 AC3 decoder supports maximum 6 channels, that is, 5.1 channels.
LFE channel is refered as “.1”

 Supported maxBitrate and maxSampleRate values are 640 kbps
and 48 kHz respectively.

 The maxBitrate, maxSampleRate, and maxNoOfCh fields are used
by the application only to poll the capabilities of the decoder. The
fields are not considered by the decoder during the process of
decoding the bitstream.

4.2.1.5 IAUDDEC_DynamicParams

║ Description

This structure defines the run time parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to
be specified for these parameters.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes

outputFormat XDAS_Int32 Input To set interleaved/block format for output. See
IAUDIO_PcmFormat enumeration for details.

Note:

 AC3 decoder implementation supports both IAUDIO_BLOCK and
IAUDIO_INTERLEAVED format for output PCM samples. The

API Reference

4-9

channel order followed is Front Left, Front Right, Surround Left,
Surround Right, Centre, and LFE channels.

API Reference

4-10

4.2.1.6 IAUDDEC_InArgs

║ Description

This structure defines the run time input arguments for an algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

numBytes XDAS_Int32 Input Number of valid input data (in bytes) in input buffer.
For example, if number of valid input data in input
buffer is 128 bytes, set this field to 128.

4.2.1.7 IAUDDEC_Status

║ Description

This structure defines parameters that describe the status of the decoder.
║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being
used) data structure in bytes.

extendedError XDAS_Int32 Output Extended error enumeration for XDM
compliant encoders and decoders. See
XDM_ErrorBit data structure for details.

bitRate XDAS_Int32 Output Bit rate in bits per second. For example, if
the value of this field is 128000, it indicates
that bit rate is 128 kbps.

sampleRate XDAS_Int32 Output Sampling frequency in Hertz (Hz). For
example, if the value of this field is 44100,
it indicates that the sample rate is 44.1kHz.

numChannels XDAS_Int32 Output Number of channels. See
IAUDIO_ChannelId enumeration for
details.

numLFEChannels XDAS_Int32 Output Number of LFE (Low Frequency Effects)
channels in the stream

API Reference

4-11

Field Datatype Input/
Output

Description

outputFormat XDAS_Int32 Output The output PCM format. See
IAUDIO_PcmFormat enumeration for
details.

autoPosition XDAS_Int32 Output Flag to indicate support for random
position decoding, which means that a
stream can be decoded from any point:

 1 - Supports random position
decoding

 0 - Does not support random position
decoding

fastFwdLen XDAS_Int32 Output Recommended Fast Forward length in
bytes in case of random position decoding.

frameLen XDAS_Int32 Output Number of samples decoded per decode
call.

outputBitsPerSample XDAS_Int32 Output Number of output bits per output sample.
For example, if the value of the field is 16,
it indicates 16 output bits per PCM sample.

bufInfo XDM_AlgBufInfo Output Input and output buffer information. See
XDM_AlgBufInfo data structure for
details.

4.2.1.8 IAUDDEC_OutArgs

║ Description

This structure defines the run time output arguments for the algorithm
instance object.

║ Fields

Field Datatype Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error enumeration for XDM
compliant encoders and decoders. See
XDM_ErrorBit data structure for details.

bytesConsumed XDAS_Int32 Output Bytes consumed during the process call

API Reference

4-12

4.2.2 Dolby Digital AC3 Decoder Data Structures

This section includes the following AC3 Decoder specific extended data
structures:

 IDOLBYAC3DEC_Params

 IDOLBYAC3DEC_DynamicParams

 IDOLBYAC3DEC_InArgs

 IDOLBYAC3DEC_Status

 IDOLBYAC3DEC_OutArgs

4.2.2.1 IDOLBYAC3DEC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for the AC3 Decoder instance object.
The creation parameters are defined in the XDM data structure,
IAUDDEC_Params.

║ Fields

Field Datatype Input/
Output

Description

auddec_params IAUDDEC_Params Input See IAUDDEC_Params data structure for
details.

4.2.2.2 IDOLBYAC3DEC_DynamicParams

║ Description

This structure defines the run time parameters and any other
implementation specific parameters for the AC3 Decoder instance object.
The run time parameters are defined in the XDM data structure,
IAUDDEC_DynamicParams.

║ Fields

Field Datatype Input/
Output

Description

auddec_dynamicparams IAUDDEC_DynamicParams Input See
IAUDDEC_DynamicParams
data structure for details.

API Reference

4-13

Field Datatype Input/
Output

Description

operationMode XDAS_Int32 Input Indicates operational mode
selected for decoding.

 0–Custom 0 mode
 1–Custom 1 mode
 2–Lineout mode(default)
 3–RF mode

dynrngScaleHiQ6 XDAS_Int32 Input Dynamic range scale factor
(high). Range: 0.0 to 1.0 in Q6
format i.e. 0x00 to 0x40. (The
default value is 1.0)

dynrngScaleLoQ6 XDAS_Int32 Input Dynamic range scale factor
(low)
Range: 0.0 to 1.0 in Q6 format
i.e. 0x00 to 0x40. (The default
value is 1.0)

RFModeGainApply XDAS_Int32 Input Indicates whether 11 dB gain
to be applied in the RF mode
has been applied.

 0 – Apply 11 dB gain
(default)

 1 – Do not apply 11 dB
gain

dlgNormApply XDAS_Int32 Input Apply dialog normalization
 0 – Apply dialog

normalisation (default)
 1 – Do not apply dialog

normalisation

stereomod XDAS_Int32 Input Facilitate preferred stereo
downmix mode

 0 – Auto or LtRt (default)
 1 – Perform LtRt downmix
 2 – Perform LoRo

downmix
 3 – Auto or LoRo

Note: Auto implies stereo
downmix as indicated in the
bitstream.

adconvtyp XDAS_Int32 Input A/D conversion Type; required
in consumer players for
playback.
The default value set is 0.

API Reference

4-14

4.2.2.3 IDOLBYAC3DEC_InArgs

║ Description

This structure defines the run time input arguments for the AC3 Decoder
instance object.

║ Fields

Field Datatype Input/
Output

Description

auddec_inArgs IAUDDEC_InArgs Input See IAUDDEC_InArgs data structure for details.

channelConfig
urationReques
t

PAF_ChannelCon
figuration

Input Request for desired output channel configuration.
See Section 4.2.2.4 for more details on
PAF_ChannelConfiguration.

sourceDual XDAS_Int32 Input Request for dual mono reproduction mode:
 0 – Stereo (default)
 1 – Left mono
 2 – Right mono
 3 – Mixed mono

sourceKaraoke XDAS_Int32 Input Request for karaoke mode:
 -1 – Kaware mode
 0 – No vocal
 1 – Left vocal
 2 – Right vocal
 3 – Both vocals (default)

outputBitsPer
Sample

XDAS_Int32 Input Number of bits per output PCM sample:
 16 – 16 bits per PCM sample
 24 – 24 bits per PCM sample

4.2.2.4 PAF_ChannelConfiguration

║ Description

This structure defines the arguments for configuring speaker satellite for
the AC3 Decoder instance object.

║ Fields

Field Datatype Input/
Output

Description

Sat XDAS_Int32 Input Speaker satellite configuration.
 0 – Unknown
 1 – None
 2 – Mono

API Reference

4-15

 3 – Stereo or PHANTOM0
 4 – PHANTOM1
 5 – PHANTOM2
 6 – PHANTOM3
 7 – PHANTOM4
 8 – 3 Stereo or SURROUND0
 9 – SURROUND1
 10 – SURROUND2

See Table 4-3. Speaker Satellite Configuration

for details.

Sub XDAS_Int32 Input Subwoofer or LFE configuration
 0 – LFE absent
 1 – LFE present

Aux XDAS_Int32 Input Auxiliary channel configuration
 0 – Unknown
 1 – Stereo Lo Ro
 2 – Stereo Lt Rt
 3 – Stereo Mono
 4 – Stereo Dual

Note:

 If the application requested values for the sat and aux fields of
channelConfigurationRequest are invalid/unsupported, the
decoder defaults them to unknown. For sub field, the decoder
defaults them to LFE present.

 The Stereo, Mono, and Stereo Dual values for aux field are used
only as an indicator by the decoder and any requests by the
application for these values will be defaulted as unknown.

 The decoder returns error for invalid values of sourceKaraoke and
sourceDual fields of IDOLBYAC3DEC_InArgs

API Reference

4-16

Table 4-3 describes the field sat in PAF_ChannelConfiguration data
structure and explains the speaker satellite configuration

Table 4-3. Speaker Satellite Configuration

Field
‘sat’

Satellite Channel
Configuration

Left Rght LSur RSur Cntr

0 UNKNOWN
1 NONE
2 MONO x
3 STEREO or

PHANTOM0
x x

4 PHANTOM1 x x x
5 PHANTOM2 x x x x
6 PHANTOM3 x x x x
7 PHANTOM4 x x x x
8 3STEREO or

SURROUND0
x x x

9 SURROUND1 x x x x
10 SURROUND2 x x x x x

4.2.2.5 IDOLBYAC3DEC_Status

║ Description

This structure defines parameters that describe the status of the AC3
Decoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IAUDDEC_Status.

║ Fields

Field Datatype Input/
Output

Description

auddec_status IAUDDEC_Status Output See IAUDDEC_Status data structure for
details.

isValid XDAS_Int32 Output Flag indicating if the last decode call was
successful:

 1 – Indicates last decode call was
successful and the values of the fields
in the IAUDDEC_Status structure
are valid.

 0 – Indicates last decode call was not
successful and the values are not
valid.

bsi[10] XDAS_Int16 Output Bit Stream information required for
application. Refer DolbySIP5_0.pdf in
related documentation for complete
description of them.

API Reference

4-17

Field Datatype Input/
Output

Description

bsiParams IDOLBYAC3DEC_B
siParams

Output Common bitstream information required for
application for instant easy reference. See
Section 4.2.2.7 for more details on
bsiParams

4.2.2.6 IDOLBYAC3DEC_OutArgs

║ Description

This structure defines the run time output arguments for the AC3 Decoder
instance object.

║ Fields

Field Datatype Input/
Output

Description

auddec_outArgs IAUDDEC_OutArgs Output See IAUDDEC_OutArgs data structure for
details.

channelConfigurat
ionProgram

PAF_ChannelConf
iguration

Output Decoder transmits to the application, the
output channel configuration encoded in the
bit stream.

channelConfigurat
ionOut

PAF_ChannelConf
iguration

Output Decoder transmits to the application, the
final output channel configuration decoded.

bsi[10] XDAS_Int16 Output Bit Stream information required for
application. Refer DolbySIP5_0.pdf in related
documentation for complete description of
them.

bsiParams IDOLBYAC3DEC_Bs
iParams

Output Common bitstream information required for
application for instant easy reference. See
Section 4.2.2.7 for more details on
bsiParams

API Reference

4-18

4.2.2.7 IDOLBYAC3DEC_BsiParams

║ Description

This structure defines few important BSI elements, which are frequently
required by the run time output arguments for the AC3 Decoder instance
object.

║ Fields

Field Datatype Input/
Output

Description

sampleRate XDAS_Int32 Output Sampling frequency in Hz. For example, a
value of 44100 indicates sampling frequency
of 44.1 KHz

bitRate XDAS_Int32 Output Bit rate in bits per second. For example, a
value of 128000 indicates a bit rate of 128
kbps.

sampleRateModifier XDAS_Int32 Output Sampling rate
 0 – Standard sample rate
 1 – Half sample rate
 2 – Quarter sample rate
 3 – Reserved

lfeChannelFlag XDAS_Int32 Output Flag to indicate presence of LFE channel
 0 – LFE absent
 1 – LFE present

acmod XDAS_Int32 Output Audio coding mode
 0 – 1+1 (Ch1, Ch2)
 1 – 1/0 (C)
 2 – 2/0 (L, R)
 3 – 3/0 (L, C, R)
 4 – 2/1 (L, R, S)
 5 – 3/1 (L, C, R, S)
 6 – 2/2 (L, R, SL, SR)
 7 – 3/2 (L, C, R, SL, SR)

frameSize XDAS_Int32 Output Frame size in words

bsid XDAS_Int32 Output Bit stream identification number

API Reference

4-19

Field Datatype Input/
Output

Description

bsmod XDAS_Int32 Output Bit stream Mode
 0 – Main audio service
 1 – Main audio service minus dialog
 2 – Associated service: visually impaired
 3 – Associated service: hearing

impaired
 4 – Associated service: dialog
 5 – Associated service: commentary
 6 – Associated service: emergency flash
 7 – Associated service: voice-over
(audio coding mode 1+1 or 1/0 only)

 8 – Main audio service: karaoke (audio
coding mode 2/0 or higher)

dsurmod XDAS_Int32 Output Dolby surround mode
 0 – No indication
 1 – Not dolby surround encoded
 2 – Dolby surround encoded
 3 – Reserved

copyrightbit XDAS_Int32 Output Copyright protection bit
 0 – Not copyright protected
 1 – Copyright protected

originalBitStream XDAS_Int32 Output Original bit stream flag
 0 – Copy of original bitstream
 1 – Original bitstream

4.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the AC3 Decoder. The APIs are logically grouped into the following
categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

API Reference

4-20

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),
algDeactivate(), and algFree() are standard XDAIS APIs. This
document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

Note:

Audio codecs do not use algActivate() and algDeactivate() APIs.

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algNumAlloc(Void);
║ Arguments

Void
║ Return Value

XDAS_Int32; /* number of buffers required */
║ Description

algNumAlloc() returns the number of buffers that the algAlloc()
method requires. This operation allows you to allocate sufficient space to
call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

API Reference

4-21

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns
**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32 /* number of buffers required */
║ Description

algAlloc() returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.
algAlloc() may return a pointer to its parent’s IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers
returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algNumAlloc(), algFree()

4.3.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params structure (see Data
Structures section for details).

API Reference

4-22

║ Name

algInit() – initialize an algorithm instance
║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec
memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

algInit() performs all initialization necessary to complete the run-time
creation of an algorithm instance object. After a successful return from
algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This
value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

4.3.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters
are defined in the Status data structure (see Data Structures section for
details).

API Reference

4-23

║ Name

control() – change run-time parameters and query the status
║ Synopsis

XDAS_Int32 (*control) (IAUDDEC_Handle handle, IAUDDEC_Cmd
id, IAUDDEC_DynamicParams *params, IAUDDEC_Status
*status);

║ Arguments

IAUDDEC_Handle handle; /* algorithm instance handle */

IAUDDEC_Cmd id; /* algorithm specific control commands*/

IAUDDEC_DynamicParams *params /* algorithm run time
parameters */

IAUDDEC_Status *status /* algorithm instance status
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function changes the run-time parameters of an algorithm instance
and queries the algorithm’s status. control() must only be called after a
successful call to algInit() and must never be called after a call to
algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IAUDDEC_DynamicParams and IAUDDEC_Status data structures
respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data
structures respectively. Also, ensure that the size field is set to the size
of the extended data structure. Depending on the value set for the size
field, the algorithm uses either basic or extended parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 control() can only be called after a successful return from
algInit() and algActivate().

 If algorithm uses DMA resources, control() can only be called after
a successful return from DMAN3_init().

API Reference

4-24

 handle must be a valid handle for the algorithm’s instance object.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the control operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

 If the control command is not recognized, the return value from this
operation is not equal to IALG_EOK.

║ Example

See test application file, TestAppDecoder.c available in the \Client\Test\Src
sub-directory.

║ See Also

algInit(), algActivate(), process()

Note:

Audio codecs do not use algActivate(), algDeactivate(), and
DMAN3_init()APIs.

4.3.4 Data Processing API

Data processing API is used for processing the input data.

API Reference

4-25

║ Name

process() – basic encoding/decoding call
║ Synopsis

XDAS_Int32 (*process)(IAUDDEC_Handle handle, XDM_BufDesc
*inBufs, XDM_BufDesc *outBufs, IAUDDEC_InArgs *inargs,
IAUDDEC_OutArgs *outargs);

║ Arguments

IAUDDEC_Handle handle; /* algorithm instance handle */

XDM_BufDesc *inBufs; /* algorithm input buffer descriptor
*/

XDM_BufDesc *outBufs; /* algorithm output buffer descriptor
*/

IAUDDEC_InArgs *inargs /* algorithm runtime input
arguments */

IAUDDEC_OutArgs *outargs /* algorithm runtime output
arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function does the basic encoding/decoding. The first argument to
process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM_BufDesc data structure
for details).

The fourth argument is a pointer to the IAUDDEC_InArgs data structure
that defines the run time input arguments for an algorithm instance object.

The last argument is a pointer to the IAUDDEC_OutArgs data structure that
defines the run time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and OutArgs data structures
respectively. Also, ensure that the size field is set to the size of the
extended data structure. Depending on the value set for the size field,
the algorithm uses either basic or extended parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 process() can only be called after a successful return from
algInit() and algActivate().

API Reference

4-26

 If algorithm uses DMA resources, process() can only be called after
a successful return from DMAN3_init().

 handle must be a valid handle for the algorithm’s instance object.

 Buffer descriptor for input and output buffers must be valid.

 Input buffers must have valid input data.
║ Postconditions

The following conditions are true immediately after returning from this
function.

 If the process operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

 After successful return from process() function, algDeactivate() can be
called.

 Example

 See test application file, TestAppDecoder.c available in the
\Client\Test\Src sub-directory.

 See Also

 algInit(), algDeactivate(), control()

Note:

 Audio codecs do not use algActivate(), algDeactivate(), and
DMAN3_init()APIs.

API Reference

4-27

4.3.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

API Reference

4-28

║ Name

algFree() – determine the addresses of all memory buffers used by the
algorithm

║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec
memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */
║ Description

algFree() determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

