Contents

1 Overview .. 5
 1.1 System Requirements ... 5
 1.2 Design Overview ... 6

2 Installation Guide .. 7
 2.1 List of Installable Components ... 7
 2.2 Component Folder .. 7
 2.3 Development Tools ... 7
 2.4 Build.. 8
 2.5 Steps to Load/Unload the NOR Flash Driver .. 8

3 NOR Flash Driver Porting .. 9
 3.1 Customizing the NOR-flash partitions .. 9
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MTD Subsystem</td>
<td>6</td>
</tr>
</tbody>
</table>
LSP 1.20 DaVinci Linux NOR Flash Driver

This guide describes the functional scope of the DaVinci NOR Flash Driver and its feature set. Included are details concerning:

- The various deployment environments, hardware and software, on which the NOR Flash Driver is presently supported.
- The system architecture of the driver.
- The functional decomposition and run-time specifics regarding deployment of the driver in user applications.

For LSP 1.20, the NOR Flash Driver is supported on the following EVMs: DM644x.

1 Overview

The NOR Flash Driver provides the following functional services:

- Supports 16MB AMD AM29LV256M NOR Flash chip
- Supports 16MB Intel I128P30T StrataFlash NOR Flash chip
- Read/Write/Erase from/to NOR Flash
- Support for multiple user channels
- Mounting/un-mounting of the partition

1.1 System Requirements

The NOR Flash Driver is supported on DaVinci EVM (Evaluation Module) Boards with Monta Vista Linux 2.6.10 software.
1.2 Design Overview

This section provides an overview of each layer in the memory technology device (MTD) subsystem. Figure 1 describes layering of the MTD subsystem.

Figure 1. MTD Subsystem

1.2.1 Kernel Virtual File System (VFS) Layer

The Virtual File System (VFS) is the subsystem of the kernel that implements the file system-related interfaces provided to user-space programs. All file systems rely on the VFS to allow them not only to coexist, but also to interoperate. This enables programs to use standard UNIX system calls to read and write to different file systems on different media.

The VFS is the glue that enables system calls such as open(), read(), and write() to work, regardless of the file system or underlying physical medium.

The VFS resides in the linux-2.6.10_mvl401/fs directory of the kernel source.
1.2.2 MTD User Modules

To avoid, as much as possible, having different tools for different technologies and to provide common capabilities among the various technologies, the Linux kernel includes the MTD subsystem. This provides a unified and uniform layer that enables a seamless combination of low-level MTD chip drivers with higher-level interfaces called user modules.

The MTD user modules, JFFS and JFFS2, are not configured as part of the MTD subsystem configuration. Rather, they are configured within the File systems submenu. Nevertheless, MTD support must be enabled to enable support for either JFFS or JFFS2.

Code for MTD user modules resides in the respective directories of the kernel directory montavista/pro/devkit/lsp/ti-davinci/fs. For example, code for JFFS2 is in montavista/pro/devkit/lsp/ti-davinci/fs/jffs2/.

1.2.3 MTD Chip Drivers

The MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and properties in the mtd_info structure in the add_mtd_device() function. The callbacks an MTD driver has to provide are called by the MTD subsystem to carry out operations such as erase, read, write, and sync.

The NOR Flash Driver described in this document comes under this category. It is a low-level driver targeted for a specified NOR flash chip. Source code files for AMD NOR Flash are cfi_cmdset_0002.c, cfi_util.c, and davinci-nor.c. Source code files for Intel NOR Flash are cfi_cmdset_0001.c, cfi_util.c, and davinci-nor.c. The files cfi_cmdset_0001.c, cfi_cmdset_0002.c and cfi_util.c are in the montavista/pro/devkit/lsp/ti-davinci/drivers/mtd/chips directory, while davinci-nor.c is in the montavista/pro/devkit/lsp/ti-davinci/drivers/mtd/maps directory of the source tree.

Once the MTD chip drivers are properly configured for a system's memory devices, the storage space available on each MTD device can be managed by an MTD user module. The user module enforces a storage format on the MTD devices it manages and provides interfaces and abstractions recognized by higher-level kernel components.

2 Installation Guide

This section discusses installation of the NOR Flash Driver, what software and hardware components are available, and how to make these components available in order to complete a successful installation of the driver.

2.1 List of Installable Components

NOR Flash Driver code, Makefile changes and Kconfig file changes.

2.2 Component Folder

The NOR Flash Driver can be found in the following directory after final installation into the system:
montavista/pro/devkit/lsp/ti-davinci/drivers/mtd/chips
montavista/pro/devkit/lsp/ti-davinci/drivers/mtd/maps

2.3 Development Tools

Install the following tools, in the order listed below, to setup the development environment:

- MVL401, version 2.6.10
- MontaVista Linux Toolchain - arm_v5t_le-
2.4 Build

This section describes the steps required to build the device driver.

2.4.1 Build Options

This driver does not require any specific build options at this time.

2.4.2 Build Steps

Use the following steps to enable NOR Flash support in the system:

Step 1. Choose your default kernel configuration by entering the command:

```
make davidci xxxx_defconfig.
```

Step 2. Choose the driver specific kernel configuration by entering command: `make menuconfig`.

Step 3. Select the Device Drivers option and then, select Memory Technology Devices (MTD). Finally, choose the RAM/ROM/Flash chip drivers option.

Step 4. Detect flash chips by common flash interface (CFI) by selecting one of the following:

a. For the static build, choose the option `<>` Detect flash chips by Common Flash Interface (CFI).

b. For build as a module, choose the option `<M>` Detect flash chips by Common Flash Interface (CFI).

Step 5. To build support for the AMD select one of the following:

a. For static build, choose the option `<>` Support for AMD/Fujitsu flash chips.

b. For build as a module, choose the option `<M>` Support for AMD/Fujitsu flash chips.

Step 6. To build support for Intel select one of the following:

a. For static build, choose the option `<>` Support for Intel/Sharp flash chips.

b. For build as a module, choose the option `<M>` Support for Intel/Sharp flash chips.

Step 7. To enable access for NOR flash chips on the DaVinci-based board defining flash platform devices and flash platform data, choose the Mapping drivers for chips access, and select one of the following:

A. For static build, choose the option `<>` TI DaVinci board mappings.

B. For build as a module, choose the option `<M>` TI DaVinci board mappings.

Step 8. Due to the PINMUX conflicts, NOR driver (Intel or AMD) requires the DaVinci NAND and ATA-IDE driver to be disabled.

A. Select the Device Drivers option and then, select ATA/ATAPI/MFM/RLL support. Disable the Davinci IDE interface support option.

B. Select the Device Drivers option and then, select Memory Technology Devices (MTD). Select the NAND Flash Device Drivers. Disable the NAND Flash device on DaVinci SoC option.

Step 9. Save your kernel configuration options and build the kernel by entering the following command: `make uImage modules`.

2.5 Steps to Load/Unload the NOR Flash Driver

To run the driver using the dynamically-loadable modules, copy the modules (.ko files) to the target file system. Execute the following commands to load the NOR Flash Driver (AMD) modules:

- `insmod cfi_util.ko`
- `insmod cfi_cmdset_0002.ko`
- `insmod davinci_nor.ko`

Execute the following commands to load the NOR Flash Driver (Intel) modules:

- `insmod cfi_util.ko`
- `insmod cfi_cmdset_0001.ko`
- `insmod davinci_nor.ko`
Execute the following commands to unload the NOR Flash Driver (AMD) modules:

- `insmod davinci_nor.ko`
- `insmod cfi_cmdset_0002.ko`
- `insmod cfi_util.ko`

Execute the following commands to unload the NOR Flash Driver (Intel) modules:

- `insmod davinci_nor.ko`
- `insmod cfi_cmdset_0001.ko`
- `insmod cfi_util.ko`

3 NOR Flash Driver Porting

This section describes the changes made in kernel source code to support NOR Flash chips AMD AM29LV256M and Intel I128P30T StrataFlash.

3.1 Customizing the NOR-flash partitions

In the file `arch/arm/mach-davinci/board-evm.c`, there are partitions defined for the NOR-flash chips of the DaVinci board. The partition information is the default value that the kernel takes during compilation. This partition information can be changed according to the user's needs. For each partition, these fields are available:

- **name**: String that will be used to label the partition's MTD device.
- **offset**: Absolute starting position within the MTD device; if defined as MTD PART_OFS_APPEND, the partition will start where the previous one ended; if MTD PART_OFS_NXTBLK, at the next erase block.
- **size**: The partition size; if defined as MTD PART_SIZ_FULL, the partition will extend to the end of the MTD device.
- **mask_flags**: Contains flags that have to be masked (removed) from the MTD flag set for the corresponding MTD partition. For example, to force a read-only partition, adding MTD_WRITEABLE to the mask_flags will suffice.

Default partition information for the DaVinci board is shown below:

```c
davinci_evm_nor_partitions[] = {
    /* bootloader (U-Boot, etc) in first 4 sectors */
    { .name = "bootloader", .offset = 0, .size = SZ_128K, .mask_flags = MTD_WRITEABLE, },
    /* bootloader params in the next 1 sector */
    { .name = "params", .offset = MTD PART_OFS_APPEND, .size = SZ_128K, .mask_flags = MTD_WRITEABLE, },
    /* kernel */
    { .name = "kernel", .offset = MTD PART_OFS_APPEND, .size = SZ_4M, .mask_flags = 0, },
    /* file system */
    { .name = "filesystem", .offset = MTD PART_OFS_APPEND, .size = MTD PART_SIZ Full, .mask_flags = 0, }
};
```
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>RF/I/F and ZigBee® Solutions</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated