
Interface

User’s Guide

Computer Video ProductsSeptember 1990

SPVU015C
September 1990

Printed on Recycled Paper

Interface
User’s Guide

Copyright 1991, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue any semiconduc-
tor product or service identified in this publication without notice. TI advises its customers to ob-
tain the latest version of the relevant information to verify, before placing orders, that the informa-
tion being relied upon is current.

TI warrants performance of its semiconductor products to current specifications in accordance
with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Unless mandated by government requirements,
specific testing of all parameters of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design, software per-
formance, or infringement of patents or services described herein. Nor does TI warrant or repre-
sent that license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, ma-
chine, or process in which such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances, devices, or sys-
tems. Use of a TI product in such applications without the written consent of the appropriate TI
officer is prohibited.

iii

Preface

Read This First

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction
Introduces the TIGA Interface, its features and architecture.

Chapter 2 Getting Started
Contains instructions to install TIGA on a PC and to run a demonstration pro-
gram.

Chapter 3 Application Interface
Describes the application interface and lists all TIGA functions by functional
group.

Chapter 4 Core Functions
Describes the core functions alphabetically, showing the syntax and argu-
ments of each function, a detailed description, and programming examples or
references to related functions.

Chapter 5 Extended Graphics Library Functions
Describes the extended functions contained in the TIGA graphics library,
showing the syntax and arguments of each function, a detailed description,
and programming examples or references to related functions.

Chapter 6 Graphics Library Conventions
Describes the assumptions made and conventions adopted regarding coordi-
nate systems, mapping of pixels to coordinates, operations on pixels, clipping,
and the geometric figures and rendering styles supported by TIGA.

Chapter 7 Bit-Mapped Text
Describes the text capabilities of TIGA, the types of fonts supported, and the
internal structure of the database for each font; gives an alphabetical listing of
the available fonts with illustrations.

Chapter 8 Extensibility
Describes how to extend TIGA by adding your own functions; also describes
the command processing entry points of the communication driver.

How to Use This Manual/Related Documentation

iv Read This First

Appendix A Data Structures
Describes the data structures used in TIGA.

Appendix B TIGA Reserved Symbols
Describes the function names reserved for internal use of TIGA.

Appendix C Debugger Support for TIGA
Describes TIGA debugger support functions.

Appendix D Error Messages / Error Codes
Contains a list of error codes and messages returned by TIGA.

Appendix E Glossary
Contains the definitions of TIGA-specific and TIGA-related terms and acro-
nyms.

Related Documentation

The following documents are available from Texas Instruments:

TMS34010 User’s Guide (literature number SPVU001).

Describes the internal architecture, hardware interfaces, programmable
registers, and instruction set of the TMS34010 32-bit graphics processor
chip.

TMS34020 User’s Guide (literature number SPVU019).

Describes the internal architecture, hardware interfaces, programmable
registers, and instruction set of the TMS34020 32-bit graphics processor
chip.

TMS340 Family Code Generation Tools User’s Guide (literature number
SPVU020).

Describes the C compiler, assembler, linker, and archiver for the
TMS340x0 graphics system processors.

To obtain any of TI’s product literature listed above, please contact the Texas
Instruments Customer Response Center at toll-free telephone number
(800) 336-5236, or at (214) 995-6611 if you are calling from outside the US
and Canada.

 Related Documentation/Style and Symbol Conventions

v

You may also find the following documentation useful:

Kernighan, Brian, and Dennis Ritchie. The C Programming Language.
Second Edition. Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

Kochan, Stephen G. Programming in C. Hasbrouck Heights, New Jersey:
Hayden Book Company, 1983.

Sobelman, Gerald E., and David E. Krekelberg. Advanced C: Techniques
and Applications. Indianapolis, Indiana: Que Corporation, 1985.

Style and Symbol Conventions

This document uses the following conventions:

TIGA functions and their parameters are shown in italic face in regular
text. For example, the TIGA function draw_line has parameters x1, y1, x2,
y2. Filenames (example: tigalnk.exe) are also shown in italic face..
Program examples and interactive display examples are shown in mono-
spaced program font. Here is an example program:

#include <tiga.h>

main()
{

short module;

/*–– */
/* Initialize TIGA */
/*–– */
if (tiga_set(CD_OPEN) < 0)
{

printf(”CD initialization error\n”);
exit(0);

}

if(!set_videomode(TIGA,INIT))
{

printf(”TIGA GM initialization error\n”);
tiga_set(CD_CLOSE);
exit(0);

}
/*–– */
/* Attempt to install module */
/*–– */
if ((module=install_rlm(”EXAMPLE”)) < 0)
{

 printf(”Error %d installing EXAMPLE rlm\n”, module);
exit_tiga();

}
/*–– */
/* Main body of application appears here */
/*–– */

:
:

Style and Symbol Conventions

vi Read This First

/*–– */
/* Terminate TIGA */
/*–– */
exit_tiga();

}

exit_tiga()
{

set_videomode(PREVIOUS, INIT);
tiga_set(CD_CLOSE);
exit(0);

}

In syntax descriptions, the instruction, command, or directive is in a bold
face font with parameters in italic face. Portions of a syntax in bold face
(including quote marks) should be entered as shown. Portions of a syntax
in italic face describe the type of information that you provide. Square
brackets identify optional information:

mg2tiga MG font TIGA font [” facename”]

Italic face is also used to emphasize a word or phrase that may be impor-
tant or that is being defined or used for the first time in a chapter.

 Trademarks

vii

Trademarks

DGIS is a trademark of Graphic Software Systems, Inc.

GEM is a trademark of Digital Research, Inc.

GSS*CGI is a trademark of Graphic Software Systems, Inc.

High C and Metaware are trademarks of MetaWare Incorporated.

MS-Windows, PM, MS-DOS, and CodeView are trademarks of Microsoft Corp.

NDP C-386 and MicroWay are trademarks of Microway, Inc.

Phar Lap, 386|DOS-Extender, and 386|VMM are trademarks of Phar Lap Software, Inc.

PC-DOS and PGA are trademarks of IBM Corp.

TIGA is a trademark of Texas Instruments Incorporated.

viii Read This First

ix

Contents

1 Introduction 1-1.
1.1 Features 1-2.
1.2 Architecture 1-3.
1.3 Extensibility 1-5.

2 Getting Started 2-1.
2.1 TMS340 Development Products 2-2.
2.2 System Requirements 2-3.

2.2.1 TIGA Driver Development Package (TIGA-DDP) and TIGA Software
Development Package (TIGA-SDP) 2-3.

2.2.2 TIGA Software Porting Package (TIGA-SPP) 2-3.
2.3 Installing TIGA on Your System 2-4.

2.3.1 TIGA Driver Development Package (TIGA-DDP) Subdirectories 2-5.
2.3.2 TIGA Software Development Package (TIGA-SDP) Subdirectories 2-5.
2.3.3 TIGA Software Porting Package (TIGA-SPP) Subdirectories 2-5.

2.4 Modifying Autoexec and the Environment 2-7.
2.5 The TIGA Environment Variable 2-8.
2.6 Running the TIGA Driver 2-9.
2.7 TIGA Utility Programs 2-10.

2.7.1 cltiga Batch File 2-10.
2.7.2 mg2tiga Utility 2-11.

2.8 Rebuilding Existing TIGA Applications for TIGA 2.0 2-13.
2.8.1 TIGA 2.0 Initialization / Termination 2-13.
2.8.2 CURSOR Structure Change 2-13.
2.8.3 Return Value of set_config 2-14.
2.8.4 Elimination of Offscreen Workspace 2-15.
2.8.5 TIGA 1.1 Functions No Longer Supported 2-15.
2.8.6 New Functions Available in TIGA 2.0 2-15.
2.8.7 Functional Differences in TIGA 2.0 2-15.

3 Application Interface 3-1.
3.1 Supported Development Tools 3-2.

3.1.1 Host-PC Development Tools 3-2.
3.1.2 TMS340 Development Tools 3-2.

3.2 Host-PC Include Files and Libraries 3-3.
3.3 TMS340 Include Files and Libraries 3-5.

Contents

x Table of Contents

3.4 Sample TIGA Application 3-6.
3.5 TIGA Functions 3-9.

3.5.1 Core Functions 3-9.
3.5.2 Extended Functions 3-9.

3.6 Summary of Functions by Functional Group 3-10.
3.6.1 Graphics System Initialization Functions 3-10.
3.6.2 Clear Functions 3-10.
3.6.3 Graphics Attribute Control Functions 3-11.
3.6.4 Palette Functions 3-12.
3.6.5 Graphics Drawing Functions 3-12.
3.6.6 Poly Drawing Functions 3-13.
3.6.7 Pixel Array Functions 3-14.
3.6.8 Text Functions 3-15.
3.6.9 Graphics Cursor Functions 3-15.
3.6.10 Graphics Utility Functions 3-16.
3.6.11 Handle-Based Memory Management Functions 3-16.
3.6.12 Pointer-Based Memory Management Functions 3-17.
3.6.13 Data Input/Output Functions 3-18.
3.6.14 Extensibility Functions 3-18.
3.6.15 Interrupt Handler Functions 3-19.

4 Core Functions 4-1.
4.1 Core Functions Reference 4-2.

5 Extended Graphics Library Functions 5-1.
5.1 Extended Graphics Library Functions 5-2.

6 Graphics Library Conventions 6-1.
6.1 Graphics Library Function Naming Conventions 6-2.
6.2 Coordinate Systems 6-4.
6.3 Area-Filling Conventions 6-6.
6.4 Vector-Drawing Conventions 6-8.
6.5 Rectangular Drawing Pen 6-10.
6.6 Area-Fill Patterns 6-12.
6.7 Line-Style Patterns 6-13.
6.8 Operations on Pixels 6-15.

6.8.1 Transparency 6-15.
6.8.2 Plane Mask 6-16.
6.8.3 Pixel-Processing Operations 6-16.

6.9 Clipping Window 6-18.
6.10 Pixel-Size Independence 6-19.

7 Bit-Mapped Text 7-1.
7.1 Bit-Mapped Font Parameters 7-2.
7.2 Font Data Structure 7-5.

 Contents

xi

7.2.1 Font Header Information 7-5.
7.2.2 Font Pattern Table 7-8.
7.2.3 Location Table 7-10.
7.2.4 Offset/Width Table 7-10.

7.3 Proportionally Spaced Versus Block Fonts 7-11.
7.4 Font Table 7-12.
7.5 Text Attributes 7-13.
7.6 Available Fonts 7-14.

7.6.1 Installing Fonts 7-15.
7.6.2 Alphabetical Listing of Fonts 7-16.

8 Extensibility 8-1.
8.1 Dynamic Load Module 8-2.

8.1.1 Relocatable Load Modules 8-2.
8.1.2 Absolute Load Modules 8-2.

8.2 Generating a Dynamic Load Module 8-4.
8.2.1 TIGAEXT Section 8-4.
8.2.2 The TIGAISR Section 8-4.
8.2.3 Linking the Code and Special Sections Into an RLM 8-5.

8.3 Installing a Dynamic Load Module 8-6.
8.3.1 Installing a Relocatable Load Module 8-6.
8.3.2 Installing an Absolute Load Module 8-7.

8.4 Invoking Functions in a Dynamic Load Module 8-9.
8.4.1 Command Number Format 8-9.
8.4.2 Using Macros in Command Number Definitions 8-10.
8.4.3 Passing Parameters to the TIGA Function 8-10.

8.5 C-Packet Mode 8-12.
8.5.1 The Type of Call 8-12.
8.5.2 The Command Number 8-12.
8.5.3 Description of Function Arguments 8-13.
8.5.4 C-Packet Examples 8-14.
8.5.5 Overflow of the Command Buffer 8-15.

8.6 Direct Mode 8-16.
8.6.1 Differences Between Microsoft C and High C/NDP Compilers 8-16.
8.6.2 Standard Command Entry Point 8-17.
8.6.3 Standard Command Entry Point With Return 8-18.
8.6.4 Standard Memory Send Command Entry Point 8-19.
8.6.5 Standard Memory Return Command Entry Point 8-20.
8.6.6 Standard String Entry Point 8-21.
8.6.7 Altered Memory Return Command Entry Point 8-21.
8.6.8 Send/Return Memory Command Entry Point 8-21.
8.6.9 Mixed Immediate and Pointer Command Entry Point 8-22.
8.6.10 Mixed Immediate and Pointer Command Entry Point With Return 8-22.
8.6.11 Poly Function Command 8-22.

Contents

xii Table of Contents

8.6.12 Immediate and Poly Data Entry Point 8-25.
8.7 Downloaded Function Restrictions 8-28.

8.7.1 Register Usage Conventions 8-29.
8.7.2 TIGA Graphics Manager System Parameters 8-30.

8.8 Using the TMS340-to-Host Callback Functions 8-31.
8.8.1 The Command Number 8-31.
8.8.2 Description of the Function Arguments 8-31.
8.8.3 Call-Back Examples 8-32.
8.8.4 Initializing the Callback Environment 8-33.
8.8.5 Sizing the Callback Buffer and Handling Overflow 8-34.

8.9 Installing Interrupts 8-36.
8.10 Object Code Compatibility 8-39.

8.10.1 Determining the Processor 8-39.
8.10.2 Pattern B-File Register 8-40.
8.10.3 Pitch Registers 8-40.
8.10.4 Video Timing Registers 8-41.
8.10.5 TM34020-Specific Instructions 8-43.
8.10.6 VRAM Block Mode 8-43.

8.11 The TIGA Linking Loader 8-45.
8.11.1 /ca – Create Absolute Load Module 8-45.
8.11.2 /cs – Create External Symbol Table 8-46.
8.11.3 /ec – Error Check 8-46.
8.11.4 /fs – Flush External Symbol Table 8-47.
8.11.5 /la – Load and Install an Absolute Load Module 8-47.
8.11.6 /lr – Load and Install a Relocatable Load Module 8-47.
8.11.7 /lx – Load and Execute a COFF File / Execute TIGA GM 8-47.

A Data Structures A-1.
A.1 Integral Data Types A-2.
A.2 CONFIG Structure A-3.
A.3 CURSOR Structure A-5.
A.4 ENVIRONMENT Structure A-7.
A.5 FONTINFO Structure A-8.
A.6 MODEINFO Structure A-9.
A.7 OFFSCREEN Structure A-13.
A.8 PALET Structure A-14.
A.9 PATTERN Structure A-15.

B TIGA Reserved Symbols B-1.
B.1 Reserved Functions B-2.
B.2 TIGA Core Functions Symbols B-3.
B.3 TIGA Extended Graphics Library Symbols B-6.

C Debugger Support for TIGA C-1.
C.1 Debugger Functions C-2.

 Contents

xiii

C.2 TIGA / Debugger Interface C-12.
C.3 Compatibility Functions C-14.

D Error Messages / Error Codes D-1.
D.1 Error Messages D-2.
D.2 Error Codes D-3.
D.3 Communication Driver (CD) Errors D-7.

E Glossary E-1.

xiv Table of Contents

Figures

1–1. Block Diagram 1-3.

1–2. Function Configuration Options 1-5.

4–1. Outcodes for Lines Endpoints 4-12.

6–1. Screen Coordinates and Drawing Coordinates 6-4.

6–2. Mapping of Pixels to Coordinate Grid 6-5.

6–3. A Filled Rectangle 6-6.

6–4. A Filled Polygon 6-7.

6–5. An Outlined Polygon 6-9.

6–6. A Line Drawn by a Pen 6-10.

6–7. A 16-by-16 Area-Fill Pattern 6-12.

6–8. Three Connected Styled Lines 6-14.

7–1. Bit-Mapped Font Parameters 7-4.

7–2. Data Structure for Bit-Mapped Fonts 7-5.

7–3. Bit-Mapped Font Representation 7-9.

8–1. Command Number Format 8-9.

8–2. Data Structure of dm_cmd 8-18.

8–3. Data Structure of dm_psnd 8-20.

8–4. Data Structure of dm_poly 8-23.

xv

Tables

3–1. Include Files for PC Development 3-3.

3–2. AI Libraries Development Tools 3-4.

3–3. Include Files for TIGA Extended Function Development 3-5.

3–4. Graphics System Initialization Functions 3-10.

3–5. Clear Functions 3-11.

3–6. Graphics Attribute Control Functions 3-11.

3–7. Palette Functions 3-12.

3–8. Graphics Drawing Functions 3-12.

3–9. Poly Drawing Functions 3-14.

3–10. Pixel Array Functions 3-14.

3–11. Text Functions 3-15.

3–12. Graphics Cursor Functions 3-15.

3–13. Graphics Utility Functions 3-16.

3–14. Handle-Based Memory Management Functions 3-17.

3–15. Pointer-Based Memory Management Functions 3-17.

3–16. Data Input /Output Functions 3-18.

3–17. Extensibility Functions 3-18.

3–18. Interrupt Handler Functions 3-19.

4–1. Pixel-Processing Operations 4-43.

4–2. Pixel-Processing Operations 4-120.

6–1. Geometric Types 6-2.

6–2. Rendering Styles 6-3.

6–3. Checklist of Available Geometric Types and Rendering Styles 6-3.

6–4. Boolean Pixel-Processing Operation Codes 6-17.

6–5. Arithmetic Pixel-Processing Operation Codes 6-17.

7–1. Text-Related Functions 7-2.

7–2. Font Database Summary 7-14.

7–3. Installable Font Names 7-15.

8–1. Keyword Equivalent Types 8-13.

8–2. Trap Vectors 8-36.

8–3. Interrupt Service Routines 8-37.

8–4. Linking Loader Options 8-45.

xvi Table of Contents

Examples

8–1. Installation of the RLM example.rlm 8-6.

8–2. Creation of an ALM From EXAMPLE.RLM 8-7.

8–3. TMS340 Shell Routine With dm_poly 8-24.

8–4. C Code to Determine the TMS340 Processor Type 8-39.

8–5. Assembly Code to Determine the TMS340 Processor Type 8-40.

8–6. Initialization of the CONVSP Register 8-41.

8–7. Initialization of the Video Timing I/O Register Pointers 8-42.

8–8. Use of TMS34020-Specific Instructions 8-43.

8–9. Use of the VFILL Instruction 8-44.

1-1

Chapter 1

Introduction

This user’s guide describes TIGA (Texas Instruments Graphics Architecture),
a software interface that standardizes communication between application
software and all TMS340 family-based hardware for IBM-compatible personal
computers. TIGA divides tasks between the TMS340 processor and the 80x86
host to improve application performance.

The TIGA interface standard simplifies the development of portable applica-
tions and application drivers for the diverse range of TMS340-based systems.
TIGA’s function set can be easily extended and customized by software devel-
opers for an application’s specific needs. In addition, hardware developers can
customize TIGA to take advantage of any value-added features available on
the target TMS340-based board.

TIGA contains a low-level communication interface designed so that other
standards such as MS-Windows, Presentation Manager (PM), DGIS, GEM,
CGI, and PGA can run through the interface with no performance penalty. Es-
sentially, TIGA replaces custom communication routines in other software in-
terfaces with a single standard set of host-to-TMS340 communication rou-
tines.

Topics in this chapter include

Section Page
1.1 Features 1-2.
1.2 Architecture 1-3.
1.3 Extensibility 1-5.

Features

1-2 Introduction

1.1 Features

These are the key application-related features of the TIGA interface standard:

Applications run faster TIGA provides the application developer with a
dual-processor environment. This environment
partitions the tasks in the application to run in
parallel between the host and the TMS340
processors. The TIGA interface is optimized to
provide high-speed communications between
the host and the TMS340 family processors
and to minimize the overhead in the processing
of TIGA commands.

TMS340 family support TIGA supports the complete line of TMS340x0
graphics system processors from Texas Instru-
ments. TIGA’s functions take advantage of any
available enhanced TMS340 processor in-
structions.

Dual-mode support TIGA supports both real- and protected-mode
DOS applications.

Easy to use TIGA provides applications with a base set of
graphics functions and with all the support
required for the graphics subsystem. TIGA is
compatible with a variety of popular DOS and
extended DOS development tools.

Extensible When an application requires graphics
functions that are not available in the TIGA
base set of functions, you can develop user-
extended functions by using TMS340 C,
assembly language, or a mixture of the two.
These extended graphics library functions can
be downloaded at runtime during the
application initialization.

Hardware independent Inquiry functions enable the application to
determine the resolution, pixel size, etc., of the
graphics subsystem and to adapt itself to the
TMS340-based board on which it runs.

 Architecture

1-3

1.2 Architecture

Figure 1–1 shows a block diagram of the TIGA interface, illustrating the com-
munication between the host routines and the TMS340 family processor rou-
tines.

As Figure 1–1 shows, the TIGA standard consists of four components:

1) Application Interface (AI)

a) Communication Driver (CD)

b) Graphics Manager (GM)

c) TIGA Extensions

Figure 1–1. Block Diagram

Application

APPLICATION
 INTERFACE

COMMUNICATION
DRIVER (TSR)

TIGA Interface

 Command
Executive

TIGA Functions
User-Extended

Functions

GRAPHICS MANAGER

Host PC TMS340 Board

The application interface (AI) provides the communication path between a
TIGA application and the TIGA communication driver. The AI consists of head-
er files that reference TIGA function and type definitions, which may be used
in the application, and of a library that the application links to when it is created.
The AI does not actually contain the routines that interface to the TMS340 pro-
cessor; these routines are contained in the communication driver.

The communication driver (CD) is a terminate-and-stay-resident (TSR) pro-
gram that runs on a host PC. The CD is specific to the TMS340 board and is
ported to it by a board manufacturer. A manufacturer ships the CD with the
board; the CD is in a file called tigacd.exe. This file can be invoked directly from
the command line or placed in the autoexec.bat file to be executed at startup.
The CD contains the functions used to communicate between the host and the
TMS340 board. The application invokes these functions via calls in the AI.
These communication functions control the host side hardware-dependent

Architecture

1-4 Introduction

portion of TIGA, including whether the TMS340 board is memory-mapped or
I/O-mapped.

The graphics manager (GM) is the portion of TIGA that runs on the TMS340
board and is specific to the board that it resides on. It consists of a command
executive that controls the TMS340 side of the communications with the host,
and of a set of core functions that provide memory management, palette sup-
port, and low-level graphics support. The GM typically resides in RAM on the
TMS340 board (although this is not a requirement) and therefore must be
loaded onto the board after power-up. The task of loading the GM is handled
automatically by TIGA.

In addition to its core functions,TIGA also provides a set of functions to perform
a wide range of graphics drawing operations. TIGA’s functions can be ex-
tended by downloading additional, user-developed functions onto the
TMS340 system. These downloaded functions may be written with either the
TMS340 C or assembly language. Downloading functions can decrease the
amount of processing required by the host and thus improve the performance
of the application.

The host application invokes most of the TIGA functions on the TMS340 pro-
cessor by downloading the parameters of the function, along with a command
number, into one of several communication buffers. The command number is
an identifier for the function to be executed. The command executive, which
forms part of the GM, determines which function is to be invoked and calls it
with the parameters that have been passed to it. Because there are several
buffers, the host downloads data into one buffer while the TMS340 is executing
data from another. This parallelism produces significant speed improvement
over the host performing the graphics manipulation directly.

 Extensibility

1-5

1.3 Extensibility

Graphics standards that existed prior to TIGA limited software development
by providing a fixed set of graphics drawing functions. In the rapidly changing
graphics market, a fixed set of functions is unacceptable.

TIGA’s functions can be extended by adding or manipulating its user library
collection of C-callable routines. Figure 1–2 shows the configuration options
for TIGA functions.

Figure 1–2. Function Configuration Options

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Base Set of TIGA
Functions

Hardware and Software Developer Options

User-Extended
Functions

User-Extended
Functions

or

TIGA Graphics Library
(example: patnfill_oval)

TIGA Extended
Functions

Core Functions (example:
gsp_malloc) Core Functions Core Functions

TIGA-compatible applications can be developed by using the base set of func-
tions provided by TIGA (as shown in the left-hand side of Figure 1–2). These
TIGA functions include the core functions, which are always available to the
application, and the TIGA graphics library functions, which can be loaded if the
application requires them.This set of graphics functions and the TMS340 pro-
cessor give many applications an acceptable level of graphics performance.
However, downloading user-extended functions can improve this perform-
ance still further. The user-extended functions can be downloaded to be used
in addition to or instead of the TIGA graphics library (as shown on the right-
hand side of Figure 1–2).

The same concept of adding functions can be implemented in hardware. For
example, if you develop a TMS340-based graphics system and incorporate
hardware in addition to the TMS340 processor, you can provide access to this

Extensibility

1-6 Introduction

hardware through the TIGA interface by developing a set of user-extended
functions that use the additional hardware functionality. Thus, the TIGA inter-
face becomes a standard programming platform for the software written with
these user-extended functions.

2-1

Chapter 2

Getting Started

This chapter contains instructions for installing TIGA on your system. Topics
in this chapter include

Section Page
2.1 TIGA Development Products 2-2.
2.2 System Requirements 2-3.
2.3 Installing TIGA on Your System 2-4.
2.4 Modifying Autoexec and the Environment 2-7.
2.5 The TIGA Environment Variable 2-8.
2.6 Running the TIGA Driver 2-9.
2.7 TIGA Utility Programs 2-10.
2.8 Rebuilding Existing TIGA Applications for TIGA 2.0 2-13.

TMS340 Development Products

2-2 Getting Started

2.1 TMS340 Development Products

Three TMS340 software development products are available from Texas In-
struments:

DDK: TMS340 Driver Developer’s Kit (TI part number TMS340DDK-PC)

The DDK is intended for software developers writing TIGA-compatible
applications and drivers, for which no TIGA extension development is re-
quired. The TIGA Driver Development Package (TIGA-DDP), a subas-
sembly of the DDK, contains the TIGA-related files and information.

SDK: TMS340 Software Developer’s Kit (TI part number TMS340SDK-
PC)

The SDK is intended for software developers writing TIGA-compatible
applications and drivers, for which TIGA extension development is re-
quired. The TIGA Software Development Package (TIGA-SDP), a subas-
sembly of the SDK, contains the TIGA-related files and information. Other
subassemblies included with the SDK are the TMS340 Code Generation
Tools and the TMS340 Graphics Library.

SPK: TMS340 Software Porting Kit (TI part number TMS340SPK-PC)

The SPK is intended for OEMs porting TIGA to their TMS340-based video
hardware. The TIGA Software Porting Package (TIGA-SPP), a subas-
sembly of the SPK, contains the TIGA-related files and information. Other
subassemblies included with the SPK are the TMS340 Code Generation
Tools and the TMS340 Graphics Library.

 System Requirements

2-3

2.2 System Requirements

To ensure proper installation and operation of TIGA, your system must meet
certain software and hardware minimum requirements. Consult the following
sections for a list of these requirements, depending on the TIGA package you
are installing.

2.2.1 TIGA Driver Development Package (TIGA-DDP) and TIGA Software
Development Package (TIGA-SDP)

IBM PC, XT, AT, or 100% compatible (hard disk required)
640K RAM
TMS340-based TIGA 2.0-compliant video board with TIGA 2.0 driver
MS-DOS or PC-DOS, version 2.13 or higher
Microsoft Macro Assembler, version 5.0 or higher (if developing assemb-
ler-based applications/drivers)
Microsoft C Compiler, version 5.0 or higher (if developing DOS real-mode
C applications)
MetaWare High C compiler, version 1.5 or 1.7, or Microway NDP C compil-
er, version 2.0 or higher, and Phar Lap 386 development tools, version 2.2
(if developing DOS protected-mode applications/drivers).
TMS340 Family Code Generation Tools, version 4.0 or higher (if writing
user-extended functions)

2.2.2 TIGA Software Porting Package (TIGA-SPP)

IBM PC, XT, AT, or 100% compatible (hard disk required)
640K RAM
TMS340-based video board (TIGA 2.0 target platform)
MS-DOS or PC-DOS, version 2.13 or higher
Microsoft Macro Assembler, version 5.0 or higher
Microsoft C Compiler, version 5.0 or higher
TMS340 Family Code Generation Tools, version 4.0 or higher

Note:

The TIGA-SPP provides complete porting sources to build and run TIGA 2.0
on a Texas Instruments TMS34010 or TMS34020 software development
board, or on the TMS34010-based TIGA Development Board (TDB). In addi-
tion, all software necessary to port TIGA to a different TMS340 board is in-
cluded in the TIGA-SPP; consult the Porting Guide in the file
\tiga\docs\portguid.doc for information.

Installing TIGA on Your System

2-4 Getting Started

2.3 Installing TIGA on Your System

Note:

If you have an earlier version of TIGA on your system, be aware that the TIGA
installation procedure overwrites same-named files in the tiga directory. For
this reason, you should back up files of previous versions of TIGA, if needed,
before proceeding with the new TIGA installation.

All TIGA development packages have an automated installation program with
identical procedures to aid in installing TIGA on your system.

Follow these instructions to install your TIGA kit:

Step 1: Make backup copies of the product diskettes.

Step 2: Place diskette #1 (DDP #1, SDP #1, or SPP #1) of your TIGA kit into
drive A.

Step 3: If A is not your current drive, at the MS-DOS prompt enter

A:

Step 4: Make sure you are at the root directory of A. If you are not sure, enter
this at the MS-DOS prompt:

cd\

Step 5: Enter

setup

Step 6: Follow the instructions displayed on the screen to complete installa-
tion.

Note:

After installing TIGA, consult the \tiga\docs\readme.1st file for the latest in-
formation not included in this user’s guide.

The installation of your TIGA development package creates a number of sub-
directories on your destination drive. Consult one of the following three sec-
tions (depending on the TIGA development package you installed) for informa-
tion describing these subdirectories and the files contained within them.

 Installing TIGA on Your System

2-5

2.3.1 TIGA Driver Development Package (TIGA-DDP) Subdirectories

Installing the TIGA-DDP on your system creates the following subdirectories:
Subdirectory Description
\tiga TIGA root directory, TIGA drivers, system files, and utility

programs
\tiga\demos TIGA-compatible example programs
\tiga\docs Additional TIGA-related documentation
\tiga\fonts TIGA-compatible fonts
\tiga\include Include files
\tiga\libs Application interface libraries

2.3.2 TIGA Software Development Package (TIGA-SDP) Subdirectories

Installing the TIGA-SDP on your system creates the following subdirectories:
Subdirectory Description
\tiga TIGA root directory, TIGA drivers, system files, and util-

ity programs
\tiga\demos TIGA-compatible example programs
\tiga\docs Additional TIGA-related documentation
\tiga\fonts TIGA-compatible font files
\tiga\gm\extprims TIGA-extended graphics library files
\tiga\include Include files
\tiga\libs Application interface libraries

The \tiga\gm\extprims directory contains the self-extracting archive file
extprims.exe. This archive contains source for every extended graphics library
function available within TIGA. It enables you to choose the extended func-
tions you need, link them with your specific user extensions, and create a cus-
tom TIGA dynamic load module with the TMS340 functions that your applica-
tion or driver requires. To extract the source files contained in this archive, en-
ter extprims from within this directory.

2.3.3 TIGA Software Porting Package (TIGA-SPP) Subdirectories

Installing the TIGA-SPP on your system creates the following subdirectories:
Subdirectory Description
\tiga TIGA root directory, TIGA drivers, system files, and util-

ity programs
\tiga\cd Common TIGA communication driver (CD) files
\tiga\cd\cd34010 TMS34010 common CD files
\tiga\cd\cd34020 TMS34020 common CD files
\tiga\cd\tdb10 TIGA Development Board-specific CD files
\tiga\cd\sdb10 TMS34010 SDB-specific CD files

Installing TIGA on Your System

2-6 Getting Started

Subdirectory Description
\tiga\cd\sdb20 TMS34020 SDB-specific CD files
\tiga\demos TIGA-compatible example programs/drivers
\tiga\docs Additional TIGA-related documentation
\tiga\fonts TIGA-compatible font files
\tiga\gm TIGA Graphics Manager (GM) files
\tiga\gm\corprims TIGA core function files
\tiga\gm\extprims TIGA-extended graphics library files
\tiga\gm\tdb10 TIGA Development Board-specific GM files
\tiga\gm\sdb10 TMS34010 SDB-specific GM files
\tiga\gm\sdb20 TMS34020 SDB-specific GM files
\tiga\include Include files
\tiga\libs Application interface (AI) libraries

Refer to the file portguid.doc in the \tiga\docs directory for detailed instructions
on how to port TIGA to your TMS340-based video board.

 Modifying Autoexec and the Environment

2-7

2.4 Modifying Autoexec and the Environment

After installing your TIGA package, you will need to make a few modifications
and/or additions to your autoexec.bat or comparable batch file. Note that these
instructions use C: to identify the hard disk drive. Replace C: with the designa-
tor for the drive where you installed your particular TIGA package:

1) Append C:\tiga to the MS-DOS path:

PATH=existing PATH ; C:\tiga

2) If you plan to develop TIGA-compatible applications using the Microsoft
C Compiler, append C:\tiga\include to the Microsoft C compiler environ-
ment variable INCLUDE:

set INCLUDE= existing INCLUDE ;C:\tiga\include

If you do not currently have an INCLUDE environment variable in your
autoexec.bat file, this command adds it.

3) If you have the TMS340 Family Code Generation Tools installed on your
system, then append C:\tiga\include to the existing A_DIR and C_DIR en-
vironment variables:

set A_DIR= existing A_DIR ;C:\tiga\include

set C_DIR= existing C_DIR ;C:\tiga\include

Again, if these environment variables currently do not exist, these com-
mands add them.

4) Add the following TIGA environment variable:

set TIGA= –mC:\tiga –lC:\tiga –i0x60

See Section 2.5 for a complete description of the TIGA environment vari-
able.

5) After modifying your autoexec.bat file, run it or reboot your PC.

The TIGA Environment Variable

2-8 Getting Started

2.5 The TIGA Environment Variable

TIGA uses the environment variable TIGA to get information about the location
of TIGA system files, dynamic load modules, and the desired interrupt level.
Set the TIGA environment variable by using the following syntax:

set TIGA = [options] [string] [options] [string]

set TIGA is the command that sets the environment
options valid options include

–m specifies the path for TIGA system files

–l specifies the path for TIGA dynamic load user modules

–i specifies the host interrupt level used by the TIGA commu-
nication driver

The option string cannot contain the character ’–’. In addition, there should be
no spaces between the option and the option string. For example:
set TIGA=–mc:\tiga is correct
set TIGA=–m c:\tiga is incorrect

Also, a space is required between options. For example:
set TIGA=–mc:\tiga –lc:\tiga is correct
set TIGA=–mc:\tiga–lc:\tiga is incorrect

When TIGA is initially installed, all TIGA system files are placed in the TIGA
directory of the destination drive. Specify this path with the –m option of the
TIGA environment variable.

Any dynamic load modules loaded from a TIGA application must be located
in either

the current directory from which the TIGA application is called, or
the path specified by the –l option in the TIGA environment variable.

By default, TIGA’s communication driver uses interrupt level 0x7F to communi-
cate with an application. Use the –i option followed by the interrupt level (in hex
format) in the TIGA environment variable to specify an alternate interrupt level.

Note:

The TIGA interrupt level must be set below 0x70 for the TIGA CD to operate
properly with the Phar Lap utilities (that is, applications linked with the Meta-
Ware High C or NDP C compilers). TI recommends using 0x60.

For example, assume that all TIGA system files are located in C:\tiga, that user
dynamic load modules are in D:\dlm, and that the desired interrupt level to use
is 0x60. Set the corresponding TIGA environment variable:

set TIGA =–mc:\tiga –ld:\dlm –i0x60

 Running the TIGA Driver

2-9

2.6 Running the TIGA Driver

This section provides general instructions on how to load the TIGA communi-
cation driver. Consult the TIGA software installation instructions that accom-
pany your TIGA video board for specific loading information.

To load TIGA, enter this at the MS-DOS prompt:

tigacd [options]

tigacd is the command that invokes the TIGA communication driver (CD).

options valid options include

–i Reinstalls the TSR. This option forces a new copy of the
TIGA communication driver to be loaded in memory, there-
by superseding any previously installed CD. Note that rein-
stalling the TSR with the –i option forces reloading of the
TIGA graphics manager.

–u Uninstalls the TSR. This option causes the previously in-
stalled TIGA CD to be released from memory, disabling
TIGA. To re-enable TIGA, enter tigacd once again.

The following options control TIGA’s debugger facilities. For detailed informa-
tion on how to debug a TIGA application, refer to the TMS340 Family C Source
Debugger user’s guide.

–d0 Disables the TIGA debug facility.

–d1 Enables the emulator mode of TIGA’s debug facility. This
option, used in conjunction with the emulator version of the
TMS340 C source debugger and the XDS500 emulator,
provides C source level debug capability for TIGA applica-
tions.

–d2 Enables the development board mode of the TIGA debug
facility. This option, used in conjunction with the serial link
configuration of the TMS340 C source debugger, provides
C-source-level debug capability for TIGA applications.

After the TIGA CD is loaded, TIGA is ready to use; however, the TMS340 side
of TIGA has not yet been initialized. This is accomplished by an application
calling set_videomode(TIGA,INIT) to check whether the TIGA graphics man-
ager (GM) is loaded and running on the TMS340 side. If so, both the host and
TMS340 sides of TIGA are ready. If not, the GM is loaded, executed, and initial-
ized before returning from the set_videomode function.

After you load the host and TMS340 sides of TIGA, your application is free to
call TIGA’s core functions.

TIGA Utility Programs

2-10 Getting Started

2.7 TIGA Utility Programs

The following TIGA utility programs are in TIGA’s root directory \tiga to simplify
porting and/or applications development:

TIGA Utility Description
cltiga.bat Batch file that uses Microsoft C tools to compile and link a

TIGA application.
hcc.bat Batch file that invokes the MetaWare High C Compiler,

compiling the specified source file.
hcl.bat Batch file that invokes the Phar Lap linker, linking the object

code and optional user library with the MetaWare High C
version of the TIGA AI library (hcai.lib).

make.exe Texas Instruments program maintenance utility. It is fully
compatible with the Microsoft make.exe utility and has ad-
ditional features. Consult the file \tiga\docs\make.doc for
detailed usage information.

oldap.exe This utility restores the TIGA environment back to a known,
stable state. There is always the potential of a TIGA 1.1
application prematurely aborting and not properly restor-
ing the TIGA environment. Run oldap.exe anytime you en-
counter timeout errors while running TIGA applications un-
der TIGA 2.0.

mg2tiga.exe Utility to convert TMS340 math/graphics fonts to TIGA-
compatible fonts.

tigamode.exe Utility to query available modes and select default mode.

2.7.1 cltiga Batch File

The cltiga.bat batch file easily compiles and links a TIGA-compatible applica-
tion (contained in a single C source file) to the TIGA application interface library
ai.lib, using the Microsoft C compiler. It also supports symbolic debugging
through Microsoft’s CodeView debugger. The syntax for cltiga is

cltiga [–d] filename

where:
cltiga is a batch file to compile and link a TIGA application,
–d is an option that specifies symbolic debug processing, and
 filename is the name of the C file to be processed. No extension should be

specified on the filename.

Note:

The TIGA application interface library ai.lib is independent of the Microsoft
C model. However, the cltiga batch file uses the large model by default. You
can override the default by modifying the cltiga.bat file(consult the Microsoft
C reference manual for details).

 TIGA Utility Programs

2-11

2.7.2 mg2tiga Utility

The mg2tiga utility converts fonts compatible with the TMS340 Graphics Li-
brary to a format compatible with the TIGA text functions. To invoke the
mg2tiga utility, enter

mg2tiga MG font TIGA font [” facename”]

mg2tiga is the command to invoke the mg2tiga.exe utility.
MG font is a binary or COFF object image of a math/graphics compatible

font.
TIGA font is the filename under which the converted font is saved.
facename is an optional name of the font (up to 29 characters long) enclosed

within double quotes. If this parameter is not specified on the com-
mand line, mg2tiga prompts you for it.

Here is an example of converting the TI Roman 18-point font from the math/
graphics font library to TIGA format.

1) Locate the library that contains TI Roman fonts. As supplied, this library
is called ti_roman.lib and contains 12 fonts. To display a table of contents
of this library, enter

gspar –t ti_roman

GSP Archiver Version 4.00
(c) Copyright 1985, 1990, Texas Instruments Incorporated

 FILE NAME SIZE DATE
 --------- ----- -----
 ti_rom11.obj 2358 Thu Jun 12 12:00:32 1986
 ti_rom14.obj 2744 Thu Jun 12 12:02:20 1986
 ti_rom16.obj 3130 Thu Jun 12 12:04:12 1986
 ti_rom18.obj 3258 Thu Jun 12 12:06:06 1986
 ti_rom20.obj 3898 Thu Jun 12 12:08:06 1986
 ti_rom22.obj 4538 Thu Jun 12 12:10:16 1986
 ti_rom26.obj 5432 Thu Jun 12 12:12:34 1986
 ti_rom30.obj 6330 Thu Jun 12 12:15:00 1986
 ti_rom33.obj 7098 Thu Jun 12 12:17:36 1986
 ti_rom38.obj 9658 Thu Jun 12 12:20:42 1986
 ti_rom52.obj 16698 Thu Jun 12 12:25:00 1986
 ti_rom78.obj 34878 Wed Jun 18 02:45:56 1986

2) Extract the desired font — in this case, ti_rom18.obj.

Example: gspar x ti_roman ti_rom18.obj

3) Now use mg2tiga to convert it to TIGA format.

Example: mg2tiga ti_rom18.obj roman18.fnt

At this point, mg2tiga prompts you to enter a facename for the font. This
facename can be up to 29 characters long and should be the name of the
font.

TIGA Utility Programs

2-12 Getting Started

Example:
MGFL to TIGA font converter

Enter facename (29 chars max): TI ROMAN

After you have entered the facename, mg2tiga displays the MG font header
and then the new TIGA font header. A prompt to press follows each of
these displays. After you enter this information, the conversion is complete.

[-------- Old Font Header --------]
fonttype: 9000
firstchar: 0000
lastchar: 00ff
widemax: 0010
kernmax: 0000
ndescent: fffd
charhigh: 0011
owtloc: 046a
ascent: 000e
descent: 0003
leading: 0002
rowwords: 0033
[Press return]->

[-------- New Font Header --------]
magic: 8040
length: 00000b18
facename: TI ROMAN
first: 0000
last: 00ff
deflt: 0000
maxwide: 0010
maxkern: 0000
charwide: 0000
avgwide: 0008
charhigh: 0011
ascent: 000e
descent: 0003
leading: 0002
rowpitch: 00000330
oPatnTbl: 00000250
oLocTbl: 00003880
oOwTbl: 000048a0
[Press return]->

 Rebuilding Existing TIGA Applications for TIGA 2.0

2-13

2.8 Rebuilding Existing TIGA Applications for TIGA 2.0

Any TIGA application or driver linked with the TIGA 1.1 Application Interface
(AI) library will run unchanged under TIGA 2.0. However, if you relink your ex-
isting TIGA 1.1 compatible application or driver with one of the TIGA 2.0 AI li-
braries, several modifications to your source code will be required. This sec-
tion outlines the modifications required to upgrade existing TIGA 1.1 applica-
tions to link with TIGA 2.0 libraries.

2.8.1 TIGA 2.0 Initialization / Termination

A new method of initializing and terminating a TIGA application has been add-
ed to TIGA 2.0. This was required to support TIGA’s ability to run both real- and
protected-mode DOS applications.

TIGA 1.1 initialization was accomplished by calling one of the following two
functions:

cd_is_alive()

set_videomode(TIGA, style)

Both establish communications with the TIGA communication driver. In addi-
tion, the set_videomode function loads the TIGA graphics manager if specified
to do so by the style argument.

A new function, tiga_set, has been added to TIGA 2.0 for properly initializing
and terminating the TIGA environment from an application. This function re-
places the cd_is_alive function formerly used in TIGA 1.1. In addition, the TIGA
2.0 version of the set_videomode function only switches video modes and
does not initialize communications.

TIGA 2.0 applications must call tiga_set(CD_OPEN) before calling any other
TIGA function and must call tiga_set(CD_CLOSE) before returning to DOS.
This will insure that the TIGA environment is properly maintained. Refer to the
sample TIGA 2.0 application listing in Section 3.4, page 3-6, and to the tiga_set
function description in Chapter 4, page 4-136, for more information.

2.8.2 CURSOR Structure Change

TIGA’s CURSOR structure has been modified to support two-color cursors.
TIGA 1.1 allowed only the cursor shape color to be modified. TIGA 2.0 now
allows both the cursor mask and shape colors to be specified. Any existing
source code using the TIGA CURSOR structure must be modified to conform
to the TIGA 2.0 CURSOR structure definition.

Rebuilding Existing TIGA Applications for TIGA 2.0

2-14 Getting Started

The TIGA 1.1 CURSOR structure was defined as

typedef struct

{

short hot_x; /* hotspot offset from top */

short hot_y; /* left–hand corner */

unsigned short width; /* cursor width (in bits) */

unsigned short height; /* cursor height (lines) */

unsigned short pitch; /* pitch of cursor data */

unsigned long color; /* cursor shape color */

unsigned short mask_rop; /* cursor mask rop */

unsigned short shape_rop; /* cursor shape rop */

PTR data; /* pointer to cursor data in TMS340 memory */

}CURSOR;

The TIGA 2.0 CURSOR structure has an additional field, mask_color, along
with transparency support added to the rop fields:

typedef struct

{

short hot_x; /* hotspot offset from top */

short hot_y; /* left–hand corner */

unsigned short width; /* cursor width (in bits) */

unsigned short height; /* cursor height (lines) */

unsigned short pitch; /* pitch of cursor data */

unsigned long color; /* cursor shape color */

unsigned short mask_rop; /* cursor mask rop */

unsigned short shape_rop; /* cursor shape rop */

unsigned long mask_color; /* cursor mask color */

PTR data; /* pointer to cursor data in TMS340 memory */

}CURSOR;

Consult the set_curs_shape and set_cursattr function descriptions in Chapter
4 for additional information.

2.8.3 Return Value of set_config

The TIGA 2.0 Graphics Manager (GM) is relocatable to support varying
memory maps. Specifying a particular graphics mode with the set_config func-
tion may cause the TMS340 memory map to change, which in turn could force
the GM to be reloaded. This may have undesirable results, since reloading the
GM causes all downloaded extensions to be flushed and all allocated memory
to be freed.

The return value of the TIGA 2.0 set_config function can be used by an applica-
tion to query whether the GM was reloaded. If so, the application can take the
appropriate steps necessary to return the TMS340 environment back to a
known state. However, it is recommended that any application that calls
set_config does so before downloading any TIGA extensions or allocating any
memory. See the set_config function description, page 4-100, for more infor-
mation.

 Rebuilding Existing TIGA Applications for TIGA 2.0

2-15

2.8.4 Elimination of Offscreen Workspace

The TIGA 1.1 fill_polygon and patnfill_polygon functions both required the use
of a one-bit-per-pixel offscreen workspace to operate properly. In TIGA 2.0,
these functions have been modified to remove this restriction. You may wish
to remove existing code used to initialize the offscreen workspace area; it is
no longer required by any function in TIGA 2.0.

2.8.5 TIGA 1.1 Functions No Longer Supported

Only one function previously available in TIGA 1.1 is no longer supported in
TIGA 2.0. It is the cd_is_alive function. Consult subsection 2.8.1 for additional
information.

2.8.6 New Functions Available in TIGA 2.0

TIGA 2.0 provides a variety of new functions, which are listed in this section.
Also, many existing TIGA 1.1 functions have been modified to provide addi-
tional functionality. For further information, consult the appropriate function’s
description in Chapter 4, for core functions, and in Chapter 5, for extended
graphics library functions.

New TIGA 2.0 core functions:
aux_command
cvxyl
flush_module
get_text_xy
gm_idlefunction
gsph_alloc
gsph_calloc
gsph_compact
gsph_deref
gsph_falloc
gsph_fcalloc
gsph_findhandle
gsph_findmem
gsph_free

gsph_init
gsph_maxheap
gsph_memtype
gsph_realloc
gsph_totalfree
setup_hostcmd
set_cursattr
set_module_state
set_text_xy
sym_flush
text_outp
tiga_busy
tiga_set

New TIGA 2.0 extended graphics library functions:
decode_rect
encode_rect
get_pixel
in_font
move_pixel

put_pixel
styled_oval
styled_ovalarc
styled_piearc

2.8.7 Functional Differences in TIGA 2.0
get_pmask The TIGA 2.0 implementation returns the value of the

plane mask register right-justified (and zero-extended) in

Rebuilding Existing TIGA Applications for TIGA 2.0

2-16 Getting Started

the N LSBs of the return value, where N is the current pixel
size. The TIGA 1.1 implementation of get_pmask simply
returned the current 32-bit value in the plane mask register.

gsp_minit The stack size argument supplied to the gsp_minit function
is ignored in TIGA 2.0 because of limitations imposed by
the new TIGA 2.0 memory manager. Note however, that an
argument must still be specified for the function.

page_flip The TIGA 1.1 implementation of page_flip returned zero if
an invalid drawing or display page argument was speci-
fied, and nonzero if the specified arguments were valid.
The TIGA 2.0 implementation of page_flip does not return
a value and treats invalid display and/or drawing page ar-
guments as if the function were called as page_flip(0,0).

set_pmask The TIGA 2.0 implementation of set_pmask automatically
replicates the right-justified N LSBs (where N is the current
pixel size) of the mask argument, throughout the 32-bit
plane mask register. The TIGA 1.1 implementation ex-
pected the mask argument to be already replicated.

graphics cursors The TIGA 2.0 cursor generator automatically saves and re-
stores the current PMASK register, then clears it to zero
(enables all bit planes) before saving the cursor back-
ground, drawing the cursor, and restoring the original
background. Earlier versions of the cursor generator sim-
ply used whatever value was currently set in PMASK.

3-1

Chapter 3

Application Interface

TIGA consists of a set of functions that a host-PC application can invoke to per-
form a variety of graphics-related tasks (a host-PC application is defined as
that portion of the application that is running on the host-PC processor). These
functions may run entirely on the host-PC or the TMS340 board, or they may
execute in parallel on both processors.

TIGA also gives the application developer the capability to create functions
that are downloaded to the TMS340-based target board by the host-PC appli-
cation. Because these functions are not part of the standard TIGA core func-
tions, and because they reside and run on a TMS340-based board, they are
commonly referred to as extended functions. Once these extended functions
are loaded, the host-PC application may call them at any time. In addition, an
extended function may call a core function, a previously loaded extended func-
tion, or even a function residing on the host-PC side of the application. Detailed
information on how to create, load, and call TMS340 extended functions is
presented in Chapter 8.

This chapter discusses basic information required to develop a TIGA-compat-
ible application. It also lists the TIGA functions in their functional groups.

Topics in this chapter include

Section Page
3.1 Supported Development Tools 3-2.
3.2 Host-PC Include Files and Libraries 3-3.
3.3 TMS340 Include Files and Libraries 3-5.
3.4 Sample TIGA Application 3-6.
3.5 TIGA Functions 3-11.
3.6 Summary of Functions by Functional Group 3-12.

Supported Development Tools

3-2 Application Interface

3.1 Supported Development Tools

The following development tools are currently supported by TIGA 2.0.

Note:

Consult the \tiga\docs\readme.1st file for information describing any addi-
tional development tools supported by TIGA 2.0.

3.1.1 Host-PC Development Tools

Compiler/Assembler Version Operating System

Microsoft C Compiler 5.0 or higher DOS (real mode)

Microsoft Macro Assembler 5.0 or higher DOS (real mode)

MetaWare High-C Compiler 1.5 or 1.7 Phar Lap DOS Extender v 2.2

Microway NDP C-386 Compiler 2.0 or higher Phar Lap DOS Extender v 2.2

Note:

The examples in this user’s guide are intended to be built with the Microsoft
C Compiler. Minor modifications may be required to build the examples with
any of the other supported development tools listed above.

3.1.2 TMS340 Development Tools

The TMS340 Family Code Generation Tools, version 3.0 or higher, are used
to build TMS340 extended functions. You will need these tools only if you are
planning on writing your own extended functions.

 Host PC Include Files and Libraries

3-3

3.2 host-PC Include Files and Libraries

Three types of TIGA includes files are used for developing host-PC TIGA-com-
patible applications:

tiga.* Contains TIGA constants commonly required by a TIGA applica-
tion and core function references. Every TIGA host-PC applica-
tion must include and specify this file before any other TIGA in-
clude file.

extend.* Contains references used for the TIGA 2-D Graphics Library.
Any application calling a function from this TMS340 extended li-
brary must include this file.

typedefs.* Contains references for TIGA structures. Any application using
a TIGA structure type must include this file.

These include files are located in the \tiga\include directory. Different versions
of each include file type are provided for each set of supported development
tools. Table 3–1 summarizes the include files provided in TIGA 2.0 for host-PC
code development:

Table 3–1.Include Files for PC Development

Microway
NDP C-386

MetaWare
High C 386

Microsoft C
(all models)

Microsoft
Assembler

tiga.* tiga.ndp tiga.hch tiga.h tiga.inc,
tiga_sm.inc

extend.* extend.pl extend.pl extend.h extend.inc

typedefs.* typedefs.pl typedefs.pl typedefs.h typedefs.inc

After you compile and/or assemble the host-PC source program, you must link
the derivative object file(s) with the appropriate TIGA Application Interface (AI)
library. The functions within this library provide the communications interface
between the application and the TIGA Communication Driver (CD).

All TIGA AI libraries are located in the \tiga\libs directory. Different versions of
the AI library are provided for each set of supported development tools.
Table 3–2 summarizes the AI libraries provided in TIGA 2.0 for linking host-PC
developed code. In addition,Table 3–2 lists the code/data referencing type,
memory models, and compatible development tools for each TIGA AI library.

Host PC Include Files and Libraries

3-4 Application Interface

Table 3–2.AI Libraries Development Tools

TIGA AI
Library

Description Development Tools Memory Models

ai.lib Far code references,
Far data references

Microsoft C 5.0 or higher,
Microsoft Macro Assembler

small, medium, compact,
large, huge

ai_com.lib Near code references,
Near data references

Microsoft C 5.0 or higher,
Microsoft Macro Assembler

.com

hcai.lib Near code references,
Near data references

MetaWare High C not applicable

ndpai.lib Near code references,
Near data references

Microway NDP C not applicable

 TMS340 Include Files and Libraries

3-5

3.3 TMS340 Include Files and Libraries

A standard set of include files supports development of extended functions for
TIGA. TIGA extensions may be developed in C or TMS340 assembly code.
See Chapter 8 for more information on how to develop TMS340 extensions to
TIGA.

The TIGA TMS340 include files and libraries are identified by the leading char-
acters gsp (Graphics System Processor). In addition to the three types of in-
clude files described in Section 3.2, three other include file types are provided
for developing TIGA extended functions:

gspglobs.* Contains references to TIGA global variables, arrays, and struc-
tures. Include this file if your TMS340 extended functions refer-
ence any TIGA variable, array, or structure.

gspreg.* Contains equated constants for all TMS34010 and TMS34020
processor registers.

gspmac.lib Contains macros useful for developing TMS340 assembly code.
Consult the \tiga\docs\gspmac.doc file for a description of the
macros in this library.

Table 3–3 summarizes the include files and libraries provided in TIGA 2.0 for
TMS340 extended function development:

Table 3–3.Include Files for TIGA Extended Function Development

TMS340 C TMS340 Assembler

gsptiga.* gsptiga.h gsptiga.inc

gspextnd.* gspextnd.h gspextnd.inc

gsptypes.* gsptypes.h gsptypes.inc

gspglobs.* gspglobs.h gspglobs.inc

gspreg.* gspreg.h gspreg.inc

gspmac.lib – gspmac.lib

Sample TIGA Application

3-6 Application Interface

3.4 Sample TIGA Application

This section describes the basic components of a TIGA application. In general,
all TIGA applications contain the following:

Initialization
Load TIGA extended functions (optional)
Main body
Termination

The initialization establishes the communications link between the application
and the TIGA communication driver. Also, correct operation of the TIGA graph-
ics manager is verified. Initialization is extremely important to ensure a stable
TIGA environment for your application.

After initialization is complete, the application may call any of TIGA’s core func-
tions. However, this set of functions may be insufficient for your application.
Additional required functions are normally loaded into TIGA following initializa-
tion. These extended functions may include TIGA’s graphics library and/or any
other required extended function library.

Once all functions are loaded into TIGA, the application can call them at any
time throughout the main body of the application.

Finally, the TIGA environment must be properly terminated. This step restores
the video environment to the state it was in before you executed the TIGA
application.

The following example TIGA application illustrates how to set up the TIGA en-
vironment, load extended functions, and then terminate the TIGA environ-
ment.

/**/
/* Sample TIGA 2.0 application */
/* */
/* This example illustrates the basic components of a TIGA app: */
/* */
/* – Initialization */
/* – Loading extended functions */
/* – Main body */
/* – Termination */
/* */
/* This example is intended to be built with the Microsoft ’C’ */
/* compiler. */
/**/
#include <tiga.h> /* All apps MUST include this file */
#include <extend.h> /* We are going to call an ext func */
#include <typedefs.h> /* We may want to ref a TIGA struct */

short oldmode; /* Storage for old videomode */

 Sample TIGA Application

3-7

/*––*/
/* term_tiga */
/* */
/* syntax void term_tiga(void) */
/* */
/* This function properly terminates a TIGA application by */
/* restoring the previous video mode and closing the TIGA CD. */
/* It must be called prior to returning to DOS. */
/*––*/
void term_tiga()
{

printf(”Press any key to return to DOS...”);
getch();
set_videomode(oldmode,INIT); /* Return mode to prev state */
tiga_set(CD_CLOSE); /* Close the TIGA CD */
exit(0); /* Exit back to DOS */

}

/*––*/
/* init_tiga */
/* */
/* syntax void init_tiga(load_graphics_lib) */
/* short load_graphics_lib; */
/* */
/* This function properly initializes the TIGA environment */
/* and loads the graphics library functions if argument */
/* load_graphics_lib is non–zero. This function should be */
/* called prior to calling any other TIGA function. */
/*––*/
void init_tiga(load_graphics_lib)
short load_graphics_lib;
{

short v;
long lv;
/*––– *

/
/* Open TIGA Communications Driver */
/*––– *

/
if((lv = tiga_set(CD_OPEN)) < 0L)
{

printf(”TIGA CD error: %ld\n”, lv);
exit(0); /* Exit back to DOS */

}

Sample TIGA Application

3-8 Application Interface

/*––– *
/

/* Go into TIGA mode */
/*––– *

/
oldmode = get_videomode(); /* Save current videomode for later */
if(!(v = set_videomode(TIGA,INIT | CLR_SCREEN)))
{

printf(”TIGA GM error: %d\n”, v);
tiga_set(CD_CLOSE); /* Be sure to close the open TIGA CD */
exit(0); /* before exiting to DOS */

}
/*––– *

/
/* Load graphics library functions if specified to do so */
/*––– *

/
if(load_graphics_lib && (v=install_primitives()) < 0)
{

printf(”Graphics Library load error: %d\n”, v);
term_tiga();

}
}

 Sample TIGA Application

3-9

/*––*/
/* Main program. */
/*––*/
main()
{

CONFIG config; /* Storage for TIGA config struct */
short width,height,xleft,ytop; /* fill_rect() arguments

*/

/*––– *
/

/* Call init_tiga() to initialize the TIGA environment. Also, */
/* load the Graphics Library functions. */
/*––– *

/
init_tiga(1);

/*––– *
/

/* Load extended functions section (OPTIONAL) */
/* */
/* At this point, the TIGA environment has been properly */
/* initialized. This is a good time to load any other extended */
/* functions required by the application. */
/*––– *

/
:
:

/*––– *
/

/* Main body */
/* */
/* All functions are now loaded. We can now safely call any of */
/* these functions. */
/* */
/* As an example, let’s draw a blue, solid filled rectangle, */
/* half the size of the screen, centered in the screen. */
/*––– *

/

get_config(&config); /* Get info on current mode */
width = config.mode.disp_hres >> 1; /* Width 1/2 screen width */
height = config.mode.disp_vres >> 1; /* Height 1/2 screen height */
xleft = width >> 1; /* Center rect in middle */
ytop = height >> 1; /* of screen */
set_fcolor(BLUE); /* Set foreground color */
fill_rect(width,height,xleft,ytop); /* Fill the rectangle */

:
:
:

term_tiga(); /* Properly terminate TIGA */
}

All example programs provided with the function descriptions in this user’s
guide use similar methods to properly initialize and terminate the TIGA envi-
ronment. You will notice that, to simplify the source code listings, each exam-
ple makes calls to the functions init_tiga and term_tiga.

The above source code listings of init_tiga and term_tiga are an example of
how to properly initialize and terminate the TIGA environment from a TIGA

Sample TIGA Application

3-10 Application Interface

application. Your initialization and termination code may differ slightly from the
one presented here but should provide similar functionality.

 TIGA Functions

3-11

3.5 TIGA Functions

A TIGA function falls into one of two classes:

Core functions

Extended functions

3.5.1 Core Functions

TIGA’s core functions are always available to an application following proper
initialization of the TIGA environment as shown in the example in Section 3.4.
The majority of core functions can be called by host-PC applications and any
extended function. There are, however, a few core functions that can be called
only by a host-PC application and may not be called by an extended function.
These functions are referred to as host-only core functions and are identified
as such in Chapter 4.

3.5.2 Extended Functions

Extended functions are not a part of TIGA’s core function set and must be ex-
plicitly loaded by an application before the application can call them.

TIGA includes an extended graphics library that contains a comprehensive set
of 2-D drawing functions. The functions in this library are examples of ex-
tended functions because they must be loaded into TIGA via the
install_primitives() function before being available to the application.

Summary of Functions by Functional Group

3-12 Application Interface

3.6 Summary of Functions by Functional Group

3.6.1 Graphics System Initialization Functions

The graphics system initialization functions perform the initializing, terminat-
ing, and inquiring of the TIGA environment. Before a TIGA function is called,
the TIGA environment must be properly initialized. Similarly, once the TIGA
application has completed, the graphics environment, which existed prior to
running the TIGA application, must be properly restored. These initialization
and termination tasks are handled by the functions shown in Table 3–4.

Table 3–4.Graphics System Initialization Functions

Function Description Type

aux_command Execute auxiliary command Host

function_implemented Return if function is implemented Host

get_config Return hardware configuration information Core

get_modeinfo Return graphics mode information Host

get_videomode Return current video mode Host

gm_idlefunction Enable/disable GM idle function Core

gsp_execute Execute a COFF program Host

install_primitives Install extended graphics library functions Host

install_usererror Install user error handler Host

loadcoff Load COFF file Host

set_config Set hardware configuration Host

set_timeout Set timeout delay value Host

set_videomode Set video mode Host

setup_hostcmd Initialize callback environment Host

synchronize Synchronize host and TMS340 communications Host

tiga_busy Determine if TIGA is busy Host

tiga_set Open/close/query communication driver Host

3.6.2 Clear Functions

The clear functions, shown in Table 3–5, provide different ways to clear the
screen. They all attempt to use any special memory functions (such as
shift-register transfers), that the board or the memory chips themselves may
have, to perform as quickly as possible.

 Summary of Functions by Functional Group

3-13

Table 3–5.Clear Functions

Function Description Type

clear_frame_buffer Clear frame buffer Core

clear_page Clear current drawing page Core

clear_screen Clear screen Core

3.6.3 Graphics Attribute Control Functions

The graphics attribute control functions, shown in Table 3–6, are used to
modify and query graphics attributes used by the TIGA drawing functions
when drawing to the screen. See Chapter 6, Graphics Library Conventions,
for additional information concerning graphics attributes.

Table 3–6.Graphics Attribute Control Functions

Function Description Type

cpw Compare point to clipping window Core

get_colors Return foreground and background colors Core

get_env Return graphics environment information Ext

get_pmask Return plane mask Core

get_ppop Return pixel-processing operation code Core

get_transp Return transparency flag Core

get_windowing Return window-clipping mode Core

set_bcolor Set background color Core

set_clip_rect Set clipping rectangle Core

set_colors Set foreground and background colors Core

set_draw_origin Set drawing origin Ext

set_fcolor Set foreground color Core

set_patn Set current pattern address Ext

set_pensize Set pen size Ext

set_pmask Set plane mask Core

set_ppop Set pixel-processing operation code Core

set_transp Set transparency mode Core

set_windowing Set window-clipping mode Core

transp_off Turn transparency off Core

transp_on Turn transparency on Core

Summary of Functions by Functional Group

3-14 Application Interface

3.6.4 Palette Functions

The palette functions, shown in Table 3–7, provide a board-independent way
to modify and query palette values on the target TMS340-based board. See
the example TIGA program in the directory \tiga\demos\msc\tigademo for
more information on color and palette management with TIGA.

Table 3–7.Palette Functions

Function Description Type

get_nearest_color Return nearest color in palette Core

get_palet Read entire palette Core

get_palet_entry Return single palette entry Core

init_palet Initialize palette Core

set_palet Set multiple palette entries Core

set_palet_entry Set single palette entry Core

3.6.5 Graphics Drawing Functions

The graphics drawing functions, shown in Table 3–8, are self-explanatory. For
further details concerning the drawing functions, see Chapter 6.

Table 3–8.Graphics Drawing Functions

Function Description Type

draw_line Draw straight line Ext

draw_oval Draw ellipse outline Ext

draw_ovalarc Draw ellipse arc Ext

draw_piearc Draw ellipse pie arc Ext

draw_point Draw single pixel Ext

draw_polyline Draw list of lines Ext

draw_rect Draw rectangle outline Ext

fill_convex Draw solid convex polygon Ext

fill_oval Draw solid ellipse Ext

fill_piearc Draw solid ellipse pie slice Ext

fill_polygon Draw solid polygon Ext

fill_rect Draw solid rectangle Ext

 Summary of Functions by Functional Group

3-15

Table 3–8. Graphics Drawing Functions (Continued)

Function Description Type

frame_oval Draw oval border Ext

frame_rect Draw rectangular border Ext

patnfill_convex Fill convex polygon with pattern Ext

patnfill_oval Fill oval with pattern Ext

patnfill_piearc Fill pie slice with pattern Ext

patnfill_polygon Fill polygon with pattern Ext

patnfill_rect Fill rectangle with pattern Ext

patnframe_oval Fill oval frame with pattern Ext

patnframe_rect Fill rectangular frame with pattern Ext

patnpen_line Draw line with pen and pattern Ext

patnpen_ovalarc Draw oval arc with pen and pattern Ext

patnpen_piearc Draw pie arc with pen and pattern Ext

patnpen_point Draw point with pen and pattern Ext

patnpen_polyline Draw polyline with pen and pattern Ext

pen_line Draw line with pen Ext

pen_ovalarc Draw oval arc with pen Ext

pen_piearc Draw pie arc with pen Ext

pen_point Draw point with pen Ext

pen_polyline Draw polyline with pen Ext

put_pixel Assign value to pixel Ext

seed_fill Fill region with color Ext

seed_patnfill Fill region with pattern Ext

styled_line Draw styled line Ext

styled_oval Draw styled oval Ext

styled_ovalarc Draw styled oval arc Ext

styled_piearc Draw styled pie arc Ext

3.6.6 Poly Drawing Functions

The TIGA communication driver functions pass the arguments of all the TIGA
functions into a communication buffer for the TIGA graphics manager to use.
Nearly all TIGA functions have fixed-size arguments that fit easily into the com-
munication buffer. This is not the case with the poly drawing functions, shown
in Table 3–9, which have a point list parameter that can be of any length. It is

Summary of Functions by Functional Group

3-16 Application Interface

easy for the function to overflow the buffer, destroying the TIGA environment.
The application can either check the size of the data that it is sending, against
the communication buffer size in the CONFIG structure, or it can use alternate
entry points (with an _a appended to the function name), which use a buffer
allocated from the dynamic heap pool, to store the data. However, these alter-
nate entry points are slower.

Table 3–9.Poly Drawing Functions

Function Description Type

draw_polyline Draw polyline Ext

fill_convex Draw solid convex polygon Ext

fill_polygon Fill polygon Ext

patnfill_convex Pattern fill convex polygon Ext

patnfill_polygon Pattern fill polygon Ext

patnpen_polyline Pattern pen polyline Ext

pen_polyline Pen polyline Ext

3.6.7 Pixel Array Functions

The pixel array functions, shown in Table 3–10, operate on rectangular pixel
arrays. TIGA contains two bitmaps —the source and destination bitmaps—
used as implied operands for most of these functions.

The source bitmap is ignored by all functions except bitblt, swap_bm, and
zoom_rect. The destination bitmap is used as an implied operand for all draw-
ing functions. If it is set to anything other than the screen, all drawing functions
(other than bitblt) abort. In the future, linear drawing capability may be added
to each drawing function to enable drawing into a linear bitmap.

Table 3–10.Pixel Array Functions

Function Description Type

bitblt Transfer bit-aligned block Ext

decode_rect Decode rectangular image Ext

encode_rect Encode rectangular image Ext

set_dstbm Set destination bitmap Ext

set_srcbm Set source bitmap Ext

swap_bm Swap source and destination bitmaps Ext

zoom_rect Zoom source rectangle Ext

 Summary of Functions by Functional Group

3-17

3.6.8 Text Functions

The text functions, shown in Table 3–11, provide the bitmap text-handling ca-
pabilities available in TIGA. Additional information concerning these capabili-
ties can be found in Chapter 7, Bit-Mapped Text.

Table 3–11. Text Functions

Function Description Type

delete_font Remove a font from font table Ext

get_fontinfo Return installed font information Core

get_textattr Return text-rendering attributes Ext

get_text_xy Return text x-y function Core

in_font Verify characters in font Ext

init_text Initialize text-drawing environment Core

install_font Install font into font table Ext

select_font Select an installed font Ext

set_textattr Set text-rendering attributes Ext

set_text_xy Set text x-y position Core

text_out Render ASCII string Core

text_outp Render ASCII string at current x-y position Core

text_width Return width of ASCII string Ext

3.6.9 Graphics Cursor Functions

The graphics cursor functions, shown in Table 3–12, provide graphics cursor
support. Consult the example program in the set_curs_shape function de-
scription in Chapter 4, page 4-103, for additional information.

Table 3–12.Graphics Cursor Functions

Function Description Type

get_curs_state Return current cursor state Core

get_curs_xy Return current cursor position Core

set_curs_shape Set current cursor shape Core

set_curs_state Make cursor visible/invisible Core

set_curs_xy Set current cursor position Core

set_cursattr Set current cursor attributes Core

Summary of Functions by Functional Group

3-18 Application Interface

3.6.10 Graphics Utility Functions

The graphics utility functions, shown in Table 3–13, are a group of miscella-
neous graphics functions, most of which require no explanation other than
what is given with the individual functions.

Table 3–13.Graphics Utility Functions

Function Description Type

cvxyl Convert x-y address to linear address Core

get_pixel Return pixel value Ext

get_wksp Return workspace information Core

lmo Return leftmost one bit number Core

peek_breg Read from B-file register Core

poke_breg Write to B-file register Core

rmo Return rightmost one bit number Core

set_wksp Set workspace information Core

3.6.11 Handle-Based Memory Management Functions

The handle-based memory management functions, shown in Table 3–14, pro-
vide TIGA with a handle-based memory management system. Handle-based
memory management is preferred over pointer-based memory management
because of its ability to reduce the amount of memory fragmentation. Memory
fragmentation occurs when numerous allocations and deletions are made dur-
ing an application. The fragmentation results in a reduction in the number of
large, free memory blocks available to the application.

 Summary of Functions by Functional Group

3-19

Table 3–14.Handle-Based Memory Management Functions

Function Description Type

gsph_alloc Allocate memory block Core

gsph_calloc Allocate and clear memory Core

gsph_compact Invoke memory compaction routine Core

gsph_deref Return pointer to memory block referenced by handle Core

gsph_falloc Allocate memory block with associated function Core

gsph_fcalloc Allocate and clear memory with associated function Core

gsph_findhandle Return handle to specified memory address Core

gsph_findmem Return type of memory Core

gsph_free Free block of memory Core

gsph_init Initialize all user memory and compact all segments Core

gsph_maxheap Return size of largest alloc without compaction Core

gsph_memtype Set characteristics of memory block Core

gsph_realloc Reallocate block of memory Core

gsph_totalfree Return size of largest block with compaction Core

3.6.12 Pointer-Based Memory Management Functions

The pointer-based memory management functions, shown in Table 3–15, pro-
vide TIGA with a pointer-based memory management system. The functions
gsp_malloc, gsp_free, gsp_calloc, and gsp_realloc should be familiar to most
C programmers. They operate in a manner similar to that of the memory man-
agement functions provided in the Microsoft C runtime library.

Table 3–15.Pointer-Based Memory Management Functions

Function Description Type

get_offscreen_memory Return offscreen memory blocks Core

gsp_calloc Clear and allocate TMS340 memory Core

gsp_free Free TMS340 memory from allocation Core

gsp_malloc Allocate TMS340 memory Core

gsp_maxheap Return largest free block Core

gsp_minit Reinitialize dynamic memory pool Core

gsp_realloc Reallocate TMS340 memory Core

Summary of Functions by Functional Group

3-20 Application Interface

3.6.13 Data Input/Output Functions

The data input/output functions, shown in Table 3–16, transfer data between
host and TMS340 memory spaces, on between the TMS340 and its coproces-
sor.

Table 3–16.Data Input/Output Functions

Function Description Type

cop2gsp Copy from coprocessor memory to TMS340 memory Core

field_extract Extract field from TMS340 memory Core

field_insert Insert field into TMS340 memory Core

gsp2cop Copy from TMS340 memory to coprocessor memory Core

gsp2gsp Transfer data within TMS340 memory Core

gsp2host Move data from TMS340 memory to host memory Host

gsp2hostxy Copy rectangular memory area from TMS340 to host Host

host2gsp Move data from host memory to TMS340 memory Host

host2gspxy Copy rectangular memory area from host to TMS340 Host

3.6.14 Extensibility Functions

The extensibility functions, shown in Table 3–17, are described in detail in
Chapter 8.

Table 3–17.Extensibility Functions

Function Description Type

create_alm Create absolute load module Host

create_esym Create external symbol table file Host

flush_esym Flush external symbol table file Host

flush_extended Flush all user extensions Host

flush_module Remove module from TMS340 memory Core

get_isr_priorities Return interrupt service routine priorities Core

install_alm Install absolute load module Host

install_primitives Install extended drawing functions Host

install_rlm Install relocatable load module Host

set_module_state Set state of loaded module Core

sym_flush Flush relocatable load module symbols Core

 Summary of Functions by Functional Group

3-21

3.6.15 Interrupt Handler Functions

The interrupt handler functions, shown in Table 3–18, provide interrupt han-
dler support. For more information of interrupt handling in TIGA, refer to Sec-
tion 8.9, Installing Interrupts, page 8-36.

Table 3–18.Interrupt Handler Functions

Function Description Type

get_vector Return address at TMS340 trap vector Core

page_busy Return status of page flipping Core

page_flip Flip display and drawing pages Core

set_interrupt Set interrupt handler Core

set_vector Set contents of TMS340 trap vector Core

wait_scan Wait for scan line Core

3-22 Application Interface

4-1

Chapter 4

Core Functions

This chapter discusses the core functions alphabetically. Each discussion

Shows the syntax of the function declaration and the arguments that the
function uses.

Contains a description of the function operation, which explains input ar-
guments and return values.

Provides an example of the use of some functions.

The examples in this chapter use the functions init_tiga and term_tiga to initial-
ize and terminate the TIGA environment. Although the init_tiga and term_tiga
functions are not actually TIGA functions, they do make calls to various TIGA
functions. The init_tiga function initializes the TIGA environment and is called
before any other TIGA function. The term_tiga function terminates a TIGA
application by restoring the previous video mode and closing the TIGA com-
munication driver. Refer to Section 3.4, page 3-6, for a sample TIGA applica-
tion that illustrates the init_tiga and term_tiga functions.

Core Functions

4-2 Core Functions

4.1 Core Functions Reference

The following is an alphabetical table of contents for functions reference.

Function Page.
aux_command 4-4.
clear_frame_buffer 4-7.
clear_page 4-8.
clear_screen 4-10.
cop2gsp 4-11.
cpw 4-12.
create_alm 4-14.
create_esym 4-15.
cvxyl 4-16.
field_extract 4-17.
field_insert 4-18.
flush_esym 4-19.
flush_extended 4-20.
flush_module 4-21.
function_implemented 4-22.
get_colors 4-23.
get_config 4-24.
get_curs_state 4-26.
get_curs_xy 4-27.
get_fontinfo 4-28.
get_isr_priorities 4-30.
get_modeinfo 4-31.
get_nearest_color 4-34.
get_offscreen_memory 4-36.
get_palet 4-38.
get_palet_entry 4-40.
get_pmask 4-42.
get_ppop 4-43.
get_text_xy 4-45.
get_transp 4-46.
get_vector 4-47.
get_videomode 4-48.
get_windowing 4-49.
get_wksp 4-50.
gm_idlefunction 4-51.
gsp2cop 4-52.
gsp2gsp 4-53.
gsp2host 4-54.
gsp2hostxy 4-55.
gsp_calloc 4-56.
gsp_execute 4-57.
gsp_free 4-58.
gsp_malloc 4-59.
gsp_maxheap 4-60.
gsp_minit 4-61.
gsp_realloc 4-62.
gsph_alloc 4-63.
gsph_calloc 4-64.
gsph_compact 4-65.
gsph_deref 4-66.
gsph_falloc 4-67.
gsph_fcalloc 4-68.
gsph_findhandle 4-69.
gsph_findmem 4-70.
gsph_free 4-71.
gsph_init 4-72.
gsph_maxheap 4-73.

 Core Functions

4-3

gsph_memtype 4-74.
gsph_realloc 4-75.
gsph_totalfree 4-76.
host2gsp 4-77.
host2gspxy 4-78.
init_palet 4-79.
init_text 4-80.
install_alm 4-81.
install_primitives 4-82.
install_rlm 4-83.
install_usererror 4-85.
lmo 4-87.
loadcoff 4-88.
page_busy 4-89.
page_flip 4-91.
peek_breg 4-93.
poke_breg 4-94.
rmo 4-95.
set_bcolor 4-96.
set_clip_rect 4-97.
set_colors 4-99.
set_config 4-100.
set_curs_shape 4-103.
set_curs_state 4-108.
set_curs_xy 4-109.
set_cursattr 4-110.
set_fcolor 4-111.
set_interrupt 4-112.
set_module_state 4-113.
set_palet 4-115.
set_palet_entry 4-117.
set_pmask 4-118.
set_ppop 4-120.
set_text_xy 4-122.
set_timeout 4-123.
set_transp 4-124.
set_vector 4-125.
set_videomode 4-126.
set_windowing 4-128.
set_wksp 4-129.
setup_hostcmd 4-130.
sym_flush 4-131.
synchronize 4-132.
text_out 4-133.
text_outp 4-134.
tiga_busy 4-135.
tiga_set 4-136.
transp_off 4-138.
transp_on 4-139.
wait_scan 4-140.

aux_command Execute Auxiliary Command

4-4 Core Functions

#include <tiga.h>
#include <typedefs.h>

void far *aux_command(command_index, command_buffer)
unsigned short command_index;
void far *command_buffer;

Host-only

The aux_command function invokes hardware-specific extended functions
provided by the board OEM. Currently, two auxiliary commands are defined
and callable on every TIGA-compliant board. Information pertaining to any ad-
ditional auxiliary commands is supplied by the respective TIGA board man-
ufacturer.

The argument command_index specifies the auxiliary command to be ex-
ecuted. The argument command_buffer is a far pointer to arguments that may
be required by the specified command. If no arguments are required,
command_buffer is NULL. The format of the far pointer is dependent on the
compiler being used, as follows:

Compiler Pointer Format
Microsoft DX = Segment, AX = Offset
MetaWare DX = Selector, EAX = Offset
Microway EAX = Selector :: 16 bit Offset

For additional examples of correct far pointer handling, refer to the TEST_AUX
example program for the various compilers in the \tiga\demos directory.

Note:

When the host PC is in protected mode, this command may pass back a data
readable code selector as the 16 MSBs of the pointer. Any attempt to write
to this segment results in a memory protection fault.

Command indices 0 – 99 are reserved for the exclusive use of Texas Instru-
ments. Command indices 100 – 65535 are available for OEM use.

The following command indices have been defined and are supported on all
TIGA compliant boards:

command_index = 0, command_buffer = NULL

Auxiliary command 0 with a NULL command_buffer pointer returns a far
pointer to a null terminated string identifying the TMS340-based board on
which the TIGA driver is operating. A null pointer may be returned by this
command.

Syntax

Type

Description

Execute Auxiliary Command aux_command

4-5

command_index = 1, command_buffer = NULL

Auxiliary command 1 with a NULL command_buffer pointer returns a far point-
er to the following AUX_CONFIG structure:

typedef struct
{

unsigned long base;
unsigned long range;

}MEM_MAP;

typedef struct
{

unsigned short base;
unsigned short range;

}IO_MAP;

typedef struct
{

unsigned short alt_video;
unsigned short emulation;
short mem_mapped;
MEM_MAP memmap[8];
short io_mapped;
IO_MAP iomap[8];

}AUX_CONFIG;

The fields of the MEM_MAP structure are defined as follows:

base A 32-bit field that specifies the paragraph address corre-
sponding to the start of the memory-mapped host area. For
example, an origin value of D700 specifies the actual address
of D700:0 or D7000.

range A 32-bit field that specifies the size in bytes, of the memory-
mapped area, beginning at the paragraph address specified
by the origin.

The fields of the IO_MAP structure are defined as follows:

base A 16-bit field that specifies the starting I/O address of a range
I/O address.

range A 16-bit field that specifies the range, in bytes, of the I/O-
mapped area beginning at the I/O address specified by base.
For example, a base address of 0x280 with range of 0x10
specifies the I/O address of 0x280 to 0x290.

The fields of the AUX_CONFIG structure are defined as follows:

alt_video Alternate video capabilities. This 16-bit field describes the al-
ternate non-TMS340 video capabilities of the TMS340-based
board.

Bits 0 MDA capability (0=no / 1=yes)
Bits 1 CGA capability (0=no / 1=yes)

aux_command Execute Auxiliary Command

4-6 Core Functions

Bits 2 HERC capability (0=no / 1=yes)
Bits 3 EGA capability (0=no / 1=yes)
Bits 4 VGA capability (0=no / 1=yes)
Bits 5 8514/A capability (0=no / 1=yes)
Bits 6–12 Reserved
Bit 13 Shared VRAM buffer (0=no / 1=yes)
Bits 14–15 Monitor config (00=Single / 01=Dual)

Capability is defined as the ability of the TMS340-based board to display out-
put in the indicated format, either through onboard chip support, pass-through,
or TMS340 software emulation.

emulation Alternate video emulation flags. This 16-bit field tells whether
the capabilities described in the alt_video field are emulated
in software by the TMS340 processor.

Bits 0 MDA emulated (0=no / 1=yes)
Bits 1 CGA emulated (0=no / 1=yes)
Bits 2 HERC emulated (0=no / 1=yes)
Bits 3 EGA emulated (0=no / 1=yes)
Bits 4 VGA emulated (0=no / 1=yes)
Bits 5 8514/A emulated (0=no / 1=yes)
Bits 6–15 Reserved

Emulation is defined as the entire or partial support that the TMS340 provides
through software emulation, processor of the indicated video format. Emula-
tion also indicates that the alternate video mode and TIGA modes share the
same video buffer and/or program RAM area.

mem_mapped A16-bit field that specifies the number of memory-mapped
host address areas used by the board.

memmap An array structure of type MEM_MAP, containing the base ad-
dress and range of each memory-mapped area. The number
of areas is specified by the mem_mapped field.

io_mapped A 16-bit field that specifies the number of I/O-mapped host
address areas used by the board.

iomap An array of structure of type IO_MAP, containing the base ad-
dress and range of each I/O-mapped area. The number of
areas is specified by the io_mapped field.

Clear Frame Buffer clear_frame_buffer

4-7

#include <tiga.h>

void clear_frame_buffer(color)
unsigned long color; /* pixel value */

Core

The clear_frame_buffer function rapidly clears the entire display memory by
setting it to the specified color. If the display memory contains multiple display
pages (for example, for double-buffered animation), all pages are cleared.

Argument color is a pixel value. Given a screen pixel depth of N bits, the pixel
value contained in the N LSBs of the argument is replicated throughout the dis-
play memory. In other words, the pixel value is replicated 32/N times within
each 32-bit longword in the display memory. Pixel size N is restricted to the
values 1, 2, 4, 8, 16, and 32 bits.

If the value of argument color is specified as –1, the function clears the display
memory to the current background color. (To clear the frame buffer to all 1s
when the pixel size is 32 bits, set the background color to 0xFFFFFFFF and
call the clear_frame_buffer function with an argument of –1.)

This function can rapidly clear the screen in hardware configurations that sup-
port bulk initialization of the display memory. Bulk initialization is supported by
video RAMs that can perform serial-register-to-memory cycles. The serial reg-
ister in each video RAM is loaded with initialization data and copied internally
to a series of rows in the memory array. Whether the function utilizes bulk ini-
tialization or some other functionally equivalent method of clearing the screen
varies from one implementation to the next.

Offscreen areas of the display memory may also be affected by this function;
data stored in such areas may be lost as a result. The clear_screen function
is similar in operation but does not affect data contained in offscreen areas.

If the graphics display system reserves an area of the display memory to store
palette information (as is the case in configurations that use the TMS34070
color palette chip), this area is left intact by the function.

Use the clear_frame_buffer function to clear the display memory to the default
background color. Use the text_out function to print a couple of words to the
screen.

#include <tiga.h>

main()
{

init_tiga(0);
clear_frame_buffer (–1);
text_out(10, 10, ”Hello world.”);
term_tiga();

}

Syntax

Type

Description

Example

clear_page Clear Current Drawing Page

4-8 Core Functions

#include <tiga.h>

void clear_page(color)
unsigned long color; /* pixel value */

Core

The clear_page function rapidly clears the entire drawing page by setting it to
the specified pixel value. If the display memory contains multiple display pages
(for example, for double-buffered animation), only the current drawing page
is cleared.

Given a screen pixel depth of N bits, the pixel value contained in the N LSBs
of argument color is replicated throughout the drawing page memory. In other
words, the pixel value is replicated 32/N times within each 32-bit long word in
the area of display memory corresponding to the page. Pixel size N is re-
stricted to the values 1, 2, 4, 8, 16, and 32 bits.

If the value of argument color is specified as –1, the function clears the page
to the current background color. (In order to clear the drawing page to all 1s
when the pixel size is 32 bits, set the background color to 0xFFFFFFFF and
call the clear_page function with an argument of –1.)

The clear_page function can rapidly clear the screen in hardware configura-
tions that support bulk initialization of the display memory. Bulk initialization is
supported by video RAMs that can perform serial-register-to-memory cycles.
The serial register in each video RAM is loaded with initialization data and co-
pied internally to a series of rows in the memory array. Whether the function
utilizes bulk initialization or some other functionally equivalent method of clear-
ing the screen varies from one implementation to the next.

The clear_page function can affect offscreen as well as onscreen areas of the
display memory. Data stored in offscreen areas may be lost as a result. The
clear_screen function is similar in operation but does not affect data contained
in offscreen areas. The clear_page function may clear the screen more rapidly
than the clear_screen function, depending on the implementation.

If the graphics display system reserves an area of the display memory to store
palette information (as is the case in configurations that use the TMS34070
color palette chip), this area is left intact by the function.

Use the clear_page function to clear alternating drawing pages in an applica-
tion requiring double-buffered animation. The current graphics mode is as-
sumed to support more than one video page. The text_out function is used to
make the letters abc rotate in a clockwise direction around the digits 123.

Syntax

Type

Description

Example

Clear Current Drawing Page clear_page

4-9

#include <tiga.h>

#define RADIUS 64 /* radius of rotating text */

main()
{

long x, y;
short disppage, drawpage;

init_tiga(0);
drawpage = 0;
disppage = 1;
x = (long)RADIUS << 16;
y = 0;
do
{

page_flip(disppage ^= 1, drawpage^= 1);
x – = y >> 5;
y += x >> 5;
while(page_busy());
clear_page (–1);
text_out(RADIUS,RADIUS,”123”);
text_out(RADIUS+(x>>16), RADIUS+(y>>16), ”abc”);

}while(!kbhit());
getch();
term_tiga();

}

clear_screen Clear Screen

4-10 Core Functions

#include <tiga.h>

void clear_screen(color)
unsigned long color; /* pixel value */

Core

The clear_screen function clears the entire current drawing page by setting it
to the specified pixel value. If the display memory contains multiple display
pages (for example, for double-buffered animation), only the current drawing
page is cleared.

Given a screen pixel depth of N bits, the pixel value contained in the N LSBs
of argument color is replicated throughout the visible screen memory. In other
words, the pixel value is replicated 32/N times within each 32-bit long word in
the area of display memory corresponding to the visible screen. Pixel size N
is restricted to the values 1, 2, 4, 8, 16, and 32 bits.

If the value of argument color is specified as –1, the function clears the screen
to the current background color. (To clear the screen to all 1s when the pixel
size is 32 bits, set the background color to 0xFFFFFFFF and call the
clear_screen function with an argument of –1.)

The clear_screen function does not affect data contained in offscreen areas
of the display memory. The clear_page function is similar in operation but may
affect data contained in offscreen areas; data stored in such areas may be lost
as a result. The clear_page function may clear the screen more rapidly than
the clear_screen function, depending on the implementation.

Use the clear_screen function to clear the screen to the default background
color before printing the text “Hello world” on the screen.

#include <tiga.h>

main()
{

init_tiga(0);
clear_screen (–1);
text_out(10, 10, ”Hello world.”);
term_tiga();

}

Syntax

Type

Description

Example

Copy From Coprocessor Memory to TMS340 Memory cop2gsp

4-11

#include <tiga.h>
#include <typedefs.h>

void cop2gsp(copid, copaddr, gspaddr, length)
short copid;
PTR copaddr;
PTR gspaddr;
long length;

Core

The cop2gsp function copies data from the address space of the TMS34082
coprocessor with id copid (a number from 0 to 7, with 4 being broadcast, as
defined in the TMS34020 specification) into TMS340 memory. The data to be
transferred is in 32-bit long words.

Syntax

Type

Description

cpw Compare Point to Clipping Window

4-12 Core Functions

#include <tiga.h>

short cpw(x, y)
short x, y; /* pixel coordinates */

Core

The cpw function returns a 4-bit outcode indicating the specified pixel’s posi-
tion relative to the current clipping window. The outcode indicates whether the
pixel is located above or below, to the left or right of, or inside the clipping win-
dow.

Arguments x and y are the coordinates of the pixel, specified relative to the cur-
rent drawing origin.

The clipping window is rectangular. As shown in Figure 4–1, the area sur-
rounding the clipping window is partitioned into 8 regions.

Figure 4–1. Outcodes for Lines Endpoints

0000

Window

X=X Max.X=X Min.

Y=Y Max.

Y=Y Min.

101010001001

00100001

01100101 0100

+y

+x

Each of the 8 regions is identified by a unique 4-bit outcode. The outcode val-
ues for the 8 regions and for the window itself are encoded as follows:

01XX2 if the point lies above the window
10XX2 if the point lies below the window
XX012 if the point lies left of the window
XX102 if the point lies right of the window
00002 if the point lies within the window

The outcode is right-justified in the 4 LSBs of the return value and zero-ex-
tended.

Syntax

Type

Description

Compare Point to Clipping Window cpw

4-13

Refer to the user’s guide for the TMS34010 or TMS34020 for a detailed de-
scription of the outcodes.

Use the cpw function to animate a moving object that bounces off the sides of
the clipping window. When a check of the object’s x-y coordinates indicates
that it has strayed outside the window, the sign of the object’s x or y component
of velocity, as appropriate, is reversed. The moving object is an asterisk ren-
dered in the system font. The asterisk is erased by overwriting it with a blank.
Note that the system font is a block font; overwriting an asterisk with a blank
from a proportionally spaced font might not have the same effect.

#include <tiga.h>
#define WCLIP 130 /* width of clipping window */
#define HCLIP 100 /* height of clipping window */

main()
{

short x, y, vx, vy;

init_tiga(0);
clear_screen(–1);
set_clip_rect(WCLIP, HCLIP, 0, 0);
vx = 2;
vy = 1;
x = y = 0;
do
{

text_out(x, y, ”*”);
if (cpw(x, 0))

vx=–vx;
if (cpw(0, y))

vy=–vy;
wait_scan(HCLIP);
text_out(x, y,” ”);

}while(!kbhit());
getch();
term_tiga();

}

Example

create_alm Create Absolute Load Module

4-14 Core Functions

#include <tiga.h>

short create_alm(rlm_name, alm_name)
char *rlm_name;
char *alm_name;

Host-only

The create_alm function creates an Absolute Load Module (ALM). ALMs were
required before version 2.0 of TIGA because the downloading of a user exten-
sion to TIGA was done by calling the linking loader. This is not the case in ver-
sions 2.0 onward, so ALMs are now redundant. This function is included purely
to maintain compatibility with TIGA drivers written before version 2.0 of TIGA.

The create_alm function converts the relocatable load module (specified by
rlm_name) into an absolute load module and saves it under the filename spe-
cified by alm_name. If no file extension is supplied for the RLM, then an exten-
sion of .RLM is used. If no extension is supplied for the ALM, then an exten-
sion of .ALM is used. If no path information is specified, this function looks first
in the current directory and then in the directory specified by the –l option of
the TIGA environment variable.

If the ALM file already exists, the procedure does nothing. This saves time by
creating the ALM file only once. If a new ALM file is desired, the old one must
be deleted explicitly. For more details on extensibility and an example of the
use of this function, refer to subsection 8.3.2.

If the function terminates correctly, zero is returned; if an error occurs, a nega-
tive error code is returned. The function returns these error codes:

Error Description
Code

–3 Out of Memory — Not enough TMS340 memory to load the ALM.

–6 Error Accessing RLM — Unable to open RLM for reading. Either
the spelling of the RLM filename does not match the RLM filename
in the current directory, or the –l option of the TIGA environment
variable is not set up correctly.

–8 Error Accessing ALM — Unable to open ALM for writing; check
the specified file name.

–10 Symbol Reference — An unresolved symbol was refernced by the
RLM. Determine the name of the symbol, either by producing a link
map for the RLM or by invoking TIGALNK from the command line
via the –ec option.

–14 Error Loading COFF File — An error was obtained in the loading
of the COFF file. Recreate the RLM and try again.

–15 Out of Symbol Memory — Not enough TMS340 memory to store
the symbols of the RLM.

Syntax

Type

Description

Create External Symbol Table create_esym

4-15

short create_esym()

Host-only

The create_esym function does not need to be called. It is provided for down-
ward compatibility with prior versions of TIGA, which provided stored symbol
table information in a host file.

This function creates a new symbol table in TMS340 memory. After creation,
the table contains only the global (or external) symbols that were contained in
the TIGA graphics manager file. During subsequent installations of relocatable
load modules, this table is used to resolve external references. Also, any exter-
nal symbols contained in the RLM are added to table during the installation
process so that those symbols can be referenced by other RLMs.

The symbol table is flushed automatically at the start of each application or you
can do it explicitly by calling the flush_esym or the flush_extended functions.
For more details on extensibility, refer to Chapter 8.

If an error occurs, a negative error code is returned. If the function terminates
normally, zero is returned.

This function can return the following error codes:

Error Description
Code

–3 Out of Memory — Not enough TMS340 memory to create the sym-
bol table.

–9 Error Accessing TIGAGM.OUT — Could not access the graphics
manager COFF file to read in the symbols. The file is either missing,
or the –m option of the TIGA environment variable is not set up cor-
rectly.

–14 Error Loading COFF File — An error was obtained in the load of
the tigagm.out COFF file. Recopy this file from the installation disk.

–15 Out of Symbol Memory — Not enough TMS340 memory to store
the symbol table.

Syntax

Type

Description

cvxyl Convert x-y Position to Linear Address

4-16 Core Functions

#include <tiga.h>
#include <typedefs.h>

PTR cvxyl(x,y)
short x,y; /* x-y coordinates */

Core

The cvxyl function returns the 32-bit linear address of a pixel in the TMS340
graphics processor’s memory, given the x and y coordinates of the pixel on the
screen.

Arguments x and y are the coordinates of the specified pixel, defined relative
to the current drawing origin. If the coordinates correspond to an offscreen lo-
cation, the calling program is responsible for ensuring that the coordinates cor-
respond to a valid pixel location.

Use the cvxyl function to determine the base addresses of the all the video
pages available in the current graphics mode. The page_flip function is used
repeatedly to flip to a new page before the cvxyl function is called. The text_out
function is used to print out the 32-bit memory address of each page.

#include <tiga.h>
#include <typedefs.h>

main()
{

short x, y, n;
char s[16];
CONFIG cfg;
FONTINFO fntinf;

init_tiga(0);
clear_screen(–1);
get_config(&cfg);
get_fontinfo(–1, &fntinf);
x = y = 10;
text_out(x,y,”video page addresses:”);
for (n=0; n < cfg.mode.num_pages; n++)
{

page_flip(0,n);
sprintf(s, ”0x%lx”, cvxyl (0,0));
y+=fntinf.charhigh;
page_flip(0, 0);
text_out(x, y, s);

}
term_tiga();

}

Syntax

Type

Description

Example

Extract Field From TMS340 Memory field_extract

4-17

#include <tiga.h>
#include <typedefs.h>

unsigned long field_extract(gptr,fs)
PTR gptr; /* TMS340 memory pointer */
unsigned short fs; /* field size */

Core

The field_extract function returns the contents of a field located in TMS340
memory.

Argument gptr is a pointer containing the 32-bit address of a field in the
TMS340 graphics processor’s memory. Argument fs specifies the length of the
field and is restricted to values in the range of 1 to 32 bits.

The function definition places no restrictions on the alignment of the address;
the field is permitted to begin at any bit address. Given an fs value of N and
a gptr value of A, the specified field consists of contiguous bits A through
A+N–1 in memory.

The contents of the field are placed in the N LSBs of the return value and zero-
extended.

Use the field_extract function to examine a field from an I/O register located
in the TMS340 graphics processor’s memory. Retrieve the contents of the
PPOP field, a 5-bit field that begins in bit 10 of the CONTROL register.

#include <tiga.h>
#define CONTROL 0xC00000B0 /*TMS340 CONTROL reg. address */
#define XOR 10 /*PPOP = XOR */

main()
{

unsigned short ppop;
char s[16];

init_tiga(0);
clear_screen(–1);
set_ppop(XOR); /* load PPOP field */
synchronize(); /* wait for set_ppop to complete */
ppop= field_extract (CONTROL+10, 5); /* read it back */
sprintf(s, ”PPOP = %d”, ppop);
text_out(10, 10, s);
term_tiga();

}

Syntax

Type

Description

Example

field_insert Insert Field Into TMS340Memory

4-18 Core Functions

#include <tiga.h>
#include <typedefs.h>

void field_insert(gptr, fs, val)
PTR gptr; /* TMS340 memory pointer */
short fs; /* field size */
unsigned long val; /* data to be inserted */

Core

The field_insert function writes a specified value to a field located in the
TMS340 graphics processor’s memory.

Argument gptr is a pointer containing the 32-bit address of a field in the
TMS340 graphics processor’s memory. Argument fs specifies the length of the
field and is restricted to values in the range of 1 to 32 bits. Argument val speci-
fies the value to be written.

The function definition places no restrictions on the alignment of the address;
the field is permitted to begin at any bit address. Given an fs value of N and
a gptr value of A, the specified field consists of contiguous bits A through
A+N–1 in memory. The N LSBs of argument val are copied into the specified
field in memory; the remaining bits of the argument are ignored by the function.

Use the field_insert function to load a value into a field in an I/O register located
in the TMS340 graphics processor’s memory. The PPOP field is a 5-bit field
that begins in bit 10 of the CONTROL register. Use the get_ppop function to
read back the PPOP field, and use the text_out function to print its value.

#include <tiga.h>
#define CONTROL 0xC00000B0 /* I/O register address */
#define NOT_OR 13 /* NOT src OR dst ––> dst */

main()
{

char s[16];

init_tiga(0);
clear_screen(–1);
synchronize(); /* wait for clear_screen to complete */
field_insert (CONTROL+10, 5, NOT_OR); /* load PPOP field */
sprintf(s, ”PPOP = %d”, get_ppop());
text_out(10, 10, s);
term_tiga();

}

Syntax

Type

Description

Example

Flush External Symbol Table File flush_esym

4-19

#include <tiga.h>

short flush_esym()

Host-only

The flush_esym function does not need to be called by the user. It is provided
for backwards compatibility with older versions of TIGA, which provided stored
symbol table information in a host file.

This function deletes all unsecured installed modules and flushes the module
symbols from the symbol table, except for those in the TIGA graphics manag-
er.

Currently, there are no error codes returned by this function.

For more details on extensibility, refer to Chapter 8.

Syntax

Type

Description

flush_extended Flush All User Extensions

4-20 Core Functions

#include <tiga.h>

void flush_extended()

Host-only

The flush_extended function deletes all unsecured installed modules and
flushes the module symbols from the symbol table, except for those in the
TIGA graphics manager.

Note that if TIGA is initialized with a call to set_videomode with an INIT style
parameter, this function is executed automatically because all unsecured
heap is initialized.

For more details on extensibility and the use of this function, see Chapter 8.

Syntax

Type

Description

Remove Module From TMS340 Memory flush_module

4-21

#include <tiga.h>

short flush_module(module_id)
short module_id; /* module identifier */

Host-only

The flush_module function flushes the code and symbols of the module speci-
fied by the argument module_id, which is returned by the install_rlm and
install_alm functions. Use the constant GRAPHICS_LIB_ID defined in the
tiga.h file to specify the module corresponding to the extended graphics library
module.

The function returns the following values:

1 = Module flushed succesfully
0 = Error, caused by one of the following:

Invalid module id
Specified module is not loaded
Specified module is locked

Syntax

Type

Description

function_implemented Return if Function Is Implemented

4-22 Core Functions

#include <tiga.h>

short function_implemented(function_code)
short function_code;

Host-only

The function_implemented function queries whether a function is implem-
ented or not. Functions in TIGA have an associated function_code; some
functions may not be implemented on every board.

The following functions are not likely to be implemented on all boards and
should be queried with function_implemented before being invoked:

cop2gsp
set_palet
get_palet
set_palet_entry

get_palet_entry
set_transp
gsp2cop
init_palet

The function codes themselves are contained in the tiga.h, tiga.hch, and
tiga.ndp include files, which contain the type and function declarations. The
function codes are #defined to be the same as the function name, but in upper
case. Thus, the syntax to inquire if set_palet is implemented is

if(function_implemented(SET_PALET))
{

}

#include <tiga.h>
#include <typedefs.h>

CONFIG config;

main()
{

unsigned long green_index;

init_tiga(0);
/* if it is possible to set the palet entry value, */
/* set it to bright green */
if (function_implemented (SET_PALET_ENTRY))
{

green_index = 1;
set_palet_entry(green_index, 0, 0xFF, 0, 0);

}
else
{

/* if it is not possible to set the palet entry, */
/* (as in the case of a ROM–based palette) */
/* then get the index of the brightest green */
green_index = get_nearest_color(0, 0xFF, 0, 0);

}
/* use index to clear the screen to */
clear_screen(green_index);
term_tiga();

}

Syntax

Type

Description

Example

Return Foreground and Background Colors get_colors

4-23

#include <tiga.h>

void get_colors(fcolor, bcolor)
unsigned long *fcolor; /* pointer to foreground color */
unsinged long *bcolor; /* pointer to background color */

Core

The get_colors function retrieves the pixel values corresponding to the current
foreground and background colors.

Arguments fcolor and bcolor are pointers to long integers into which the func-
tion loads the foreground and background colors, respectively. Each pixel val-
ue is right-justified within its destination longword and is zero-extended.

Use the get_colors function to retrieve the default foreground and background
pixel values. Use the text_out function to print the values on the screen.

#include <tiga.h>
#include <typedefs.h> /* defines FONTINFO structure */

main()
{

FONTINFO fontinfo;
unsigned long fcolor, bcolor;
short x, y;
char s[20];

init_tiga(0);
clear_screen(–1);
get_fontinfo(0, &fontinfo);
get_colors (&fcolor, &bcolor); /* retrieve colors */
x = y = 10;
sprintf(s, ”white = %ld”, fcolor);
text_out(x, y, s);
y += fontinfo.charhigh;
sprintf(s, ”black = %ld”, bcolor);
text_out(x, y, s);
term_tiga();

}

Syntax

Type

Description

Example

get_config Return Hardware Configuration Information

4-24 Core Functions

#include <tiga.h>
#include <typedefs.h>

void get_config(config)
CONFIG *config; /* hardware configuration info */

Core

The get_config function retrieves a list of parameters that describe the charac-
teristics of both the hardware configuration and the current graphics mode.

Argument config is a pointer to a structure of type CONFIG, into which the func-
tion copies parameter values describing the configuration of the display hard-
ware. The last field in the CONFIG structure is a structure of type MODEINFO
that contains parameters describing the currently selected graphics mode.

The CONFIG structure contains the following fields:

typedef struct
{

unsigned short version_number;
unsigned long comm_buff_size;
unsigned long sys_flags;
unsigned long device_rev;
unsigned short num_modes;
unsigned short current_mode;
unsigned long program_mem_start;
unsigned long program_mem_end;
unsigned long display_mem_start;
unsigned long display_mem_end;
unsigned long stack_size;
unsigned long shared_mem_size;
HPTR shared_host_addr;
PTR shared_gsp_addr;
MODEINFO mode;

}CONFIG;

Syntax

Type

Description

Return Hardware Configuration Information get_config

4-25

The MODEINFO structure contains the following fields:

typedef struct
{

unsigned long disp_pitch;
unsigned short disp_vres;
unsigned short disp_hres;
short screen_wide;
short screen_high;
unsigned short disp_psize;
unsigned long pixel_mask;
unsigned short palet_gun_depth;
unsigned long palet_size;
short palet_inset;
unsigned short num_pages;
short num_offscrn_areas;
unsigned long wksp_addr;
unsigned long wksp_pitch;
unsigned short silicon_capability;
unsigned short color_class;
unsigned long red_mask;
unsigned long blue_mask;
unsigned long green_mask;
unsigned short x_aspect;
unsigned short y_aspect;
unsigned short diagonal_aspect;

}MODEINFO;

Refer to the CONFIG and MODEINFO structure descriptions in Appendix A for
detailed descriptions of each field.

Note that the CONFIG and MODEINFO structures may change in subsequent
revisions. To minimize the impact of such changes, write your application pro-
grams to refer to the elements of the structure symbolically by their field
names, rather than as offsets from the start of the structure. The include files
provided with the library will be updated in future revisions to track any such
changes in data structure definitions.

Use the get_config function to retrieve the pixel size for the current graphics
mode. Use the text_out function to print the pixel size on the screen.

#include <tiga.h>
#include <typedefs.h> /* defines CONFIG structure */

main()
{

CONFIG cfg;
char s[20];

init_tiga(0);
clear_screen(–1);
get_config (&cfg);
sprintf(s,”Pixel size = %d”, cfg.mode.disp_psize);
text_out(10, 10, s);
term_tiga();

}

Example

get_curs_state Return Current Cursor State

4-26 Core Functions

#include <tiga.h>

short get_curs_state()

Core

The get_curs_state function returns true (nonzero) if the graphics cursor is en-
abled, false (zero) otherwise.

See cursor manipulation in set_curs_shape.

Syntax

Type

Description

Example

Return Current Cursor Position get_curs_xy

4-27

#include <tiga.h>

void get_curs_xy(px, py)
short *px;
short *py;

Core

The get_curs_xy returns the pixel coordinates of the graphics cursor hotspot.
Note that the coordinates are relative to the upper left corner of the screen, not
to the drawing origin.

Note:

Because the cursor is moved by an interrupt service routine driven by the dis-
play interrupt of the TMS340 processor, it is possible to set a new position
and then execute a get_curs_xy to return this new position before the inter-
rupt service routine has actually moved the cursor. Thus, the function returns
the new position either where the cursor is, if the display interrupt has been
invoked, or where it will be, once the display interrupt has been invoked for
the current frame.

See cursor manipulation in set_curs_shape.

Syntax

Type

Description

Example

get_fontinfo Return Installed Font Information

4-28 Core Functions

#include <tiga.h>
#include <typedefs.h>

short get_fontinfo(id, pfontinfo)
short id; /* font identifier */
FONTINFO *pfontinfo; /* font information */

Core

The get_fontinfo function copies a structure whose elements describe the
characteristics of the designated font. The font must have been previously in-
stalled in the font table.

Argument id is an index that identifies the font. The system font is always des-
ignated as font 0; that is, it is identified by an id value of 0. The system font is
installed in the font table during initialization of the drawing environment by
TIGA. Additional fonts may be installed in the font table by means of calls to
the install_font function. The install_font function returns an identifier value
that is subsequently used to refer to the font. The currently selected font is des-
ignated by an id value of –1.

Argument pfontinfo is a pointer to a structure of type FONTINFO, into which
the function copies parameter values that characterize the font designated by
argument id.

The function returns a nonzero value if the structure is successfully copied;
otherwise, it rerutns 0.

The FONTINFO structure contains the following fields:

typedef struct
{

char facename[30];
short deflt;
short first;
short last;
short maxwide;
short avgwide;
short maxkern;
short charwide;
short charhigh;
short ascent;
short descent;
short leading;
PTR fontptr;
short id;

}FONTINFO;

Refer to the FONTINFO structure description in appendix A for detailed de-
scriptions of each field.

Syntax

Type

Description

Return Installed Font Information get_fontinfo

4-29

Note that the FONTINFO structure may change in subsequent revisions. To
minimize the impact of such changes, write your application programs to refer
to the elements of the structure symbolically by their field names, rather than
as offsets from the start of the structure. The include files provided with the li-
brary will be updated in future revisions to track any such changes in data
structure definitions.

Use the get_fontinfo function to retrieve the face name, character width, and
character height of the system font. Use the text_out function to display the
three font parameters on the screen.

#include <tiga.h>
#include <typedefs.h> /* defines FONTINFO structure */

main()
{

FONTINFO fntinf;
short x, y;
char s[80];

init_tiga(0);
clear_screen(–1);
get_fontinfo (0, &fntinf);
x=y=10;
text_out(x, y, fntinf.facename);
y += fntinf.charhigh;
sprintf(s, ”character width = %d”, fntinf.charwide);
text_out(x, y, s);
y+=fntinf.charhigh;
sprintf(s, ”character height = %d”, fntinf.charhigh);
text_out(x, y, s);
term_tiga();

}

Example

get_isr_priorities Return Interrupt Service Routine Priorities

4-30 Core Functions

#include <tiga.h>

void get_isr_priorities(numisrs, ptr)
short numisrs; /* number of isrs */
short *ptr; /* pointer to array of shorts */

Core

The get_isr_priorities function returns the priorities assigned when installing
interrupt service routines (ISRs) using the install_rlm or install_alm functions.
The calling function must ensure that enough space is allocated to hold all re-
turned priority information.

There is a one-to-one correspondence between an ISR and its associated
priority. The first priority returned corresponds to the first ISR installed, and so
on.

After this function is called, all priority data is flushed internally within TIGA,
thereby enabling new priority data to be collected the next time install_alm or
install_rlm is called to install an ISR.

For more details on extensibility and the use of this function, see Chapter 8.

Syntax

Type

Description

Return Graphics Mode Information get_modeinfo

4-31

#include <tiga.h>
#include <typedefs.h>

short get_modeinfo(index, modeinfo)
short index; /* graphics mode index */
MODEINFO *modeinfo; /* graphics mode information */

Host-only

The get_modeinfo function copies a structure whose elements describe the
characteristics of the designated graphics mode.

Argument index is a number that identifies one of the graphics modes sup-
ported by the display hardware configuration. The index values are assigned
to the available graphics modes by the display hardware vendor. Each config-
uration supports one or more graphics modes, which are numbered in ascend-
ing order beginning with 0. Argument modeinfo is a pointer to a structure of
type MODEINFO, into which the function copies parameter values that char-
acterize the graphics mode designated by argument index.

The function returns a nonzero value if the mode information is successfully
retrieved. If an invalid index is specified, the function returns 0.

The number of graphics modes supported by a particular display configuration
is specified in the num_modes field of the CONFIG structure returned by the
get_config function. Given that the number of supported modes is some num-
ber N, the modes are assigned indices from 0 to N–1.

The get_modeinfo function has no effect on the current graphics mode setting.
The display is configured in a particular graphics mode by means of a call to
the set_config function.

Syntax

Type

Description

get_modeinfo Return Graphics Mode Information

4-32 Core Functions

The MODEINFO structure contains the following fields:

typedef struct
{

unsigned long disp_pitch;
unsigned short disp_vres;
unsigned short disp_hres;
short screen_wide;
short screen_high;
unsigned short disp_psize;
unsigned long pixel_mask;
unsigned short palet_gun_depth;
unsigned long palet_size;
short palet_inset;
unsigned short num_pages;
short num_offscrn_areas;
unsigned long wksp_addr;
unsigned long wksp_pitch;
unsigned short silicon_capability;
unsigned short color_class;
unsigned long red_mask;
unsigned long blue_mask;
unsigned long green_mask;
unsigned short x_aspect;
unsigned short y_aspect;
unsigned short diagonal_aspect;

}MODEINFO;

Refer to the MODEINFO structure description in Appendix A for detailed de-
scriptions of each field.

Note that the MODEINFO structure may change in subsequent revisions. To
minimize the impact of such changes, write your application programs to refer
to the elements of the structure symbolically by their field names, rather than
as offsets from the start of the structure. The include files provided with the li-
brary will be updated in future revisions to track any such changes in data
structure definitions.

Use the get_modeinfo function to retrieve a list of the screen resolutions corre-
sponding to the graphics modes supported by the display hardware configura-
tion. Use the text_out function to print the list on the screen.

Example

Return Graphics Mode Information get_modeinfo

4-33

#include <tiga.h>
#include <typedefs.h> /* MODEINFO, CONFIG & FONTINFO */

main()
{

MODEINFO modinf;
FONTINFO fntinf;
char s[80];
short x, y, mode;

init_tiga(0);
clear_screen(–1);
get_fontinfo(0, &fntinf);
x = y = 10;
for (mode = 0; get_modeinfo (mode, &modinf); mode++)
{

sprinf(s, ”mode = %d: %d–by–%d”, mode,
modinf.disp_hres, modinf.disp_vres);

text_out(x, y, s);
y += fntinf.charhigh;

}
term_tiga();

}

get_nearest_color Return Nearest Color in Palette

4-34 Core Functions

#include <tiga.h>

unsigned long get_nearest_color(r, g, b, i)
unsigned char r, g, b; /* red, green & blue components */
unsigned char i; /* gray–scale intensity */

Core

The get_nearest_color function returns the pixel value whose color is closest
to that specified by the input arguments.

If the current graphics mode supports a color display, arguments r, g, and b
represent the 8-bit red, green, and blue components of the target color. Each
component value corresponds to an intensity value in the range 0 to 255,
where 255 is the brightest intensity and 0 is the darkest.

In the case of a gray-scale display, argument i represents a gray-scale intensi-
ty in the range of 0 to 255.

The pixel value returned by the function is right-justified and zero-extended.

In the case of a gray-scale palette, the return value is the pixel whose intensity
is closest to that specified in argument i.

In the case of a color palette, the function performs a more complex calcula-
tion. The function calculates the magnitude of the differences between the r,
g, and b argument values and the red, green, and blue components, respec-
tively, of each individual color available in the palette. Each of the three differ-
ences (red, green, and blue) is multiplied by an individual weighting factor, and
the sum of the weighted differences is treated as the effective distance of the
color palette entry from the color specified by arguments r, g, and b. The pal-
ette entry corresponding to the smallest weighted sum is selected as being
nearest to the specified color. The function returns the palette index value cor-
responding to the selected color.

Use the get_nearest_color function to determine the pixel values around the
perimeter of a color wheel. Use the fill_piearc function from the extended func-
tions library to render the wheel. The wheel is partitioned into the following six
regions of color transition:

red to yellow
yellow to green
green to cyan
cyan to blue
blue to magenta
magenta to red

Each region spans a 60-degree arc of the wheel.

Syntax

Type

Description

Example

Return Nearest Color in Palette get_nearest_color

4-35

#include <tiga.h>
#include <extend.h>

color_wheel(t, r, g, b, i)
short t;
unsigned char r, g, b, i;
{

long val;

val = get_nearest_color (r, g, b, i);
set_fcolor(val);
fill_piearc(140, 110, 10, 10, t, 1);

}

main()
{

short t;
unsigned char r, g, b;

init_tiga(1);
clear_screen(–1);
for (t = 0, r = 255, g = b = 15; t < 60; t++, g += 4)

color_wheel(t, r, g, b, g); /* red to yellow */
for (; t < 120; t++, r – = 4)

color_wheel(t, r, g, b, r); /* yellow to green */
for (; t < 180; t++, b + = 4)

color_wheel(t, r, g, b, b); /* green to cyan */
for (; t < 240; t++, g – = 4)

color_wheel(t, r, g, b, g); /* cyan to blue */
for (; t < 300; t++, r + = 4)

color_wheel(t, r, g, b, r); /* blue to magenta */
for (; t < 360; t++, b – = 4)

color_wheel(t, r, g, b, b); /* magenta to red */
term_tiga();

}

get_offscreen_memory Return Offscreen Memory Blocks

4-36 Core Functions

#include <tiga.h>
#include <typedefs.h>

void get_offscreen_memory(num_blocks, offscreen)
short num_blocks; /* number of offscreen buffers */
OFFSCREEN_AREA *offscreen; /* list of offscreen buffers*/

Core

The get_offscreen_memory function returns a list of offscreen buffers located
in the TMS340 graphics processor’s display memory.

Argument num_blocks specifies the number of offscreen buffer areas to be
listed. Argument offscreen is an array to contain the list of offscreen buffers.
Each element of the offscreen array is a structure of type
OFFSCREEN_AREA.

The OFFSCREEN_AREA structure contains the following fields:

typedef struct
{

PTR addr;
unsigned short xext;
unsigned short yext;

}OFFSCREEN_AREA;

Refer to the OFFSCREEN_AREA structure description in Appendix A for de-
tailed descriptions of each field.

An offscreen buffer is a two-dimensional array of pixels, the rows of which may
not be contiguous in memory. The pixel size is the same as that of the screen,
and each offscreen buffer has the same pitch as the screen. The pitch is the
difference in memory addresses between two vertically adjacent pixels in the
buffer.

If an offscreen buffer is used as the offscreen workspace (see the description
of the set_wksp and get_wksp functions), this buffer is always the first buffer
listed in the offscreen array.

Let N represent the number of offscreen buffers available in a particular graph-
ics mode. If argument num_blocks is greater than N, only the first N elements
of the offscreen array will be loaded with valid data. If argument num_blocks
is less than N, only the first num_blocks elements of the offscreen array will
be loaded with valid data. The number of offscreen areas available in the cur-
rent mode is specified in the num_offscrn_areas field of the CONFIG structure
returned by the get_config function.

After the display memory (usually video RAM) has been partitioned into one
or more video pages (or frame buffers), some number of rectangular, noncon-
tiguous blocks of display memory are typically left over. These blocks may not
be suitable for general use (for example, for storing a program) but may be of
use to some applications as temporary storage for graphical information such
as the areas behind pull-down menus on the screen.

Syntax

Type

Description

Return Offscreen Memory Blocks get_offscreen_memory

4-37

Use the get_offscreen_memory function to list the first (up to) 5 offscreen buff-
ers available in the current graphics mode. Use the text_out function to print
on the screen the x and y extent of each buffer .

#include <tiga.h>
#include <typedefs.h> /* OFFSCREEN_AREA, CONFIG, FONTINFO */
#define MAXBUFS 5 /* max. number of buffers needed */

main()
{

OFFSCREEN_AREA offscrn[MAXBUFS];
CONFIG cfg;
FONTINFO fntinf;
short x, y, i, nbufs;
char s[80];

init_tiga(0);
clear_screen(–1);
get_config(&cfg);
get_fontinfo(–1, &fntinf);
if ((nbufs = cfg.mode.num_offscrn_areas) > MAXBUFS)

nbufs = MAXBUFS;
get_offscreen_memory (nbufs, offscrn);
if (!nbufs)

text_out(10, 10, ”No off–screen buffers available.”);
else

for (i = 0, x = y = 10; i < nbufs; i++)
{

sprintf(s, ”Buffer %d: xext = %d, yext = %d”, i,
offscrn[i].xext, offscrn[i].yext);

text_out(x, y, c);
y += fntinf.charhigh;

}
term_tiga();

}

Example

get_palet Read Entire Palette

4-38 Core Functions

#include <tiga.h>
#include <typedefs.h>

void get_palet(palet_size, palet)
short palet_size; /* number of palette entries */
PALET *palet; /* list of palette entries */

Core

The get_palet function copies multiple palette entries into an array.

Argument palet_size is the number of palette entries to load into the target
array.

Argument palet is an array of type PALET. The PALET structure contains the
following fields:

typedef struct
{

unsigned char r;
unsigned char g;
unsigned char b;
unsigned char i;

}PALET;

Refer to the PALET structure description in Appendix A for detailed descrip-
tions of each field.

Each array element is a structure containing r, g, b, and i fields. Each field
specifies an 8-bit red, green, blue, or gray-scale intensity value in the range
of 0 to 255, where 255 is the brightest intensity and 0 is the darkest. In the case
of a graphics mode for a color display, the red, green, and blue component in-
tensities are loaded into the r, g, and b fields, respectively, while the i field is
set to 0. In the case of a gray-scale mode, the intensities are loaded into the
i fields, and the r, g, and b fields are set to 0.

If argument palet_size specifies some number N that is less than the number
of entries in the palette, only the first N palette entries are loaded into the array.
If the number N of palette entries is less than the number specified in
palet_size, only the first N elements of the array are modified. The number of
palette entries in the current graphics mode is specified in the palet_size field
of the CONFIG structure returned by the get_config function.

The 8-bit r, g, b, and i values retrieved for each palette entry represent the col-
or components or gray-scale intensity actually output by the physical display
device. For example, assume that the r, g, b, and i values of a particular palette
entry are set by the set_palet or set_palet_entry functions to the following val-
ues: r = 0xFF, g = 0xFF, b = 0xFF, and i = 0. If the display hardware supports
only 4 bits of red, green, and blue intensity per gun, the values read by a call
to get_palet or get_palet_entry are r = 0xF0, g = 0xF0, b = 0xF0, and i = 0.

Use the get_palet function to get the r, g, b, and i components of the first 8 col-
ors in the default palette. Use the text_out function to print the values on the
screen.

Syntax

Type

Description

Example

Read Entire Palette get_palet

4-39

#include <tiga.h>
#include <typedefs.h> /* PALET, CONFIG and FONTINFO */
#define MAXSIZE 8 /* max. LUT entries to print */

main()
{

PALET lut[16];
CONFIG cfg;
FONTINFO fntinf;
short k, size, x, y;
char s[80];

init_tiga(0);
clear_screen(–1);
get_config(&cfg);
if ((size = cfg.mode.palet_size) > MAXSIZE)

size = MAXSIZE;
get_palet (size, lut); /* get up to 8 palette entries */
get_fontinfo(–1, &fntinf);
x = y = 10;
for (k = 0; k < size; k++, y += fntinf.charhigh)
{

sprintf(s, ”Color %d: r = %d, g = %d, b = %d, i = %d”,
k, lut[k].r, lut[k].g, lut[k].b, lut[k].i);

text_out(x, y, s);
}
term_tiga();

}

get_palet_entry Return Single Palette Entry

4-40 Core Functions

#include <tiga.h>

short get_palet_entry(index, r, g, b, i)
long index; /* index to palette entry */
unsigned char *r, *g, *b; /* red, green & blue components */
unsigned char *i; /* gray–scale intensity */

Core

The get_palet_entry function returns the red, green, blue, and gray-scale in-
tensity components of a specified entry in the palette.

The palette entry is specified by argument index, which is an index into the col-
or lookup table, or palette. If the palette contains N entries, valid indices are
in the range 0 to N–1. The number of palette entries in the current graphics
mode is specified in the palet_size field of the CONFIG structure returned by
the get_config function.

Arguments r, g, b, and i are pointers to the red, green, blue, and gray-scale in-
tensity values, respectively, that are retrieved by the function. Each intensity
is represented as an 8-bit value in the range of 0 to 255, where 255 is the bright-
est intensity and 0 is the darkest. In the case of a graphics mode for a color
display, the red, green, and blue component intensities are loaded into the r,
g, and b fields, respectively, while the i field is set to 0. In the case of a
gray-scale mode, the intensity is loaded into the i field, and the r, g, and b
fields are set to 0.

If argument index is in the valid range, the function returns a nonzero value,
indicating that the components of the palette entry have been successfully re-
trieved. If argument index is invalid, the return value is 0, indicating that no pal-
ette entry corresponds to the specified index.

Use the get_palet_entry function to get the r, g, b, and i components of the first
8 colors in the default palette. Use the text_out function to print the values on
the screen.

Syntax

Type

Description

Example

Return Single Palette Entry get_palet_entry

4-41

#include <tiga.h>
#include <typedefs.h> /* CONFIG and FONTINFO struct’s */
#define MAXSIZE 8 /* max. LUT entries to print */

main()
{

CONFIG cfg;
FONTINFO fntinf;
unsigned char r, g, b, i;
short k, size, x, y;
char s[80];

init_tiga(0);
clear_screen(–1);
get_config(&cfg);
if ((size = cfg.mode.palet_size) > MAXSIZE)

size = MAXSIZE;
get_fontinfo(–1, &fntinf);
x = y = 10;
for (k = 0; k < size; k++, y += fntinf.charhigh)
{

get_palet_entry (k, &r, &g, &b, &i);
sprintf(s, ”Color %d: r = %d, g = %d, b = %d”,

i = %d”, k, r, g, b, i);
text_out(x, y, s);

}
term_tiga();

}

get_pmask Return Plane Mask

4-42 Core Functions

#include <tiga.h>

unsigned long get_pmask()

Core

The get_pmask function returns the value of the plane mask. The size of the
plane mask in bits is the same as the pixel size.

Given a pixel size of N bits, the plane mask is right-justified in the N LSBs of
the return value and is zero-extended. The screen pixel size in the current
graphics mode is specified in the disp_psize field of the CONFIG structure re-
turned by the get_config function.

The plane mask designates which bits within a pixel are protected against
writes and affects all operations on pixels. During writes, the 1s in the plane
mask designate bits in the destination pixel that are protected against modifi-
cation, while the 0s in the plane mask designate bits that can be altered. During
reads, the 1s in the plane mask designate bits in the source pixel that are read
as 0s, while the 0s in the plane mask designate bits that can be read from the
source pixel as is.

The plane mask is set to its default value of 0 during initialization of the drawing
environment. The plane mask can be altered with a call to the set_pmask func-
tion.

The plane mask corresponds to the contents of the TMS340 graphics proces-
sor’s PMASK register. The effect of the plane mask in conjunction with the pix-
el-processing operation and the transparency mode is described in the user’s
guides for the TMS34010 and TMS34020.

Use the get_pmask function to verify that the plane mask is initialized to 0. Use
the text_out function to print the default plane mask value to the screen.

#include <tiga.h>

main()
{

unsigned long pmask;
char s[16];

init_tiga(0);
clear_screen(–1);
sprintf(s, ”Plane mask = 0x%lx, get_pmask ());
text_out(10, 10, s);
term_tiga();

}

Syntax

Type

Description

Example

Return Pixel-Processing Operation Code get_ppop

4-43

#include <tiga.h>

unsigned short get_ppop()

Core

The get_ppop function returns the pixel-processing operation code. The 5-bit
PPOP code determines the manner in which pixels are combined (Boolean or
arithmetic operation) during drawing operations.

The PPOP code is right-justified in the 5 LSBs of the return value and is zero-
extended.

Legal PPOP codes are in the range of 0 to 21. The source and destination pixel
values are combined according to the selected Boolean or arithmetic opera-
tion, and the result is written back to the destination pixel. As shown in
Table 4–1, Boolean operations are in the range of 0 to 15, and arithmetic oper-
ations are in the range of 16 to 21.

Table 4–1.Pixel-Processing Operations

PPOP Code Description

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

replace destination with source
source AND destination
source AND NOT destination
set destination to all 0s
source OR NOT destination
source EQU destination
NOT destination
source NOR destination
source OR destination
destination (no change)
source XOR destination
NOT source AND destination
set destination to all 1s
NOT source or destination
source NAND destination
NOT source
source plus destination (with overflow)
source plus destination (with saturation)
destination minus source (with overflow)
destination minus source (with saturation)
MAX(source, destination)
MIN(source, destination)

The PPOP code is set to its default value of 0 (replace operation) during initial-
ization of the drawing environment. The PPOP code can be altered with a call
to the set_ppop function.

The pixel-processing operation code corresponds to the 5-bit PPOP field in the
TMS340 graphics processor’s CONTROL register. The effects of the 22 differ-
ent codes are described in more detail in the user’s guides for the TMS34010
and TMS34020.

Use the get_ppop function to verify that the pixel-processing operation code
is initialized to 0 (replace destination with source). Use the text_out function
to print the default PPOP code to the screen.

Syntax

Type

Description

Example

4-44 Core Functions

#include <tiga.h>

main()
{

char s[16];

init_tiga(0);
clear_screen(–1);
sprintf(s, ”PPOP code = %d”, get_ppop ());
text_out(10, 10, s);
term_tiga();

}

Return Text x-y Position get_text_xy

4-45

#include <tiga.h>

void get_text_xy(x, y)
short *x, *y; /* text x-y coordinates */

Core

The get_text_xy function retrieves the x-y coordinates of the current text draw-
ing position. This is the position at which the next character (or string of charac-
ters) will be drawn if a subsequent call is made to the text_outp function. Both
the text_outp and text_out functions automatically update the text position to
be the right edge of the last string output to the screen.

Arguments x and y are pointers to variables of type short. The x and y coordi-
nate values copied by the function into these variables correspond to the cur-
rent text position on the screen, specified relative to the current drawing origin.
The x coordinate corresponds to the left edge of the next string output by the
text_outp function. The y coordinate corresponds either to the top of the string
or to the base line, depending on the state of the text alignment attribute (see
the description of the set_textattr function).

Use the get_text_xy function to print four short lines of text in a stairstep pattern
on the screen. Each time the text_outp function outputs the string step to the
screen, the get_text_xy function is called next to obtain the current text posi-
tion. The y coordinate of this position is incremented by a call to the set_text_xy
function, and the next call to the text_outp function prints the string at the new
position.

#include <tiga.h>
#include <typedefs.h>

main()
{

short x, y, i;
FONTINFO fntinf;

init_tiga(0);
clear_screen(–1);
get_fontinfo(–1, &fntinf);
x = y = 0;
for (i = 4; i; i––)
{

set_text_xy(x, y);
text_outp(”step”);
get_text_xy (&x, &y);
y += fntinf.charhigh;

}
term_tiga();

}

Syntax

Type

Description

Example

get_transp Return Transparency Flag

4-46 Core Functions

#include <tiga.h>

short get_transp()

Core

The get_transp function returns a value indicating whether transparency is en-
abled. A nonzero value is returned if transparency is enabled; 0 is returned if
transparency is disabled.

Transparency is an attribute that affects drawing operations. If transparency
is enabled and the result of a pixel-processing operation is 0, the destination
pixel is not altered. If transparency is disabled, the destination pixel is replaced
by the result of the pixel-processing operation on the TMS34010, and is modi-
fied according to the transparency mode selected on the TMS34020. To avoid
modifying destination pixels in the rectangular region surrounding each char-
acter shape, transparency can be enabled before the text_out or text_outp
function is called.

The transparency attribute value returned by the function corresponds to the
T bit in the TMS340 graphics processor’s CONTROL register. The effect of
transparency in conjunction with the pixel-processing operation and the plane
mask is described in the user’s guides for the TMS34010 and TMS34020.

Use the get_transp function to verify that transparency is disabled by default.
Use the text_out function to print the value returned by the get_transp function
to the screen.

#include <tiga.h>

main()
{

char s[20];

init_tiga(0);
sprintf(s, ”Transparency = %s”, get_transp () ? ”ON” :

”OFF”);
clear_screen(–1);
text_out(10, 10, s);
term_tiga();

}

Syntax

Type

Description

Example

 Return Address at TMS340 Trap Vector get_vector

4-47

#include <tiga.h>
#include <typedefs.h>

PTR get_vector(trapnum)
short trapnum; /* trap number */

Core

The get_vector function returns one of the TMS340 graphics processor’s trap
vectors. This function provides a portable means of obtaining the entry point
to a trap service routine, regardless of whether the actual trap vector is located
in RAM or ROM.

Argument trapnum specifies a trap number in the range from –32768 to 32767
for a TMS34020, and from 0 to 31 for a TMS34010.

The value returned by the function is the 32-bit address contained in the desig-
nated trap vector.

Use the get_vector function to retrieve whatever address happens to be in trap
vector 0. Use the text_out function to print the value returned by the get_vector
function to the screen as an 8-digit hexadecimal number.

#include <tiga.h>

main()
{

char s[32];

init_tiga(0);
clear_screen(–1);
sprintf(s, ”trap 0 vector = 0x%8lx”, get_vector (0));
text_out(10, 10, s);
term_tiga();

}

Syntax

Type

Description

Example

get_videomode Return Current Video Mode

4-48 Core Functions

#include <tiga.h>

short get_videomode();

Host-only

The get_videomode function returns the current video mode. Possible video
modes are discussed in the set_videomode function.

This function is normally used to obtain the video mode before entering TIGA
mode. Once the TIGA application has completed, the previous video mode
can be easily restored.

Syntax

Type

Description

 Return Window-Clipping Mode get_windowing

4-49

#include <tiga.h>

short get_windowing()

Core

The get_windowing function returns a 2-bit code designating the current win-
dow-checking mode.

There are four windowing modes:

1) 002 Window clipping disabled

2) 012 Interrupt request on write to pixel inside window

3) 102 Interrupt request on write to pixel outside window

4) 112 Clip to window

TIGA’s graphics library drawing functions assume that the TMS340 graphics
processor is configured in windowing mode 3. Changing the windowing mode
from this default may result in undefined behavior if calls are made to the ex-
tended graphics library functions.

The 2-bit code for the window-clipping mode corresponds to the W field in the
TMS340 graphics processor’s control register. The effects of the W field on
window-clipping operations are described in the user’s guides for the
TMS34010 and TMS34020.

Immediately following initialization of the drawing environment, the system is
configured in windowing mode 3, which is the default.

Syntax

Type

Description

get_wksp Return Workspace Information

4-50 Core Functions

#include <tiga.h>
#include <typedefs.h>

short get_wksp(addr, pitch)
PTR *addr; /* pointer to workspace address */
unsigned long *pitch; /* pointer to workspace pitch */

Core

The get_wksp function retrieves the parameters that define the current off-
screen workspace. None of the current TIGA core or extended functions use
this workspace; it is provided to support future graphics extensions that require
storage for edge flags or region-of-interest masks. Not all display configura-
tions may have sufficient memory to support an offscreen workspace.

Argument addr is the base address of the offscreen workspace. Argument
pitch is the difference in memory addresses of two adjacent rows in the off-
screen workspace.

A nonzero value is returned by the function if a valid offscreen workspace is
currently allocated. A value of 0 is returned if no offscreen workspace is allo-
cated; in this case, the workspace address and pitch are not retrieved by the
function.

The offscreen workspace is a 1-bit-per-pixel bitmap of the same width and
height as the screen. If the display hardware provides sufficient offscreen
memory, the workspace can be allocated statically. By convention, the work-
space pitch retrieved by the get_wksp function is nonzero when a workspace
is allocated; the pitch can be checked following initialization to determine
whether a workspace is statically allocated. The workspace can be allocated
dynamically by calling the set_wksp function with the address of a valid work-
space in memory and a nonzero pitch; it can be deallocated by calling
set_wksp with a pitch of 0.

Syntax

Type

Description

 Enable/Disable GM Idle Function Execution gm_idlefunction

4-51

#include <tiga.h>

short gm_idlefunction(mn,fn)
short mn; /* Module number of desired idle function */
short fn; /* function number of desired idle function */

Core

The gm_idlefunction function enables the function specified by the module
number argument mn and by the function number argument fn to be called
whenever the TIGA graphics manager (GM) is idle, that is, is not servicing a
TIGA function call.

The argument mn corresponds to the module identifier returned by the
install_rlm function. The argument fn corresponds to the index of the desired
function within the specified module.

To ensure correct operation, the function specified to gm_idlefunction must
conform to the following requirements to ensure correct operation:

Be currently loaded into TMS340 memory (by calling the install_rlm func-
tion).

The idle function, when called by the TIGA GM, is passed one 32-bit argu-
ment on the program stack (STK). This argument informs the idle function
whether or not a TIGA function is next to be executed. Valid arguments
are:

0 = No TIGA command is pending.

1 = A TIGA command is pending (this is the last time the idle function is
called before servicing the TIGA function).

The idle function must conform to the standard TMS340 C-calling conven-
tions.

Save and restore all registers that it uses (except for A8).

Not modify the sign or sign extent of field 1.

To disable the GM idle function calling feature, specify a module number of –1.

If no function corresponding to the specified module and function numbers is
currently loaded in TMS340 memory, 0 is returned. Otherwise, 1 is returned.

Syntax

Type

Description

gsp2cop Copy From TMS340 Memory to Coprocessor Memory

4-52 Core Functions

#include <tiga.h>
#include <typedefs.h>

void gsp2cop(copid,gspaddr,copaddr,length)
short copid;
PTR gspaddr;
PTR copaddr;
long length;

Core

The gsp2cop function copies data from TMS340 space into the TMS34082 co-
processor space with ID copid (a number from 0 to 7, with 4 being broadcast,
as defined in the TMS34020 User’s Guide). The size of the data to be trans-
ferred is in 32-bit long words.

Syntax

Type

Description

 Transfer Data Within TMS340 Memory gsp2gsp

4-53

#include <tiga.h>
#include <typedefs.h>

void gsp2gsp(src, dst, length)
PTR src, dst; /* source and destination arrays */
unsigned long length; /* number of bytes to copy */

Core

The gsp2gsp function copies the specified number of bytes from one region
of the TMS340 graphics processor’s memory to another.

Argument src is a pointer to the source array, and argument dst is a pointer to
the destination array. Argument length is the number of contiguous 8-bit bytes
to be transferred from the source to the destination.

If the source and destination arrays overlap, the function adjusts the order in
which the bytes are transferred so that no source byte is overwritten before it
has been copied to the destination.

Unlike the standard character string function strncpy, the gsp2gsp function
does not restrict the alignment of the source and destination addresses to
even-byte boundaries in memory. Arguments src and dst may point to any bit
boundaries in memory.

Syntax

Type

Description

gsp2host Move Data From TMS340 Memory to Host Memory

4-54 Core Functions

#include <tiga.h>
#include <typedefs.h>

void gsp2host(gptr, hptr, length, swizzle)
PTR gptr; /* TMS340 memory pointer */
char far *hptr; /* host memory pointer */
unsigned short length; /* length in bytes */
short swizzle; /* data SWIZZLE flag */

Host-only

The gsp2host function copies length number of bytes from TMS340 memory
pointed to by gptr to host memory at hptr. If swizzle is nonzero, the data is
swizzled before it is written to the host (that is, the order of the bits in each byte
is reversed). gptr is a pointer to TMS340 memory. It must be byte-aligned (that
is, 3 LSBs must be 0). hptr is a pointer to host memory. It must be declared as
a long pointer (for example, segment:offset format).

All data being passed to the host must fit in the segment specified by hptr. No
segment boundary checking is performed by this function.

Syntax

Type

Description

 Copy Rectangular Memory Area From TMS340 to Host gsp2hostxy

4-55

#include <tiga.h>
#include <typedefs.h>

void gsp2hostxy(saddr, sptch, daddr, dptch, sx, sy, dx, dy,
xext, yext, psize, swizzle)

PTR saddr;
long sptch;
char far *daddr;
long dptch;
short sx;
short sy;
short dx;
short dy;
short xext;
short yext;
short psize;
short swizzle;

Host-only

The gsp2hostxy function transfers a rectangular area from TMS340 to host
memory. The area is extracted from the source bitmap, starting at address
saddr in TMS340 memory and is xext by yext pixels, with the pixel size being
psize. The area starts at coordinates (sx, sy) in the source bitmap and is trans-
ferred to coordinates (dx, dy) of the destination bitmap. Because the host
memory address is restricted to be byte-address aligned, the rectangular area
sent is always padded on every side (if necessary) to ensure that the data sent
is aligned to the nearest byte boundary. The source pitch, sptch, is the differ-
ence in the linear addresses between two pixels in the same column and adja-
cent rows of the bitmap in TMS340 memory. dptch is the same for host
memory.

If swizzle is nonzero, the data is swizzled before it is written to the host (that
is, the order of the bits in each byte is reversed).

This function has three restrictions placed upon it:

The source pitch (on the TMS340 side), sptch, though a long variable,
must be a multiple of 16 and less than 16 bits long. The source address,
saddr, must also be a multiple of 16.

All data in the host array must be accessible from the segment address
of daddr; that is, none of the data being transferred must have a host ad-
dress that crosses segment boundaries.

If data is being swizzled, it is transferred from TMS340 to host and then
transferred back again. The integrity of the data is preserved only if it is
transferred back to the same address it came from. Otherwise, the data
may be garbled.

Syntax

Type

Description

gsp_calloc Clear and Allocate TMS340 Memory

4-56 Core Functions

#include <tiga.h>
#include <typedefs.h>

PTR gsp_calloc(nmemb, size)
long nmemb; /* number of items to allocate */
long size; /* size (in bytes) of each item */

Core

The gsp_calloc function allocates a packet of TMS340 memory large enough
to contain nmemb objects of the specified size and returns a pointer. If it cannot
allocate the packet (that is, if it runs out of memory), it returns a null pointer (0).
This function also initiates the allocated memory to all zeros. This function is
used in conjunction with gsp_free, gsp_malloc, gsp_minit, and gsp_realloc.

Syntax

Type

Description

 Execute a COFF Program gsp_execute

4-57

#include <tiga.h>

void gsp_execute(entry_point)
unsigned long entry_point;

Host-only

The gsp_execute function is not of general use to a TIGA application but is
included here because the capability to load the graphics manager is an
integral part of TIGA. As a side effect of this, TIGA provides a portable COFF
loader across all TMS340 boards. This function executes a program that has
been loaded by the loadcoff function. The parameter entry_point specifies the
starting TMS340 address of the program. On most TMS340 boards, this
address loads into the NMI vector, and an NMI is performed.

#include <tiga.h>

main(argc, argv)
int argc;
char *argv[];
{

unsigned long entry;

if (argc == 2)
{

if (tiga_set(CD_OPEN) >= 0)
{

if (entry = loadcoff(argv[1]))
gsp_execute (entry);

else
printf(”Error in load\n”);

tiga_set(CD_CLOSE);
}
else printf(”TIGACD not running\n”);

}
else printf(”Usage: %s <coff filename>\n”, argv[0]);

}

Syntax

Type

Description

Example

gsp_free Free TMS340 Memory From Allocation

4-58 Core Functions

#include <tiga.h>
#include <typedefs.h>

short gsp_free(ptr)
PTR ptr;

Core

The gsp_free function deallocates a packet of TMS340 memory (pointed to by
ptr) previously allocated by gsp_malloc, gsp_calloc, or gsp_realloc. The func-
tion takes no action and returns false (zero) when an attempt is made to free
a packet not previously allocated. This function returns true (nonzero) if the
function sucessfully frees a valid TMS340 pointer.

Syntax

Type

Description

 Allocate TMS340 Memory gsp_malloc

4-59

#include <tiga.h>
#include <typedefs.h>

PTR gsp_malloc(size)
long size; /* size (in bytes) of block */

Core

The gsp_malloc function allocates a packet of TMS340 memory of a specified
size and returns a pointer. If gsp_malloc is unable to allocate the packet (that
is, if it runs out of memory), it returns a null pointer (0). This function does not
modify the memory it allocates. This function is used in conjunction with
gsp_free, gsp_minit, and gsp_realloc.

Syntax

Type

Description

gsp_maxheap Return Largest Free Block

4-60 Core Functions

#include <tiga.h>

unsigned long gsp_maxheap()

Core

The gsp_maxheap function returns the size of the largest contiguous block of
program memory for heap allocation. It can be used at the start of an applica-
tion to determine the total size of the available memory for heap allocation. If
called during an application, it informs the application of the largest available
block to an object; for example, a bitmap can be downloaded.

Syntax

Type

Description

 Reinitialize Dynamic Memory Pool gsp_minit

4-61

#include <tiga.h>

void gsp_minit(stack_size)
long stack_size;

Core

The gsp_minit function reinitializes and frees all unsecured memory blocks in
the TMS340 dynamic memory heap pool. Any previously allocated blocks are
no longer allocated, and all pointers to such blocks become invalid after this
procedure is called.

In previous versions of TIGA, this function could modify the size of the system
stack by using argument stack_size. TIGA 2.0 no longer supports this feature;
however, to maintain downward compatibility, you should still specify an argu-
ment of type long for this function.

Be careful when you use this function: all unsecured allocated blocks of
memory are freed, including the background save area for the cursor (if stored
in heap). Disable the cursor before calling this function and install a new cursor
via a call to set_curs_shape afterward. If the workspace set by the set_wksp
function was previously allocated in heap, it will have to be reset before using
it. The gsp_minit function also frees data associated with downloaded
extensions and interrupt service routines. Therefore, any required extensions
or interrupt handlers must be reloaded after calling gsp_minit. This function is
used in conjunction with gsp_free, gsp_malloc, and gsp_realloc.

Syntax

Type

Description

gsp_realloc Reallocate TMS340 Memory

4-62 Core Functions

#include <tiga.h>
#include <typedefs.h>

PTR gsp_realloc(ptr, size)
PTR ptr; /* pointer to object to change */
unsigned long size; /* new size (in bytes) of packet */

Core

The gsp_realloc function changes the size of the allocated data area pointed
to by the first argument, ptr, to the size specified by the second argument. It
returns a pointer to the space allocated because the packet and its contents
may have to be moved to expand. Any memory freed by this operation is deal-
located. If an error occurs, the function returns a zero. This function is used in
conjunction with gsp_calloc, gsp_free, gsp_malloc, and gsp_minit.

Syntax

Type

Description

 Allocate Memory Block gsph_alloc

4-63

#include <tiga.h>

unsigned short gsph_alloc(size)
unsigned long size;

Core

The gsph_alloc function allocates a memory block of the size (in bytes) speci-
fied by the argument size and returns a handle identifying this memory block.
The handle is used in subsequent handle-based memory functions to specify
the memory block. The memory block’s type defaults to moveable and unde-
letable. The function gsp_memtype may be used to modify the memory block’s
characteristics. If insufficient memory is available, NULL (0) is returned.

See also gsph_memtype.

Syntax

Type

Description

gsph_calloc Allocate and Clear Memory

4-64 Core Functions

#include <tiga.h>

unsigned short gsph_calloc(ecount, esize)
unsigned long ecount;
unsigned long esize;

Core

The gsph_calloc function allocates an area of memory whose size is specified
by the arguments ecount and esize. Argument ecount specifies the number
of blocks to be allocated, and argument esize specifies the size, in bytes, of
each block. The allocated memory is then cleared (set to zero).

A handle to the allocated memory area is returned. If an error occurs, NULL
(0) is returned.

Syntax

Type

Description

 Invoke Memory Compaction Routine gsph_compact

4-65

#include <tiga.h>

void gsph_compact(purge)
 short purge;

Core

The gsph_compact function invokes TIGA’s memory manager compaction
routine. This routine attempts to reorganize allocated memory blocks to create
larger, contiguous memory areas for further allocation. The argument purge
specifies if memory blocks marked as deletable are to be purged during com-
paction. If purge is set to true (1), then deletable blocks are purged.

See also gsph_memtype.

Syntax

Type

Description

gsph_deref Return Pointer to Memory Block Referenced by Handle

4-66 Core Functions

#include <tiga.h>
#include <typedefs.h>

PTR gsph_deref(handle)
unsigned short handle;

Core

The gsph_deref function returns a void pointer to the memory block (in
TMS340 processor memory) referenced by the argument handle. This is use-
ful if an application requires direct access to the memory block address. The
argument handle must be a valid handle returned by either the gsph_alloc or
gsph_falloc functions. If the handle passed is invalid, NULL (0) is returned by
this function.

See also gsph_alloc and gsph_falloc.

Syntax

Type

Description

 Allocate Memory Block With Associated Function gsph_falloc

4-67

#include <tiga.h>
#include <typedefs.h>

unsigned short gsph_falloc(size, func, flags)
unsigned long size;
PTR func;
unsigned char flags;

Core

The gsph_falloc function allocates a memory block of the size (in bytes) speci-
fied by argument size and returns a handle identifying this memory block. The
handle is used in subsequent handle-based memory functions to specify the
memory block.

The argument func is a pointer to a TMS340-resident function of type void,
which is called if this memory block is ever moved or deleted by TIGA’s
memory manager. Note that the memory block’s flags must be set accordingly
to enable this function to be called.

The argument flags defines the memory block’s initial characteristics. flags is
composed of the following manifest constants:

BLK_FUNCDELETE Call specified function when block is deleted

BLK_FUNCMOVE Call specified function when block is moved

The memory block’s type defaults to moveable and undeletable. However, if
the BLK_FUNCDELETE flag is specified, then the block is marked as delet-
able. The function gsph_memtype may also be used to modify the memory
block’s characteristics. If insufficient memory is available, NULL is returned.

See also gsph_memtype.

Syntax

Type

Description

gsph_fcalloc Allocate and Clear Memory With Associated Function

4-68 Core Functions

#include <tiga.h>
#include <typedefs.h>

unsigned short gsph_fcalloc(ecount, esize, func, flags)
unsigned long ecount;
unsigned long esize;
PTR func;
unsigned char flags;

Core

The gsph_fcalloc function allocates an area of memory whose size is specified
by arguments ecount and esize. Argument ecount specifies the number of
blocks to be allocated, and argument esize specifies the size, in bytes, of each
block. The allocated memory is then cleared (set to zero).

A handle to the allocated memory area is returned. If an error occurs, NULL
(0) is returned.

The argument func is a pointer to a TMS340-resident function of type void,
which is called if this memory block is ever moved or deleted by TIGA’s
memory manager. Note that the memory block’s flags must be set accordingly
to allow this function to be called.

The argument flags defines the memory block’s initial characteristics. It is com-
posed of the following manifest constants:

BLK_FUNCDELETE Call specified function when block is deleted

BLK_FUNCMOVE Call specified function when block is moved

The memory block’s type defaults to moveable and undeletable. However, if
the BLK_FUNCDELETE flag is specified, then the block is marked as delet-
able. The function gsph_memtype may also be used to modify the memory
block’s characteristics.

Syntax

Type

Description

 Return Handle to Specified Memory Address gsph_findhandle

4-69

#include <tiga.h>
#include <typedefs.h>

unsigned short gsph_findhandle(memptr)
PTR memptr;

Core

The gsph_findhandle function returns the handle of the memory block speci-
fied by the TMS340 memory address in argument memptr. If the argument
does not point to a valid memory block, the function returns NULL (0).This
function performs the inverse of the gsph_deref function.

See also gsph_deref.

Syntax

Type

Description

gsph_findmem Return Information About Specified Memory Address

4-70 Core Functions

#include <tiga.h>
#include <typedefs.h>

short gsph_findmem(memptr, handle, flags)
PTR memptr;
unsigned short *handle;
unsigned char *flags;

Core

The gsph_findmem function returns information about the memory block con-
taining the TMS340 address specified by the argument memptr.

This function returns, in argument handle, the handle of the memory block
specified by the memory address in argument memptr; whereas the
gsph_deref function returns a pointer to the memory block pointed to by the
handle. The value of handle is NULL (0) if the memory address is not part of
an allocated block.

Argument flags contains information about the memory block’s status. Valid
flags include:

BLK_INUSE This memory block is currently in use.

BLK_DELETABLE This memory block may be deletable.

BLK_LOCKED This memory block must remain at its current address.
It may not be moved during compaction by TIGA’s
memory manager.

BLK_SECURED Secured system memory block (will not be purged by a
gsp_minit() or gsph_init() function call).

BLK_FUNCMOVE When the block is moved by TIGA’s memory manager,
a call is made to the previously installed memory func-
tion.

BLK_FUNCDELETE When the block is purged by TIGA’s memory manager,
a call is made to the previously installed memory func-
tion.

The function returns

0 if the memory address supplied marks the start of a memory block
managed by the memory manager.

1 if the memory address is contained in a memory block managed by
the memory manager.

–1 if the memory lies outside that managed by the memory manager.

See also gsph_deref and gsph_memtype.

Syntax

Type

Description

 Free Block of Memory gsph_free

4-71

#include <tiga.h>

void gsph_free(handle)
unsigned short handle;

Core

The gsph_free function frees the memory associated with the memory block
specified by the argument handle. This memory block is returned to the
memory pool and is then available for further allocation. The argument handle
must be a valid handle returned by either the gsph_alloc or gsph_falloc func-
tions. No value is returned by this function.

See also gsph_alloc and gsph_falloc.

Syntax

Type

Description

gsph_init Initialize All User Memory and Compact All Segments

4-72 Core Functions

#include <tiga.h>

void gsph_init(void)

Core

The gsph_init function frees all allocated nonsecured memory blocks and per-
forms a compaction on this freed memory.

Syntax

Type

Description

 Return Size of Largest Block Without Compaction gsph_maxheap

4-73

#include <tiga.h>

unsigned long gsph_maxheap()

Core

The gsph_maxheap function returns the size, in bytes, of the largest memory
block that can be allocated with the gsph_alloc or gsph_falloc functions. Note
that the size returned by this function assumes that the memory block will be
allocated from the current memory state. In other words, it is functionally equiv-
alent to the gsp_maxheap function. This function is similar to the
gsph_totalfree function, with the exception of the memory state assumption.

See also gsph_alloc, gsph_falloc, and gsph_totalfree.

Syntax

Type

Description

gsph_memtype Set Characteristics of Memory Block

4-74 Core Functions

#include <tiga.h>

void gsph_memtype(handle,flags)
unsigned short handle;
unsigned char flags;

Core

The gsph_memtype function allows the characteristics of the memory block
identified by the argument handle to be modified. The argument handle must
be a valid handle returned by either the gsph_alloc or gsph_falloc functions.
The argument flags specifies the new characteristics of the specified memory
block and is composed of the following manifest constants, which are defined
in tiga.h:

BLK_DELETABLE This memory block may be deleted.

BLK_LOCKED This memory block must remain at its current address.
It may not be moved during compaction by TIGA’s
memory manager.

BLK_SECURED Secured system memory block (will never be moved or
purged by compaction or by a call to gsph_init or
gsp_minit).

BLK_FUNCMOVE When the block is moved by TIGA’s memory manager,
a call will be made to the previously installed memory
function.

BLK_FUNCDELETE When the block is purged by TIGA’s memory manager,
a call will be made to the previously installed memory
function.

See also gsph_alloc, gsph_falloc, and gsph_maxheap.

Syntax

Type

Description

 Reallocate Block of Memory gsph_realloc

4-75

#include <tiga.h>

unsigned long gsph_realloc(handle, size)
unsigned short handle;
unsigned long size;

Core

The gsph_realloc function allows the size of a previously allocated memory
block to be modified. The argument handle specifies the memory block whose
size is to be adjusted. The argument handle must be a valid handle returned
by either the gsph_alloc or gsph_falloc functions. The argument size specifies
the new size of the memory block in bytes. The new size of the memory block
(in bytes) is returned. If the requested size could not be allocated, then the
amount that was actually allocated is returned.

See also gsph_alloc and gsph_falloc.

Syntax

Type

Description

gsph_totalfree Return Size of Largest Block Without Compaction

4-76 Core Functions

#include <tiga.h>

unsigned long gsph_totalfree()

Core

The gsph_totalfree function returns the size, in bytes, of the largest contiguous
memory block potentially available after compaction. Note that you will have
to call the function gsph_compact before allocating a memory block of the size
returned by the gsph_totalfree function.

Syntax

Type

Description

 Move Data From Host Memory to TMS340 Memory host2gsp

4-77

#include <tiga.h>
#include <typedefs.h>

void host2gsp (hptr, gptr, length, swizzle)
char far *hptr; /* host memory pointer */
PTR gptr; /* TMS340 memory pointer */
unsigned short length; /* length in bytes */
short swizzle; /* data SWIZZLE flag */

Host-only

The host2gsp function copies length number of bytes from the host memory
pointed to by hptr, to TMS340 memory at gptr. If swizzle is nonzero, the data
is swizzled before it is written to the TMS340 (that is, the order of the bits in
each byte is reversed). Argument hptr is a pointer to host memory and must
be declared as a long pointer (that is, segment:offset format). Argument gptr
is a pointer to TMS340 memory. It must be byte-aligned (that is, 3 LSBs must
be 0).

All data being passed from the host must fit in the segment specified by hptr.
No segment-boundary checking is performed by this function.

See get_offscreen_memory.

Syntax

Type

Description

Example

host2gspxy Copy Rectangular Memory Area From Host to TMS340

4-78 Core Functions

#include <tiga.h>
#include <typedefs.h>

void host2gspxy(saddr, sptch, daddr, dptch, sx, sy, dx, dy,
 xext, yext, psize, swizzle)

char far *saddr;
long sptch;
PTR daddr;
long dptch;
short sx;
short sy;
short dx;
short dy;
short xext;
short yext;
short psize;
short swizzle;

Host-only

The host2gspxy function transfers a rectangular area from host to TMS340
memory. The area is extracted from the source bitmap, starting at address
saddr in host memory, and is xext by yext pixels, with the pixel size being psize.
The area starts at coordinates (sx, sy) in the source bitmap and is transferred
to coordinates (dx, dy) of the destination bitmap. Because the host memory
address is restricted to be byte-address aligned, the rectangular area sent is
always padded on every side (if necessary) to ensure that the data sent is
aligned to the nearest byte boundary.The source pitch, sptch, is the difference
in the linear addresses between two pixels in the same column and adjacent
rows of the bitmap in host memory. The destination pitch dptch is the same for
TMS340 memory. Note that dptch and daddr must be multiples of 16.

If swizzle is nonzero, the data is swizzled before it is written to the TMS340
(that is, the order of the bits in each byte is reversed).

Syntax

Type

Description

 Initialize Palette init_palet

4-79

#include <tiga.h>

void init_palet()

Core

The init_palet function initializes the first 16 entries of the palette to the EGA
default colors:

Index Color

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

black
blue
green
cyan
red
magenta
brown
light gray
dark gray
light blue
light green
light cyan
light red
light magenta
yellow
white

If the palette contains more than 16 entries, the function replicates the 16 col-
ors through the remainder of the palette. At 2 bits per pixel, palette indices 0–3
are assigned the default colors black, green, red, and white. At 1 bit per pixel,
palette indices 0 and 1 are assigned the default colors black and white. If the
palette is nonprogrammable, the function has no effect.

The palette is also initialized to the default colors any time the drawing environ-
ment is initialized. Initialization occurs when the set_videomode function is
called with the style argument specified as INIT or INIT_GLOBALS, or when
set_config is called with the init_draw argument set to true.

Use the init_palet function to restore the default colors.

#include <tiga.h>

main()
{

short i;

init_tiga(0);
clear_screen(–1);
for (i = 0; i < 16; i++) /* overwrite default colors */

set_palet_entry(i, i, i, i, i);
init_palet (); /* restore default colors */
term_tiga();

}

Syntax

Type

Description

Example

init_text Initialize Text-Drawing Environment

4-80 Core Functions

#include <tiga.h>

void init_text()

Core

The init_text function removes all installed fonts from the font table and selects
the system font (font 0) for use in subsequent text operations. It also resets all
text drawing attributes to their default states.

The set_videomode and set_config functions also initialize the font table and
text attributes as part of their initialization of the drawing environment.

Use the init_text function to discard all installed fonts from the font table and
select the default font. The install_font and select_font functions from the TIGA
graphics library are used to install and select a proportionally spaced font.

Note that the function loadinst_font is called to load and install a TIGA font from
a font file. The loadinst_font is not a TIGA function but does make calls to vari-
ous TIGA functions to load a font. Refer to the install_font function description
in Chapter 5 for a complete source listing of the loadinst_font function.

#include <tiga.h>
#include <typedefs.h> /* defines FONT & FONTINFO struct. */
#include <extend.h>

main()
{

FONTINFO fontinfo;
short x, y, index;

init_tiga(1);
clear_screen(–1);
x = y = 10;
index = loadinst_font(”ti_rom16.fnt”);
select_font(index);
get_fontinfo(–1, &fontinfo);
text_out(x, y, ”Hello world.”); /* print in TI Roman 16 */
y += fontinfo.charhigh;
init_text ();
text_out(x, y, ”Hello world.”); /* print in system font */
term_tiga();

}

Syntax

Type

Description

Example

 Install Absolute Load Module install_alm

4-81

#include <tiga.h>

short install_alm(alm_name)
char far *alm_name; /* load module filename */

Host-only

The install_alm function installs an absolute load module (ALM). ALMs were
required before version 2.0 of TIGA because the downloading of a user exten-
sion to TIGA was done by calling the linking loader. This is not the case in ver-
sions 2.0 and higher; so ALMs are now redundant. This function is included
purely to maintain compatibility with TIGA drivers written before version 2.0 of
TIGA.The install_alm function installs the absolute load module (specified by
argument alm_name) into theTIGA graphics manager and returns a module
identifier that is used to invoke the extensions specified in the TIGAEXT sec-
tion.

If the module contains interrupt service routines, they are installed into TIGA,
and the priority information associated with each can be retrieved, once instal-
lation is complete, with a call to get_isr_priorities, which returns a priority list
for last block of ISRs installed. For more details on extensibility and the use
of this function, refer to Chapter 8.

If an error occurs, a negative error code number is returned. Otherwise, a mod-
ule identifier is returned. This module identifier should be used whenever a
routine contained within this module is specified, by joining the identifier with
the function number and command type using the bitwise-OR operator (|).
The function returns these error codes:

Error Description
Code

–3 Memory Error – Either there is not enough TMS340 memory to
load the ALM, or the address at which the ALM was linked to when
it was created does not match the address at install time. Check this
by trying to install the ALM by invoking TIGALNK from the com-
mand line with the la option.

–8 Error Accessing ALM – Unable to open ALM for reading, or the
contents of the file were in unexpected format. The spelling of the
ALM filename does not match the ALM filename in the current di-
rectory, or the –l option of the TIGA environment variable is not set
up correctly, or alternatively, the file has been corrupted, in which
case it will need to be recreated.

See subsection 8.3.2 on page 8-7.

Syntax

Type

Description

Example

install_primitives Install Graphics Library Functions

4-82 Core Functions

#include <tiga.h>

short install_primitives()

Host-only

The install_primitives function is similar to a call to install_rlm and is used to
download the TIGA extended graphics library functions such as draw_line etc.
These functions must be loaded before an application can call them.

If the extended graphics library functions are currently installed when
install_primitives is called, no action is performed.

The function returns the module id of the installed graphics library functions
if successful. If an error occurred, a negative error code is returned as follows:

Error Description
Code

–3 Out of Memory — Not enough TMS340 memory to load the ex-
tended graphics library functions.

–6 Error Accessing RLM — Unable to open extended functions
(primitives) RLM for reading. Either the file extprims.rlm is missing
from the main TIGA directory, or the –m option of the TIGA environ-
ment variable is not set up correctly.

–10 Symbol Reference — An unresolved symbol was referenced by
the extended graphics library. To determine the name of the sym-
bol, invoke TIGALNK from the command line by using the –ec op-
tion.

–14 Error Loading COFF File — An error was obtained in the loading
of the extprims.rlm COFF file. Recopy the extprims.rlm file from the
installation disk.

–15 Out of Symbol Memory — Not enough TMS340 memory to store
the symbols of the extended graphics library.

#include <tiga.h>
#include <typedefs.h>
#include <extend.h>

main()
{

CONFIG cfg;

init_tiga(1); /* Init TIGA and load graphics lib. */
get_config(&cfg);
draw_line(0, 0, cfg.mode.disp_hres, cfg.mode.disp_vres);
term_tiga();

}

Syntax

Type

Description

Example

 Install Relocatable Load Module install_rlm

4-83

#include <tiga.h>

short install_rlm(rlm_name)
char *rlm_name; /* load module filename */

Host-only

The install_rlm function installs the relocatable load module (specified by the
argument rlm_name) into TIGA and returns a module identifier that is used to
invoke the extensions specified in the TIGAEXT section.

If the module contains interrupt service routines, they are installed into the
TIGA graphics manager. The priority information associated with each can be
retrieved, once installation is complete, with a call to the function
get_isr_priorities, which returns a priority list for the last block of ISRs installed.

If an error occurs, a negative value is returned. Otherwise, a module identifier
is returned. Whenever a routine contained within this module is specified, join
the module identifier with the routine number and command type by using the
bitwise-OR operator (|).

The rlm_name argument can contain the special flag %f appended to the end
of the name (for example, install_rlm(”myrlm %f”)). This flag flushes the sym-
bols so that they are not loaded into TMS340 memory. If this flag is absent, the
global symbols in the RLM are stored in TMS340 memory so that subsequently
installed RLMs can reference these symbols. If this is not required — that is,
if there are no RLMs to be installed that reference symbols in this RLM,— then
using the %f flag enables the TMS340 memory to be used by the application’s
heap pool.

For more details on extensibility and the use of this function, see Chapter 8.

The function returns these error codes:

Error Description
Code

–3 Out of Memory — Not enough TMS340 memory to load the RLM.

–6 Error Accessing RLM — Unable to open RLM for reading. Either
the spelling of the RLM filename does not match the RLM filename
in the current directory, or the –l option of the TIGA environment
variable is not set up correctly.

–10 Symbol Reference — An unresolved symbol was referenced by
the RLM. Determine the name of the symbol, either by producing
a link map for the RLM or by invoking TIGALNK from the command
line using the –ec flag.

Error Description (continued)
Code

–14 Error Loading RLM COFF File — An error was obtained in the
load of the RLM COFF file. Recreate the RLM and try again.

Syntax

Type

Description

install_rlm Install Relocatable Load Module

4-84 Core Functions

–15 Out of Symbol Memory — Not enough TMS340 memory to store
the symbols of the RLM.

See subsection 8.3.1 on page 8-6.Example

 Install User Error Handler install_usererror

4-85

#include <tiga.h>

void install_usererror(function_name)
void (*function_name)();

Host-only

The install_usererror function installs a host-resident user error function that
is called when an error is encountered in the host communications. The default
user error function simply prints a message to the screen when an error oc-
curs. You can install another function to trap these errors and handle them ac-
cordingly. The user error function expects the following parameters:

usererror(command_number, error_code)

unsigned short command_number;

short error_code;

These error codes are passed to the error function:

1 Timeout with TMS340 communication on trying to load new function;
that is, a previous function has not completed.

2 Timeout on waiting for TMS340 function to complete; that is, the func-
tion just invoked has not completed.

3 Parameter allocation failure; not enough memory to allocate a buffer
to download data from the current function.

The return value from the installed handler tells TIGA whether to keep trying
to determine if the TMS340 processor has completed (if nonzero) or to abort
(if zero).

#include <tiga.h>
#include <typedefs.h>
#include <extend.h>

#define nofpts 4000
short lotofpts[nofpts*2];

short far usererror(command_number, error_code)
unsigned short command_number;
short error_code;
{

printf(”TIGA error code of %d in command number %4x\n”,
error_code, command_number);

return(1);
}

Syntax

Type

Description

Example

install_usererror Install User Error Handler

4-86 Core Functions

main()
{

short i, x, y;
CONFIG config;

init_tiga(1);
get_config(&config);
install_usererror (usererror);
/* initialize nofpts points to some value */
x = y = 0;
for (i = 0; i < nofpts*2;)
{

lotofpts[i++] = x;
lotofpts[i++] = y;
if (i % 4)
{

if (x++ > config.mode.disp_hres)
x = 0;

}
else
{

if (y++ > config.mode.disp_vres)
y = 0;

}
}
/* set timeout value to 1 second */
set_timeout(1000);
set_pensize(64,64);
/* tie up the TMS340 to get timeout since many points */
/* are being downloaded, use parameter alloc entry */
/* points to allocate a temporary command buffer */
/* for the data transfer from host to TMS340 */
pen_polyline_a(nofpts, lotofpts);
/* wait for TMS340 side to finish (to produce timeouts) */
synchronize();
term_tiga();

}

 Return Leftmost One Bit Number lmo

4-87

#include <tiga.h>

short lmo(n)
unsigned long n; /* 32-bit integer */

Core

The lmo function calculates the bit number of the leftmost 1 in argument n. The
argument is treated as a 32-bit number whose bits are numbered from 0 to 31,
where bit 0 is the LSB (the rightmost bit position) and bit 31 is the MSB (the
leftmost bit position).

For nonzero arguments, the return value is in the range of 0 to 31. If the argu-
ment is 0, a value of –1 is returned.

Use the lmo function to return the bit number of the leftmost 1 in the integer
value 1234.

#include <tiga.h>

main()
{

long x;
char s[80];

init_tiga(0);
clear_screen(–1);
x = 1234;
sprintf(s, ”The leftmost 1 in %ld is bit number %d”,

x, lmo (x));
text_out(10, 10, s);
term_tiga();

}

Syntax

Type

Description

Example

loadcoff Load COFF FIle

4-88 Core Functions

#include <tiga.h>

unsigned long loadcoff(filename)
char *filename;

Host-only

The loadcoff function is not of general use to a TIGA application but is included
here because the capability to load the graphics manager is an integral part
of TIGA. With this function, TIGA provides a portable COFF loader across all
TMS340 boards. This function loads the COFF file specified by argument
filename. It returns false (0) if an error occurs during the load; otherwise, it
returns the entry point address of the program. The entry point can be passed
to the gsp_execute function to execute the COFF file.

See gsp_execute.

Syntax

Type

Description

Example

 Return Status of Page Flipping page_busy

4-89

#include <tiga.h>

short page_busy()

Core

The page_busy function returns a nonzero value as long as a previously re-
quested video page flip has not yet occurred. This function is used in conjunc-
tion with the page_flip function to achieve flickerless, double-buffered anima-
tion.

Before the page_busy function is called, the page_flip function is called to re-
quest the page flip, which is scheduled to occur when the bottom line of the
screen has been scanned on the monitor. The page_flip function returns im-
mediately without waiting for the requested page flip to be completed, and the
page_busy function is used thereafter to monitor the status of the request. Be-
tween the call to the page_flip function and the time the page flip actually oc-
curs, the page_busy function returns a nonzero value. After the page flip has
occurred, the page_busy returns a value of 0 (until the next time page_flip is
called).

Double buffering is a technique used to achieve flickerless animation in graph-
ics modes supporting more than one video page. The TMS340 graphics pro-
cessor alternately draws to one page (or frame buffer) while the other page is
displayed on the monitor. When the processor has finished drawing, the new
page is ready to be displayed on the screen in place of the old page. The actual
flipping (or switching) of display pages is delayed until the vertical blanking in-
terval, however, to avoid causing the image on the screen to flicker.

The rationale for providing separate page_flip and page_busy functions is to
make the time between a page flip request and the actual completion of the
page flip available to the application program for performing background cal-
culations. For example, the main loop of a 3-D animation program can be
structured as follows:

for (disp = 1, draw = 0; ; disp ^= 1, draw ^= 1)
{

page_flip(disp, draw);
< Perform 3D background calculations . >
while (page_busy())

;
< Draw updated 3D scene . >

}

If the page_flip function is used alone without the page_busy function, you risk
drawing to a page that is still being displayed on the screen.

Use the page_busy function to smoothly animate an object rotating in a circle.
The best effect is achieved in a graphics mode that provides double buffering
(more than one video page). If the mode supports only a single page, the pro-
gram will still run correctly, but the display may flicker.

Syntax

Type

Description

Example

page_busy Return Status of Page Flipping

4-90 Core Functions

#include <tiga.h>
#define RADIUS 60 /* radius of circle of rotation */
#define N 4 /* angular increment = 1>>N radians */

main()
{

short disp = 0, draw = 1;
long x, y;

init_tiga(0);
x = (long)RADIUS << 16;
y = 0;
do
{

page_flip(disp, draw);
x –= y >> N;
y += x >> N;
while (page_busy ())

;
clear_page(–1);
text_out((x>>16)+RADIUS, (y>>16)+RADIUS, ”*”);
disp ^= 1;
draw ^= 1;

}while(!kbhit());
getch();
term_tiga();

}

 Flip Display and Drawing Pages page_flip

4-91

#include <tiga.h>

void page_flip(disp, draw)
short disp, draw; /* display and drawing pages */

Core

The page_flip function is used to switch between alternate video pages. This
function is used in conjunction with the page_busy function to achieve flicker-
less, double-buffered animation.

Argument disp is a nonnegative value indicating the number of the video page
to be displayed—that is, output to the monitor screen. Argument draw is a non-
negative value indicating the number of the video page to be drawn to; this
page is the target of all graphics output directed to the screen. All graphics
modes support at least one video page, page number 0. In graphics modes
supporting more than one page, the pages are numbered 0, 1, and so on.

Valid values for arguments disp and draw are restricted to video page numbers
supported by the current graphics mode. If either argument is invalid, the func-
tion behaves as if both arguments are 0; that is, page 0 is selected as both the
display page and the drawing page. This behavior permits programs written
for double-buffered modes to be run in single-buffered modes. Although the
single-buffered display may flicker, the program will execute at nearly the
same frame rate as in the double-buffered mode.

The number of pages in a particular graphics mode is specified in the
num_pages field of the CONFIG structure returned by the get_config function.
If the num_pages field contains some value N, the N pages are numbered 0
through N–1.

The page_flip function requests that a page flip be performed but returns im-
mediately without waiting for the requested page flip to be completed. Upon
return from the function, all subsequent screen drawing operations are di-
rected toward the page specified by argument draw. The monitor display, how-
ever, is not updated to the page specified by argument disp until the start of
the next vertical blanking interval (which occurs when the monitor finishes
scanning the last line on the screen). Between the call to the page_flip function
and the time the page flip actually occurs, the page_busy function returns a
nonzero value. This is true, regardless of whether the disp and draw argu-
ments are the same or whether the new display page is the same as the old
display page. After the page flip has occurred, the page_busy returns a value
of 0 (until the next time page_flip is called).

Syntax

Type

Description

page_flip Flip Display and Drawing Pages

4-92 Core Functions

Double buffering is a technique used to achieve flickerless animation in graph-
ics modes supporting more than one video page. The TMS340 graphics pro-
cessor alternately draws to one page (or frame buffer) while the other page is
displayed on the monitor. When the processor has finished drawing, the new
page is ready to be displayed on the screen in place of the old page. The actual
flipping (or switching) of display pages is delayed until the vertical blanking in-
terval, however, to avoid causing the image on the screen to flicker.

Use the page_flip function to smoothly animate two moving rectangles. Use
the fill_rect function from the extended functions library to draw the rectangles.
The selected graphics mode is assumed to be double-buffered—that is, to
support more than one video page. If the mode supports only a single page,
the program will still run correctly, but the display may flicker.

#include <tiga.h>
#include <extend.h>
#define RADIUS 60 /* radius of circle of rotation */
#define XOR 10 /* pixel processing operation code */
#define N 5 /* angular increment = 1>>N radians */

main()
{

short disp = 0, draw = 1;
long x, y;

init_tiga(1);
set_ppop(XOR);
x = (long)RADIUS << 16;
y = 0;
do
{

page_flip (disp, draw);
x – = y >> N;
y += x >> N;
while (page_busy())

;
clear_screen(–1);
fill_rect(2*RADIUS, RADIUS/4, 10, RADIUS+(y>>16));
fill_rect(RADIUS/4, 2*RADIUS, RADIUS+(x>>16), 10);
disp ^= 1;
draw ^= 1;

}while(!kbhit());
getch();
term_tiga();

}

Example

 Read From B-File Register peek_breg

4-93

#include <tiga.h>

unsigned long peek_breg(breg)
short breg; /* B-file register number */

Core

The peek_breg function returns the contents of a TMS340 B-file register. Argu-
ment breg is a number in the range of 0 to 15 that designates a register in the
TMS340 graphics processor’s B file. Argument values 0 through 14 corre-
spond to registers B0 through B14. An argument value of 15 designates the
SP (system stack pointer). The function ignores all but the 4 LSBs of argument
breg. The return value is 32 bits.

Use the peek_breg function to read the contents of register B9, also referred
to as the COLOR1 register. Register B9 contains the foreground color in pix-
el-replicated form. For example, at 4 bits per pixel, a foreground pixel value of
7 is replicated 8 times to form the 32-bit value 0x77777777.

#include <tiga.h>

main()
{

char s[32];

init_tiga(0);
clear_screen(–1);
sprintf(s, ”COLOR1 = 0x%lx”, peek_breg (9));
text_out(10, 10, s);
term_tiga();

}

Syntax

Type

Description

Example

poke_breg Write to B-File Register

4-94 Core Functions

#include <tiga.h>

void poke_breg(breg, val)
short breg; /* B-file register number */
unsigned long val; /* 32-bit register contents */

Core

The poke_breg function loads a 32-bit value into a B-file register. Argument
breg is a number in the range of 0 to 15 that designates a register in the
TMS340 graphics processor’s B file. Argument values 0 through 14 corre-
spond to registers B0 through B14. An argument value of 15 designates the
SP (system stack pointer). The function ignores all but the 4 LSBs of argument
breg. Argument val is a 32-bit value that is loaded into the designated register.

Use the poke_breg function to load the value 0 into the TMS340 graphics pro-
cessor’s register B6, also referred to as the WEND register. Use the fill_rect
function from the TIGA graphics library to draw a filled rectangle that is speci-
fied to be larger than the clipping window. Register B6 contains the upper x and
y limits for the clipping window. Following the poke_breg call, the clipping win-
dow contains only the single pixel at (0, 0). Obviously, the set_clip_rect func-
tion provides a safer and more portable means to adjust the clipping window
than the one used in this example.

#include <tiga.h>
#include <extend.h>

main()
{

init_tiga(1);
clear_screen(–1);
poke_breg (6, 0);
fill_rect(100, 100, 0, 0);
term_tiga();

}

Syntax

Type

Description

Example

 Return Rightmost One Bit Number rmo

4-95

#include <tiga.h>

short rmo(n)
unsigned long n; /* 32-bit integer */

Core

The rmo function calculates the bit number of the rightmost 1 in argument n.
The argument is treated as a 32-bit number whose bits are numbered from 0
to 31, where bit 0 is the LSB (the rightmost bit position) and bit 31 is the MSB
(the leftmost bit position).

For nonzero arguments, the return value is in the range 0 to 31. If the argument
is 0, a value of –1 is returned.

Use the rmo function to calculate the bit number of the rightmost 1 for each
integer in the range 1 to 127. Represent the result graphically as a series of
127 adjacent vertical lines. Use the fill_rect function from the TIGA graphics
library to draw the vertical lines.

#include <tiga.h>
#include <extend.h>

main()
{

unsigned long i;
short n;

init_tiga(1);
clear_screen(–1);
for (i = 1; i < 128; i++)
{

n = rmo(i);
fill_rect(1, 8*n, 10+i, 10);

}
term_tiga();

}

Syntax

Type

Description

Example

set_bcolor Set Background Color

4-96 Core Functions

#include <tiga.h>

void set_bcolor(color)
unsigned long color; /* background pixel value */

Core

The set_bcolor function sets the background color for subsequent drawing op-
erations.

Argument color specifies the pixel value to be used to draw background pixels.
Given a pixel size of N bits, the pixel value is contained in the N LSBs of the
argument; the higher order bits are ignored.

The function creates a 32-bit replicated pixel value and loads the result into the
TMS340 graphics processor’s register B8, also referred to as the COLOR0
register. For example, given a pixel size of 4 bits and a pixel value of 6, the repli-
cated pixel value is 0x66666666.

Use the set_bcolor function to swap the foreground and background colors.

#include <tiga.h>

main()
{

unsigned long fcolor, bcolor;

init_tiga(0);
clear_screen(–1);
get_colors(&fcolor, &bcolor);
set_fcolor(bcolor);
set_bcolor (fcolor);
text_out(10, 10, ”Swap COLOR0 and COLOR1.”);
term_tiga();

}

Syntax

Type

Description

Example

 Set Clipping Rectangle set_clip_rect

4-97

#include <tiga.h>

void set_clip_rect(w, h, xleft, ytop)
unsigned short w, h; /* width, height of clip window */
short xleft, ytop; /* coordinates at top left corner */

Core

The set_clip_rect function specifies the position and size of the rectangular
clipping window for subsequent drawing operations.

Arguments w and h specify the width and height of the clipping window in pix-
els. Arguments xleft and ytop specify the x and y coordinates at the top-left cor-
ner of the window, relative to the drawing origin in effect at the time
set_clip_rect is called.

If the specified clipping window extends beyond the screen boundaries, the
effective window is limited by the function to that portion of the specified win-
dow that actually lies on the screen.

A call to the set_draw_origin function (in the TIGA graphics library) has no ef-
fect on the position of the clipping window until the set_clip_rect function is
called. During initialization of the drawing environment, the clipping window is
set to its default limits, which is the entire screen.

The function updates the contents of the TMS340 graphics processor’s regis-
ters B5 and B6, which are also referred to as the WSTART (window start) and
WEND (window end) registers. These registers are described in the user’s
guides for the TMS34010 and TMS34020.

Use the set_clip_rect function to specify a clipping window of width 192 pixels
and height 128 pixels. Use the draw_line function to draw a series of concentric
rays that emanate from a point within the window, but that extend beyond the
window. The rays are automatically clipped to the limits of the window. Note
that the call to set_clip_rect follows the call to the set_draw_origin function,
and that the x-y coordinates (–80, –80) passed as arguments to set_clip_rect
are specified relative to the drawing origin at (88, 88).

Syntax

Type

Description

Example

set_clip_rect Set Clipping Rectangle

4-98 Core Functions

#include <tiga.h>
#include <extend.h>

main()
{

short i;
long x, y;

init_tiga(1);
clear_screen(–1);
set_draw_origin(88, 88);
set_clip_rect (192, 128, –80, –80);
x = (long)160 << 16;
y = 0;
for (i = 0; i <= 100; i + +)
{

draw_line(0, 0, x>>16, y>>16);
x –= y >> 4;
y += x >> 4;

}
term_tiga();

}

 Set Foreground and Background Colors set_colors

4-99

#include <tiga.h>

void set_colors(fcolor, bcolor)
unsigned long fcolor; /* foreground pixel value */
unsigned long bcolor; /* background pixel value */

Core

The set_colors function specifies the foreground and background colors to be
used in subsequent drawing operations.

Arguments fcolor and bcolor contain the pixel values used to draw the fore-
ground and background colors, respectively. Given a pixel size of N bits, the
pixel value is contained in the N LSBs of each argument; the higher order bits
are ignored.

The function creates 32-bit replicated pixel values and loads the results into
the TMS340 graphics processor’s registers B8 and B9, also referred to as the
COLOR0 and COLOR1 registers. For example, given a pixel size of 4 bits and
a pixel value of 3, the replicated pixel value is 0x33333333.

Use the set_colors function to swap the default foreground and background
colors. Use the text_out function to print a string of text with the colors
swapped.

#include <tiga.h>

main()
{

long white, black;

init_tiga(0);
clear_screen(–1);
get_colors(&white, &black);
set_colors (black, white);
text_out(8, 8, ”Black text on white background.”);
term_tiga();

}

Syntax

Type

Description

Example

set_config Set Hardware Configuration

4-100 Core Functions

#include <tiga.h>

short set_config(graphics_mode, init_draw)
short graphics_mode; /* graphics mode */
short init_draw; /* initialize drawing environment */

Host-only

The set_config function configures the display system in the specified graph-
ics mode. Both the display hardware and graphics software environment are
initialized. Note that calling the set_videomode function, with the mode argu-
ment set to TIGA and the style argument set to INIT or INIT_GLOBALS, per-
forms identical initialization for the default graphics mode as described here.

Argument graphics_mode specifies the graphics mode. All display systems
provide at least one graphics mode, mode 0. In display systems supporting
multiple modes, the modes are numbered 0, 1, and so on.

Argument init_draw specifies whether the function initializes the drawing envi-
ronment to its default state. If init_draw is nonzero, the environment is initial-
ized; otherwise, the drawing environment remains unaltered.

The set_config function returns a 16-bit value, encoded as follows:

Bit 0: Status (0=Error, 1=OK)
Bit 1: GM reloaded (0=No, 1=Yes)
Bits 2–15: 0

If an invalid graphics_mode argument is specified, zero is returned. Other-
wise, bit 0 is set to 1.

Changing the graphics mode may change the memory map of the TMS340
side of TIGA. If this memory map change results in the alteration of the graph-
ics manager (GM) load address, then set_config automatically reloads the GM
and sets bit 1 of the return value to 1. If no reload is necessary, bit 1 is set to
0. Note that if the GM is reloaded, all downloaded extensions are flushed and
allocated memory is freed. Therefore, it is recommended that an application
use the set_config function before loading any TIGA extensions or allocating
any TMS340 memory.

The number of modes available for a particular hardware configuration is spe-
cified in the num_modes field of the CONFIG structure returned by the
get_config function. The modes are numbered 0 through num_modes – 1.

Following a call to set_config, the display system remains in the specified
graphics mode until a subsequent call to set_config is made. Associated with
each mode is a particular display resolution, pixel size, and so on.

Syntax

Type

Description

 Set Hardware Configuration set_config

4-101

The set_config function configures the following system parameters:

horizontal and vertical video timing
video-RAM screen-refresh cycles
screen pixel size in bits
screen dimensions (width and height in pixels)
location in memory of one or more video pages (or frame buffers)
default clipping window (entire screen)
default color palette (See description of init_palet function.)
default display and drawing pages (page 0 for both)
default offscreen workspace (which may be null)

If a nonzero value is specified for argument init_draw, the parameters of the
drawing environment are initialized as follows:

Pixel transparency is disabled.
The pixel-processing operation code is set to its default value of 0 (the
code for the replace operation).
The plane mask is set to its default value of 0, which enables all bit planes.
The foreground color is set to light gray and the background color to black.
The screen is designated as both the source bit map and destination bit
map.
The drawing origin is set to screen coordinates (0, 0), which correspond
to the pixel at the top left corner of the screen.
The pen width and height are both set to 1.
The current area-fill pattern is set to its default state, which is to fill with sol-
id foreground color.
The current line-style pattern is set to its default value, which is all 1s.
All installed fonts are removed, and font 0, the permanently installed sys-
tem font, is selected.
The text x-y position coordinates are set to (0, 0).
The text attributes are set to their initial states:

alignment = 0 (top left)
additional intercharacter spacing = 0
intercharacter gaps = 0 (leave gaps)

The default graphics cursor, an arrow, is installed and selected.

Use the set_config function to sequence the display through all available
graphics modes. Use the draw_rect function to draw a box around the visible
screen area, and use the text_out function to print the mode number and
screen width and height to the screen. Use the wait_scan function to insert a
delay of 120 frames between mode switches.

Example

set_config Set Hardware Configuration

4-102 Core Functions

#include <tiga.h>
#include <typedefs.h>
#include <extend.>
#define NFRAMES 120 /*delay in frames between modes */

main()
{

CONFIG cfg;
char s[80];
short mode, i, w, h;

init_tiga(1);
for (mode = 0; set_config (mode, !0); mode++)
{

clear_screen(–1);
get_config(&cfg);
w = cfg.mode.disp_hres;
h = cfg.mode.disp_vres;
draw_rect(w–1, h–1, 0, 0);
sprintf(s, ”Graphics mode %d: %d–by–%d”, mode, w, h);
text_out(10, 10, s);
for (i = NFRAMES; i; i – –) /* delay loop */

wait_scan(h);
}
term_tiga();

}

 Set Current Cursor Shape set_curs_shape

4-103

#include <tiga.h>
#include <typedefs.h>

void set_curs_shape(shape);
PTR shape;

Core

The set_curs_shape function selects a new cursor shape. Argument shape is
a pointer to the CURSOR structure in TMS340 memory of the desired cursor.
Before this function is called, both the cursor shape and mask data, and the
cursor structure must be loaded into TMS340 memory using the gsp_malloc
and host2gsp functions. The TMS340 memory address of the cursor shape
data must be assigned to the data element of the cursor structure before the
structure is loaded. The TMS340 memory address of the cursor structure can
then be passed to this routine to select the cursor. A default cursor shape (an
arrow) is installed with the graphics manager and is available until this routine
is called to download a user cursor. The default cursor shape can be restored
by invoking set_curs_shape with a shape argument of 0.

If the cursor is disabled when a call to set_curs_shape is made, the new cursor
shape is not loaded immediately. Instead, the new cursor shape is loaded on
the next call to set_curs_state(1). For this reason, it is extremely important that
the cursor shape and structure data resident in TMS340 memory not be freed
or moved while the new cursor is being used.

On the other hand, if the cursor is enabled when set_curs_shape is called, the
cursor shape is loaded immediately, and the new cursor shape and structure
data may be removed safely from TMS340 memory (assuming this cursor
shape will never need to be selected again by the application).

In the set_curs_xy function, (x, y) is the position of the top-left pixel of the cur-
sor if hot_x and hot_y are zero. These values are subtracted from the current
cursor position to give the top-left hand corner of the cursor’s starting drawing
point. For example, in a simple crosshairs cursor of width16 pixels and height
12 pixels, the hot_x is set to width/2, that is, 8; and similarly, hot_y is set to 6.
If the current cursor position is (320, 240), the rectangle defining the cursor is
drawn with its top left hand corner at 320 – hot_x and 240 – hot_y, that is (312,
236). This puts the center of the crosshair cursor at position (320, 240), the
desired cursor position.

The data that defines the cursor consists of (1) cursor mask data, and (2) cur-
sor shape data. This data defining the cursor shape must be contiguous; that
is, the cursor shape data must immediately follow the cursor mask data. The
pitch of this cursor data is indicated by the pitch element in the CURSOR struc-
ture.

Syntax

Type

Description

set_curs_shape Set Current Cursor Shape

4-104 Core Functions

Two raster operators, mask_rop and shape_rop, determine how the cursor
mask data and cursor shape data, respectively, are expanded onto the screen.
For the mask and shape data, the background color is always 0. The fore-
ground color of the shape and mask are specified by the color and mask_color
fields, respectively, of the CURSOR structure.

An example of cursor data follows. The mask data consists of an array width
by height with 0s where the cursor is located and 1s elsewhere. The raster op
for this data is AND(1), no transparency. The shape data is an array width by
height with 1s where the cursor is located and 0s elsewhere. The raster op for
the shape data is OR(8), no transparency. Typically, the shape of the cursor
in the mask data is one pixel wider than that of the shape data. This enables
the cursor outline to be seen when placed over a background of the same color
as the cursor shape.

Example masks for a simple crosshair cursor:

MASKDATA SHAPEDATA

11111111111 00000000000

11110001111 00000000000

11110001111 00000100000

11110001111 00000100000

10000000001 00000100000

10000100001 00111011100

10000000001 00000100000

11110001111 00000100000

11110001111 00000100000

11110001111 00000000000

11111111111 00000000000

#include <tiga.h>
#include <typedefs.h>
#include <extend.h>

#include <dos.h>
#include <conio.h>

#define ESC 0x1b

CONFIG config;

/* Shape data for pencil cursor */
char far PencilData[] =
{
0xFF,0x87,0x03,0x00,0xFF,0x03,0x03,0x00,0xFF,0x03,0x02,0x00,0xFF,0x01,0x02,0x00,

0xFF,0x01,0x03,0x00,0xFF,0x00,0x03,0x00,0xFF,0x80,0x03,0x00,0x7F,0x80,0x03,0x00,

0x7F,0xC0,0x03,0x00,0x3F,0xC0,0x03,0x00,0x3F,0xE0,0x03,0x00,0x1F,0xE0,0x03,0x00,

0x1F,0xF0,0x03,0x00,0x0F,0xF0,0x03,0x00,0x0F,0xF8,0x03,0x00,0x07,0xF8,0x03,0x00,

Example

 Set Current Cursor Shape set_curs_shape

4-105

0x07,0xFC,0x03,0x00,0x03,0xFC,0x03,0x00,0x03,0xFE,0x03,0x00,0x01,0xFE,0x03,0x00,

0x01,0xFF,0x03,0x00,0x00,0xFF,0x03,0x00,0x80,0xFF,0x03,0x00,0xC0,0xFF,0x03,0x00,

0xE0,0xFF,0x03,0x00,0xF0,0xFF,0x03,0x00,0xF8,0xFF,0x03,0x00,0xFD,0xFF,0x03,0x00,

0x00,0x00,0x00,0x00,0x00,0x78,0x00,0x00,0x00,0xF8,0x00,0x00,0x00,0xFC,0x00,0x00,

0x00,0x7C,0x00,0x00,0x00,0x72,0x00,0x00,0x00,0x26,0x00,0x00,0x00,0x39,0x00,0x00,

0x00,0x11,0x00,0x00,0x80,0x10,0x00,0x00,0x80,0x08,0x00,0x00,0x40,0x08,0x00,0x00,

0x40,0x04,0x00,0x00,0x20,0x04,0x00,0x00,0x20,0x02,0x00,0x00,0x10,0x02,0x00,0x00,

0x10,0x01,0x00,0x00,0x08,0x01,0x00,0x00,0x88,0x00,0x00,0x00,0x84,0x00,0x00,0x00,

0x44,0x00,0x00,0x00,0x4E,0x00,0x00,0x00,0x3E,0x00,0x00,0x00,0x1E,0x00,0x00,0x00,

0x0E,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00

};

/* Pencil cursor structure */
CURSOR far pencil =
{
0x0000, 0x001B, 0x0011, 0x001C, 0x0020, 0x0FL, 1, 8, 0x0FFFFFFFFL, 0x0L

};

/* Shape for Arrow2 cursor */
unsigned short far Arrow2Data[] =
{
0x0010, 0x0018, 0x001C, 0xFFFE, 0xFFFF, 0xFFFE, 0x001C, 0x0018, 0x0010,

0x0000, 0x0000, 0x0008, 0x000C, 0x7FFE, 0x000C, 0x0008, 0x0000, 0x0000

};

/* Arrow2 cursor structure */
CURSOR far Arrow2 =
{
00x0000, 0x0004, 0x0010, 0x0009, 0x0010, 0x0FL, 0x0020, 0x0020, 0x0FFFFFFFFL, 0x0L

};

struct
{

short x,y; /* coordinates */
short left, right; /* buttons */
short x1,y1, x2,y2; /* boundary */

}mouse;

union REGS regs;

/* this function checks if a mouse driver is installed */
check_mouse()
{

regs.x.ax = 0;
int86(0x33,®s,®s);
return(regs.x.ax);

}

mouse_driver()
{

/* get mouse coordinates */
regs.x.ax = 11;
int86(0x33,®s,®s);
mouse.x += regs.x.cx;
mouse.y += regs.x.dx;

/* ensure the mouse stays within the screen boundary */
if (mouse.x < mouse.x1)

mouse.x = mouse.x1;
if (mouse.x > mouse.x2)

mouse.x = mouse.x2;
if (mouse.y < mouse.y1)

mouse.y = mouse.y1;

set_curs_shape Set Current Cursor Shape

4-106 Core Functions

if (mouse.y > mouse.y2)
mouse.y = mouse.y2;

/* Tell the TMS340 cursor */
set_curs_xy(mouse.x, mouse.y);

/* get the mouse buttons */
regs.x.ax = 3;
int86(0x33,®s,®s);
mouse.left = regs.h.bl & 1;
mouse.right = (regs.h.bl & 2) >> 1;

}

void install_cursor(type)
short type; /* 0=default(arrow), 1=user(pencil),

2=Arrow2 */
{

static PTR gpUserCurs1 = 0L; /* Address of user cursor1
in TMS340 mem */

static PTR gpUserCurs2 = 0L; /* Address of user cursor2
in TMS340 mem */

CURSOR *hpCursStruct;
void *hpCursData;
PTR *gpCursStruct;

switch(type)
{

case 1: /* Pencil cursor */
hpCursStruct = &pencil;
hpCursData = (void *)PencilData;
gpCursStruct = (PTR *)&gpUserCurs1;
break;

case 2: /* Arrow2 cursor */
hpCursStruct = &Arrow2;
hpCursData = (void *)Arrow2Data;
gpCursStruct = (PTR *)&gpUserCurs2;
break;

default:
set_curs_shape ((PTR)0);/* Default cursor */
return;

}

if(*gpCursStruct == 0L)
{

unsigned short num_bytes;

/* download cursor shape data to TMS340 */
num_bytes = ((hpCursStruct–>height *

hpCursStruct–>pitch) << 1) >> 3;
hpCursStruct–>data = (PTR)gsp_malloc(num_bytes);
host2gsp(hpCursData, hpCursStruct–>data, num_bytes, 0);

/* download cursor structure to TMS340 */
num_bytes = sizeof(CURSOR);
*gpCursStruct = (PTR)gsp_malloc(num_bytes);
host2gsp(hpCursStruct, *gpCursStruct, num_bytes, 0);

}
set_curs_shape (*gpCursStruct);

}

main()
{

char key;

 Set Current Cursor Shape set_curs_shape

4-107

short CursorType = 1, fgc = 0;

if(!check_mouse())
{

printf(”Mouse driver needs to be installed to run this
example\n”);

exit(0);
}
init_tiga(1);
printf(”Press...\n”);
printf(” ESC to quit\n”);
printf(” SPACE to toggle cursor shapes\n”);
printf(” LEFT mouse button to draw points\n”);
printf(” C to change cursor color\n”);

/* assign a new cursor shape */
install_cursor(CursorType);

/* initialize mouse to the center of the screen */
get_config(&config);
mouse.x = config.mode.disp_hres>>1;
mouse.y = config.mode.disp_vres>>1;
set_curs_xy(mouse.x, mouse.y);

/* intialize mouse boundary */
mouse.x1 = mouse.y1 = 0;
mouse.x2 = config.mode.disp_hres – 1;
mouse.y2 = config.mode.disp_vres – 1;

/* Turn on cursor */
set_curs_state(1);

for(;;)
{

/* move the cursor with the mouse */
mouse_driver();
/* if left button pressed draw a point */
if (mouse.left)

draw_point(mouse.x, mouse.y);
if(kbhit())

switch(getch())
{

case ’ ’ :
if(++CursorType > 2)

CursorType = 0;
install_cursor(CursorType);
break;

case ’c’ :
case ’C’ :

if(++fgc == config.mode.palet_size)
fgc = 1;

if(CursorType==2)
set_cursattr(fgc,0x0FFFFFFFFL,0x0020,0x0020);

else
set_cursattr(fgc,0x0FFFFFFFFL,8,1);

break;
case ESC :

set_curs_state(0);/* Turn cursor off */
term_tiga();

}
}

}

set_curs_state Set Current Cursor State

4-108 Core Functions

#include <tiga.h>

void set_curs_state(enable)
short enable;

Core

The set_curs_state function enables (displays) the cursor (if enable is non-
zero) or disables it (if enable is zero).

See set_curs_shape.

Syntax

Type

Description

Example

 Set Current Cursor Position set_curs_xy

4-109

#include <tiga.h>

void set_curs_xy(x, y)
short x;
short y;

Core

The set_curs_xy function modifies the pixel coordinates of the cursor’s hot-
spot.The cursor coordinates (arguments x and y) are not relative to the draw-
ing origin; they are always relative to the top left-hand corner of the screen.

See set_curs_shape.

Syntax

Type

Description

Example

set_cursattr Set Current Cursor Attributes

4-110 Core Functions

#include <tiga.h>

void set_cursattr(shape_c, mask_c, shape_a, mask_a)
unsigned long shape_c; /* shape (foregnd.) curs. color */
unsigned long mask_c; /* mask (backgnd.) cursor color */
unsigned short shape_a; /* cursor shape attributes */
unsigned short mask_a; /* cursor mask attributes */

Core

The set_cursattr function changes the display attributes of the current active
cursor. Only the attributes for the cursor currently selected are modified.

The shape_c and mask_c arguments specify the shape (foreground) and
mask (background) colors, respectively. The values specified by these argu-
ments are replicated by the current pixel size before use by the cursor routines.
The mask_a and shape_a arguments define the raster op and transparency
modes used when drawing the cursor on the screen. Each is a 16-bit value with
bit fields defined as follows:

Reserved ppopte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bits 0–4 ppop (see TMS34010 User’s Guide, p. 6–13)
bit 5 transparency enable (0=disable,1=enable)
bits 6–15 reserved for future use

See set_curs_shape.

Syntax

Type

Description

Example

 Set Foreground Color set_fcolor

4-111

#include <tiga.h>

void set_fcolor(color)
unsigned long color; /* foreground pixel value */

Core

The set_fcolor function sets the foreground color for subsequent drawing op-
erations.

Argument color specifies the pixel value to be used to draw foreground pixels.
Given a pixel size of N bits, the pixel value is contained in the N LSBs of the
argument; the higher order bits are ignored.

The function creates a 32-bit replicated pixel value and loads the result into the
TMS340 graphics processor’s register B9, also referred to as the COLOR1
register. For example, given a pixel size of 8 bits and a pixel value of 5, the repli-
cated pixel value is 0x05050505.

Use the set_fcolor function to swap the foreground and background colors.

#include <tiga.h>

main()
{

unsigned long fcolor, bcolor;

init_tiga(0);
clear_screen(–1);
get_colors(&fcolor, &bcolor);
set_fcolor (bcolor);
set_bcolor(fcolor);
text_out(10, 10, ”Swap COLOR0 and COLOR1.”);
term_tiga();

}

Syntax

Type

Description

Example

set_interrupt Set Interrupt Handler

4-112 Core Functions

#include <tiga.h>

short set_interrupt(level, priority, enable, scan_line)
short level;
short priority;
short enable;
short scan_line;

Core

The set_interrupt function enables/disables a previously installed interrupt
service routine. The routine must have been installed via the install_rlm func-
tion or the combination of create_alm and install_alm.

Argument level indicates the interrupt level where the interrupt routine was in-
stalled. When the interrupt is installed, the priority is returned by the
get_isr_priorities function to distinguish between different interrupt service
routines on the same interrupt level. If enable is true (nonzero), the interrupt
is enabled; otherwise, it is disabled.

Argument scan_line is valid only for display interrupts (interrupt level 10). It is
used to set the line at which the interrupt occurs. Argument scan_line is speci-
fied in the range of 0 to VTOTAL–1, where VTOTAL is the total number of lines
in the frame. Note that a scan_line value of 0 does not necessarily correspond
to the top line of the visible screen. For further information, consult the video
timing chapter in the TMS34010 or TMS34020 user’s guide. If the scan_line
argument is –1, then the value for the scan_line is taken to be that passed in
the previous invocation of set_interrupt. This allows the interrupt to be en-
abled/disabled without respecifying the scan_line parameter.

The set_interrupt function returns true (nonzero) if the interrupt is set correctly;
it returns false (zero) otherwise.

For more details on extensibility and the use of this function, see Chapter 8.

See Section 8.9.

Syntax

Type

Description

Example

 Set State of Loaded Module set_module_state

4-113

#include <tiga.h>

short set_module_state(module_id, flags)
short module_id; /* Module identifier */
short flags; /* State flags */

Core

The set_module_state function is used to set the state of the module specified
by the argument module_id.

The module identifier returned from the install_rlm and install_alm functions
is used as the module_id argument for this function. If you wish to modify the
state of the TIGA graphics library module after loading it via the
install_primitives function (which does not return a module identifier), use the
constant GRAPHICS_LIB_ID provided in the tiga.h, tiga.hch, and tiga.ndp in-
clude files as the module_id argument.

If an invalid module identifier is passed, or if the module corresponding to the
specified module_id is currently not loaded, then the set_module_state func-
tion returns FALSE (0). Otherwise, it returns TRUE, indicating no errors.

The argument flags contains state information to be assigned to the specified
module. These flags are currently supported:

Bit 0 0=unlock module / 1=lock module

Locking a downloaded module protects it from being flushed whenever the
TIGA memory management system is initialized. This initialization occurs
when

The set_videomode() function is called with either the INIT or
INIT_GLOBALS style argument specified, or
The gsp_minit() function is called.

Conversely, to enable flushing of a previously locked module, the module
must first be unlocked by clearing bit 0 of the flags argument and calling the
set_module_state function.

Bits 1–15 Reserved for future use

Syntax

Type

Description

set_module_state Set State of Loaded Module

4-114 Core Functions

#include <tiga.h>
#include <extend.h>

main()
{

/*–– *
/

/* Initialize TIGA environment and load extended graphics library */
/*–– *

/
init_tiga(1);
/*–– *

/
/* Lock the graphics lib module. Module should be present */
/*–– *

/
set_module_state (GRAPHICS_LIB_ID, 1);
printf(”After lock: RLM %spresent\n”,

function_implemented(DRAW_LINE) ? ” ” : ”not ”);
/*–– *

/
/* Free memory. Module should still be present because it */
/* is currently locked */
/*–– *

/
gsp_minit(–1);
printf(”After gsp_minit(–1): RLM %spresent\n”,

function_implemented(DRAW_LINE) ? ” ” : ”not ”);
/*–– *

/
/* Unlock module. Module is still present but can now be */
/* flushed */
/*–– *

/
set_module_state (GRAPHICS_LIB_ID, 0);
printf(”After unlock: RLM %spresent\n”,

function_implemented(DRAW_LINE) ? ” ” : ”not ”);
/*––– –*

/
/* Free memory. Module should not be present now */
/*–– *

/
gsp_minit(–1);
printf(”After gsp_minit(–1): RLM %spresent\n”,

function_implemented(DRAW_LINE) ? ” ” : ”not ”);

term_tiga(); /* Terminate the TIGA environment */
}

Example

 Set Multiple Palette Entries set_palet

4-115

#include <tiga.h>
#include <typedefs.h>

void set_palet(count, index, palet)
long count; /* number of palette entries */
long index; /* index to starting entry */
PALET *palet; /* list of palette data */

Core

The set_palet function loads multiple palette entries from a specified list of col-
ors.

Argument count specifies the number of contiguous palette entries to be
loaded. Argument index designates the palette entry at which loading is to be-
gin. Argument palet is an array containing the colors to be loaded into the pal-
ette. The palet array must contain at least count elements. The palette entry
identified by index is loaded from palet[0], and so on.

Argument palet is an array of type PALET. The PALET structure contains the
following fields:

typedef struct
{

unsigned char r;
unsigned char g;
unsigned char b;
unsigned char i;

}PALET;

Refer to the PALET structure description in Appendix A for detailed descrip-
tions of each field.

Each array element is a structure containing r, g, b, and i fields. Each field spec-
ifies an 8-bit red, green, blue, or gray-scale intensity value in the range 0 to
255, where 255 is the brightest intensity and 0 is the darkest. In the case of a
graphics mode for a color display, the r, g, and b fields from each array element
are loaded into the red, green, and blue component intensities for the corre-
sponding palette entry; the i field from the element is ignored, and the
gray-scale intensity component for the palette entry is set to 0. In the case of
a gray-scale mode, the i field from each array element is loaded into the
gray-scale intensity value for the corresponding palette entry; the r, g, and b
fields from the element are ignored, and the red, green, and blue intensities
for the palette entry are set to 0.

The range of palette entries to be loaded is checked by the function to ensure
that it does not overflow the palette. If the starting index plus the number of en-
tries (count) is greater than the palette size, the function decreases the count
value by the appropriate amount.

Syntax

Type

Description

set_palet Set Multiple Palette Entries

4-116 Core Functions

The entire palette may be loaded at once by specifying a count equal to the
number of palette entries, and an index of 0. The number of palette entries in
the current graphics mode is specified in the palet_size field of the CONFIG
structure returned by the get_config function.

The 8-bit r, g, b, and i values contained in the palet array are modified by the
function to represent the color components or gray-scale intensity actually out-
put by the physical display device. For example, assume that the r, g, b, and
i values of a particular array element are specified as follows: r = 0xFF, g =
0xFF, b = 0xFF, and i = 0. If the display hardware supports only 4 bits of red,
green, and blue intensity per gun, the values actually loaded into the palette
by the set_palet function are r = 0xF0, g = 0xF0, b = 0xF0, and i = 0.

In systems that store the palette data in display memory (such as those using
the TMS34070 color palette), this function updates the palette area in the
frame buffer. If the system contains multiple display pages, the function up-
dates the palette area for every page.

Use the set_palet function to load a gray-scale palette into the first 16 color
palette entries. Use the fill_rect function from the TIGA graphics library to fill
a series of rectangles in intensities increasing from left to right. Note that this
example requires a color palette with a capacity of at least 16 entries.

#include <tiga.h>
#include <typedefs.h> /* defines PALET struct */
#include <extend.h>

main()
{

short n;
PALET p[16];

init_tiga(1);
clear_screen(–1);
for (n = 0; n < 16; n ++)

p[n].r = p[n].g = p[n].b = p[n].i = 16*n;
set_palet (16, 0, p);

for (n = 0; n < 16; n ++)
{

set_fcolor(n);
fill_rect(12, 80, 8+12*n, 8);

}
term_tiga();

}

Example

 Set Single Palette Entry set_palet_entry

4-117

#include <tiga.h>

short set_palet_entry(index, r, g, b, i)
long index; /* index to palette entry */
unsigned char r, g, b; /* red, green & blue components */
unsigned char i; /* gray–scale intensity */

Core

The set_palet_entry function updates a single entry in the color palette.

Argument index identifies the palette entry to be updated. Arguments r, g, b,
and i specify 8-bit red, green, blue, and gray-scale intensity values in the range
0 to 255, where 255 is the brightest intensity and 0 is the darkest. If the current
graphics mode supports a color display, arguments r, g, and b are the red,
green, and blue component intensities. In the case of a gray-scale display, ar-
gument i is the gray-scale intensity.

If the palette contains N entries, the valid range of argument index is 0 through
N–1. The number of palette entries in the current graphics mode is specified
in the palet_size field of the CONFIG structure returned by the get_config func-
tion.

If argument index specifies an invalid value, the function aborts (returns imme-
diately) and returns a value of 0; otherwise, it returns a nonzero value.

In systems that store the palette data in display memory (such as those using
the TMS34070 color palette), this function updates the palette area in the
frame buffer. If the system contains multiple display pages, the function up-
dates the palette area for every page.

Use the set_palet_entry function to load a gray-scale palette into the first 16
color palette entries. Use the fill_rect function from the extended functions li-
brary to fill a series of rectangles in intensities increasing from left to right. Note
that this example requires a color palette with a capacity of at least 16 entries.

#include <tiga.h>
#include <extend.h>

main()
{

short n;

init_tiga(1);
clear_screen(–1);
for (n = 0; n < 16; n ++)

set_palet_entry (n, 16*n, 16*n, 16*n, 16*n);
for (n = 0; n < 16; n ++)
{

set_fcolor(n);
fill_rect(12, 80, 8+12*n, 8);

}
term_tiga();

}

Syntax

Type

Description

Example

set_pmask Set Plane Mask

4-118 Core Functions

#include <tiga.h>

void set_pmask(pmask)
unsigned long pmask; /* plane mask */

Core

The set_pmask function sets the plane mask to the specified value. The size
of the plane mask in bits is the same as the pixel size.

Argument pmask contains the plane mask. Given a pixel size of N bits, the
plane mask is right-justified in the N LSBs of the argument; the higher order
bits are ignored by the function.

The plane mask designates which bits within a pixel are protected against
writes and affects all operations on pixels. During writes, the 1s in the plane
mask designate bits in the destination pixel that are protected against modifi-
cation, while the 0s in the plane mask designate bits that can be altered. During
reads, the 1s in the plane mask designate bits in the source pixel that are read
as 0s, while the 0s in the plane mask designate bits that can be read, as is, from
the source pixel.

The plane mask is set to its default value of 0 during initialization of the drawing
environment. The plane mask can be altered with a call to the set_pmask func-
tion.

The plane mask corresponds to the contents of the TMS340 graphics proces-
sor’s PMASK register. The effect of the plane mask in conjunction with the pix-
el-processing operation and the transparency mode is described in the user’s
guides for the TMS34010 and TMS34020.

Use the set_pmask function to demonstrate the effects of enabling and disab-
ling particular bit planes. For each bit plane, print a line of text with all but the
one plane enabled; print another line of text with only the one plane enabled.
This example assumes that the display has at least 4 bit planes —that is, a pix-
el size of at least 4 bits.

Syntax

Type

Description

Example

 Set Plane Mask set_pmask

4-119

#include <tiga.h>
#include <typedefs.h> /* defines CONFIG and FONTINFO */
#define MINPSIZE 4 /* minimum pixel size */

main()
{

CONFIG cfg;
FONTINFO fntinf;
unsigned long pmask;
short x, y;
char s[80];

init_tiga(0);
clear_screen(–1);
get_config(&cfg);
get_fontinfo(–1, &fntinf);
x = y = 10;
for (pmask = 1; pmask != 1<<MINPSIZE; pmask <<= 1)
{

/* Enable all planes except one */
set_pmask (pmask);
sprintf(s, ”All planes enabled except %d”, lmo(pmask));
text_out(x, y, s);
y += fntinf.charhigh;

/* Disable all planes except one */
set_pmask (~pmask);
sprintf(s, ”All planes enabled except %d”, lmo(pmask));
text_out(x, y, s);
y += fntinf.charhigh;

}
term_tiga();

}

set_ppop Set Pixel-Processing Operation Code

4-120 Core Functions

#include <tiga.h>

void set_ppop(ppop)
short ppop; /* pixel processing operation code */

Core

The set_ppop function specifies the pixel-processing operation to be used for
subsequent drawing operations. The specified Boolean or arithmetic opera-
tion determines the manner in which source and destination pixel values are
combined during drawing operations.

Argument ppop is a pixel-processing operation code in the range of 0 to 21.
The PPOP code is right-justified in the 5 LSBs of the argument; the higher or-
der bits are ignored by the function.

Legal PPOP codes are in the range of 0 to 21. The source and destination pixel
values are combined according to the selected Boolean or arithmetic opera-
tion, and the result is written back to the destination pixel. As shown in
Table 4–2, Boolean operations are in the range of 0 to 15, and arithmetic oper-
ations are in the range of 16 to 21.

Table 4–2.Pixel-Processing Operations

PPOP Code Description

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

replace destination with source
source AND destination
source AND NOT destination
set destination to all 0s
source OR NOT destination
source EQU destination
NOT destination
source NOR destination
source OR destination
destination (no change)
source XOR destination
NOT source AND destination
set destination to all 1s
NOT source OR destination
source NAND destination
NOT source
source plus destination (with overflow)
source plus destination (with saturation)
destination minus source (with overflow)
destination minus source (with saturation)
MAX(source, destination)
MIN(source, destination)

When the drawing environment is initialized, the PPOP code is set to its default
value of 0 (replace operation). The PPOP code can be read with a call to the
get_ppop function.

Syntax

Type

Description

 Set Pixel-Processing Operation Code set_ppop

4-121

The pixel-processing operation code corresponds to the 5-bit PPOP field in the
TMS340 graphics processor’s CONTROL register. The effects of the 22 differ-
ent codes are described in more detail in the user’s guides for the TMS34010
and TMS34020.

Use the set_ppop function to set the current pixel-processing operation code
to 10 (exclusive-OR). Use the fill_rect function from the TIGA graphics library
to fill two rectangles that partially overlap. The overlapping region shows the
effect of exclusive-ORing identical source and destination pixel values.

#include <tiga.h>
#include <extend.h>
#define XOR 10 /* pixel processing operation code */

main()
{

init_tiga(1);
clear_screen(–1);

set_ppop (XOR);
fill_rect(100, 20, 10, 50);
fill_rect(20, 100, 50, 10);
term_tiga();

}

Example

set_text_xy Set Text x-y Position

4-122 Core Functions

#include <tiga.h>

void set_text_xy(x, y)
short x, y; /* text x-y coordinates */

Core

The set_text_xy function sets the text-drawing position to the specified x-y
coordinates. This is the position at which the next character (or string of char-
acters) will be drawn if a subsequent call is made to the text_outp function.
Both the text_outp and text_out functions automatically update the text posi-
tion to be the right edge of the last string output to the screen.

Arguments x and y are the coordinates of the new text position on the screen,
specified relative to the current drawing origin. Argument x is the x coordinate
at the left edge of the next string output by the text_outp function. Argument
y is the y coordinate at either the top of the string or the base line, depending
on the state of the text alignment attribute (see the description of the
set_textattr function).

Use the set_text_xy function to set the text-drawing position to x-y coordinates
(10, 20). Use the text_outp function to print a text string to the screen starting
at these coordinates.

#include <tiga.h>

main()
{

init_tiga(0);
clear_screen(–1);
set_text_xy (10, 20);
text_outp(”hello, world”);
term_tiga();

}

Syntax

Type

Description

Example

 Set Timeout Delay Value set_timeout

4-123

#include <tiga.h>

void set_timeout(value)
short value; /* value in milliseconds */

Host-only

The set_timeout function sets the timeout value (in milliseconds) that deter-
mines how long the host waits for a TMS340 function to complete before call-
ing the error function with a timeout error. The user can ignore timeouts alto-
gether by installing a user error handler function that is called when the timeout
occurs. This function can be made to ignore such timeouts.

See install_usererror.

Syntax

Type

Description

Example

set_transp Set Transparency Mode

4-124 Core Functions

#include <tiga.h>

void set_transp(mode)
short mode; /* transparency mode */

Core

The set_transp function, if implemented, changes the transparency mode.
When transparency is enabled, this mode determines how a pixel is defined
as transparent. During a graphics output operation, a nontransparent pixel re-
places the original destination pixel, but a transparent pixel does not.

The set_transp function is implemented only on TMS34020 systems. Current-
ly, the modes supported on TMS34020 systems are

mode = 0 Transparent if result equal to zero
mode = 1 Transparent if source equal to COLOR0
mode = 5 Transparent if destination equal to COLOR0

Argument mode must be set to one of these values. Specifying an invalid mode
number may result in undefined behavior.

On TMS34010 systems, the set_transp function is not implemented, and only
transparency mode 0 is supported.

The enabling and disabling of transparency, regardless of the mode selected,
is performed by two other functions, transp_on and transp_off. Refer to the de-
scriptions of these functions for more information.

Immediately after initialization of the drawing environment, the system is confi-
gured in transparency mode 0, which is the default.

Syntax

Type

Description

 Set Contents of TMS340 Trap Vector set_vector

4-125

#include <tiga.h>
#include <typedefs.h>

PTR set_vector(trapnum, gptr)
short trapnum; /* trap number */
PTR gptr; /* pointer to TMS340 memory */

Core

The set_vector function loads one of the TMS340 graphics processor’s trap
vectors with a pointer to a location in the processor’s memory. This function
provides a portable means of loading the entry point to a trap service routine,
regardless of whether the actual trap vector is located in RAM or ROM.

Argument trapnum specifies a trap number in the range of –32768 to 32767
for a TMS34020, and in the range of 0 to 31 for a TMS34010. Argument gptr
is a pointer containing the 32-bit memory address to be loaded into the trap
vector.

The value returned by the function is the original 32-bit TMS340 graphics pro-
cessor address contained in the designated trap vector at the time of the call.

Syntax

Type

Description

set_videomode Set Video Mode

4-126 Core Functions

#include <tiga.h>

short set_videomode(mode, style)
unsigned short mode;
unsigned short style;

Host-only

The set_videomode function sets up the video mode to be used. Every TIGA
application should call this function (after calling tiga_set to initialize the TIGA
environment), with a mode of TIGA, before invoking any other TIGA function.

The following values, provided in tiga.h, are valid mode arguments:

TIGA CGA
OFF_MODE VGA
PREVIOUS AI_8514
MDA EGA
HERCULES

TIGA is a high-resolution mode supported by the board. OFF_MODE is used
on systems that provide no videomode for the DOS screen (such as EGA);
when not running TIGA, such boards are in the OFF_MODE. PREVIOUS is
the mode that the board was in before the current mode. All the other modes
(MDA, HERCULES, CGA, etc.) provide the graphics modes for DOS. They are
either provided by separate hardware or are emulated by the TMS340 proces-
sor.

All TIGA applications should call set_videomode with TIGA mode upon start-
ing. They should then call set_videomode again at the end of their program to
restore the video mode (since in many cases the board on which TIGA is being
run is not the primary video board). The mode selected could be PREVIOUS,
which restores the mode set in the last call to set_videomode. However, if a
particular application wants to switch back and forth between several modes,
it is recommended that a call be made to get_videomode and that the mode
be saved by the application.The saved mode can be used to terminate the
TIGA application and to restore the board to the initial state.

If a call is made to set_videomode specifying a video mode not supported by
the board, the function returns false (0). Otherwise, it returns true (1), indicat-
ing successful completion.

The style argument is used to determine the manner in which the mode is set
up on entry. These are the valid styles:

NO_INIT Used during an application to switch between TIGA and
other modes. It enters TIGA, leaving all global variables in-
tact.

INIT_GLOBALS Initializes the global variables only, by calling set_config
with the init_draw flag true and by restoring the timeout val-

Syntax

Type

Description

 Set Video Mode set_videomode

4-127

ue and the user error handler. The heap pool is retained,
which keeps any downloaded extensions installed.

INIT Initializes global variables and dynamic memory (heap
pool).This frees all allocated pointers and thus deletes all
unsecured downloaded extensions.

INIT_GM Forces the TIGA Graphics Manager to be reloaded, initial-
izes GM global variables, and frees all allocated pointers
and downloaded TIGA extensions.

The state of the graphics manager is checked by the set_videomode function
with a mode of TIGA. If the graphics manager is not loaded or is corrupted and
the specified style argument is INIT or INIT_GLOBALS, set_videomode loads
and executes it.

The style argument contains two additional options, which can be selected by
ORing with the above style parameter:

CLR_SCREEN Clears the screen with zeros when specified. It should be
specified at initialization when you are using the
INIT_GLOBALS or INIT styles. The screen is blanked
while the video registers are initialized. Note that all dis-
play memory is cleared to 0 (including any offscreen areas)
when specifying CLR_SCREEN. In other words, specify-
ing CLR_SCREEN is functionally equivalent to calling the
clear_frame_buffer() function.

NO_ENABLE This parameter inhibits switching the video output from the
current mode to TIGA. It is valid only when TIGA is speci-
fied as the mode argument. For example, assuming a
single monitor configuration and a current video mode of
VGA, calling set_videomode(TIGA, INIT | NO_ENABLE)
would enable you to call any TIGA core function but would
not switch the video output from the VGA board to the TIGA
board.

See the init_tiga and term_tiga function listings in Section 3.4, page 3-6.Example

set_windowing Set Window-Clipping Mode

4-128 Core Functions

#include <tiga.h>

void set_windowing(mode)
short mode;

Core

The set_windowing function loads the specified value into the 2-bit windowing
field contained in the CONTROL I/O register.

The four windowing modes are

1) 002 No windowing.

2) 012 Interrupt request on write in window.

3) 102 Interrupt request on write outside window.

4) 112 Clip to window.

Take care in using this function. TIGA’s drawing functions assume that the
TMS340 graphics processor is configured in windowing mode 3. Changing the
windowing mode from this default may result in undefined behavior of the ex-
tended graphics library functions. The code specified for the window-clipping
mode corresponds to the 2-bit W field in the TMS340 graphics processor’s
CONTROL register. The effects of the W field on window-clipping operations
are described in the user’s guides for the TMS34010 and TMS34020.

Immediately following initialization of the drawing environment, the system is
configured in windowing mode 3, which is the default.

Syntax

Type

Description

 Set Workspace Information set_wksp

4-129

#include <tiga.h>
#include <typedefs.h>

void set_wksp(addr, pitch)
PTR addr; /* starting address */
PTR pitch; /* workspace pitch */

Core

The set_wksp function specifies an offscreen workspace. None of the current
TIGA core or extended functions makes use of this workspace; it is provided
to support future graphics extensions that require storage for edge flags or re-
gion-of-interest masks.

Argument addr is the base address of the offscreen workspace. Argument
pitch is the difference in memory addresses of two adjacent rows in the off-
screen workspace. The pitch is required to be a power of two and a multiple
of 16. The exception to this requirement is that the pitch argument is specified
as 0 in the event that no workspace is allocated (in which case, the value of
the addr argument is a don’t care.)

The offscreen workspace is a 1-bit-per-pixel bit map of the same width and
height as the screen. If the display hardware provides sufficient offscreen
memory, the workspace can be allocated statically. By convention, the work-
space pitch retrieved by the get_wksp function is nonzero when a workspace
is allocated; following initialization the pitch can be checked to determine
whether a workspace is statically allocated. The workspace can be allocated
dynamically by calling the set_wksp function with the address of a valid work-
space in memory and a nonzero pitch; it can be deallocated by calling
set_wksp with a pitch of 0.

Not all TMS340 graphics processor-based display configurations may contain
sufficient memory to allocate (statically or dynamically) an offscreen work-
space. For this reason, proprietary extensions to the core functions library that
require use of the workspace may be unable to execute on some systems.

Syntax

Type

Description

setup_hostcmd Initialize Call-Back Environment

4-130 Core Functions

#include <tiga.h>
#include <typedefs.h>

void setup_hostcmd(hinit)
HOST_INIT *hinit; /* Far ptr. to HOST_INIT struc. */

Host-only

The setup_hostcmd function initializes the TIGA call-back environment, enab-
ling host-resident functions to be called from the TMS340 processor.

The argument hinit is a far pointer to a structure of type HOST_INIT. The ele-
ments of this structure are defined in the typedefs.h include file. No value is
returned by this function.

See Section 8.8, page 8-31, for detailed information on how to use this and
other functions related to the TIGA call-back feature.

Syntax

Type

Description

 Flush Relocatable Load Module Symbols sym_flush

4-131

#include <tiga.h>

short sym_flush(module_id);
short module_id;

Core

The sym_flush function flushes the symbols associated with the module speci-
fied by the argument module_id. Argument module_id is returned by the
install_rlm or install_alm function when the module is loaded. Use the
module_id GRAPHICS_LIB_ID provided in the tiga.h, tiga.hch, and tiga.ndp
include files to specifiy the TIGA extended graphics library module.

If module_id is –1, then the symbols associated with all unsecured installed
modules are flushed. The TIGA graphics manager and core function symbols
are retained.

The function returns true (1) if the symbols were flushed successfully. A return
value of false (0) indicates an error, caused by either of these conditions: a
module_id is invalid, or the module specified by module_id is not loaded or is
secured.

Flushing symbols frees TMS340 memory, increasing the memory available for
allocation by the TIGA application. However, installing at a later time any user-
extended module that references previously flushed symbols results in a sym-
bol-referencing load error.

Syntax

Type

Description

synchronize Synchronize Host and TMS340 Communications

4-132 Core Functions

#include <tiga.h>

void synchronize()

Host-only

The synchronize function ensures that the TMS340 completes all pending op-
erations before it returns. TIGA supports two-processor execution, and some
conditions require the two processors to be synchronized. For instance, if the
host downloads data that is being manipulated by the TMS340, it is essential
that the TMS340 finishes with it before the host overwrites the data.

See install_usererror.

Syntax

Type

Description

Example

 Render ASCII String text_out

4-133

#include <tiga.h>

short text_out(x, y, s)
short x, y; /* starting coordinates */
char *s; /* character string */

Core

The text_out function draws a character string to the screen in the currently
selected font.

Arguments x and y are the starting coordinates of the string, relative to the cur-
rent drawing origin. Argument s is a string of 8-bit ASCII characters terminated
by a null (0) character.

The string is rendered in the currently selected font using the current
text-drawing attributes.

Argument x is the x coordinate at the left edge of the string. Argument y is the
y coordinate at either the top of the string or the base line, depending on the
state of the text alignment attribute. During initialization of the drawing environ-
ment, the alignment is set to its default position at the top left corner. The attrib-
ute can be modified by means of a call to the set_textattr function.

The return value is the x coordinate of the next character position to the right
of the string. If the string lies entirely above or below the clipping rectangle, the
unmodified starting x coordinate is returned.

Use the text_out function to write a single line of text to the screen in the system
font.

#include <tiga.h>

main()
{

init_tiga(0);
clear_screen(–1);
text_out (10, 10, ”Hello world.”);
term_tiga();

}

Syntax

Type

Description

Example

text_outp Render ASCII String at Current x-y Position

4-134 Core Functions

#include <tiga.h>

void text_outp(s)
char *s;

Core

The text_outp function outputs text to the screen, starting at the current text
drawing position. The specified string of characters is rendered in the currently
selected font and with the current text-drawing attributes. The text position
must have been specified by a previous call to the set_text_xy, text_out, or
text_outp function.

Argument s is a string of 8-bit ASCII character codes terminated by a null (0)
character.

After printing the text on the screen, the function automatically updates the text
position to be the position of the next character to the right of the string just
printed. A subsequent call to the text_outp function will result in the next string
being printed, beginning at this position.

Unlike the text_out function, the text_outp function does not return a value.

Use the text_outp function to mix two fonts —TI Roman size 20 and TI Helveti-
ca size 22 —in the same line of text. Use the set_textattr function to align the
text to the base line.

Note that the function loadinst_font is called to load and install a TIGA font from
a font file. The loadinst_font is not a TIGA function but does make calls to vari-
ous TIGA functions to load a font. Refer to the install_font function description
in Chapter 5 for a complete source listing of the loadinst_font function.

#include <tiga.h>
#include <typedefs.h>
#include <extend.h>

static FONTINFO fontinfo;

main()
{

short i, j;

init_tiga(1);
clear_screen(–1);
i = loadinst_font(”ti_rom20.fnt”);
j = loadinst_font(”ti_hel22.fnt”);
set_textattr(”%1a”, 0, 0);
select_font(i);
get_fontinfo(0, &fontinfo);
set_text_xy(0, fontinfo.charhigh);
text_outp (” Concatenate”);
select_font(j);
text_outp (” one font”);
select_font(i);
text_outp (” with another.”);
term_tiga();

}

Syntax

Type

Description

Example

 Determine if TIGA Is Busy tiga_busy

4-135

#include <tiga.h>

short tiga_busy(void)

Host-only

The tiga_busy function returns a status code indicating whether TIGA is imme-
diately ready to process a host-initiated TIGA command. If so, 0 is returned.
However, if TIGA is busy,1 is returned.

When a host application calls a TIGA core or extended function, the function
request is queued up in the communication buffer queue. This queue is serv-
iced by the TIGA graphics manager (GM), which pulls the function request in-
formation out of the buffer and executes the specified command. There may
be instances when the GM cannot service the functions as fast as the host is
requesting them. In this case, the TIGA communication driver (CD, on the host
side of TIGA) waits until a free communications buffer is available, before writ-
ing the requested function information and returning control to the application.
You may find this dead time useful for performing other tasks while the GM is
processing queued commands.

Note that host-only TIGA functions are always executed immediately by the
CD. Thus, the return value of tiga_busy is valid only for core or extended func-
tions.

Syntax

Type

Description

tiga_set Open/Close/Query Communication Driver

4-136 Core Functions

#include <tiga.h>

long tiga_set(mode)
short mode; /* Mode or command */

Host-only

The tiga_set function initializes communications with the TIGA communica-
tions driver and sets up the TIGA device to a known state. It should be the first
function called in a TIGA application.

The mode argument specifies the state of the TIGA communication driver or
requests that information relating to the current TIGA environment be re-
turned.

These are valid values for the mode argument:

mode = CD_OPEN (1)

Initialize the TIGA communication driver. If a protected mode TIGA envi-
ronment is required (that is, the TIGA application is running in protected
mode), this is also initialized. Valid return values are

 0 Initialization OK
–4 TIGA CD is not installed

–25 TIGA board communications init failure

mode = CD_CLOSE (0)

Restore the PC environment to that before tiga_set(CD_OPEN) was
called. Valid return values are

0 Success
–26 TIGA CD was not open

mode = CD_STATUS (2)

Return information about the current TIGA CD environment in the 32-bit
return value as follows:

Bit 0 CD State: 0=closed / 1=open
Bit 1 CD operating mode: 0=Real / 1=Protected mode
Bit 2 CD communications: 0=Polled / 1=HW interrupt
Bits 3–15 Reserved
Bits 16–23 TIGA CD Minor revision level
Bits 24–31 TIGA CD Major revision level

Syntax

Type

Description

 Open/Close/Query Communication Driver tiga_set

4-137

The tiga_set function is new to TIGA 2.0. In previous versions of TIGA, the
TIGA environment became active when a call to cd_is_alive was executed,
and it remained active until the application terminated. Most applications acti-
vated the TIGA environment through calls to set_videomode, which indirectly
executed the function cd_is_alive.

Calling any other TIGA function before calling tiga_set(CD_OPEN) results in
an error return. In addition, the cd_is_alive function is no longer available to
the application developer, because its functionality is a subset of the tiga_set
function.

Note that applications linked with the TIGA 1.1 AI library are not affected by
the addition of the tiga_set function.

See the init_tiga and term_tiga function listings in Section 3.4, page 3-6.Example

transp_off Turn Transparency Off

4-138 Core Functions

#include <tiga.h>

void transp_off()
Core

The transp_off function disables transparency for subsequent drawing opera-
tions.

Transparency is an attribute that affects drawing operations. Several transpar-
ency modes are supported. During initialization of the drawing environment,
transparency is disabled, and the transparency mode is set to the default,
mode 0. The TMS34010 supports only transparency mode 0, but the
TMS34020 supports additional modes. Refer to the description of the
set_transp function for details.

In transparency mode 0, if transparency is enabled and the result of a pixel-
processing operation is 0, the destination pixel is not altered. If transparency
is disabled, the destination pixel is replaced by the result of the pixel-process-
ing operation, regardless of the value of that result. For instance, to avoid mo-
difying destination pixels in the rectangular region surrounding each character
shape, you can enable transparency before you call the text_out or text_outp
function.

The effect of transparency in conjunction with the pixel-processing operation
and the plane mask is described in the user’s guides for the TMS34010 and
TMS34020.

Use the transp_off function to demonstrate the effect of disabling transparen-
cy. Use the draw_rect function from the TIGA graphics library to construct a
background pattern. To show that the background pattern is preserved in the
rectangle surrounding each character, use the text_out function to draw a line
of text to the screen with transparency enabled. Also, draw a line of text to the
screen with transparency disabled to show that the background pattern is
overwritten.

#include <tiga.h>
#include <typedefs.h> /* defines FONTINFO structure */
#include <extend.h>

main()
{

short x, y;
FONTINFO fntinf;

init_tiga(1);
clear_screen(–1);
get_fontinfo(–1, &fntinf);
for (x = y = 0; x < 200; x += 15)

draw_rect(8, 80, x, y);
x = y = 10;
transp_on();
text_out(x, y, ”Transparency enabled.”);
transp_off ();
text_out(x, y+fntinf.charhigh, ”Transparency disabled.”);
term_tiga();

}

Syntax

Type

Description

Example

 Turn Transparency On transp_on

4-139

#include <tiga.h>

void transp_on()

Core

The transp_on function enables transparency for subsequent drawing opera-
tions.

Transparency is an attribute that affects drawing operations. Several transpar-
ency modes are supported. During initialization of the drawing environment,
transparency is disabled, and the transparency mode is set to the default,
mode 0. The TMS34010 supports only transparency mode 0, but the
TMS34020 supports additional modes. Refer to the description of the
set_transp function for details.

In transparency mode 0, if transparency is enabled and the result of a pixel-
processing operation is 0, the destination pixel is not altered. If transparency
is disabled, the destination pixel is replaced by the result of the pixel-process-
ing operation, regardless of the value of that result. For instance, to avoid mo-
difying destination pixels in the rectangular region surrounding each character
shape, you can enable transparency before you call the text_out or text_outp
function.

The effect of transparency in conjunction with the pixel-processing operation
and the plane mask is described in the user’s guides for the TMS34010 and
TMS34020.

Use the transp_on function to demonstrate the effect of enabling transparency.
Use the draw_rect function from the TIGA graphics library to construct a back-
ground pattern. To show that the background pattern is overwritten in the rect-
angle surrounding each character, use the text_out function to draw a line of
text to the screen with transparency disabled. Also, draw a line of text to the
screen with transparency enabled to show that the background pattern is pre-
served.

#include <tiga.h>
#include <typedefs.h> /* defines FONTINFO structure */
#include <extend.h>

main()
{

short x, y;
FONTINFO fntinf;

init_tiga(1);
clear_screen(–1);
get_fontinfo(–1, &fntinf);
for (x = y = 0; y < 80; y += 13)

draw_rect(180, 7, x, y);
x = y = 10;
text_out(x, y, ”Transparency is off.”);
transp_on ();
text_out(x, y+fntinf.charhigh, ”Transparency is on.”);
term_tiga();

}

Syntax

Type

Description

Example

wait_scan Wait for Scan Line

4-140 Core Functions

#include <tiga.h>

void wait_scan(line)
short line; /* scan line number */

Core

The wait_scan function waits for the monitor to scan a designated line on the
screen.

Argument line is the scan line number. Scan lines are numbered in ascending
order, starting with line 0 at the top of the screen. Given a display of N lines,
valid arguments are in the range of 0 to N–1. If argument line is less than 0,
the function uses the value 0 in place of the argument value. If argument line
is greater than the bottom scan line, the function uses the number of the bottom
scan line in place of the argument value.

The number of scan lines on the screen in the current graphics mode is speci-
fied in the disp_vres field of the CONFIG structure returned by the get_config
function.

Once the function is called, it does not return control to the calling routine until
the designated line is scanned by the monitor’s electron beam. Control is re-
turned at the start of the horizontal blanking interval that follows the scan line.

This function is used to synchronize drawing operations with the position of the
electron beam on the monitor screen. For example, when an animated se-
quence of frames is being drawn, transitions from one frame to the next appear
smoother if an area of the screen is not being drawn at the same time it is being
scanned on the monitor.

The wait_scan function is typically used to achieve a limited degree of smooth
animation in graphics modes that provide only a single video page (or frame
buffer). The page_flip and page_busy functions support double buffering in
modes that provide more than one page. Double buffering, when available, is
usually preferred for animation applications.

Use the wait_scan function to smoothly animate a rotating asterisk. The posi-
tion of the asterisk is updated once per frame. Before drawing the asterisk in
its updated position, the wait_scan function is utilized to delay erasing the as-
terisk until the area just beneath it is being scanned. The asterisk is erased by
overwriting it with a space character. This technique works well with the system
font, which is a block font, but might produce unexpected results if used with
a proportionally spaced font.

Syntax

Type

Description

Example

 Wait for Scan Line wait_scan

4-141

#include <tiga.h>
#include <typedefs.h> /* defines FONTINFO structure */
#define RADIUS 60 /* radius of revolution */

main()
{

long x, y;
short i, j;
FONTINFO fntinf;

init_tiga(0);
clear_screen(–1);
get_fontinfo(–1, &fntinf);
x = (long)RADIUS << 16;
y = 0;
i = j = 0;
do
{

wait_scan (j+fntinf.charhigh);
text_out(i, j, ” ”);
i = RADIUS + (x >> 16);
j = RADIUS + (y >> 16);
text_out(i, j, ”*”);
x –= y >> 4;
y += x >> 4;

}while(!kbhit());
getch();
term_tiga();

}

4-142 Core Functions

5-1

Chapter 5

Extended Graphics Library Functions

This chapter discusses the extended functions alphabetically. Each discus-
sion

Shows the syntax of the function declaration and the arguments that the
function uses.

Contains a description of the function operation, which explains input ar-
guments and return values.

Provides an example of the use of some functions.

Before you use the functions described in this chapter, you must first install
them by calling the install_primitives function, described on page 4-82.

The examples in this chapter use the functions init_tiga and term_tiga to initial-
ize and terminate the TIGA environment. Although the init_tiga and term_tiga
functions are not actually TIGA functions, they do make calls to various TIGA
functions.The init_tiga function initializes the TIGA environment and is called
before any other TIGA function. The term_tiga function terminates a TIGA
application by restoring the previous video mode and closing the TIGA com-
munication driver. Refer to Section 3.4, page 3-6, for a sample TIGA applica-
tion that illustrates the init_tiga and term_tiga functions.

Extended Graphics Library Functions

5-2 Extended Graphics Library Functions

5.1 Extended Graphics Library Functions

The following is an alphabetical table of contents for functions reference.

Function Page.
bitblt 5-4.
decode_rect 5-7.
delete_font 5-9.
draw_line 5-11.
draw_oval 5-12.
draw_ovalarc 5-13.
draw_piearc 5-15.
draw_point 5-17.
draw_polyline 5-18.
draw_rect 5-20.
encode_rect 5-21.
fill_convex 5-25.
fill_oval 5-27.
fill_piearc 5-28.
fill_polygon 5-30.
fill_rect 5-32.
frame_oval 5-33.
frame_rect 5-34.
get_env 5-35.
get_pixel 5-37.
get_textattr 5-38.
in_font 5-40.
install_font 5-41.
move_pixel 5-43.
patnfill_convex 5-44.
patnfill_oval 5-46.
patnfill_piearc 5-47.
patnfill_polygon 5-49.
patnfill_rect 5-51.
patnframe_oval 5-52.
patnframe_rect 5-54.
patnpen_line 5-56.
patnpen_ovalarc 5-57.
patnpen_piearc 5-59.
patnpen_point 5-61.
patnpen_polyline 5-62.
pen_line 5-64.
pen_ovalarc 5-65.
pen_piearc 5-67.
pen_point 5-69.
pen_polyline 5-70.
put_pixel 5-72.
seed_fill 5-73.
seed_patnfill 5-75.
select_font 5-77.
set_draw_origin 5-78.
set_dstbm 5-79.
set_patn 5-81.

 Extended Graphics Library Functions

5-3

set_pensize 5-83.
set_srcbm 5-84.
set_textattr 5-86.
styled_line 5-88.
styled_oval 5-90.
styled_ovalarc 5-92.
styled_piearc 5-94.
swap_bm 5-96.
text_width 5-97.
zoom_rect 5-98.

bitblt Transfer Bit-Aligned Block

5-4 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void bitblt(w, h, xs, ys, xd, yd)
short w, h; /* width and height of both bit maps */
short xs, ys; /* source array coordinates */
short xd, yd; /* destination array coordinates */

The bitblt function copies a two-dimensional array of pixels from the current
source bitmap to the current destination bit map. The source and destination
bitmaps are specified by calling the set_srcbm and set_dstbm functions before
calling the bitblt function. Calling the set_videomode function with the style ar-
gument set to INIT or INIT_GLOBALS causes both the source and destination
bitmaps to be set to the default bitmap, which is the screen.

The source and destination arrays are assumed to be rectangular, two-dimen-
sional arrays of pixels. The two arrays are assumed to be identical in width and
height. The bitblt function accepts source and destination arrays that have the
same pixel size. If the pixel sizes are not equal, the pixel size for either the
source or the destination must be 1. Other combinations of source and desti-
nation pixel sizes are not accepted by the function.

Arguments w and h specify the width and height common to the source and
destination arrays. Arguments xs and ys specify the x-y coordinates of the top
left corner (lowest memory address) of the source array as a displacement
from the origin (base address) of the source bitmap. Arguments xd and yd
specify the x-y coordinates of the top left corner of the destination array as a
displacement from the origin of the destination bitmap.

If the source and destination pixel sizes are equal, then pixels in the source
array are copied to the destination. During the copying process, the pixels may
be modified, depending on the current pixel-processing operation, transparen-
cy mode, and plane mask.

If the source bitmap’s pixel size is 1 and the destination pixel size is greater
than 1, source pixels are expanded to color in the destination array. During the
expansion process, pixels corresponding to 1s in the source bitmap are ex-
panded to the current foreground color before being drawn to the destination;
0s are expanded to the current background color.

If the destination bitmap’s pixel size is 1 and the source pixel size is greater
than 1, bitblt performs a contract function on the source before writing to the
destination. During the contraction process, destination pixels are set to 0 if
they correspond to source pixels that are equal to the background color; all oth-
er destination pixels are set to 1.

Syntax

Description

 Transfer Bit-Aligned Block bitblt

5-5

When the source or destination bitmap is the screen, the specified source or
destination coordinates are defined relative to the current drawing origin. In the
case of a linear bitmap contained in an off-screen buffer, the bitblt function cal-
culates the memory address of a pixel from the specified x and y coordinates
as follows:

address = baseaddr + y*(pitch) + x*(psize)

where baseaddr, pitch, and psize are the argument values passed to the
set_dstbm or set_srcbm function.

When the destination bitmap is set to the screen, the function clips the destina-
tion bitmap to the current rectangular clipping window. When the source bit-
map is set to the screen and any portion of the source array lies in negative
screen coordinate space, the source rectangle is clipped to positive x-y coordi-
nate space; in most systems this means that the source is clipped to the top
and left edges of the screen. The resulting clipped source rectangle is copied
to the destination rectangle and justified to the lower right corner of the speci-
fied destination rectangle. Portions of the destination array corresponding to
clipped portions of the source are not modified.

The clipping window for a linear bitmap encloses the pixels in the x-y coordi-
nate range (0,0) to (xext, yext), where xext and yext are arguments passed to
set_dstbm or set_srcbm. The bitblt function itself performs no clipping in the
case of a linear bitmap; responsibility for clipping is left to the calling routine.

If both source and destination bitmaps are set to the screen, then the function
correctly handles the case in which the rectangular areas containing the
source and destination bitmaps overlap. In other words, the order in which the
pixels of the source are copied to the destination is automatically adjusted to
prevent any portion of the source from being overwritten before it has been co-
pied to the destination.

Use the bitblt function to color-expand an image contained in a 1-bit-per-pixel
bitmap to the screen. The original image is 16 pixels wide and 40 pixels high;
it has a pitch of 16. Use the zoom_rect function to zoom the screen image by
a factor of 5.
#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define PITCH 16
#define W 16
#define H 40
#define IMAGEDEPTH 1
#define ZOOM 5

static unsigned short image[] =
{

0x00F00, 0x01F80, 0x07FC0, 0x031F0, 0x010C0, 0x01080, 0x00880, 0x00700,

0x01FC0, 0x07FE0, 0x0FFF0, 0x0FFF8, 0x0FFF8, 0x0FFFC, 0x0FFFC, 0x0FFFC,

0x0FFFC, 0x0FFFC, 0x0FFFC, 0x0FFFC, 0x0FFF8, 0x0FFF8, 0x0FFB8, 0x0FFD0,

0x0FFE0, 0x0BFE0, 0x0BDE0, 0x07DE0, 0x03DE0, 0x03DE0, 0x03DE0, 0x03DE0,

0x03DE0, 0x03DE0, 0x03DE0, 0x03DE0, 0x03DE0, 0x03DE0, 0x07DF0, 0x0F8F8

};

Example

bitblt Transfer Bit-Aligned Block

5-6 Extended Graphics Library Functions

main()
{

PTR image_ptr, rowbuf;
CONFIG c;

init_tiga(1);
clear_screen(0);
/* Allocate memory for image */
image_ptr = gsp_malloc(sizeof(image));
/* Copy image to TMS340 memory */
host2gsp(image, image_ptr, sizeof(image), 0);
/* Set source bitmap to image */
set_srcbm(image_ptr, PITCH, W, H, IMAGEDEPTH);
/* Blit image to screen */
bitblt (W, H, 0, 0, 10, 10);
/* Set source bitmap to screen */
set_srcbm(0, 0, 0, 0, 0);
get_config(&c);
rowbuf = gsp_malloc((c.mode.disp_hres *

c.mode.disp_psize) / 8);
zoom_rect(W, H, 10, 10, ZOOM*W, ZOOM*H, 20+W,

10, rowbuf);
term_tiga();

}

 Decode Rectangular Image decode_rect

5-7

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

short decode_rect(xleft, ytop, buf)
short xleft, ytop; /* top left corner */
PTR buf; /* image buffer */

The decode_rect function restores a previously compressed image to the
screen. The image was previously encoded by the encode_rect function. The
image is rectangular and is restored at the same width, height, and pixel size
as the image originally encoded by the encode_rect function.

The first two arguments, xleft and ytop, specify the x and y coordinates at the
top left corner of the destination rectangle and are defined relative to the draw-
ing origin.

The final argument, buf, is a pointer to a buffer in the TMS340 graphics proces-
sor’s memory in which the compressed image is stored.

The function returns a nonzero value if it has successfully decoded the image;
otherwise, the return value is 0.

Refer to the description of the encode_rect function for a discussion of the for-
mat in which the compressed image is saved.

Use the decode_rect function to decompress multiple copies of a rectangular
image that was previously captured from the screen by the encode_rect func-
tion.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define MAXSIZE 4096 /* max picture size in bytes */

main()
{

short w, h, x, y, n;
char *s;
PTR image;

init_tiga(1);
clear_screen(–1);

Syntax

Description

Example

decode_rect Decode Rectangular Image

5-8 Extended Graphics Library Functions

/* Create an image on the screen */
w = 100;
h = 80;
x = 10;
y = 10;
frame_rect(w, h, x, y, 4, 3);
frame_oval(w–8, h–6, x+4, y+3, 4, 3);
s = ”IMAGE”;
n = text_width(s);
text_out(x+(w–n)/2, y+h/2, s);

image = gsp_malloc(MAXSIZE);
/* Compress image */
encode_rect(w, h, x, y, image, MAXSIZE, 0);

/* Now decompress the image several times */
for (n = x ; n <= x + w; n += 16)

decode_rect (n, n, image);
term_tiga();

}

 Remove a Font From Font Table delete_font

5-9

#include <tiga.h>
#include <extend.h>

short delete_font(id)
short id; /* font identifier */

The delete_font function removes from the font table the installed font desig-
nated by an identifier. The font is identified by argument id, which contains the
value returned from the install_font function at the time the font was installed.

A nonzero value is returned if the font was successfully removed. A value of
0 is returned if argument id is invalid; that is, if id does not correspond to an
installed font.

If the font removed was also the one selected for current text drawing opera-
tions, the system font is automatically selected by the function. A request to
delete the system font (id = 0) will be ignored by the function, and a value of
0 will be returned.

Use the delete_font function to delete a font that was previously installed. First,
install and select three fonts. The first and third fonts installed by the example
program are proportionally spaced fonts. The second font is a block font. The
three fonts are used to write three lines of text to the screen. At this point, the
block font is deleted with the delete_font function, and another proportionally
spaced font is installed in its place. An additional three lines of text are written
to the screen via the three installed fonts.

Note that the function loadinst_font is called to load and install a TIGA font from
a font file. The loadinst_font is not itself a TIGA function but does make calls
to various TIGA functions to load a font. Refer to the install_font function de-
scription on page 5-41 for a complete source listing of the loadinst_font func-
tion.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* defines FONTINFO structures */

#define NFONTS 3 /* number of fonts installed */
#define NLINES 2 /* number of lines of text per font */

main()
{

FONTINFO fontinfo;
short index[NFONTS];
short i, j, x, y;

Syntax

Description

Example

delete_font Remove a Font From Font Table

5-10 Extended Graphics Library Functions

init_tiga(1);
clear_screen(0);
index[0] = loadinst_font(”ti_rom11.fnt”);
/* install block font */
index[1] = loadinst_font(”sys16.fnt”);
index[2] = loadinst_font(”ti_rom16.fnt”);
x = y = 10;
for (i = 0; i < 2; i++)
{

for (j = 0; j < NFONTS; j++)
{

select_font(index[j]);
get_fontinfo(index[j], &fontinfo);
text_out(x, y, ”Output text in new font.”);
y += fontinfo.charhigh;

}
y += fontinfo.charhigh;
delete_font (index[1]); /* delete block font */
index[1] = loadinst_font(”ti_rom14.fnt”);

}
term_tiga();

}

 Draw Straight Line draw_line

5-11

#include <tiga.h>
#include <extend.h>

void draw_line(x1, y1, x2, y2)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */

The draw_line function uses Bresenham’s algorithm to draw a straight line
from the starting point to the ending point. The line is one pixel thick and is
drawn in the current foreground color.

Arguments x1 and y1 specify the starting x and y coordinates of the line, and
arguments x2 and y2 specify the ending coordinates.

In the case of a line that is more horizontal than vertical, the number of pixels
used to render the line is 1 + |x2 – x1|. The number of pixels for a line that is
more vertical than horizontal is 1 + |y2 –y1|.

Use the draw_line function to draw a line from (10, 20) to (120, 80).

#include <tiga.h>
#include <extend.h>

main()
{

short x1, y1, x2, y2;

init_tiga(1);
clear_screen(0);
x1 = 10;
y1 = 20;
x2 = 120;
y2 = 80;
draw_line (x1, y1, x2, y2);
term_tiga();

}

Syntax

Description

Example

draw_oval Draw Ellipse Outline

5-12 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void draw_oval(w, h, xleft, ytop)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */

The draw_oval function draws the outline of an ellipse, given the enclosing
rectangle in which the ellipse is inscribed. The ellipse is in standard position,
with its major and minor axes parallel to the coordinate axes. The outline of the
ellipse is one pixel thick and is drawn in the current foreground color.

The four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

Use the draw_oval function to draw an ellipse. The ellipse is 130 pixels wide
and 90 pixels high. Also, draw a rectangle that circumscribes the ellipse.

#include <tiga.h>
#include <extend.h>

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
w = 130;
h = 90;
x = 10;
y = 10;
draw_oval (w, h, x, y);
draw_rect(w, h, x, y);
term_tiga();

}

Syntax

Description

Example

 Draw Ellipse Arc draw_ovalarc

5-13

#include <tiga.h>
#include <extend.h>

void draw_ovalarc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The draw_ovalarc function draws an arc taken from an ellipse. The ellipse is
in standard position, with the major and minor axes parallel to the coordinate
axes. The ellipse from which the arc is taken is specified in terms of the enclos-
ing rectangle in which it is inscribed. The arc is one pixel thick and is drawn in
the current foreground color.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is drawn.

Use the draw_ovalarc function to draw an arc that extends from 21 degrees
to 300 degrees. The ellipse from which the arc is taken is 130 pixels wide and
90 pixels high. Also, draw a rectangle enclosing the arc and draw two rays from
the center of the ellipse through the start and end points of the arc.

#include <tiga.h>
#include <extend.h>

#define PI 3.141592654
#define K (PI/180.0) /* convert degrees to radians */

main()
{

extern double cos(), sin();
double a, b;
short w, h, x, y;

Syntax

Description

Example

draw_ovalarc Draw Ellipse Arc

5-14 Extended Graphics Library Functions

init_tiga(1);
clear_screen(0);
w = 130;
h = 90;
x = 40;
y = 50;
draw_rect(w, h, x, y);
draw_ovalarc (w, h, x, y, 21, 300–21);

/* Now draw the two rays */
set_draw_origin(x+w/2, y+h/2);
a = w;
b = h;
x = a*cos(21.0*K) + 0.5;
y = b*sin(21.0*K) + 0.5;
draw_line(0, 0, x, y);
text_out(x, y, ” 21”); /* label ray at 21 degrees */
x = a*cos(300.0*K) + 0.5;
y = b*sin(300.0*K) + 0.5;
draw_line(0, 0, x, y);
text_out(x, y, ” 300”); /* label ray at 300 degrees */
term_tiga();

}

 Draw Ellipse Pie Arc draw_piearc

5-15

#include <tiga.h>
#include <extend.h>

void draw_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The draw_piearc function draws an arc taken from an ellipse. Two straight
lines connect the two end points of the arc with the center of the ellipse. The
ellipse is in the standard position, with the major and minor axes parallel to the
coordinate axes. The ellipse from which the arc is taken is specified in terms
of the enclosing rectangle in which it is inscribed. The arc and the two lines are
all one pixel thick and are drawn in the current foreground color.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is drawn.

Syntax

Description

draw_piearc Draw Ellipse Pie Arc

5-16 Extended Graphics Library Functions

Use the draw_piearc function to draw a pie chart corresponding to a slice of
an ellipse from 21 degrees to 300 degrees. The ellipse is 130 pixels wide and
90 pixels high. Draw an enclosing rectangle of the same dimensions.

#include <tiga.h>
#include <extend.h>

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
w = 130;
h = 90;
x = 10;
y = 10;
draw_piearc (w, h, x, y, 21, 300–21);
draw_rect(w, h, x, y);
term_tiga();

}

Example

 Draw Single Pixel draw_point

5-17

#include <tiga.h>
#include <extend.h>

void draw_point(x, y)
short x, y; /* pixel coordinates */

The draw_point function draws a point represented as a single pixel. Argu-
ments x and y specify the x-y coordinates of the designated pixel and are de-
fined relative to the drawing origin. The pixel is drawn in the current foreground
color.

Use the draw_point function to draw a circle of radius 60 in the top left corner
of screen. Each point on the circle is separated from its two neighbors by angu-
lar increments of approximately 1/8 radian.

#include <tiga.h>
#include <extend.h>

#define TWOPI 411775L /* fixed–point 2*PI */
#define HALF 32768L /* fixed–point 1/2 */
#define RADIUS 60L /* radius of circle */
#define N 3 /* angular increm. = 1/2**N radians */

main()
{

short x, y;
long i;
long u, v, xc, yc;

init_tiga(1);
clear_screen(0);
u = 0;
v = RADIUS << 16; /* convert to fixed–pt */
xc = yc = v + HALF; /* fixed–pt center coord’s */
for (i = (TWOPI << N) >> 16; i >= 0; i––)
{

x = (u + xc) >> 16;
y = (v + yc) >> 16;
draw_point (x, y);
u – = v >> N;
v + = u >> N;

}
term_tiga();

}

Syntax

Description

Example

draw_polyline Draw List of Lines

5-18 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>
typedef struct { short x, y; } POINT;

void draw_polyline(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The draw_polyline function draws multiple, connected lines. An array of inte-
ger x-y coordinates representing the polyline vertices is specified as one of the
arguments. A straight line is drawn between each pair of adjacent vertices in
the array. Each line is constructed with Bresenham’s algorithm, is one pixel
thick, and is drawn in the current foreground color.

Argument n specifies the number of vertices in the polyline; the number of lines
drawn is n–1.

Argument vert is an array of x-y coordinates representing the polyline vertices
in the order in which they are to be traversed. The x-y coordinate pairs, 0
through n–1, of the vert array contain the coordinates for the n vertices. The
function draws a line between each adjacent pair of vertices in the array. Each
vertex is represented by a 16-bit x-coordinate value followed by a 16-bit y-
coordinate value. Coordinates are specified relative to the drawing origin.

For the polyline to form a closed polygon, the calling program must ensure that
the first and last vertices in the vert array are the same.

Note that large amounts of data passed to this function may overflow the TIGA
command buffer. The size of the command buffer is contained in the
comm_buff_size field of the CONFIG structure returned by the get_config
function. The application must ensure that data passed to this function will not
overflow the command buffer.

The number of vertices that may be sent without overflowing the command
buffer is calculated as:

comm_buff_size(bytes) – 10
max_verts = ––––––––––––––––––––––––––

4

An alternate entry point, draw_polyline_a, is provided to automatically check
the size of the data being passed. The arguments for this function are identical
to those described above. If the command buffer is too small to contain the
function’s data, this entry point will attempt to allocate a temporary buffer in
TMS340 memory. If there is not enough memory available for this buffer, the
standard TIGA error function is invoked (which can be trapped by using the
install_usererror function). Although draw_polyline_a frees the application
from having to check the data size, it takes longer to execute than its non-
checking counterpart draw_polyline.

Syntax

Description

 Draw List of Lines draw_polyline

5-19

Use the draw_polyline function to draw a three-segment polyline. The four ver-
tices are located at coordinates (0, 0), (60, 70), (120, 10), and (120, 80).

#include <tiga.h>
#include <extend.h>

#define NVERTS 4 /* numbers of vertices */

typedef struct { short x, y; } POINT;

static POINT xy[NVERTS] =
{

{ 0, 0 }, { 60, 70 }, { 120, 10 }, { 120, 80 }
};

main()
{

init_tiga(1);
clear_screen(0);
draw_polyline (NVERTS, xy);
term_tiga();

}

Example

draw_rect Draw Rectangle Outline

5-20 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void draw_rect(w, h, xleft, ytop)
short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */

The draw_rect function draws the outline of a rectangle. The rectangle con-
sists of two horizontal and two vertical lines. Each line is one pixel thick and
is drawn in the current foreground color.

The four arguments specify the rectangle:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The draw_rect function is equivalent to the following four calls to the draw_line
function:

draw_line(xleft, ytop, xleft+w, ytop);

draw_line(xleft, ytop+h, xleft+w, ytop+h);

draw_line(xleft, ytop+1, xleft, ytop+h–2);

draw_line(xleft+w, ytop+1, xleft+w, ytop+h–2);

Use draw_rect function to draw a rectangle that is 130 pixels wide and 90 pix-
els high.

#include <tiga.h>
#include <extend.h>

main()
{

init_tiga(1);
clear_screen(0);
draw_rect (130, 90, 10, 10);
term_tiga();

}

Syntax

Description

Example

 Encode Rectangular Image encode_rect

5-21

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

unsigned long encode_rect(w, h, xleft, ytop, buf, bufsize, scheme)
short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */
PTR buf; /* image buffer */
unsigned long bufsize; /* buffer capacity in bytes */
unsigned short scheme; /* encoding scheme */

The encode_rect function uses the specified encoding scheme to save an
image in compressed form. The image to be saved is contained in a specified
rectangular portion of the screen. The function compresses the image and
saves it in a specified destination buffer.

Once an image has been encoded by the encode_rect function, it can be de-
compressed and restored to a designated area of the screen by the
decode_rect function. The image is restored at the same width, height, and
pixel size as the original image saved by the encode_rect function.

The first four arguments specify the rectangular region of the screen contain-
ing the original image:

Arguments w and h specify the width and height (in pixels) of the rectangle
containing the image.

Arguments xleft and ytop specify the x and y coordinates at the top left cor-
ner of the rectangle and are defined relative to the drawing origin.

The next two arguments specify the destination array for the compressed
image:

Argument buf is a pointer to a buffer in TMS340 memory in which to save
the compressed image.

Argument bufsize is the storage capacity of the buf array in bytes.

The final argument, scheme, specifies the encoding scheme to be used. Cur-
rently, only run-length encoding is supported, for which the value of scheme
must be specified as 0.

The value returned by the function is the number of 8-bit bytes required to en-
code the image, including the header. If the return value is nonzero and posi-
tive, but less than or equal to the size of the output buffer (as specified by the
bufsize argument), then the encoding is complete. If the value returned by the
function is greater than bufsize, the specified buffer was not large enough to
contain the encoded data. In this case, the encode_rect function should be
called again with a larger buffer. A value of 0 is returned if the function is unable
to perform any encoding. This can happen if argument bufsize is specified as
0 or if the intersection of the rectangle to be encoded and the clipping rectangle
is empty.

Syntax

Description

encode_rect Encode Rectangular Image

5-22 Extended Graphics Library Functions

If the original image lies only partially within the current clipping window, only
the portion of the image lying within the window is encoded. When the encoded
image is later restored by the decode_rect function, only the encoded portion
of the image is restored. Relative to the enclosing rectangle, this portion of the
restored image occupies the same position as in the original image. If the origi-
nal image lies entirely outside the clipping window, the encoded image is
empty.

Currently, the only encoding scheme supported by the function is run-length
encoding. This is a simple but effective image-compression technique that
stores each horizontal line of the image as a series of color transitions. The
color for each transition is paired with the number of times the color is repeated
(the length of the run) before the next color transition. To illustrate, a run of 7
yellow pixels followed by a run of 5 red pixels could be stored as [7] [yellow]
[5] [red]. As expected, the greatest amount of compression is achieved in
the case of images that contain large regions of uniform color.

The compressed image format consists of a 20-byte header followed by the
data representing the image in compressed form. The header structure is in-
variant across all encoding schemes and is defined as follows:

typedef struct {
unsigned short magic; /* magic number */
unsigned long length; /* length of data in bytes */
unsigned short scheme; /* encoding scheme */
short width, height; /* dimensions of image rect. */
short psize; /* pixel size of image */
short flags; /* usage varies with scheme */
unsigned long clipadj; /* x–y clipping adjustments */

}ENCODED_RECT;

The fields of the ENCODED_RECT data structure above are used as follows:
magic A TIGA data structure identifier. The value for this data structure is

0x8101.
length The length of the entire compressed image in bytes, including the

header. This value is useful for allocating memory for a data struc-
ture and for reading it from a disk.

scheme The type of encoding scheme that was used to encode the rectan-
gle. Only one scheme is currently supported: scheme = 0 — run-
length encoding.

width The width of the rectangle containing the original image.
height The height of the rectangle containing the original image.
psize The original pixel size of the encoded image. This value is 1, 2, 4,

8, 16, or 32.
flags Reserved for future enhancements. Bits in this field are currently

set to 0.

 Encode Rectangular Image encode_rect

5-23

clipadj Set to 0 except in the case in which the top left corner of the origi-
nal image rectangle is located above or to the left of the clipping
window. In this case, the clipadj field contains the concatenated x
and y displacements of the top left corner of the clipping window
from the top left corner of the image. (The x displacement is in the
16 LSBs, and the y displacement in the 16 MSBs.) If the left edge
of the window is to the right of the left edge of the image, the x dis-
placement is set to the positive distance between these two
edges; otherwise, it is 0. If the top edge of the window is below the
top edge of the image, the y displacement is set to the positive dis-
tance between these two edges; otherwise, it is 0.

The encoded image immediately follows the clipadj field. This data is of vari-
able length, and its format depends on the encoding scheme used to com-
press the image.

The run-length encoded image consists of a number of run-length encoded
horizontal scan lines; the number of lines is given by the height entry in the EN-
CODED_RECT structure. Each line is encoded according to the following for-
mat:

[REPSIZ] [OPSIZ] [OPCODE] [DATA] [OPCODE] [DATA]...

The REPSIZ and OPSIZ fields, which appear at the start of each line, are de-
fined as follows:

REPSIZ Bits 0–2 specify the size of the repeating data. Repeating data can
be 1, 2, 4, 8, 16, or 32 bits in length. REPSIZ is the log to the base 2
of the data size (that is, 1 shifted left by the value of REPSIZ will
give the size of the repeating data).

OPSIZ Bits 3–7 specify the length in bits of the OPCODE entry. This can
be a value between 1 and 32 indicating the signed integer size of
OPCODE. For example, if the value of OPSIZ is 8, then OP-
CODES are 8-bit signed integers. If OPSIZ is 3, then OPCODES
are 3-bit signed integers. Beginning with bit 8, the remainder of
the line consists of a variable number of [OPCODE] [DATA] se-
quences. If the opcode value is positive, it indicates a repeating
sequence and will be followed by 1, 2, 4, 8, 16, or 32 bits worth of
repeating data, as indicated by REPSIZ. If the opcode is negative,
then it is followed by n pixels of absolute (unencoded) data, where
n is the absolute value of the OPCODE, and the pixel size is speci-
fied in the PSIZE field of the ENCODED_RECT structure.

Within each line of the image, the absolute value of all the opcodes that are
read equals the width of the encoded rectangle. This fact is utilized by the de-
code_rect function during decompression of the image.

Use the encode_rect function to capture a rectangular image from the screen.
Verify that the image buffer used by the encode_rect function is large enough

Example

encode_rect Encode Rectangular Image

5-24 Extended Graphics Library Functions

to contain the entire compressed image. Use the decode_rect function to de-
compress the image to a different region of the screen to verify that the image
was captured correctly by the encode_rect function.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define MAXSIZE 4096 /* max picture size in bytes */

main()
{

short w, h, x, y, n;
char *s;
PTR picture;

init_tiga(1);
clear_screen(0);

/* Create an image on the screen */
w = 100;
h = 80;
x = 10;
y = 10;
frame_rect(w, h, x, y, 1, 1);
frame_oval(w, h, x, y, 4, 3);
draw_line(x+w/2, y, x, y+h–1);
draw_line(x+w/2, y, x+w–1, y+h–1);
s = ”IMAGE”;
n = text_width(s);
text_out(x+(w–n)/2, y+h/2, s);

/* Compress image, and verify buffer doesn’t overflow */
picture = gsp_malloc(MAXSIZE);
n = encode_rect (w, h, x, y, picture, MAXSIZE, 0);
if (n > MAXSIZE)
{

text_out(x, y+h+20, ”Image buffer too small!”);
term_tiga();

}

/* Now decompress the image */
decode_rect(x+w, y+h, picture);
term_tiga();

}

 Draw Solid Convex Polygon fill_convex

5-25

#include <tiga.h>
#include <extend.h>
typedef struct { short x, y; } POINT;

void fill_convex(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The fill_convex function fills a convex polygon with a solid color. The polygon
is specified by a list of points representing the polygon vertices in the order in
which they are traversed in tracing the boundary of the polygon. The polygon
is filled with the current foreground color.

Argument n specifies the number of vertices in the polygon, which is the same
as the number of sides.

Argument vert is an array of integer x-y coordinates representing the polygon
vertices in the order in which they are to be traversed. The x-y coordinate pairs,
0 through n–1, of the vert array contain the coordinates for the n vertices. The
function assumes that an edge connects each adjacent pair of vertices in the
array and also assumes that vertex n–1 is connected to vertex 0 by an edge.
Each vertex is represented by a 16-bit x-coordinate value followed by a 16-bit
y-coordinate value. Coordinates are specified relative to the drawing origin.

The fill_convex function is similar to the fill_polygon function but is specialized
for rapid drawing of convex polygons. It also executes more rapidly and sup-
ports realtime applications such as animation. The function assumes that the
polygon contains no concavities; if this requirement is violated, the polygon
may be drawn incorrectly.

To support 3-D applications, the fill_convex function automatically culls back
faces. A polygon is drawn only if its front side is visible—that is, if it is facing
toward the viewer. The direction in which the polygon is facing is determined
by the order in which the vertices are listed in the vert array. If the vertices are
specified in clockwise order, the polygon is assumed to be facing forward. If
the vertices are specified in counterclockwise order, the polygon is assumed
to face away from the viewer and is therefore not drawn.

The back-face test is done by first comparing vertices n–2, n–1, and 0 to deter-
mine whether the polygon vertices are specified in clockwise (front facing) or
counterclockwise (back facing) order. This test assumes the polygon contains
no concavities. If the three vertices are colinear, the back-face test is per-
formed again using the next three vertices, n–1, 0, and 1. The test repeats until
three vertices are found that are not colinear. If all the vertices are colinear, the
polygon is invisible.

Note that large amounts of data passed to this function may overflow the TIGA
command buffer. The size of the command buffer is contained in the
comm_buff_size field of the CONFIG structure returned by the get_config

Syntax

Description

fill_convex Draw Solid Convex Polygon

5-26 Extended Graphics Library Functions

function. The application must ensure that data passed to this function will not
overflow the command buffer.

The number of vertices that may be sent without overflowing the command
buffer is calculated as

comm_buff_size(bytes) – 10
max_verts = ––––––––––––––––––––––––––

4

An alternate entry point, fill_convex_a, is provided to automatically check the
size of the data being passed. The arguments for this function are identical to
those described above. If the command buffer is too small to contain the func-
tion’s data, this entry point will attempt to allocate a temporary buffer in
TMS340 memory. If there is not enough memory available for this buffer, the
standard TIGA error function is invoked (which can be trapped by using the
install_usererror function). Although this alternate entry point frees the appli-
cation from having to check the data size, it takes longer to execute than its
nonchecking counterpart.

Use the fill_convex function to fill a triangle. The three vertices are at coordi-
nates (10, 10), (130, 10), and (70, 90).

#include <tiga.h>
#include <extend.h>

#define NVERTS 3 /* number of vertices */

typedef struct {short x, y;} POINT;

static POINT xy[NVERTS] =
{

{10, 10}, {130, 10}, {70, 90}
};

main()
{

init_tiga(1);
clear_screen(0);
fill_convex (NVERTS, xy);
term_tiga();

}

Example

 Draw Solid Ellipse fill_oval

5-27

#include <tiga.h>
#include <extend.h>

void fill_oval(w, h, xleft, ytop)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */

The fill_oval function fills an ellipse with a solid color. The ellipse is in standard
position, with its major and minor axes parallel to the coordinate axes. The el-
lipse is specified in terms of the enclosing rectangle in which the ellipse is in-
scribed. The ellipse is filled with the current foreground color.

The four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

Use the fill_oval function to draw an ellipse that is 130 pixels wide and 90 pixels
high. Also, draw the outline of a rectangle that encloses the ellipse without
touching it.

#include <tiga.h>
#include <extend.h>

main()
{

init_tiga(1);
clear_screen(0);
fill_oval (130, 90, 10, 10);
draw_rect(130+3, 90+3, 10–2, 10–2);
term_tiga();

}

Syntax

Description

Example

fill_piearc Draw Solid Ellipse Pie Slice

5-28 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void fill_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* extent of angle (degrees) */

The fill_piearc function fills a pie-slice-shaped wedge with a solid color. The
wedge is bounded by an arc and two straight edges. The two straight edges
connect the end points of the arc with the center of the ellipse. The arc is taken
from an ellipse in standard position, with its major and minor axes parallel to
the coordinate axes. The ellipse is specified by the enclosing rectangle in
which it is inscribed. The wedge is filled with the current foreground color.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is filled.

Use the fill_piearc function to draw a pie chart corresponding to a slice of an
ellipse from 21 degrees to 300 degrees. The ellipse is 130 pixels wide and 90
pixels high. Also, draw a rectangle that encloses the ellipse without touching
it.

#include <tiga.h>
#include <extend.h>

Syntax

Description

Example

 Draw Solid Ellipse Pie Slice fill_piearc

5-29

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
w = 130;
h = 90;
x = 10;
y = 10;
fill_piearc (w, h, x, y, 21, 300–21);
draw_rect(w+3, h+3, x–2, y–2);
term_tiga();

}

fill_polygon Draw Solid Polygon

5-30 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>
typedef struct { short x, y; } POINT;

void fill_polygon(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The fill_polygon function fills an arbitrarily shaped polygon with a solid color.
The polygon is specified by a list of points representing the polygon vertices
in the order in which they are traversed in tracing the boundary of the polygon.
The interior of the polygon is determined according to the parity (or odd- even)
rule. A pixel is considered to be part of the filled region representing the poly-
gon if an infinite, arbitrarily oriented ray emanating from the center of the pixel
crosses the boundary of the polygon an odd number of times. The polygon is
filled with the current foreground color.

Argument n specifies the number of vertices in the polygon, which is the same
as the number of sides.

Argument vert is an array of integer x-y coordinates representing the polygon
vertices in the order in which they are to be traversed. The x-y coordinate pairs,
0 through n–1, of the vert array contain the coordinates for the n vertices. The
function assumes that an edge connects each adjacent pair of vertices in the
array and also assumes that vertex n–1 is connected to vertex 0 by an edge.
Each vertex is represented by a 16-bit x-coordinate value followed by a 16-bit
y-coordinate value. Coordinates are specified relative to the drawing origin.

No restrictions are placed on the shape of the polygons filled by this function.
Edges may cross each other. Filled areas can contain holes (this is accom-
plished by connecting a hole to the outside edge of the polygon by an infinitely
thin region of the polygon). Two or more filled regions can be disconnected
from each other (or more precisely, be connected by infinitely thin regions of
the polygon).

Note that large amounts of data passed to this function may overflow the TIGA
command buffer. The size of the command buffer is contained in the
comm_buff_size field of the CONFIG structure returned by the get_config
function. The application must ensure that data passed to this function will not
overflow the command buffer.

Syntax

Description

 Draw Solid Polygon fill_polygon

5-31

The number of vertices that may be sent without overflowing the command
buffer is calculated as

comm_buff_size(bytes) – 10
max_verts = ––––––––––––––––––––––––––

4

An alternate entry point, fill_polygon_a, is provided to automatically check the
size of the data being passed. The arguments for this function are identical to
those described above. If the command buffer is too small to contain the func-
tion’s data, this entry point will attempt to allocate a temporary buffer in
TMS340 memory. If there is not enough memory available for this buffer, the
standard TIGA error function is invoked (which can be trapped by using the
install_usererror function). Although fill_polygon_a frees the application from
having to check the data size, it takes longer to execute than its nonchecking
counterpart fill_polygon.

Use the fill_polygon function to fill a polygon that has a hole, two disconnected
regions, and two edges that cross each other.

#include <tiga.h>
#include <extend.h>

#define NVERTS 14 /* number of vertices */

typedef struct {short x, y;} POINT;

static POINT xy[NVERTS] =
{

{150,170}, { 30,150}, {150, 30}, { 30, 50},
{150,170}, {140, 70}, {260, 70}, {200,160},
{140, 70}, {200, 80}, {220,120}, {180,120},
{200, 80}, {140, 70}

};

main()
{

init_tiga(1);
clear_screen(0);
fill_polygon (NVERTS, xy);
term_tiga();

}

Example

fill_rect Draw Solid Rectangle

5-32 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void fill_rect(w, h, xleft, ytop)
short w, h; /* rectangle width and height */
short xleft, ytop /* top left corner */

The fill_rect function fills a rectangle with a solid color. The rectangle is filled
with the current foreground color.

The four arguments specify the rectangle:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

Use the fill_rect function to fill a rectangle that is 130 pixels wide and 90 pixels
high.

#include <tiga.h>
#include <extend.h>

main()
{

init_tiga(1);
clear_screen(0);
fill_rect (130, 90, 10, 10);
term_tiga();

}

Syntax

Description

Example

 Draw Oval Border frame_oval

5-33

#include <tiga.h>
#include <extend.h>

void frame_oval(w, h, xleft, ytop, dx, dy)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short dx, dy; /* frame thickness in x, y */

The frame_oval function fills an ellipse-shaped frame with a solid color. The
frame consists of a filled region between two concentric ellipses. The outer el-
lipse is specified in terms of the enclosing rectangle in which it is inscribed. The
frame thickness is specified separately for the x and y dimensions. The portion
of the screen enclosed by the frame is not altered. The frame is filled with the
current foreground color.

The first four arguments define the rectangle enclosing the outer edge of the
elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation be-
tween the outer and inner ellipses, respectively.

Use the frame_oval function to draw an elliptical frame. The outer border of the
frame is an ellipse that is 130 pixels wide and 90 pixels high. The thickness of
the frame in the x and y dimensions is 16 and 12, respectively. Also, outline
the outer border of the frame with the draw_rect function.

#include <tiga.h>
#include <extend.h>

main()
{

short w, h, x, y, dx, dy;

init_tiga(1);
clear_screen(0);
w = 130;
h = 90;
x = 10;
y = 10;
dx = 16;
dy = 12;
frame_oval (w, h, x, y, dx, dy);
draw_rect(w+1, h+1, x–1, y–1);
term_tiga();

}

Syntax

Description

Example

frame_rect Draw Rectangular Border

5-34 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void frame_rect(w, h, xleft, ytop, dx, dy)
short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */
short dx, dy /* frame thickness in x, y */

The frame_rect function fills a rectangular-shaped frame with a solid color. The
frame consists of a filled region between two concentric rectangles. The outer
edge of the frame is a rectangle specified in terms of its width, height, and posi-
tion. The frame thickness is specified separately for the x and y dimensions.
The portion of the screen enclosed by the frame is not altered. The frame is
filled with the current foreground color.

The first four arguments define the rectangle enclosing the outer edge of the
elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation be-
tween the outer and inner rectangles, respectively.

Use the frame_rect function to draw a rectangular frame. The outer border of
the frame is a rectangle that is 127 pixels wide and 89 pixels high. The thick-
ness of the frame in the x and y dimensions is 15 and 10, respectively. Also
draw a diamond shape inside the frame with four calls to the draw_line func-
tion. The vertices of the diamond touch the center of each of the four inner
edges of the frame.
#include <tiga.h>
#include <extend.h>

main()
{

short w, h, x, y, dx, dy;

init_tiga(1);
clear_screen(0);
w = 127;
h = 89;
x = 10;
y = 10;
dx = 15;
dy = 10;
frame_rect (w, h, x, y, dx, dy);
draw_line(x+w/2, y+dy, x+w–dx–1, y+h/2);
draw_line(x+w–dx–1, y+h/2, x+w/2, y+h–dy–1);
draw_line(x+w/2, y+h–dy–1, x+dx, y+h/2);
draw_line(x+dx, y+h/2, x+w/2, y+dy);
term_tiga();

}

Syntax

Description

Example

 Return Graphics Environment Information get_env

5-35

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

void get_env(env)
ENVIRONMENT *env; /* graphics environment pointer */

The get_env function retrieves the current graphics environment information.
Although the library contains other functions that manipulate individual envi-
ronment parameters, this function retrieves the entire graphics environment
as a single structure.

Argument env is a pointer to a structure of type ENVIRONMENT. The function
copies the graphics environment information into the structure pointed to by
this argument.

The ENVIRONMENT structure contains the following fields:

typedef struct
{

unsigned long xyorigin;
unsigned long pensize;
PTR srcbm;
PTR dstbm;
unsigned long stylemask;

}ENVIRONMENT;

Refer to the ENVIRONMENT structure description in Appendix A for detailed
descriptions of each field.

Note that the structure described above may change in subsequent revisions.
To minimize the impact of such changes, write application programs to refer
to the elements of the structure symbolically by their field names, rather than
as offsets from the start of the structure. The include files provided with TIGA
will be updated in future revisions to track any such changes in data structure
definitions.

Use the get_env function to verify the initial state of the graphics environment
parameters. Use the text_out function to print the parameter values on the
screen.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define ENVIRONMENT and FONTINFO */

main()
{

ENVIRONMENT env;
FONTINFO fontinfo;
char s[80];
short h, x, y;

init_tiga(1);
clear_screen(0);
get_fontinfo(0, &fontinfo);
h = fontinfo.charhigh;
x = y = 10;
get_env (&env); /* get graphics environment */

Syntax

Description

Example

get_env Return Graphics Environment Information

5-36 Extended Graphics Library Functions

text_out(x, y, ”INITIAL GRAPHICS ENVIRONMENT:”);

sprintf(s, ”x origin = %d”, (short) env.xyorigin);
text_out(x, y += h, s);

sprintf(s, ”y origin = %d”, env.xyorigin >> 16);
text_out(x, y += h, s);

sprintf (s, ”pen width = %d”, (short)env.pensize);
text_out(x, y += h, s);

sprintf(s, ”pen height = %d”, env.pensize >> 16);
text_out(x, y += h, s);

sprntf(s, ”source bitmap = %lx”, env.srcbm);
text_out(x, y += h, s);

sprintf(s, ”destination bitmap = %lx”, env.dstbm);
text_out(x, y += h, s);

sprintf(s, ”line-style pattern = %lx”, env.stylemask);
text_out(x, y += h, s);
term_tiga();

}

 Return Pixel Value get_pixel

5-37

#include <tiga.h>
#include <extend.h>

unsigned long get_pixel(x, y)
short x, y; /* pixel coordinates */

The get_pixel function returns the value of the pixel at x-y coordinates (x,
y) on the screen. The coordinates are defined relative to the drawing origin.
Given a pixel size of n bits, the pixel is contained in the n LSBs of the return
value; the 32–n MSBs are set to 0.

Use the get_pixel function to rotate a text image on the screen by 180 degrees.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* defines FONTINFO structure */

main()
{

FONTINFO fontinfo;
short xs, ys, xd, yd, w, h;
long val;
char *s;

init_tiga(1);
clear_screen(0);
s = ”Rotate text by 180 degrees.”;
get_fontinfo(0, &fontinfo);
w = text_width(s);
h = fontinfo.charhigh;
xs = ys = 0;
text_out(xs, ys, s);
for (yd = 2*h+1; ys <= h; ys++, yd––)

for (xs = 0, xd = w–1; xs <= w; xs++, xd––)
{

val = get_pixel (xs, ys);
put_pixel(val, xd, yd);

}
term_tiga();

}

Syntax

Description

Example

get_textattr Return Text-Rendering Attributes

5-38 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

short get_textattr(pcontrol, count, val)
char *pcontrol; /* control string */
short count; /* val array length */
short *val; /* array of attribute values */

The get_textattr function retrieves the text-rendering attributes. The three text
attributes currently supported are text alignment, additional intercharacter
spacing, and intercharacter gaps.

Argument pcontrol is a control string specifying the attributes (one or more) to
be retrieved. Argument count is the number of attributes designated in the
pcontrol string and is also the number of attributes stored in the val array. Argu-
ment val is the array into which the designated attributes are stored. The attrib-
ute values are stored into the consecutive elements of the val array, beginning
with val [0], in the order in which they appear in the pcontrol string.

The function returns a value indicating the number of attributes actually loaded
into the val array.

The following attributes are currently supported:

Symbol Attribute Description Option Value
%a alignment 0 = top left, 1 = base line
%e additional intercharacter spacing 16-bit signed integer
%f intercharacter gaps 0 = leave gaps, 1 = fill gaps

Use the get_textattr function to verify the initial state of the text attributes. Use
the text_out function to print the attribute values on the screen.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define FONTINFO structure */

Syntax

Description

Example

 Return Text-Rendering Attributes get_textattr

5-39

main()
{

ENVIRONMENT env;
FONTINFO fontinfo;
char s[80];
short val[3];
short h, x, y;

init_tiga(1);
clear_screen(–1);
get_fontinfo(0, &fontinfo);
h = fontinfo.charhigh;
x = y = 10;
get_textattr (”%a%e%f”, 3, val); /* get text attributes */

text_out(x, y, ”DEFAULT TEXT ATTRIBUTES:”);

sprintf(s, ”text alignment = %d”, val[0]);
text_out(x, y += h, s);

sprintf(s, ”extra inter char spacing = %d”, val[1]);
text_out(x, y += h, s);

sprintf(s, ”inter char gaps = %d”, val[2]);
text_out(x, y += h, s);
term_tiga();

}

in_font Verify Characters in Font

5-40 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

short in_font(start_code, end_code)
short start_code; /* starting character code */
short end_code; /* ending character code */

The in_font function returns a value indicating whether the current font defines
all the characters within a specified range of ASCII codes.

The two arguments specify the range of characters:

Argument start_code specifies the ASCII code at the start of the range.
(This is the first character included in the range.)

Argument end_code specifies the ASCII code at the end of the range.
(This is the last character included in the range.)

The value of start_code should be less than or equal to the value of end_code.
Valid arguments are restricted to the range 1 to 255.

The value returned by the function is 0 if the current font defines all characters
in the range specified by the arguments. Otherwise, the return value is the
ASCII code of the first character (lowest ASCII code) in the specified range that
is undefined in the current font.

Use the in_font function to determine whether the system font defines all char-
acters from ASCII code 32 to ASCII code 126. Use the text_out function to
print the result of the test on the screen.

#include <tiga.h>
#include <extend.h>

main()
{

short n;
unsigned char v, s[80];

init_tiga(1);
clear_screen(–1);
if (v = in_font (’ ’, ’~’))
{

sprintf(s, ”ASCII character code %d is undefined.”, v);
text_out(10, 10, s);

}
else

text_out(10, 10, ”Characters ’ ’ to ’~’ are defined.”);
term_tiga();

}

Syntax

Description

Example

 Install Font Into Font Table install_font

5-41

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

short install_font(pfont)
PTR pfont; /* font structure pointer in TMS340 mem. */

The install_font function installs a font in the font table and returns an identifier
(ID) of type short. The ID can be used to refer to the font in subsequent text
operations.

Argument pfont is a pointer to a structure of type FONT in TMS340 memory.
(The FONT structure is described in Chapter 7.) The install_font function
merely adds the address of the font to the font table. It does not select the font.

The ID returned is nonzero if the installation was successful. If unsuccessful,
0 is returned.

The maximum number of fonts that can be installed is limited only by the
amount of available RAM on the TMS340 board.

The following example illustrates a function to load and install a TIGA font from
a TIGA font file. The function, loadinst_font, reads the font information from the
font file, downloads it into TMS340 memory, and then installs the font and re-
turns the font identifier. This function is extremely useful as a general TIGA font
loader for any TIGA application.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>
#include <stdio.h>
#include <malloc.h>

#define FONT_MAGIC 0x8040
typedef struct
{

ushort magic;
long size;

} FILEHDR;

/*LOADINST_FONT() Load, install font and return ref. ID */
short loadinst_font(name)
char *name;
{

FILE *fp;
FILEHDR fh;
FONT *hpTmp;
short id = 0;
PTR gpTmp = 0L;

Syntax

Description

Example

install_font Install Font Into Font Table

5-42 Extended Graphics Library Functions

/* Examine font hdr. magic num. If incorrect return 0. */
if (!(fp = fopen(name, ”rb”)))

return (0);
fread(&fh, sizeof(FILEHDR), 1, fp);
if (fh.magic != FONT_MAGIC)
{

fclose(fp);
return (0);

}
/* Malloc font in host and target. Read font into host, */
/* then move to target and free host memory. */
if (hpTmp = (FONT*)malloc((ushort)fh.size))

if (gpTmp = (PTR)gsp_malloc(fh.size))
{

rewind(fp);
fread(hpTmp, fh.size, 1, fp);
host2gsp (hpTmp, gpTmp, fh.size, 0);
free(hpTmp);

}
/* If all is OK, then install the font. */
if (gpTmp)

id = install_font (gpTmp);
fclose(fp);
return (id);

}

 Copy Pixel to Value move_pixel

5-43

#include <tiga.h>
#include <extend.h>

void move_pixel(xs, ys, xd, yd)
short xs, ys; /* source pixel coordinates */
short xd, yd; /* destination pixel coordinates */

The move_pixel function copies a pixel from one screen location to another.
Arguments xs and ys are the x and y coordinates of the source pixel. Argu-
ments xd and yd are the x and y coordinates of the destination pixel. Coordi-
nates are defined relative to the drawing origin.

Use the move_pixel function to rotate text image on screen by 90 degrees.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define FONTINFO structure */

main()
{

FONTINFO fontinfo;
short xs, ys, xd, yd, w, h;
char *s;

init_tiga(1);
clear_screen(0);
s = ”Rotate 90 degrees.”;
get_fontinfo(0, &fontinfo);
w = text_width(s);
h = fontinfo.charhigh;
xs = h;
ys = 0;
text_out(xs, ys, s);
for (xd = yd = h; ys < h; ys++, xd = h–ys, yd = h)

for (xs = h; xs < w+h; xs++, yd++)
move_pixel (xs, ys, xd, yd);

term_tiga();
}

Syntax

Description

Example

patnfill_convex Fill Convex Polygon With Pattern

5-44 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>
typedef struct { short x, y; } POINT;

void patnfill_convex(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The patnfill_convex function fills a convex polygon with the current area-fill
pattern. The polygon is specified by a list of points representing the polygon
vertices in the order in which they are traversed in tracing the boundary of the
polygon.

Argument n specifies the number of vertices in the polygon, which is the same
as the number of sides.

Argument vert is an array of integer x-y coordinates representing the polygon
vertices in the order in which they are to be traversed. The x-y coordinate pairs,
0 through n–1, of the vert array contain the coordinates for the n vertices. The
function assumes that an edge connects each adjacent pair of vertices in the
array and that an edge connects vertex n–1 to vertex 0. Each vertex is repre-
sented by a 16-bit x-coordinate value followed by a 16-bit y-coordinate value.
Coordinates are specified relative to the drawing origin.

The patnfill_convex function is similar to the patnfill_polygon function but is
specialized for rapid drawing of convex polygons. It also executes more rapidly
and supports realtime applications, such as animation. The function assumes
that the polygon contains no concavities; if this requirement is violated, the
polygon may be drawn incorrectly.

To support 3-D applications, the patnfill_convex function automatically culls
back faces. A polygon is drawn only if its front side is visible—that is, if it is fac-
ing toward the viewer. The direction in which the polygon is facing is deter-
mined by the order in which the vertices are listed in the vert array. If the ver-
tices are specified in clockwise order, the polygon is assumed to be facing for-
ward. If the vertices are specified in counterclockwise order, the polygon is as-
sumed to face away from the viewer and is therefore not drawn.

The back-face test is done by first comparing vertices n–2, n–1, and 0 to deter-
mine whether the polygon vertices are specified in clockwise (front facing) or
counterclockwise (back-facing) order. This test assumes the polygon contains
no concavities. If the three vertices are colinear, the back-face test is made
again using the next three vertices, n–1, 0, and 1. The test repeats until three
vertices are found that are not colinear. If all the vertices are colinear, the poly-
gon is invisible.

Note that large amounts of data passed to this function may overflow the TIGA
command buffer. The size of the command buffer is contained in the
comm_buff_size field of the CONFIG structure returned by the get_config

Syntax

Description

 Fill Convex Polygon With Pattern patnfill_convex

5-45

function. The application must ensure that data passed to this function will not
overflow the command buffer.

The number of vertices that may be sent without overflowing the command
buffer is calculated as

comm_buff_size(bytes) – 10
max_verts = ––––––––––––––––––––––––––

4

An alternate entry point, patnfill_convex_a, is provided to automatically check
the size of the data being passed. The arguments for this function are identical
to those described above. If the command buffer is too small to contain the
function’s data, this entry point will attempt to allocate a temporary buffer in
TMS340 memory. If there is not enough memory available for this buffer, the
standard TIGA error function is invoked (which can be trapped by using the
install_usererror function). Although patnfill_convex_a frees the application
from having to check the data size, it takes longer to execute than its non-
checking counterpart patnfill_convex.

Use the patnfill_convex function to fill a quadrilateral with a pattern. The four
vertices are located at (96, 16), (176, 72), (96, 128), and (16, 72).

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

typedef struct {short x, y;} POINT;

#define NVERTS 4 /* num. of vertices in quadrilateral */

static short snowflake[16] =
{

0x0000, 0x01C0, 0x19CC, 0x188C, 0x0490, 0x02A0, 0x31C6, 0x3FFE,
0x31C6, 0x02A0, 0x0490, 0x188C, 0x19CC, 0x01C0, 0x0000, 0x0000

};

static PATTERN fillpatn = {16, 16, 1, (PTR)0};
static POINT xy[NVERTS] =
{

{96, 16}, {176, 72}, {96, 128}, {16, 72}
};

main()
{

init_tiga(1);
clear_screen(0);
fillpatn.data = gsp_malloc(sizeof(snowflake));
host2gsp(snowflake, fillpatn.data, sizeof(snowflake), 0);
set_patn(&fillpatn);
patnfill_convex (NVERTS, xy);
term_tiga();

}

Example

patnfill_oval Fill Oval With Pattern

5-46 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void patnfill_oval(w, h, xleft, ytop)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */

The patnfill_oval function fills an ellipse with the current area-fill pattern. The
ellipse is in standard position, with its major and minor axes parallel to the coor-
dinate axes. The ellipse is specified in terms of the enclosing rectangle in
which the ellipse is inscribed.

The four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

Use the patnfill_oval function to fill an ellipse that is 144 pixels wide by 96 pixels
high with a 16-by-16 area-fill pattern.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

/* brick pattern */
static short patnbits[] =
{

0xFFFF, 0xD555, 0x8000, 0xC001, 0x8000, 0xC001, 0x8000, 0xD555,
0xFFFF, 0x55D5, 0x0080, 0x01C0, 0x0080, 0x01C0, 0x0080, 0x55D5

};

static PATTERN current_patn = {16, 16, 1, (PTR)0};

main()
{

init_tiga(1);
clear_screen(0);
current_patn.data = gsp_malloc(sizeof(patnbits));
host2gsp(patnbits, current_patn.data, sizeof(patnbits), 0);
set_patn(¤t_patn);
patnfill_oval (144, 96, 16, 16);
term_tiga();

}

Syntax

Description

Example

 Fill Pie Slice With Pattern patnfill_piearc

5-47

#include <tiga.h>
#include <extend.h>

void patnfill_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop ; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* extent of angle (degrees) */

The patnfill_piearc function fills a pie-slice-shaped wedge with an area-fill pat-
tern. The wedge is bounded by an arc and two straight edges. The two straight
edges connect the end points of the arc with the center of the ellipse. The arc
is taken from an ellipse in standard position, with its major and minor axes par-
allel to the coordinate axes. The ellipse is specified by the enclosing rectangle
in which it is inscribed. The wedge is filled with the current area-fill pattern.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is filled.

Use the patnfill_piearc function to draw a pie chart 144 pixels wide by 96 pixels
high with a 16-by-16 area-fill pattern. The pie chart contains four pie slices.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define W 30 /* width of pie chart */
#define H 90 /* height of pie chart */
#define X 10 /* left edge of pie chart */
#define Y 10 /* top edge of pie chart */

Syntax

Description

Example

patnfill_piearc Fill Pie Slice With Pattern

5-48 Extended Graphics Library Functions

/* Two contrasting area–fill patterns */
static short patnbits[] =
{

0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111,
0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111,
0xFFFF, 0x1111, 0x1111, 0x1111, 0xFFFF, 0x1111, 0x1111, 0x1111,
0xFFFF, 0x1111, 0x1111, 0x1111, 0xFFFF, 0x1111, 0x1111, 0x1111

};

main()
{

static PATTERN piepatn = { 16, 16, 1, (PTR)0 };

init_tiga(1);
clear_screen(0);
piepatn.data = gsp_malloc(sizeof(patnbits));
host2gsp(patnbits, piepatn.data, sizeof(patnbits), 0);
set_patn(&piepatn);
patnfill_piearc (W, H, X, Y, 30, 160–30); /* slice #1 */
piepatn.data += (16 * 16);
set_patn(&piepatn);
patnfill_piearc (W, H, X, Y, 160, 230–160); /* slice #2 */
piepatn.data –= (16 * 16);
set_patn((PTR)&piepatn);
patnfill_piearc (W, H, X, Y, 230, 320–230); /* slice #3 */
piepatn.data += (16 * 16);
set_patn(&piepatn);
patnfill_piearc (W, H, X+20, Y, 320, 390–320);/* slice #4 */
term_tiga();

}

 Fill Polygon With Pattern patnfill_polygon

5-49

#include <tiga.h>
#include <extend.h>
typedef struct { short x, y; } POINT;

void patnfill_polygon(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The patnfill_polygon function fills an arbitrarily shaped polygon with the current
area-fill pattern. The polygon is specified by a list of points representing the
polygon vertices in the order in which they are traversed in tracing the bound-
ary of the polygon. The interior of the polygon is determined according to the
parity (or odd-even) rule. A pixel is considered to be part of the filled region rep-
resenting the polygon if an infinite, arbitrarily oriented ray emanating from the
center of the pixel crosses the boundary of the polygon an odd number of
times.

Argument n specifies the number of vertices in the polygon, which is the same
as the number of sides.

Argument vert is an array of integer x-y coordinates representing the polygon
vertices in the order in which they are to be traversed. The x-y coordinate pairs,
0 through n–1 of the vert array contain the coordinates for the n vertices. The
function assumes that an edge connects each adjacent pair of vertices in the
array and also assumes that an edge connects vertex n–1 to vertex 0. Each
vertex is represented by a 16-bit x-coordinate value followed by a 16-bit y-
coordinate value. Coordinates are specified relative to the drawing origin.

No restrictions are placed on the shape of the polygons filled by this function.
Edges may cross each other. Filled areas can contain holes (this is accom-
plished by connecting a hole to the outside edge of the polygon by an infinitely
thin region of the polygon). Two or more filled regions can be disconnected
from each other (or more precisely, be connected by infinitely thin regions of
the polygon).

Note that large amounts of data passed to this function may overflow the TIGA
command buffer. The size of the command buffer is contained in the
comm_buff_size field of the CONFIG structure returned by the get_config
function. The application must ensure that data passed to this function will not
overflow the command buffer.

The number of vertices that may be sent without overflowing the command
buffer is calculated as:

comm_buff_size(bytes) – 10
max_verts = ––––––––––––––––––––––––––

4

An alternate entry point, patnfill_polygon_a, is provided to automatically check
the size of the data being passed. The arguments for this function are identical

Syntax

Description

patnfill_polygon Fill Polygon With Pattern

5-50 Extended Graphics Library Functions

to those described above. If the command buffer is too small to contain the
function’s data, this entry point will attempt to allocate a temporary buffer in
TMS340 memory. If there is not enough memory available for this buffer, the
standard TIGA error function is invoked (which can be trapped by using the
install_usererror function). Although patnfill_polygon_a frees the application
from having to check the data size, it takes longer to execute than its non-
checking counterpart patnfill_polygon.

Use the patnfill_polygon function to fill a polygon that has a hole, two discon-
nected regions, and two edges that cross each other.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

typedef struct { short x, y; } POINT;

#define NVERTS 14 /* 14 vertices in polygon */

/* squares pattern */
static short patnbits[16] =
{

0x00FF, 0x0081, 0x1881, 0x3C81, 0x3C81, 0x1881, 0x0081, 0x00FF,
0xFF00, 0x8100, 0x8118, 0x813C, 0x813C, 0x8118, 0x8100, 0xFF0 0

};

static PATTERN current_patn = {16, 16, 1, (PTR)0};

static POINT xy[NVERTS] =
{

{150,170}, { 30,150}, {150, 30}, { 30, 50},
{150,170}, {140, 70}, {260, 70}, {200,160},
{140, 70}, {200, 80}, {220,120}, {180,120},
{200, 80}, {140, 70}

};

main()
{

init_tiga(1);
clear_screen(0);
current_patn.data = gsp_malloc(sizeof(patnbits));
host2gsp(patnbits, current_patn.data, sizeof(patnbits), 0);
set_patn(¤t_patn);
patnfill_polygon (NVERTS, xy);
term_tiga();

}

Example

 Fill Rectangle With Pattern patnfill_rect

5-51

#include <tiga.h>
#include <extend.h>

void patnfill_rect(w, h, xleft, ytop)
short w, h; /* rectangle width and height */
short xleft, ytop /* top left corner */

The patnfill_rect function fills a rectangle with the current area-fill pattern.

The four arguments specify the rectangle:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

If the specified width or height is 0, nothing is drawn.

Use the patnfill_rect function to fill a rectangle that is 144 pixels wide by 96 pix-
els high with a 16-by-16 area-fill pattern.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

static short patnbits[] =
{

0x0000, 0x01C0, 0x19CC, 0x188C, 0x0490, 0x02A0, 0x31C6, 0x3FFE,
0x31C6, 0x02A0, 0x0490, 0x188C, 0x19CC, 0x01C0, 0x0000, 0x0000

};

static PATTERN current_patn = { 16, 16, 1, (PTR)0 };

main()
{

init_tiga(1);
clear_screen(0);
current_patn.data = gsp_malloc(sizeof(patnbits));
host2gsp(patnbits, current_patn.data, sizeof(patnbits), 0);
set_patn(¤t_patn);
patnfill_rect (144, 96, 16, 16);
term_tiga();

}

Syntax

Description

Example

patnframe_oval Fill Oval Frame With Pattern

5-52 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void patnframe_oval(w, h, xleft, ytop, dx, dy)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short dx, dy; /* frame thickness in x, y */

The patnframe_oval function fills an ellipse-shaped frame with the current
area-fill pattern. The frame consists of a filled region between two concentric
ellipses. The outer ellipse is specified in terms of the enclosing rectangle in
which it is inscribed. The frame thickness is specified separately for the x and
y dimensions. The portion of the screen enclosed by the frame is not altered.

The first four arguments define the rectangle enclosing the outer edge of the
elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation, re-
spectively, between the outer and inner ellipses.

Use the patnframe_oval function to draw an elliptical frame rendered with an
area-fill pattern. The elliptical frame is superimposed upon a filled rectangle.
Both the rectangle and the outer boundary of the elliptical frame are 130 in
width and 90 in height.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

static short fillpatn[] =
{

0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111,
0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111

};

static PATTERN framepatn = {16, 16, 1, (PTR)0};

main()
{

short w, h, x, y, dx, dy;

Syntax

Description

Example

 Fill Oval Frame With Pattern patnframe_oval

5-53

init_tiga(1);
clear_screen(0);
w = 130;
h = 90;
x = 10;
y = 10;
dx = w/4;
dy = h/4;
framepatn.data = gsp_malloc(sizeof(fillpatn));
host2gsp(fillpatn, framepatn.data, sizeof(fillpatn), 0)
set_patn(&framepatn);
fill_rect(w, h, x, y);
patnframe_oval (w, h, x, y, dx, dy);
term_tiga();

}

patnframe_rect Fill Rectangular Frame With Pattern

5-54 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void patnframe_rect(w, h, xleft, ytop, dx, dy)
short w, h; /* rectangle width and height */
short xleft, ytop; /* top left corner */
short dx, dy /* frame thickness in x, y */

The patnframe_rect function fills a rectangle-shaped frame with the current
area-fill pattern. The frame consists of a filled region between two concentric
rectangles. The outer edge of the frame is a rectangle specified in terms of its
width, height, and position. The frame thickness is specified separately for the
x and y dimensions. The portion of the screen enclosed by the frame is not al-
tered.

The first four arguments define the rectangle enclosing the outer edge of the
elliptical frame:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments control the thickness of the frame:

Arguments dx and dy specify the horizontal and vertical separation, re-
spectively, between the outer and inner rectangles.

Use the patnframe_rect function to draw a rectangular frame rendered with a
16-by-16 area-fill pattern. Also, outline the outer and inner borders of the frame
with the draw_rect function.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

static short fillpatn[] =
{

0x0000, 0x0000, 0x7C7C, 0x4444, 0x4444, 0x4444, 0x7FFC, 0x0440,
0x0440, 0x0440, 0x7FFC, 0x4444, 0x4444, 0x4444, 0x7C7C, 0x0000

};

static PATTERN framepatn = {16, 16, 1, (PTR)0};
main()
{

short w, h, x, y, dx, dy;

Syntax

Description

Example

 Fill Rectangular Frame With Pattern patnframe_rect

5-55

init_tiga(1);
clear_screen(0);
w = 144;
h = 96;
x = 16;
y = 16;
dx = 32;
dy = 16;
framepatn.data = gsp_malloc(sizeof(fillpatn));
host2gsp (fillptn, framepatn.data, sizeof(fillpatn), 0);
set_patn(&framepatn);
patnframe_rect (w, h, x, y, dx, dy);
draw_rect(w+2, h+2, x–1, y–1);
draw_rect(w–2*dx–2, h–2*dy–2, x+dx+1, y+dy+1);
term_tiga();

}

patnpen_line Draw Line With Pen and Pattern

5-56 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void patnpen_line(x1, y1, x2, y2)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */

The patnpen_line function draws a line with a pen and an area-fill pattern. The
thickness of the line is determined by the width and height of the rectangular
drawing pen. The area covered by the pen to represent the line is filled with
the current area-fill pattern.

Arguments x1 and y1 specify the starting x and y coordinates of the line. Argu-
ments x2 and y2 specify the ending x and y coordinates of the line.

The pen is a rectangle whose width and height can be modified by means of
the set_pensize function. At each point on the line drawn by the patnpen_line
function, the pen is located with its top left corner touching the line. The area
covered by the pen as it traverses the line from start to end is filled with a pat-
tern.

Use the patnpen_line function to draw two lines. The first line goes from (16,
16) to (144, 112), and the second line goes from (144, 112) to (144, 16). Use
the set_pensize function to set the pen dimensions to 24 by 16.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define PATTERN structure */

static short spiral[] =
{

0x0000, 0x3FFC, 0x7FFE, 0x0006, 0x0006, 0x1FC6, 0x3FE6, 0x3066,
0x3066, 0x33E6, 0x31C6, 0x3006, 0x3006, 0x3FFE, 0x1FFC, 0x0000

};

static PATTERN fillpatn = {16, 16, 1, (PTR)0};

main()
{

init_tiga(1);
clear_screen(0);
set_pensize(24, 16);
fillpatn.data = gsp_malloc(sizeof(spiral));
host2gsp(spiral, fillpatn.data, sizeof(spiral), 0);
set_patn(&fillpatn);
patnpen_line (16, 16, 144, 112);
patnpen_line (144, 112, 144, 16);
term_tiga();

}

Syntax

Description

Example

Draw Oval Arc With Pen and Pattern patnpen_ovalarc

5-57

#include <tiga.h>
#include <extend.h>

void patnpen_ovalarc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The patnpen_ovalarc function draws an arc of an ellipse with a pen and an
area-fill pattern. The ellipse from which the arc is taken is in standard position,
with the major and minor axes parallel to the coordinate axes. The ellipse is
specified in terms of the enclosing rectangle in which it is inscribed. The area
swept out by the pen as it traverses the arc is filled with the current area-fill pat-
tern. The thickness of the arc is determined by the width and height of the rect-
angular drawing pen.

The pen is a rectangle whose width and height can be modified by means of
the set_pensize function. At each point on the arc drawn by the
patnpen_ovalarc function, the pen is located with its top left corner touching
the arc. The area covered by the pen as it traverses the arc from start to end
is filled with a pattern.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is drawn.

Syntax

Description

 patnpen_ovalarc Draw Oval Arc With Pen and Pattern

5-58 Extended Graphics Library Functions

Use the patnpen_ovalarc function to draw an arc taken from an ellipse. Set the
pen dimensions to 24 by 16, and set the width and height of the ellipse to 144
and 112, respectively. Use the draw_oval function to superimpose a thin el-
lipse having the same width and height on the path taken by the pen in tracing
the arc.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

static short stripes[16] =
{

0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111,
0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111

};

static PATTERN fillpatn = { 16, 16, 1, (PTR)0 };

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
set_pensize(24, 16);
fillpatn.data = gsp_malloc(sizeof(stripes));
host2gsp(stripes, fillpatn.data, sizeof(stripes), 0);
set_patn(&fillpatn);
w = 144;
h = 112;
x = 16;
y = 16;
patnpen_ovalarc (w, h, x, y, 35, 255–45);
draw_oval(w, h, x, y);
term_tiga();

}

Example

Draw Pie Arc With Pen and Pattern patnpen_piearc

5-59

#include <tiga.h>
#include <extend.h>

void patnpen_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The patnpen_piearc function draws a pie-slice-shaped wedge from an ellipse
with a pen and an area-fill pattern. The wedge is formed by an arc of the ellipse
and by two straight lines that connect the two end points of the arc with the cen-
ter of the ellipse. The ellipse from which the arc is taken is in standard position,
with the major and minor axes parallel to the coordinate axes. The ellipse is
specified in terms of the enclosing rectangle in which it is inscribed. The area
swept out by the pen as it traverses the perimeter of the wedge is filled with
the current area-fill pattern. The thickness of the arc and of two lines drawn to
represent the wedge is determined by the width and height of the rectangular
drawing pen.

The pen is a rectangle whose width and height can be modified by means of
the set_pensize function. As the pen traverses the arc from start to end, the
pen is located with its top left corner touching the arc. The two lines connecting
the arc’s start and end points with the center of the ellipse are drawn in similar
fashion, with the top left corner of the pen touching each line as it traverses the
line from start to end.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is drawn.

Syntax

Description

 patnpen_piearc Draw Pie Arc With Pen and Pattern

5-60 Extended Graphics Library Functions

Use the patnpen_piearc function to draw an arc taken from an ellipse. Set the
pen dimensions to 16 by 16. Use the pen_piearc function to superimpose a thin
pie slice on the path taken by the pen in tracing the fat pie slice. Both the fat
and thin slices are taken from the same ellipse, which has width 144 and height
112. The arc extends from 33 degrees to 295 degrees.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

static short stripes[] =
{

0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111,
0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111

};

static PATTERN fillpatn = { 16, 16, 1, (PTR)0 };

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
fillpatn.data = gsp_malloc(sizeof(stripes));
host2gsp(stripes, fillpatn.data, sizeof(stripes), 0);
set_patn(&fillpatn);
w = 144;
h = 112;
x = 16;
y = 16;
set_pensize(16, 16);
patnpen_piearc (w, h, x, y, 33, 295–33);
set_pensize(1, 1);
pen_piearc(w, h, x, y, 33, 295–33);
term_tiga();

}

Example

Draw Point With Pen and Pattern patnpen_point

5-61

#include <tiga.h>
#include <extend.h>

void patnpen_point(x, y)
short x, y; /* pen coordinates */

The patnpen_point function draws a point with a pen and an area-fill pattern.
Arguments x and y specify where the top left corner of the rectangular drawing
pen is positioned relative to the drawing origin. The resulting figure is a rectan-
gle the width and height of the pen and filled with the current area-fill pattern.

Use the patnpen_point function to draw a sine wave of amplitude 60. Each
point on the wave is separated from the next by an angular increment of ap-
proximately 1/16 of a radian.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define FOURPI 823550L /* fixed–point 4*PI */
#define HALF 32768L /* fixed–point 1/2 */
#define AMPL 60L /* sine wave amplitude */
#define N 4 /* increment = 1/2**N radians */

static short stripes[] =
{

0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111,
0x8888, 0x4444, 0x2222, 0x1111, 0x8888, 0x4444, 0x2222, 0x1111

};

static PATTERN fillpatn = { 16, 16, 1, (PTR)0 };

main()
{

long i;
short x, y;
long u, v;

init_tiga(1);
clear_screen(0);
fillpatn.data = gsp_malloc(sizeof(stripes));
host2gsp(stripes, fillpatn.data, sizeof(stripes), 0);
set_patn(&fillpatn);
set_pensize(1, 32);
set_draw_origin(10, 10+AMPL);
u = AMPL << 16; /* convert to fixed–pt */
v = 0;
for (i = (FOURPI << N) >> 16, x = 0 ; i >= 0; i––, x++)
{

y = (v + HALF) >> 16;
patnpen_point (x, y); /* draw next point */
u += v >> N;
v –= u >> N;

}
term_tiga();

}

Syntax

Description

Example

 patnpen_polyline Draw Polyline With Pen and Pattern

5-62 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>
typedef struct { short x, y; } POINT;

void patnpen_polyline(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The patnpen_polyline function draws multiple, connected lines with a pen and
an area-fill pattern. The thickness of the lines is determined by the width and
height of the rectangular drawing pen. An array of integer x-y coordinates rep-
resenting the polyline vertices is specified as one of the arguments. A line is
drawn between each pair of adjacent vertices in the array. The area covered
by the rectangular drawing pen as it traverses each line is drawn in the current
area-fill pattern.

Argument n specifies the number of vertices in the polyline; the number of lines
drawn is n–1.

Argument vert is an array of x-y coordinates representing the polyline vertices
in the order in which they are to be traversed. The x-y coordinate pairs, 0
through n–1 of the vert array contain the coordinates for the n vertices. The
function draws a line between each adjacent pair of vertices in the array. Each
vertex is represented by a 16-bit x-coordinate value followed by a 16-bit y-
coordinate value. Coordinates are specified relative to the drawing origin.

For the polyline to form a closed polygon, the calling program must ensure that
the first and last vertices in the vert array are the same.

Note that large amounts of data passed to this function may overflow the TIGA
command buffer. The size of the command buffer is contained in the
comm_buff_size field of the CONFIG structure returned by the get_config
function. The application must ensure that data passed to this function will not
overflow the command buffer.

The number of vertices that may be sent without overflowing the command
buffer is calculated as

comm_buff_size(bytes) – 10
max_verts = ––––––––––––––––––––––––––

4

Syntax

Description

Draw Polyline With Pen and Pattern patnpen_polyline

5-63

An alternate entry point, patnpen_polyline_a, is provided to automatically
check the size of the data being passed. The arguments for this function are
identical to those described above. If the command buffer is too small to con-
tain the function’s data, this entry point will attempt to allocate a temporary buff-
er in TMS340 memory. If there is not enough memory available for this buffer,
the standard TIGA error function is invoked (which can be trapped by using the
install_usererror function). Although this alternate entry point frees the appli-
cation from having to check the data size, it takes longer to execute than its
nonchecking counterpart.

Use the patnpen_polyline function to draw a polyline with four vertices. Also
use the pen_polyline function to superimpose a thin line on the fat line to mark
the position of the pen relative to the specified polyline. The vertex coordinates
given to both polyline functions are (16, 16), (64, 128), (128, 48), and (160, 48).

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

typedef struct {short x, y;} POINT;

#define NVERTS 4 /* number of vertices in polyline */

static short amoeba[16] =
{

0x1008, 0x0C30, 0x03C0, 0x8001, 0x4002, 0x4002, 0x2004, 0x2004,
0x2004, 0x2004, 0x4002, 0x4002, 0x8001, 0x03C0, 0x0C30, 0x1008

};

static PATTERN fillpatn = {16, 16, 1, (PTR)0};

static POINT xy[NVERTS] =
{

{16, 16}, {64, 128}, {128, 48}, {160, 48}
};

main()
{

init_tiga(1);
clear_screen(0);
fillpatn.data = gsp_malloc(sizeof(amoeba));
host2gsp(amoeba, fillpatn.data, sizeof(amoeba), 0);
set_patn(&fillpatn);
set_pensize(24, 32);
patnpen_polyline (NVERTS, xy); /* fat polyline */
set_pensize(2, 2);
pen_polyline(NVERTS, xy); /* thin polyline */
term_tiga();

}

Example

 pen_line Draw Line With Pen

5-64 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void pen_line(x1, y1, x2, y2)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */

The pen_line function draws a line with a pen and a solid color. The thickness
of the line is determined by the width and height of the rectangular drawing
pen. The area covered by the pen to represent the line is filled with the current
foreground color.

Arguments x1 and y1 specify the starting x and y coordinates of the line. Argu-
ments x2 and y2 specify the ending x and y coordinates of the line. All coordi-
nates are specified relative to the drawing origin.

The pen is a rectangle whose width and height can be modified by means of
the set_pensize function. At each point on the line drawn by the pen_line func-
tion, the pen is located with its top left corner touching the line. The area cov-
ered by the pen as it traverses the line from start to end is filled with a solid
color.

Use the pen_line function to draw a thick line from (16, 16) to (128, 80) with
a 5-by-3 pen. Use the draw_oval function to draw a small circle around the start
point of the line.

#include <tiga.h>
#include <extend.h>

main()
{

short x1, y1, x2, y2, r;

init_tiga(1);
clear_screen(0);
set_pensize(5, 3);
x1 = 16;
y1 = 16;
x2 = 128;
y2 = 80;
pen_line (x1, y1, x2, y2);
r = 7;
draw_oval(2*r, 2*r, x1–r, y1–r);
term_tiga();

}

Syntax

Description

Example

Draw Oval Arc With Pen pen_ovalarc

5-65

#include <tiga.h>
#include <extend.h>

void pen_ovalarc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The pen_ovalarc function draws an arc of an ellipse with a pen and a solid col-
or. The ellipse from which the arc is taken is in standard position, with the major
and minor axes parallel to the coordinate axes. The ellipse is specified in terms
of the enclosing rectangle in which it is inscribed. The area swept out by the
pen as it traverses the arc is filled with the current foreground color. The thick-
ness of the arc is determined by the width and height of the rectangular draw-
ing pen.

The pen is a rectangle whose width and height can be modified by means of
the set_pensize function. At each point on the arc drawn by the pen_ovalarc
function, the pen is located with its top left corner touching the arc. The area
covered by the pen as it traverses the arc from start to end is filled with a solid
color.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent—that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range from [–359, +359], the entire ellipse is drawn.

Syntax

Description

 pen_ovalarc Draw Oval Arc With Pen

5-66 Extended Graphics Library Functions

Use the pen_ovalarc function to draw two thick arcs taken from an ellipse of
width 132 and height 94. Also, draw the ellipse with the draw_oval function.

#include <tiga.h>
#include <extend.h>

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
w = 132;
h = 94;
x = 10;
y = 10;
draw_oval(w, h, x, y);
set_pensize(9, 9);
pen_ovalarc (w, h, x, y, 0, 90);
set_pensize(6, 6);
pen_ovalarc (w, h, x, y, 135, 210–135);
term_tiga();

}

Example

Draw Pie Arc With Pen pen_piearc

5-67

#include <tiga.h>
#include <extend.h>

void pen_piearc(w, h, xleft, ytop, theta, arc)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */

The pen_piearc function draws a pie-slice-shaped wedge from an ellipse with
a pen and a solid color. The wedge is formed by an arc of the ellipse and by
two straight lines that connect the two end points of the arc with the center of
the ellipse. The ellipse from which the arc is taken is in standard position, with
the major and minor axes parallel to the coordinate axes. The ellipse is speci-
fied in terms of the enclosing rectangle in which it is inscribed. The area swept
out by the pen as it traverses the perimeter of the wedge is filled with the cur-
rent foreground color. The thickness of the arc and two lines drawn to repre-
sent the wedge is determined by the width and height of the rectangular draw-
ing pen.

The pen is a rectangle whose width and height can be modified by means of
the set_pensize function. As the pen traverses the arc from start to end, the
pen is located with its top left corner touching the arc. The two lines connecting
the arc’s start and end points with the center of the ellipse are drawn in similar
fashion, with the top left corner of the pen touching each line as it traverses the
line from start to end.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

The last two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent—that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is drawn.

Syntax

Description

 pen_piearc Draw Pie Arc With Pen

5-68 Extended Graphics Library Functions

Use the pen_piearc function to draw two pie slices taken from an ellipse of
width 132 and height 94. Also, draw the ellipse with the draw_oval function.

#include <tiga.h>
#include <extend.h>

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
w = 132;
h = 94;
x = 10;
y = 10;
draw_oval(w, h, x, y);
set_pensize(7, 6);
pen_piearc (w, h, x, y, 0, 90);
set_pensize(4, 3);
pen_piearc (w, h, x, y, 155, 250–155);
term_tiga();

}

Example

Draw Point With Pen pen_point

5-69

#include <tiga.h>
#include <extend.h>

void pen_point(x, y)
short x, y; /* pen coordinates */

The pen_point function draws a point with a pen and a solid color. Arguments
x and y specify where the top left corner of the rectangular drawing pen is posi-
tioned relative to the drawing origin. The resulting figure is a rectangle the
width and height of the pen and filled with the current foreground color.

Use the pen_point function to draw a series of rectangular pens of increasing
size.

#include <tiga.h>
#include <extend.h>

main()
{

short w, h, x, y;

init_tiga(1);
clear_screen(0);
x = y = 10;
w = h = 1;
for (; x < 140; w += 3, h += 2, x += 2*w, y += h)
{

set_pensize(w, h);
pen_point (x, y);

}
term_tiga();

}

Syntax

Description

Example

 pen_polyline Draw Polyline With Pen

5-70 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>
typedef struct { short x, y; } POINT;

void pen_polyline(n, vert)
short n; /* vertex count */
POINT *vert; /* vertex coordinates */

The pen_polyline function draws multiple, connected lines with a pen and a
solid color. The thickness of the lines is determined by the width and height of
the rectangular drawing pen. An array of x-y coordinates representing the
polyline vertices is specified as one of the arguments. A line is drawn between
each pair of adjacent vertices in the array. The area covered by the rectangular
drawing pen as it traverses each line is drawn in the current foreground color.

Argument n specifies the number of vertices in the polyline; the number of lines
drawn is n–1.

Argument vert is an array of integer x-y coordinates representing the polyline
vertices in the order in which they are to be traversed. The x-y coordinate pairs,
0 through n–1 of the vert array contain the coordinates for the n vertices. The
function draws a line between each adjacent pair of vertices in the array. Each
vertex is represented by a 16-bit x-coordinate value followed by a 16-bit y-
coordinate value. Coordinates are specified relative to the drawing origin.

For the polyline to form a closed polygon, the calling program must ensure that
the first and last vertices in the vert array are the same.

Note that large amounts of data passed to this function may overflow the TIGA
command buffer. The size of the command buffer is contained in the
comm_buff_size field of the CONFIG structure returned by the get_config
function. The application must ensure that data passed to this function will not
overflow the command buffer.

The number of vertices that may be sent without overflowing the command
buffer is calculated as:

comm_buff_size(bytes) – 10
max_verts = ––––––––––––––––––––––––––

4

Syntax

Description

Draw Polyline With Pen pen_polyline

5-71

An alternate entry point, pen_polyline_a, is provided to automatically check
the size of the data being passed. The arguments for this function are identical
to those described above. If the command buffer is too small to contain the
function’s data, this entry point will attempt to allocate a temporary buffer in
TMS340 memory. If there is not enough memory available for this buffer, the
standard TIGA error function is invoked (which can be trapped by using the
install_usererror function). Although pen_polyline_a frees the application from
having to check the data size, it takes longer to execute than its nonchecking
counterpart pen_polyline.

Use the pen_polyline function to draw a fat polyline. The polyline vertices are
at coordinates (10, 10), (64, 96), (100, 48), and (140, 48).

#include <tiga.h>
#include <extend.h>

typedef struct {short x, y;} POINT;

#define NVERTS 4 /* number of vertices in polyline */

static POINT xy[NVERTS] =
{

{10, 10}, {64, 96}, {100, 48}, {140, 48}
};

main()
{

init_tiga(1);
clear_screen(0);
set_pensize(5, 4);
pen_polyline (NVERTS, xy);
term_tiga();

}

Example

 put_pixel Put Pixel

5-72 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void put_pixel(val, x, y)
unsigned long val; /* pixel value */
short x, y; /* pixel coordinates */

The put_pixel function sets a pixel on the screen to a specified value. Argu-
ment val is the value written to the pixel. Arguments x and y are the coordinates
of the pixel, defined relative to the drawing origin. If the screen pixel size is n
bits, the pixel value is contained in the n LSBs of argument val; the higher order
bits of val are ignored.

Use the put_pixel function to rotate a text image on the screen by 45 degrees.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define FONTINFO structure */

main()
{

FONTINFO fontinfo;
short xs, ys, xd, yd, w, h;
unsigned long val;
char *s;

init_tiga(1);
clear_screen(0);
s = ”45–degree slant”;
get_fontinfo(0, &fontinfo);
w = text_width(s);
h = fontinfo.charhigh;
xs = ys = 0;
text_out(xs, ys, s);
for (xd = h, yd = h; ys < h; ys++, xd = h–ys, yd = ys+h)

for (xs = 0; xs < w; xs++, xd++, yd++)
{

val = get_pixel(xs, ys);
put_pixel (val, xd, yd);

}
term_tiga();

 }

Syntax

Description

Example

Seed Fill seed_fill

5-73

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

void seed_fill(x, y, buf, maxbytes)
short x, y; /* seed pixel coordinates */
PTR buf; /* temporary buffer */
short maxbytes; /* buffer capacity in bytes */

The seed_fill function fills a connected region of pixels on the screen with a
solid color, starting at a specified seed pixel. All pixels that are part of the con-
nected region that includes the seed pixel are filled with the current foreground
color.

The seed color is the original color of the specified seed pixel. All pixels in the
connected region match the seed color before being filled with the foreground
color.

The connected region filled by the function always includes the seed pixel. To
be considered part of the connected region, a pixel must both match the seed
color and be horizontally or vertically adjacent to another pixel that is part of
the connected region. (Having a diagonally adjacent neighbor that is part of
the region is not sufficient.)

Arguments x and y specify the coordinates of the seed pixel, defined relative
to the current drawing origin.

The last two arguments specify the temporary buffer used as a working stor-
age during the seed fill. Argument buf is an array in TMS340 memory large
enough to contain the temporary data that the function uses. Argument max-
bytes is the number of 8-bit bytes available in the buf array. Working storage
requirements can be expected to increase with the complexity of the con-
nected region being filled.

The seed_fill function aborts (returns immediately) if any of these conditions
is detected:

The seed pixel matches the current foreground color.

The seed pixel lies outside the current clipping window.

The storage buffer space specified by argument maxbytes is insufficient
to continue.

Syntax

Description

 seed_fill Seed Fill

5-74 Extended Graphics Library Functions

In the last case, the function may have filled some portion of the connected
region before aborting.

Use the seed_fill function to fill a connected region of pixels on the screen. Use
the draw_rect function to draw a maze, the interior of which is filled by the
seed_fill function.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define MAXBYTES 2048

main()
{

PTR buf; /* seed-fill temp. buffer */

init_tiga(1);
clear_screen(0);

/* Construct a maze consisting of 6 rectangles */
draw_rect(120, 80, 10, 10);
draw_rect(10, 30, 35, 5);
draw_rect(55, 10, 5, 40);
draw_rect(10, 55, 65, 5);
draw_rect(85, 10, 5, 65);
draw_rect(10, 80, 95, 5);

/* Now seed fill the interior of the maze */
buf = gsp_malloc(MAXBYTES);
seed_fill (20, 20, buf, MAXBYTES);
term_tiga();

}

Example

Seed Fill With Pattern seed_patnfill

5-75

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

void seed_patnfill(x, y, buf, maxbytes)
short x, y; /* seed pixel coordinates */
PTR buf; /* temporary buffer */
short maxbytes; /* buffer capacity in bytes */

The seed_patnfill function fills a connected region of pixels with a pattern, start-
ing at a specified seed pixel. All pixels that are part of the connected region that
includes the seed pixel are filled with the current area-fill pattern.

The seed color is the original color of the specified seed pixel. All pixels in the
connected region match the seed color before being filled with the pattern.

The connected region filled by the function always includes the seed pixel. To
be considered part of the connected region, a pixel must both match the seed
color and be horizontally or vertically adjacent to another pixel that is part of
the connected region. (Having a diagonally adjacent neighbor that is part of
the region is not sufficient.)

Arguments x and y specify the coordinates of the seed pixel, defined relative
to the current drawing origin.

The last two arguments specify a buffer used as a working storage during the
seed fill. Argument buf is an array in TMS340 memory large enough to contain
the temporary data that the function uses. Argument maxbytes is the number
of 8-bit bytes available in the buf array. Working storage requirements can be
expected to increase with the complexity of the connected region being filled.

The seed_patnfill function aborts (returns immediately) if any of these condi-
tions are detected:

The seed pixel matches either the current foreground color or the back-
ground color. (The area-fill pattern is rendered in these two colors.)

The seed pixel lies outside the current clipping window.

The storage buffer space specified by maxbytes is insufficient to continue.

In the last case, the function may have filled some portion of the connected
region prior to aborting.

Syntax

Description

 seed_patnfill Seed Fill With Pattern

5-76 Extended Graphics Library Functions

Use the seed_patnfill function to fill a connected region of pixels on the screen
with a pattern. Use the draw_rect function to draw a maze, the interior of which
is filled by the seed_patnfill function. Note that the two colors in the area-fill pat-
tern, white and blue, differ from the original color of the connected region,
black. If either color in the pattern matches the seed pixel color, the
seed_patnfill function will return immediately without drawing anything.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define MAXBYTES 2048 /* size of temp buffer in bytes */

static short snowflake[] =
{

0x0000, 0x01C0, 0x19CC, 0x188C, 0x0490, 0x02A0, 0x31C6, 0x3FFE,
0x31C6, 0x02A0, 0x0490, 0x188C, 0x19CC, 0x01C0, 0x0000, 0x0000

};

static PATTERN fillpatn = {16, 16, 1, (PTR)0};

main()
{

short w, h, x, y, n;
PTR buf;

init_tiga(1);
clear_screen(0);
fillpatn.data = gsp_malloc(sizeof(snowflake));
host2gsp(snowflake, fillpatn.data, sizeof(snowflake), 0);
set_patn(&fillpatn);

/* Construct a maze consisting of 6 rectangles */
draw_rect(120, 80, 10, 10);
draw_rect (10, 30, 35, 5);
draw_rect (55, 10, 5, 40);
draw_rect (10, 55, 65, 5);
draw_rect (85, 10, 5, 65);
draw_rect (10, 80, 95, 5);

/* Fill the interior of the maze with a pattern */
set_bcolor(BLUE);
buf = gsp_malloc(MAXBYTES);
seed_patnfill (20, 20, buf, MAXBYTES);
term_tiga();

}

Example

Select Font select_font

5-77

#include <tiga.h>
#include <extend.h>

short select_font(id)
short id; /* font identifier */

The select_font function selects one of the installed fonts for use by the text
functions. The input argument, id, is valid only if it identifies a font currently in-
stalled in the font table. Argument id must either be a valid identifier value re-
turned by a previous call to the install_font function, or be 0, indicating selec-
tion of the system font.

A value of 0 is returned if the argument id is not valid; in this case, the function
returns without attempting to select a new font. A nonzero value is returned if
the selection is successful.

See the delete_font function description example on page 5-9.

Syntax

Description

Example

 set_draw_origin Set Drawing Origin

5-78 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void set_draw_origin(x, y)
short x, y; /* new drawing origin */

The set_draw_origin function sets the position of the drawing origin for all sub-
sequent drawing operations to the screen. The coordinates specified for all
drawing functions are defined relative to the drawing origin. The x and y axes
for drawing operations pass through the drawing origin, with x increasing to the
right, and y increasing in the downward direction.

Arguments x and y are the horizontal and vertical coordinates of the new draw-
ing origin relative to the screen origin at the top left corner of the screen.

Use the set_draw_origin function to move the drawing origin to various loca-
tions on the screen. In each case, verify that subsequent text and graphics out-
put are positioned relative to the current origin.

#include <tiga.h>
#include <extend.h>

main()
{

short x, y, w;
char *s;

init_tiga(1);
clear_screen(0);
s = ”abc”;
w = text_width(s);

for (y = 10; y < 100; y += 50)
for (x = 10; x < 100; x += 65)
{

set_draw_origin (x, y);
draw_line(0, 0, 60–1, 45–1);
draw_line(0, 45–1, 60–1, 0);
text_out(30–w/2, 10, ”abc”);
frame_rect(60, 45, 0, 0, 1, 1);
frame_oval(60, 45, 0, 0, 3, 3);

}
term_tiga();

}

Syntax

Description

Example

Set Destination Bitmap set_dstbm

5-79

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

void set_dstbm(baseaddr, pitch, xext, yext, psize)
PTR baseaddr; /* bitmap base address */
short pitch; /* bitmap pitch */
short xext, yext; /* x and y extents */
short psize; /* pixel size */

The set_dstbm function sets the destination bitmap for subsequent drawing
functions. Currently, only the bitblt function can write to a bitmap other than the
screen. All other drawing functions abort (return without drawing anything) if
the destination bitmap is set to a bitmap other than the screen.

Argument baseaddr is a pointer to the destination bitmap. Invoking the func-
tion with a baseaddr value of 0 sets the destination bitmap to the screen and
causes the last four arguments to the function to be ignored. A nonzero base-
addr is interpreted as a pointer to a linear bitmap; in other words, the destina-
tion bitmap is contained in an offscreen buffer. The specified bitmap should be-
gin on an even pixel boundary in memory. For instance, when the pixel size
is 32 bits, the 5 LSBs of the bitmap’s base address should be 0s.

Argument pitch is the difference in bit addresses from the start of one row of
the bitmap to the next. The bitblt function requires that the destination pitch be
specified as a positive, nonzero multiple of the destination bitmap’s pixel size.
The bitblt function executes faster if the pitch is further restricted to be a multi-
ple of 16.

Arguments xext and yext define the upper limits of the effective clipping win-
dow for a linear destination bitmap. The pixel having the lowest memory ad-
dress in the window is the pixel at (0, 0), whose address is baseaddr. The pixel
having the highest memory address in the window is the pixel at (xext, yext),
whose address is calculated as

address = baseaddr + yext*(pitch) + xext*(psize)

In the case of a linear bitmap, responsibility for clipping is left to the calling pro-
gram.

Syntax

Description

 set_dstbm Set Destination Bitmap

5-80 Extended Graphics Library Functions

Use the set_dstbm function to designate an offscreen buffer as the destination
bitmap. Contract an image from the screen to 1 bit per pixel and store the con-
tracted image in the offscreen buffer. Next, expand the image from 1 bit per
pixel to the screen pixel size and copy to another area of the screen below the
original image. This example includes the C header file typedefs.h, which de-
fines the FONT and FONTINFO structures.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define FONTINFO */

#define MAXBYTES 4096 /* size of image buffer (bytes) */

static FONTINFO fontinfo;

main()
{

short w, h, x, y, pitch;
char *s;
PTR image;

init_tiga(1);
clear_screen(0);

/* Print one line of text to screen */
x = y = 10;
s = ”Capture this text image.”;
text_out(x, y, s);
w = text_width(s);
get_fontinfo(0, &fontinfo);
h = fontinfo.charhigh;

/* Make sure buffer is big enough to contain image */
pitch = ((w + 15)/16)*16;
if (pitch*h/8 > MAXBYTES)
{

text_out(x, y+h, ”Image too big!”);
term_tiga();

}

/* Capture text image from screen */
image = gsp_malloc(MAXBYTES);
set_dstbm (image, pitch, w, h, 1); /* offscreen bitmap */
bitblt(w, h, x, y, 0, 0); /* contract */

/* Now copy text image to another area of screen */
swap_bm();
bitblt(w, h, 0, 0, x, y+h); /* expand */
term_tiga();

}

Example

Set Fill Pattern set_patn

5-81

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

void set_patn(ppatn)
PATTERN *ppatn;

The set_patn function sets the fill pattern for subsequent drawing operations.
This pattern is used for drawing functions such as patnfill_rect and patn-
fill_oval that fill regions with patterns. All pattern-filling functions are easily
identified by their function names, which include the four-letter descriptor patn.

Argument ppatn is a pointer in host memory to a PATTERN structure.

The PATTERN structure contains the following fields:

typedef struct
{

unsigned short width;
unsigned short height;
unsigned short depth;
PTR data;

}PATTERN;

Fields width and height specify the dimensions of the pattern.

Field depth specifies the pixel size of the pattern.

Field data is a pointer to a bitmap in TMS340 memory containing the actual
pattern.

Refer to the PATTERN structure description in Appendix A for detailed descrip-
tions of each field.

Only two-color 16-by-16 patterns are currently supported by the pattern-fill
drawing functions. This means that the fields width, height, and depth of the
PATTERN structure pointed to by argument ppatn must be specified as 16, 16,
and 1, respectively. The data field is assumed to be a pointer to a 16-by-16,
1-bit-per-pixel bitmap. A bit value of 1 in the pattern bitmap specifies that the
foreground color be used to draw the corresponding pixel; a bit value of 0 spec-
ifies the background color. The first pattern bit controls the pixel in the top left
corner of the pattern; the last pattern bit controls the pixel in the bottom right
corner.

The tiling of patterns to the screen is currently fixed relative to the top left corner
of the screen. In other words, changing the drawing origin causes no shift in
the mapping of the pattern to the screen, although the boundaries of the geo-
metric primitives themselves (rectangles, ovals, and so on) are positioned rel-
ative to the drawing origin. The pixel at screen coordinates (x, y) is controlled
by the bit at coordinates (x mod 16, y mod 16) in the pattern bitmap.

The entire PATTERN structure is saved by the set_patn function, and the origi-
nal structure pointed to by argument ppatn need not be preserved following

Syntax

Description

 set_patn Set Fill Pattern

5-82 Extended Graphics Library Functions

the call to the function. However, the actual bitmap containing the pattern is
not saved by the function; this bitmap must be preserved by the calling pro-
gram as long as the pattern remains in use.

During initialization of the drawing environment, the area-fill pattern is set to
its default state, which is to fill with solid foreground color.

Use set_patn function to change the area-fill pattern. With each change in the
pattern, call the patnfill_rect function to tile the screen with alternating heart
and star patterns.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define PATTERN structure */

static PATTERN fillpatn = {16, 16, 1, (PTR)0};

static short patnbits[] =
/* Heart pattern */
{
0x0000, 0x0000, 0x0E38, 0x1F7C, 0x3FFE, 0x3FFE, 0x3FFE, 0x3FFE,
0x1FFC, 0x0FF8, 0x07F0, 0x03E0, 0x01C0, 0x0080, 0x0000, 0x0000,

/* Star pattern */
0xFFFF, 0xFF7F, 0xFF7F, 0xFF7F, 0xFE3F, 0xFE3F, 0x8000, 0xE003,
0xF007, 0xFC1F, 0xFC1F, 0xF80F, 0xF9CF, 0xF3E7, 0xF7F7, 0xFFF F
};

main()
{

short x, y, index;
PTR patn_base_addr;

init_tiga(1);
clear_screen(0);
index = 0;
patn_base_addr = gsp_malloc(sizeof(patnbits));
host2gsp(patnbits, patn_base_addr, sizeof(patnbits), 0);
for (x = 16; x < 160; x += 32)

for (y = 16; y < 96; y += 32)
{

fillpatn.data = patn_base_addr + (16 * 16 * (index ^=
1));

set_patn (&fillpatn);
patnfill_rect(32, 32, x, y);

}
term_tiga();

}

Example

Set Pen Size set_pensize

5-83

#include <tiga.h>
#include <extend.h>

void set_pensize(w, h)
short w, h; /* pen width and height */

The set_pensize function sets the dimensions of the pen for subsequent draw-
ing operations. The pen is a rectangular shape that is used by drawing func-
tions such as pen_line and pen_ovalarc to sweep out wide lines and arcs. All
functions that utilize the pen are easily identified by their function names, which
include the three-letter descriptor pen.

Arguments w and h specify the width and height of the pen. The width and
height are specified in terms of pixels.

A mathematically ideal line is infinitely thin. Conceptually, a function such as
pen_line renders a wide line by positioning the top left corner of the pen to coin-
cide with the ideal line as the pen is moved from one end of the line to the other.
The area swept out by the pen is filled with either a solid color (for instance,
pen_line) or a pattern (for instance, patnpen_line). Arcs are rendered in similar
fashion.

Use set_pensize function to change dimensions of rectangular drawing pen.
Draw a point and a line to show the effect of the change in pen size.

#include <tiga.h>
#include <extend.h>

main()
{

init_tiga(1);
clear_screen(0);

/* Draw point and line with default pen */
pen_point(10, 10);
pen_line(20, 10, 100, 30);

/* Set pen dimensions to 8x6 */
set_pensize (8, 6);

/* Draw new point and line */
pen_point(10, 30);
pen_line(30, 30, 110, 50);
term_tiga();

}

Syntax

Description

Example

 set_srcbm Set Source Bitmap

5-84 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

void set_srcbm(baseaddr, pitch, xext, yext, psize)
PTR baseaddr; /* bitmap base address */
short pitch; /* bitmap pitch */
short xext, yext; /* x and y extents */
short psize; /* pixel size */

The set_srcbm function sets the source bitmap in TMS340 memory for subse-
quent drawing functions. Currently, only the bitblt and zoom_rect functions can
access a source bitmap other than the screen.

Argument baseaddr is a pointer to the source bitmap in TMS340 memory. In-
voking the function with a baseaddr value of 0 designates the screen as the
source bitmap. In this case, the last four arguments are ignored by the function.
A nonzero baseaddr is interpreted as a pointer to a linear bitmap; that is, the
source bitmap is contained in an offscreen buffer. The specified bitmap should
begin on an even pixel boundary in memory. For instance, when the pixel size
is 32 bits, the 5 LSBs of the bitmap’s base address should all be 0s.

Argument pitch is the difference in bit addresses from the start of one row of
the bitmap to the next. The bitblt function requires that the source pitch be spe-
cified as a positive, nonzero multiple of the source bitmap’s pixel size. The
bitblt function executes faster if the pitch is further restricted to be a multiple
of 16. The zoom_rect function requires that the source pitch be specified as
a positive, nonzero multiple of 16. In the case of a 32-bit source pixel size,
zoom_rect requires a multiple-of-32 pitch.

Arguments xext and yext define the upper limits of the effective clipping win-
dow for the linear bitmap. The pixel having the lowest memory address in the
window is the pixel at (0,0), whose address is baseaddr. The pixel having the
highest memory address in the window is the pixel at (xext,yext), whose ad-
dress is calculated as

address = baseaddr + yext*(pitch) + xext*(psize)

In the case of a linear bitmap, responsibility for clipping is left to the application
program.

Syntax

Description

Set Source Bitmap set_srcbm

5-85

Use the set_srcbm function to designate an offscreen buffer as the source bit-
map. Expand the image from 1 bit per pixel to the screen pixel size and copy
the image to the screen.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define W 23 /* width of image in pixels */
#define H 9 /* height of image in pixels */
#define PITCH 32 /* pitch of image in bits */

static short image[] =
{

0xFFFF, 0x007F, 0x0001, 0x0040, 0x45D5, 0x005C,
0x4455, 0x0054, 0x44DD, 0x0054, 0x4455, 0x0054,
0xDDD5, 0x005D, 0x0001, 0x0040, 0xFFFF, 0x007F

};

main()
{

PTR buf, bmaddr;
short x, y;
CONFIG c;

init_tiga(1);
clear_screen(0);

/* Expand image to screen */
x = y = 10;
bmaddr = gsp_malloc(sizeof(image));
host2gsp(image, bmaddr, sizeof(image), 0);
set_srcbm (bmaddr, PITCH, W, H, 1); /* offscreen bitmap */
bitblt(W, H, 0, 0, x, y);

/* Blow the image up so it’s big enough to see */
set_srcbm (0, 0, 0, 0, 0); /* screen */
get_config(&c);
buf = gsp_malloc((c.mode.disp_psize * W)/8);
zoom_rect(W, H, x, y, 3*W, 3*H, x, y+2*H, buf);
term_tiga();

}

Example

 set_textattr Set Text Attributes

5-86 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

short set_textattr(pcontrol, count, val)
char *pcontrol; /* control string */
short count; /* val array length */
short *val; /* array of attribute values */

The set_textattr function sets text-rendering attributes. The function provides
control over text attributes such as alignment, additional intercharacter spac-
ing, and intercharacter gaps. The attributes specified by the function remain
in effect during subsequent calls to the install_font, select_font, and
delete_font functions.

Argument pcontrol is a control string specifying the attributes (one or more) to
be updated. Argument count is the number of elements in the val array and is
also the number of asterisks in the control string. Argument val is the array con-
taining the attribute values designated by asterisks in the control string. The
attribute values are contained in the consecutive elements of the val array, be-
ginning with val [0], in the order in which they appear in the pcontrol string.

The following attributes are currently supported:

Symbol Attribute Description Option Value
%a alignment 0 = top left, 1 = base line
%e additional intercharacter spacing 16-bit signed integer
%f fill gaps 0 = leave gaps, 1 = fill gaps
%r reset all options ignored

Values associated with attributes can be specified either as immediate values
in the control string or as values in the val array. When an attribute value is
passed as a string literal, it should be placed between the percent (%) charac-
ter and the attribute symbol. When an attribute value is passed as a val array
element, an asterisk (*) is placed between the percent character and the attrib-
ute symbol. Upon encountering the asterisk, the function will retrieve the value
from the val array and increment its internal pointer to the next val array ele-
ment.

The value returned by the function is the number of attributes successfully set.

Only the text attributes of proportionally spaced fonts can be modified by this
function; the attributes of block fonts are fixed. Block fonts are characterized
by uniform horizontal spacing between adjacent characters. Block fonts are
always aligned to the top left corner of the character cell; that is, the position
of a string of block text is always specified in terms of the x-y coordinates at
the top left corner of the first character in the string. The intercharacter gaps
between block-font characters are always filled with the background color.

The system font, font 0, is always a block font. Fonts installed by calls to the
install_font function (identified by font indices 1, 2, and so on) may be selected
to be either block fonts or proportionally spaced fonts.

Syntax

Description

Set Text Attributes set_textattr

5-87

In the case of a proportionally spaced font, text alignment in the y dimension
can be set either to the top of the character or to the base line of the character.
Text alignment in the x dimension is fixed at the left edge of the character. Im-
mediately following initialization of the drawing environment by the set_config
function, the alignment is to the top left corner of the character, which is the
default.

The additional intercharacter spacing attribute specifies how many extra pix-
els of space are to be added (or subtracted in the case of a negative value) to
the default horizontal separation between adjacent characters, as specified in
the FONT data structure. Immediately following initialization of the drawing en-
vironment, the additional intercharacter spacing is 0, which is the default.

The intercharacter gaps attribute controls whether or not the gaps between
horizontally adjacent characters are automatically filled with the background
color. When this attribute is enabled, one line of proportionally spaced text may
be cleanly written directly on top of another without first erasing the text under-
neath. Immediately following initialization of the drawing environment, the fill-
ing of intercharacter gaps is disabled, which is the default.

Set the text alignment to the character base line position. This can be accom-
plished by assigning the value 1 to attribute symbol %a by means of the literal
method:
set_textattr (”%1a”, 0, 0);

Note that in the example above the third argument is ignored by the function.

The same effect can be achieved by passing the attribute value in the val array.
An asterisk is placed between the “%” and the “a” in the control string, and val
[0] contains the attribute value, 1:

short val[1];
val[0] = 1;
set_textattr (”%*a”, 1, val);

The following example shows two attributes set by a single call to set_textattr.
It sets the text alignment mode to base line position by using a literal value em-
bedded in the control string, and sets the additional intercharacter spacing to
–21 by passing the value through the val array:

short val[1];
val[0] = –21;
set_textattr (”%0a%*e”, 1, val);

The same effect can be achieved by passing both values through the val array:

short val[2];
val[0] = 0;
val[1] = –21;
set_textattr (”%*a%*e”, 2, val);

Finally, the following function call resets all text attributes to their default val-
ues:
set_textattr (” %0r”,0,0);

Example

 styled_line Draw Styled Line

5-88 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void styled_line(x1, y1, x2, y2, style, mode)
short x1, y1; /* start coordinates */
short x2, y2; /* end coordinates */
long style; /* 32-bit line style pattern */
short mode /* 1 of 4 drawing modes */

The styled_line function uses Bresenham’s algorithm to draw a styled line from
the specified start point to the specified end point. The line is a single pixel thick
and is drawn in the specified line-style pattern.

Arguments x1 and y1 specify the starting coordinates of the line. Arguments
x2 and y2 specify the ending coordinates. Coordinates are specified relative
to the drawing origin. The last two arguments, style and mode, specify the line
style and drawing mode.

Argument style is a long integer containing a 32-bit repeating line-style pattern.
Pattern bits are consumed in the order 0,1,...,31, where 0 is the rightmost bit
(the LSB). The pattern is repeated modulo 32 as the line is drawn. A bit value
of 1 in the pattern specifies that the foreground color is used to draw the corre-
sponding pixel. A bit value of 0 in the pattern means that the corresponding
pixel is either drawn in the background color (drawing modes 1 and 3) or not
drawn (modes 0 and 2).

The function supports four drawing modes:

mode 0 – Does not draw background pixels (leaves gaps); loads new
line-style pattern from style argument.

mode 1 – Draws background pixels and loads new line-style pattern from
style argument.

mode 2 – Does not draw background pixels (leaves gaps); reuses old
line-style pattern (ignores style argument).

mode 3 – Draws background pixels and reuses old line-style pattern (ig-
nores style argument).

Drawing modes 2 and 3 support line-style pattern reuse in instances in which
the pattern must be continuous across two or more connecting lines. During
the course of drawing a line of length n (in pixels), the original line-style pattern
is rotated left (n–1) modulo 32 bits. The rotated pattern is always saved by the
function before returning. The saved pattern is ready to be used as the pattern
for a new line that continues from the end of the line just drawn.

During initialization of the drawing environment, the line-style pattern is set to
its default value, which is all 1s.

The current line-style pattern can be obtained by calling the get_env function.
See the get_env function description for more information.

Syntax

Description

Draw Styled Line styled_line

5-89

Use the styled_line function to draw four connected lines. The line-style pat-
tern is continuous from one line segment to the next.

#include <tiga.h>
#include <extend.h>

#define DOTDASH 0x18FF18FF /* dot–dash line-style pattern */
#define NEW 0 /* mode = load new line style */
#define OLD 2 /* mode = re–use old line style */

main()
{

init_tiga(1);
clear_screen(0);
styled_line (10, 10, 140, 10, DOTDASH, NEW);
styled_line (140, 10, 140, 60, 0, OLD);
styled_line (140, 60, 95, 60, 0, OLD);
styled_line (95, 60, 55, 100, 0, OLD);
term_tiga();

}

Example

 styled_oval Draw Styled Oval

5-90 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void styled_oval(w, h, xleft, ytop, style, mode)
short w, h; /* ellipse width and height */
short xleft, ytop; /* top left corner */
long style; /* 32-bit line-style pattern */
short mode; /* selects 1 of 4 drawing modes */

The styled_oval function draws the styled outline of an ellipse, given the en-
closing rectangle in which the ellipse is inscribed. The outline of the ellipse is
only one pixel in thickness and is drawn using a 32-bit line-style pattern. The
ellipse is in standard position, with its major and minor axes parallel to the coor-
dinate axes.

The first four arguments specify the rectangle enclosing the ellipse:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.

If either the width or height is 0, the oval is not drawn.

The line-style pattern is specified in argument style, a long integer containing
a 32-bit repeating line-style pattern. Pattern bits are consumed in the order
0,1,...,31, where bit 0 is the LSB. The pattern is repeated modulo 32, as the
ellipse is drawn. A bit value of 1 in the pattern specifies that the foreground col-
or is used to draw the corresponding pixel. A bit value of 0 means that the cor-
responding pixel is either drawn in the background color (modes 1 and 3) or
not drawn (modes 0 and 2). The ellipse is drawn in the clockwise direction on
the screen, beginning at the rightmost point of the ellipse if w < h, or at the bot-
tom of the ellipse if w ≥ h.

The function supports four drawing modes:

mode 0 – Does not draw background pixels (leaves gaps); loads new
line-style pattern from style argument.

mode 1 – Draws background pixels and loads new line-style pattern from
style argument.

mode 2 – Does not draw background pixels (leaves gaps); reuses old
line-style pattern (ignores style argument).

mode 3 – Draws background pixels and reuses old line-style pattern (ig-
nores style argument).

Drawing modes 2 and 3 support line-style pattern reuse in instances in which
the pattern must be continuous across two or more connecting lines. During
the course of drawing a line of length n (in pixels), the original line-style pattern
is rotated left (n–1) modulo 32 bits. The rotated pattern is always saved by the
function before returning. The saved pattern is ready to be used as the pattern
for a new line that continues from the end of the line just drawn.

Syntax

Description

Draw Styled Oval styled_oval

5-91

During initialization of the drawing environment, the line-style pattern is set to
its default value, which is all 1s.

The current line-style pattern can be obtained by calling the get_env function.
See the get_env function description for more information.

Use the styled_oval function to render the outline of an ellipse with a 32-bit re-
peating line-style pattern.

#include <tiga.h>
#include <extend.h>

#define DOTDASH 0x18FF18FF /* dot-dash line-style pattern */

main()
{

init_tiga(1);
clear_screen(0);
styled_oval (130, 90, 10, 10, DOTDASH, 0);
term_tiga();

}

Example

 styled_ovalarc Draw Styled Oval Arc

5-92 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void styled_ovalarc(w, h, xleft, ytop, theta, arc, style, mode)
short w, h; /* width and height */
short xleft, ytop; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */
long style; /* 32-bit line-style pattern */
short mode; /* selects 1 of 4 drawing modes */

The styled_ovalarc function draws a styled arc taken from an ellipse. The el-
lipse is in standard position, with the major and minor axes parallel to the x and
y axes. The arc is drawn one pixel in thickness using the specified repeating
line-style pattern. The ellipse from which the arc is taken is specified in terms
of the enclosing rectangle in which it is inscribed.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.

Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin. If either the
width or height is 0, the arc is not drawn.

The next two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.

Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is drawn.

Argument style is a long integer containing a 32-bit repeating line-style pattern.
Pattern bits are consumed in the order 0,1,...,31, where 0 is the rightmost bit
(the LSB). The pattern is repeated modulo 32 as the line is drawn. A bit value
of 1 in the pattern specifies that the foreground color is used to draw the corre-
sponding pixel. A bit value of 0 in the pattern means that the corresponding
pixel is either drawn in the background color (drawing modes 1 and 3) or not
drawn (modes 0 and 2).

Syntax

Description

Draw Styled Oval Arc styled_ovalarc

5-93

The function supports four drawing modes:

mode 0 – Does not draw background pixels (leaves gaps); loads new
line-style pattern from style argument.

mode 1 – Draws background pixels and loads new line-style pattern from
style argument.

mode 2 – Does not draw background pixels (leaves gaps); reuses old
line-style pattern (ignores style argument).

mode 3 – Draws background pixels and reuses old line-style pattern (ig-
nores style argument).

Drawing modes 2 and 3 support line-style pattern reuse in instances in which
the pattern must be continuous across two or more connecting lines. During
the course of drawing a line of length n (in pixels), the original line-style pattern
is rotated left (n–1) modulo 32 bits. The rotated pattern is always saved by the
function before returning. The saved pattern is ready to be used as the pattern
for a new line that continues from the end of the line just drawn.

During initialization of the drawing environment, the line-style pattern is set to
its default value, which is all 1s.

The current line-style pattern can be obtained by calling the get_env function.
See the get_env function description for more information.

Use the styled_ovalarc function to draw two arcs that are rendered with a dot-
dot-dash line-style pattern. Use the styled_line function to draw a line connect-
ing the two arcs. The line-style pattern is continuous at the joints between the
arcs and the line.

#include <tiga.h>
#include <extend.h>

#define DOTDOTDASH 0x3F333F33 /* ..–..– line-style pattern */
#define NEW 0 /* mode = load new line style */
#define OLD 2 /* mode = re-use old line style */

main()
{

init_tiga(1);
clear_screen(0);
styled_ovalarc (70, 70, 10, 65, 180, 90, DOTDOTDASH, NEW);
styled_line(45, 65, 85, 65, –1, OLD);
styled_ovalarc (110, 110, 30, –45, 90, –90, –1, OLD);
term_tiga();

}

Example

 styled_piearc Draw Styled Pie Arc

5-94 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void styled_piearc(w, h, xleft, ytop, theta, arc, style, mode)
short w, h; /* width and height */
short xleft, ytop ; /* top left corner */
short theta; /* starting angle (degrees) */
short arc; /* angle extent (degrees) */
long style; /* 32-bit line-style pattern */
short mode; /* selects 1 of 4 drawing modes */

The styled_piearc function draws a styled arc taken from an ellipse. Two
straight, styled lines connect the two end points of the arc with the center of
the ellipse. The ellipse is in standard position, with the major and minor axes
parallel to the x and y axes. The arc and the two lines from the center are drawn
one pixel in thickness using the specified repeating line-style pattern. The el-
lipse from which the arc is taken is specified in terms of the enclosing rectangle
in which it is inscribed.

The first four arguments specify the rectangle enclosing the ellipse from which
the arc is taken:

Arguments w and h specify the width and height of the rectangle.
Arguments xleft and ytop specify the coordinates at the top left corner of
the rectangle and are defined relative to the drawing origin.
If either the width or height is 0, the arc is not drawn.

The next two arguments define the limits of the arc and are specified in integer
degrees:

Argument theta specifies the starting angle and is measured from the cen-
ter of the right side of the enclosing rectangle.
Argument arc specifies the arc’s extent — that is, the number of degrees
(positive or negative) spanned by the angle.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation around the ellipse. For both arguments, positive
angles are in the clockwise direction, and negative angles are counterclock-
wise. Argument theta is treated as modulus 360. If the value of argument arc
is outside the range of [–359, +359], the entire ellipse is drawn.

Argument style is a long integer containing a 32-bit repeating line-style pattern.
Pattern bits are consumed in the order 0,1,...,31, where 0 is the rightmost bit
(the LSB). The pattern is repeated modulo 32 as the line is drawn. A bit value
of 1 in the pattern specifies that the foreground color is used to draw the corre-
sponding pixel. A bit value of 0 in the pattern means that the corresponding
pixel is either drawn in background color (drawing modes 1 and 3) or not drawn
(modes 0 and 2).

Syntax

Description

Draw Styled Pie Arc styled_piearc

5-95

The function supports four drawing modes:

mode 0 – Does not draw background pixels (leaves gaps); loads new
line-style pattern from style argument.

mode 1 – Draws background pixels and loads new line-style pattern from
style argument.

mode 2 – Does not draw background pixels (leaves gaps); reuses old
line-style pattern (ignores style argument).

mode 3 – Draws background pixels and reuses old line-style pattern (ig-
nores style argument).

Drawing modes 2 and 3 support line-style pattern reuse in instances in which
the pattern must be continuous across two or more connecting lines. During
the course of drawing a line of length n (in pixels), the original line-style pattern
is rotated left (n–1) modulo 32 bits. The rotated pattern is always saved by the
function before returning. The saved pattern is ready to be used as the pattern
for a new line that continues from the end of the line just drawn.

During initialization of the drawing environment, the line-style pattern is set to
its default value, which is all 1s.

The current line-style pattern can be obtained by calling the get_env function.
See the get_env function description for more information.

Use the styled_piearc function to draw a pie slice taken from an ellipse of width
130 and height 90. The slice traverses a 237-degree arc of the ellipse extend-
ing from –33 degrees to –270 degrees, drawn in the counterclockwise direc-
tion around the perimeter of the ellipse.

#include tiga.h
#include <extend.h>

#define DOTDOTDASH 0x3F333F33 /* line-style pattern */

main()
{

init_tiga(1);
clear_screen(0);
styled_piearc (130, 90, 10, 10, –33, –270+33,

DOTDOTDASH, 0);
term_tiga();

}

Example

 swap_bm Swap Source and Destination Bitmaps

5-96 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>

void swap_bm()

The swap_bm function swaps the source and destination bitmaps. To move
pixels back and forth between two bitmaps, this function is more convenient
than calling both the set_srcbm and set_dstbm functions.

Use the swap_bm function to swap the source and destination bitmaps. Initial-
ly, the destination bitmap is designated as an offscreen buffer, and the source
bitmap is the screen. A line of text is rendered on the screen, and its image is
contracted from the screen pixel depth to one bit per pixel and stored in the
offscreen buffer by a call to the bitblt function. Following a call to swap_bm, the
destination bitmap is the screen, and the source bitmap is the offscreen buffer.
The captured image is copied to the screen three times by three calls to the
bitblt function.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define FONT and FONTINFO */
#define MAXBYTES 2048 /* size of image buffer in bytes */

static FONTINFO fontinfo;

main()
{

short w, h, x, y, pitch;
char *s;
PTR image;

init_tiga(1);
clear_screen(0);
/* Print one line of text to screen */
x = y = 10;
s = ”TEXT IMAGE”;
text_out(x, y, s);
w = text_width(s);
get_fontinfo(0, &fontinfo);
h = fontinfo.charhigh;
/* Make sure buffer is big enough to contain image */
pitch = ((w + 15)/16)*16;
if (pitch*h/8 > MAXBYTES)
{

text_out(x, y+h, ”Image won’t fit!”);
term_tiga();

}
/* Capture text image from screen */
image = gsp_malloc(MAXBYTES);
set_dstbm(image, pitch, w, h, 1); /* offscreen bitmap */
bitblt(w, h, x, y, 0, 0); /* contract */
/* Now copy text image to 3 other areas of screen */
swap_bm();
bitblt(w, h, 0, 0, x, y+h); /* expand copy #1 */
bitblt(w, h, 0, 0, x, y+2*h); /* expand copy #2 */
bitblt(w, h, 0, 0, x, y+3*h); /* expand copy #3 */
term_tiga();

}

Syntax

Description

Example

Get Width of Text String text_width

5-97

#include <tiga.h>
#include <extend.h>

short text_width(s)
char *s; /* character string */

The text_width returns the width of the string in pixels, as if it were rendered
using the current selected font and the current set of text-drawing attributes.
Argument s is a string of 8-bit ASCII character codes terminated by a null (0)
character code.

Use the text_width function to enclose a line of text in a rectangular frame.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h> /* define FONTINFO structure */

#define DX 5 /* frame thickness in x dimension */
#define DY 4 /* frame thickness in y dimension */

main()
{

FONTINFO fontinfo;
short w, h, x, y;
char *s;

init_tiga(1);
clear_screen(0);
s = ”Enclose this text.”;
get_fontinfo(0, &fontinfo);
w = text_width (s);
h = fontinfo.charhigh;
x = y = 10;
text_out(x+2*DX, y+2*DY, s);
frame_rect(w+4*DX, h+4*DY, x, y, DX, DY);
term_tiga();

}

Syntax

Description

Example

 zoom_rect Zoom Rectangle

5-98 Extended Graphics Library Functions

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

void zoom_rect(ws, hs, xs, ys, wd, hd, xd, yd, rowbuf)
short ws, hs; /* source width and height */
short xs, ys; /* source top left corner */
short wd, hd /* destination width and height */
short xd, yd; /* destination top left corner */
PTR rowbuf; /* temporary row buffer */

The zoom_rect function expands or shrinks a two-dimensional source array
of pixels to fit the dimensions of a rectangular destination array on the screen.
The source array may be either a rectangular area of the screen or a pixel array
contained in an offscreen buffer. The width and height of the source array are
specified independently from (and, in general, differ from) those of the destina-
tion array. Horizontal zooming is accomplished by replicating or collapsing (by
deleting, for instance) columns of pixels from the source array to fit the width
of the destination array. Vertical zooming is accomplished by replicating or col-
lapsing rows of pixels from the source array to fit the height of the destination
array. This type of function is sometimes referred to as a stretch blit.

The source and destination arrays are contained within the currently selected
source and destination bitmaps; these bitmaps are selected by calling the
set_srcbm and set_dstbm functions before calling zoom_rect. Calling the
set_config function with the init_draw argument set to a nonzero value causes
both the source and destination bitmaps to be set to the default bitmap, which
is the screen. The zoom_rect function requires that the pixel sizes for the
source and destination bitmaps be the same. The destination bitmap must be
the screen.

The first four arguments define the source array:

Arguments ws and hs specify the width and height of the source array.

Arguments xs and ys specify the x and y displacements of the top left cor-
ner of the source array from the origin. If the source bitmap is the screen,
the current drawing origin is used. If the source bitmap is an offscreen buff-
er, the origin lies at the bitmap’s base address, as specified to the
set_srcbm function.

The next four arguments define the destination array on the screen:

Arguments wd and hd specify the width and height of the destination array.

Arguments xd and yd specify the x and y coordinates at the top left corner
of the source array, defined relative to the drawing origin.

Syntax

Description

Zoom Rectangle zoom_rect

5-99

The final argument, rowbuf, is a pointer to a buffer in TMS340 memory, which
is large enough to contain one complete row of either the destination array or
the source array, whichever has the greater width. (A buffer the width of the
screen will always be sufficient.) The required storage capacity in 8-bit bytes
is calculated by multiplying the array width by the pixel size and dividing the
result by 8.

Each of the following conditions is treated as an error that causes the
zoom_rect function to abort (return immediately) without drawing anything:

The destination is not the screen.

The source and destination pixel sizes are not the same.

The widths and heights specified for the source and destination arrays are
not all nonnegative. No value is returned by the function in any event.

Only the portion of the destination rectangle lying within the current clipping
window is modified by this function. The source rectangle, however, is per-
mitted to lie partially or entirely outside the clipping window, in which case, the
pixels lying within the source rectangle are zoomed to the destination, regard-
less of whether they are inside or outside the window. You are responsible for
constraining the size and position of the source rectangle to ensure that it en-
closes valid pixel values.

The only exception to this behavior occurs when the left or top edge of the
source rectangle lies in negative screen coordinate space, in which case the
function automatically clips the source rectangle to positive x-y coordinate
space; in most systems, this means that the source is clipped to the top and
left edges of the screen. The resulting clipped source rectangle is zoomed to
the destination rectangle and justified to the lower right corner of the specified
destination rectangle. Portions of the destination rectangle corresponding to
clipped portions of the source are not modified.

If the desired effect is to zoom a 1-bit-per-pixel bitmap to the screen and the
screen pixel size is greater than 1, the zoom operation must be done in two
stages. First, the bitblt function is called to expand the original bitmap to a color
pixel array contained in an offscreen buffer. Second, the zoom_rect function
is called to zoom the expanded pixel array from the offscreen buffer to the
screen.

 zoom_rect Zoom Rectangle

5-100 Extended Graphics Library Functions

Shrinking in the horizontal direction causes some number of horizontally adja-
cent source pixels to be collapsed to a single destination pixel. Similarly,
shrinking in the vertical direction causes some number of vertically adjacent
rows of source pixels to be collapsed to a single row in the destination array.
When several source pixels are collapsed to a single destination pixel, they are
combined with each other and with the destination background pixel according
to the selected pixel-processing operation code. For example, the replace op-
eration simply selects a single source pixel to represent all the source pixels
in the region being collapsed. A better result can often be obtained by using
a Boolean-OR operation (at 1 bit per pixel) or a max operation (at multiple bits
per pixel).

The function internally disables transparency during the zoom operation but
restores the original transparency state before returning.

The zoom_rect function may yield unexpected results for the following pixel-
processing operation codes:

PPOP Code Operation
7 ~src AND ~dst
11 ~src AND dst
13 ~src OR dst
14 ~src OR ~dst
15 ~src

When used in conjunction with the zoom_rect function, selecting these opera-
tions causes the source array to be 1s complemented not once, as might be
expected, but twice.

The buffer specified by the rowbuf argument is not used if all three of the follow-
ing conditions are satisfied:

1) The pixel-processing operation code is 0 (replace).

2) The destination width and height are both greater than or equal to the
source width and height.

3) The top of the destination rectangle does not lie above the top of the
screen (in negative-y screen space).

Zoom Rectangle zoom_rect

5-101

Use the zoom_rect function to blow up an area-fill pattern for closer inspection.
The image is zoomed by a factor of 3.

#include <tiga.h>
#include <extend.h>
#include <typedefs.h>

#define W 48 /* width of source rectangle */
#define H 32 /* height of source rectangle */
#define X 12 /* source rectangle left edge */
#define Y 12 /* top edge of source rectangle */
#define Z 3 /* zoom factor */

static short tinyblobs[16] =
{

0x1008, 0x0C30, 0x03C0, 0x8001, 0x4002, 0x4002, 0x2004, 0x2004,
0x2004, 0x2004, 0x4002, 0x4002, 0x8001, 0x03C0, 0x0C30, 0x1008

};

static PATTERN fillpatn = {16, 16, 1, (PTR)0};

main()
{

CONFIG c;
PTR buf;

init_tiga(1);
clear_screen(0);
fillpatn.data = gsp_malloc(sizeof(tinyblobs));
host2gsp(tinyblobs, fillpatn.data, sizeof(tinyblobs), 0);
set_patn(&fillpatn);
patnfill_rect(W, H, X, Y);
frame_rect(W, H, X, Y, 1, 1);
get_config(&c);
buf = gsp_malloc((c.mode.disp_psize * W)/8);
zoom_rect (W, H, X, Y, Z*W, Z*H, X+W+10, Y, buf);
term_tiga();

}

Example

5-102 Extended Graphics Library Functions

6-1

Chapter 6

Graphics Library Conventions

The TIGA Extended Graphics Library supports the drawing of a variety of two-
dimensional geometric objects such as points, lines, polygons, ellipses, arcs,
pie-slice wedges and polygons.

The graphics library follows a set of strict conventions to make the behavior
of the drawing functions (library functions that produce graphics output) pre-
dictable in all cases. These conventions cover the following:

The naming of the functions
The mapping of x-y coordinates onto the screen (a display surface ad-
dressed as a two-dimensional array of pixels)
Defining the paths followed by vector functions such as lines and arcs
Defining the pixels covered by area-fill functions such as polygons and el-
lipses

The graphics library supports a variety of methods for combining source and
destination pixel values during drawing operations. Pixels are combined ac-
cording to how you configure the library’s plane mask, transparency attribute,
and pixel-processing operation code.

All graphics output is automatically clipped either to the screen or to a rectan-
gular clipping window located within the screen limits.

This chapter discusses the following topics:

Section Page
6.1 Graphics Library Function Naming Conventions 6-2.
6.2 Coordinate Systems 6-4.
6.3 Area-Filling Conventions 6-6.
6.4 Vector Drawing Conventions 6-8.
6.5 Rectangular Drawing Pen 6-10.
6.6 Area-Fill Patterns 6-12.
6.7 Line-Style Patterns 6-13.
6.8 Operations on Pixels 6-15.
6.9 Clipping Window 6-18.
6.10 Pixel-Size Independence 6-19.

Graphics Library Function Naming Conventions

6-2 Graphics Library Conventions

6.1 Graphics Library Function Naming Conventions

A set of conventions has been adopted for naming extended graphics library
functions that draw geometric objects such as lines and ellipses. Each object
can be rendered in a variety of styles, and the rendering style also is reflected
in the function name. The name assigned to the function is a concatenation
of a modifier (such as rect for rectangle) denoting a geometric type and anoth-
er modifier (such as fill) designating a rendering style. For example, the fill_rect
function fills a rectangle with a solid color.

Table 6–1 is a list of the geometric types supported by the library. The left col-
umn specifies the function-name modifier corresponding to each type.

Table 6–1.Geometric Types

Function
Name

Geometric Type

 line A straight line

 oval An ellipse in standard position (major and minor axes aligned with the x-y
coordinate axes)

 ovalarc An arc from an ellipse in standard position

 point A single point

 polygon A filled region bounded by a series of connected straight edges

 polyline A series of connected straight lines

 piearc A pie-slice-shaped wedge bounded by an arc (from an ellipse in standard po-
sition) and two straight edges (connecting the ends of the arc to the center
of the ellipse)

 rect A rectangle with vertical and horizontal sides

 seed A pixel of a particular color designating a connected region of pixels of the
same color

Table 6–2 is a list of the graphics rendering styles supported by the library. The
left column specifies the function-name modifier corresponding to each style.

 Graphics Library Function Naming Conventions

6-3

Table 6–2.Rendering Styles

Function Name Rendering Style

 draw Draws a pixel-thick line, arc, or outline with the current foreground color.

 styled Similar to draw except that the line, arc, or outline is drawn using a repeat-
ing 32-bit line-style pattern that is rendered in the current foreground and
background colors. Alternately, background pixels in the pattern are
skipped.

 pen Traces a line or curve with a rectangular drawing pen and fills the area
swept out by the pen with the current background color.

 patnpen Similar to pen except that the area swept out by the pen is filled with a
16-by-16 area-fill pattern in the current foreground and background colors.

 fill Fills the interior of an object with the current foreground color.

 patnfill Similar to fill except that the object is filled with a 16-by-16 area-fill pattern
in the current foreground and background colors.

 frame Fills a frame with the current foreground color. The area enclosed by the
frame is not modified.

patnframe Similar to frame except that the frame is filled with a 16-by-16 area-fill pat-
tern in the current foreground and background colors.

Not all combinations of geometric type and rendering style are available in the
library. Table 6–3 is a checklist indicating which combinations are supported.

Table 6–3.Checklist of Available Geometric Types and Rendering Styles

Rendering Style

Geometric Type draw styled pen patnpen fill patnfill frame patnframe

line √ √ √ √

oval √ √ √ √ √ √

ovalarc √ √ √ √

piearc √ √ √ √ √ √

point √ √ √

polygon √ √

polyline √ √ √

rect √ √ √ √ √

seed √ √

Coordinate Systems

6-4 Graphics Library Conventions

6.2 Coordinate Systems

Figure 6–1 shows the conventions used by TIGA to map x-y coordinates onto
the screen.

Figure 6–1. Screen Coordinates and Drawing Coordinates

Edge of screen

Screen origin

y

x

y’

x’

Drawing origin

The screen coordinate system maps the pixels on the display surface to x and
y coordinates. By convention, the screen origin is located in the top left corner
of the screen. The x axis is horizontal, and x increases from left to right. The
y axis is vertical, and y increases from top to bottom.

A drawing coordinate system is also defined. All drawing operations (both
graphics and text output) take place relative to the drawing origin. Unlike the
screen origin, which remains fixed, the drawing origin can be moved relative
to the screen. The directions of the x and y axes match those of the screen
coordinate system.

The drawing origin is aligned with the screen origin immediately after initializa-
tion of the graphics environment by the set_config function. The drawing origin
may be displaced in x and y from the screen origin by means of a call to the
set_draw_origin function. All subsequent drawing operations are specified rel-
ative to the new drawing origin. While Figure 6–1 shows the drawing origin ly-
ing within the boundaries of the screen, the origin may also be moved to a posi-
tion above, below, or to the side of the screen. Only objects that are drawn on
the screen and within the clipping window (to be described) are visible.

 Coordinate Systems

6-5

Figure 6–2 is a close-up of several pixels in the vicinity of the drawing origin
that illustrates the relationship of the pixels on the screen to the coordinate grid
lines. Each vertical or horizontal grid line corresponds to an integer x or y coor-
dinate value. Centered within each square of the grid is a pixel, drawn as a
circle.

The draw and styled functions within the library (refer to Table 6–2) identify a
pixel by the integer x-y coordinates at the top left corner of its grid square. For
instance, the pixel designated by the function call

draw_point(2, 1);

is, in fact, centered at (2.5, 1.5) and is darkened in Figure 6–2.

Figure 6–2. Mapping of Pixels to Coordinate Grid
Drawing origin

4

3

2

1

Y

X
543210

TIGA’s extended graphics library represents x-y coordinates as16-bit signed
integers. Valid coordinate values are limited to the range of –16384 to +16383.
Restricting the values to this range provides one guard bit to protect against
overflow during 16-bit arithmetic operations.

Area-Filling Conventions

6-6 Graphics Library Conventions

6.3 Area-Filling Conventions

Geometric objects can be rendered in a variety of styles. Filled functions such
as polygons and ellipses can be filled with either a solid color or a two-dimen-
sional area-fill pattern.

The fill, frame, and pen functions within the library designate a pixel as being
part of a filled region if the center of the pixel falls within the boundary of that
region.

Figure 6–3 shows an example of a filled region — a rectangle of width 5 and
height 3. The top left corner of the rectangle is located at coordinates (4, 2).
The function call to fill this particular rectangle is

fill_rect(5, 3, 4, 2);

The pixels selected to fill the rectangle are indicated in the figure.

Figure 6–3. A Filled Rectangle

94

5

2

0

Y

X

w=5

h=3

Drawing origin

As a second example, a filled polygon is shown in Figure 6–4. The five straight
edges of the polygon separate the interior of the polygon, which is filled, from
the exterior. (This figure was drawn using the fill_polygon function.)

 Area-Filling Conventions

6-7

Figure 6–4. A Filled Polygon

9

5

2

0

Y

X
8753

Drawing origin

By convention, a pixel is considered to be part of the interior if its center falls
within the boundary of the polygon. If the center falls precisely on a boundary,
the pixel is inside if and only if the polygon interior is immediately to its right
(x-increasing direction). Pixels with centers along a horizontal edge are a spe-
cial case and are inside if and only if the polygon interior is immediately below
(y-increasing direction).

The names of graphics functions that follow the area-filling conventions de-
scribed in this section include the modifiers fill, pen, or frame.

Vector-Drawing Conventions

6-8 Graphics Library Conventions

6.4 Vector-Drawing Conventions

Mathematically ideal points, lines, and arcs are defined to be infinitely thin. Be-
cause these figures contain no area, they would be invisible if drawn using the
conventions described in Section 6.3 for filled areas. A different set of conven-
tions must be used to make points, lines and arcs visible. These are referred
to as vector-drawing conventions to distinguish them from the area-filling con-
ventions discussed previously. Vector-drawing conventions apply to all library
functions whose names include the modifiers draw or styled.

Vector functions that produce pixel-thick lines and arcs can be drawn either in
a single color or with a one-dimensional line-style pattern. A rectangular draw-
ing pen (or brush) is available for producing thicker lines and arcs; the area
swept out under the pen is filled with either a solid color or an area-fill pattern.

The vector-drawing conventions associate the point specified by the integer
coordinate pair (x, y) with the pixel that lies just to the lower right of this point;
that is, the pixel whose center lies at coordinates (x+1/2, y+1/2). For example,
the function call

draw_point(2, 1);

draws the pixel centered at (2.5, 1.5), as shown in Figure 6–2.

As a second example, the polygon from Figure 6–4 is shown again in
Figure 6–5, but this time it is outlined rather than filled. (This figure was drawn
using the draw_polyline function.) The integer coordinate points selected to
represent the edges of the polygon are indicated as small black dots. The pixel
to the lower right of each point is turned on to represent the edge of the poly-
gon.

 Vector-Drawing Conventions

6-9

Figure 6–5. An Outlined Polygon

9

5

2

0

Y

X
8753

Drawing origin

A line or arc drawn using the vector drawing conventions consists of a thin, but
connected set of pixels selected to follow the ideal line or arc as closely as pos-
sible. Each pixel is horizontally, vertically, or diagonally adjacent to its neighbor
on either side, with no holes or gaps in between. The resulting line or arc is only
a single pixel in thickness.

Rectangular Drawing Pen

6-10 Graphics Library Conventions

6.5 Rectangular Drawing Pen

The graphics functions that follow the vector-drawing conventions in Section
6.4 can draw only lines and arcs that are a single pixel in thickness. To draw
lines and arcs of arbitrary thickness, a logical pen (or brush) is defined. TIGA
functions that use the pen include the modifier pen as part of their names.

The drawing pen is rectangular, and its position is defined by the integer coor-
dinates at its top left corner. When a pen of integer width w and height h draws
a point at (x, y), the rectangle’s top left corner lies at (x, y), and its bottom right
corner lies at (x+w, y+h). The rectangular area covered by the pen is filled ei-
ther with a solid color or with an area-fill pattern, depending on the function
called.

Figure 6–6 shows a line from (1, 4) to (7, 1) drawn by a pen of width 1 and
height 2. The pen is initially positioned at the bottom left of the figure, with its
top left corner at (1, 4). As the pen moves along the line, the pen is always lo-
cated with its top left corner touching the ideal line. The area swept out by the
pen as it traverses the line from start to end is filled according to the area-filling
conventions described in Section 6.3. The pixels interior to the line are indi-
cated in the figure.

Figure 6–6. A Line Drawn by a Pen

position
final
Pen’s

position
Pen’s initial

Ideal line

1

4

1

0

Y

X
7

Drawing origin

 Rectangular Drawing Pen

6-11

When the pen’s width and height are both 1, a line or arc drawn by the pen is
similar in appearance to one drawn using the vector-drawing conventions dis-
cussed in Section 6.4. The pen, however, conforms to the area-filling conven-
tions, and a pen function can track the perimeter of a filled figure more faithfully
than the corresponding vector-drawing function.

For instance, consider an ellipse defined by width w, height h, and top-left-cor-
ner coordinates (x, y). The ellipse is filled by the function call

fill_oval(w, h, x, y);

If the filled ellipse is outlined with the same arguments by calling draw_oval,
which is a vector-drawing function, the outline may not conform to the edge of
the filled area, and gaps may appear between the filled area and the outline.
Calling the pen_oval function with the same arguments, however, draws an
outline that follows the edge of the filled area precisely, remaining flush to the
ellipse at all points along the perimeter.

Area-Fill Patterns

6-12 Graphics Library Conventions

6.6 Area-Fill Patterns

Graphics functions that include the modifier patn as part of their names fill geo-
metric figures with a two-dimensional pattern rather than a solid color. Current-
ly, the only area-fill patterns supported are two-color patterns that are 16 pixels
wide by 16 pixels high.

The tiling of patterns to the screen is currently fixed relative to the top left corner
of the screen. In other words, changing the drawing origin causes no shift in
the mapping of the pattern to the screen, although the geometric objects filled
with the pattern are themselves positioned relative to the drawing origin. The
screen-relative x and y coordinate values at the top left corner of each instance
of the pattern are multiples of 16.

Before an area of the screen is filled with a pattern, the pattern must be in-
stalled by calling the set_patn function. The pattern is specified as a 16-by-16
bit map, as shown in Figure 6–7, and is stored in memory as an array of 256
contiguous bits. The bits within a pattern bit map are listed in left-to-right order
within a row, and the rows are listed in top-to-bottom order. For instance, the
top row in the figure contains bits 0 (left) to 15 (right); bit 255 is located in the
bottom right corner. The shaded squares in Figure 6–7 correspond to1s in the
source bit map, and white squares correspond to 0s. When a pattern is drawn
to the screen, screen pixels corresponding to 1s in the bit map are replaced
by the foreground color, and those corresponding to 0s by the background col-
or.

Figure 6–7. A 16-by-16 Area-Fill Pattern

 Line-Style Patterns

6-13

6.7 Line-Style Patterns

Graphics functions that include the modifier styled as part of their names draw
lines and arcs using a line-style pattern. A line-style pattern is a 1-dimensional
pattern of two colors. The pattern controls the color of each successive pixel
output to the screen as a line or arc is drawn.

The line-style pattern is specified as a 32-bit mask containing a repeating pat-
tern of 1s and 0s. The pattern bits are used in the order 0,1,...,31, where 0 is
the LSB. If the line is more than 32 pixels long, the pattern is repeated modulo
32 as the line is drawn. A bit value of 1 in the pattern mask means that the corre-
sponding pixel is drawn in the foreground color, while a 0 means that the pixel
is drawn in the background color. As an option, background pixels can be
skipped over rather than drawn.

When a line-style pattern function such as styled_line is called, either a new
pattern mask is specified, or an old one is reused. The latter option supports
the drawing of continuous patterns across a series of connecting lines. After
a styled_line has been used to draw a line n pixels in length, the original pattern
has been rotated left (n–1) modulo 32 bits. The rotated pattern is always saved
by the function before returning. The saved pattern is ready to be used as the
pattern for a second line that continues from the end point of the first line. The
last pixel plotted in the first line is identical to the first pixel in the second line.

For example, three connected styled lines are shown in Figure 6–8. Darkened
pixels correspond to 1s in the line-style mask, and white pixels correspond to
0s. The lines in the Figure 6–8 are drawn by the following three function calls:

styled_line(2, 1, 7, 1, 1, 0xF3F3F3F3);
styled_line(7, 1, 10, 4, 3, 0);
styled_line(10, 4, 10, 8, 3, 0);

The first call loads the line-style mask 0xF3F3F3F3 and draws a line from (2, 1)
to (7, 1). The last two calls reuse the mask loaded by the first call and draw lines
from (7, 1) to (10, 4) to (10, 8).

Line-Style Patterns

6-14 Graphics Library Conventions

Figure 6–8. Three Connected Styled Lines

8

4

1

102

9

0

Y

X
7

Drawing origin

 Operations on Pixels

6-15

6.8 Operations on Pixels

Drawing (or graphics output) operations consist of replacing one or more pix-
els on the screen with new pixel values. By default, a specified source pixel
simply replaces a designated destination pixel. The graphics library, however,
provides several optional methods for processing the source and destination
pixel values to determine the final pixel value written to the screen.

Transparency is a pixel attribute that, when enabled, permits objects writ-
ten onto the screen to have transparent regions through which the original
background pixels are preserved.

The plane mask specifies which bits within pixels can be modified during
pixel operations.

Boolean and arithmetic pixel-processing operations specify how source
and destination pixel values are combined.

These three methods for processing pixels can be used independently or in
conjunction with each other. Transparency, plane masking, and pixel process-
ing are orthogonal in the sense that they can be used in any combination, and
each is controlled independently of the other two. These attributes affect all
drawing operations, including those that involve text, geometric objects, and
pixel arrays.

Immediately following initialization of the drawing environment by the set_con-
fig function, the following defaults are in effect:

Transparency is disabled (all pixels are opaque).

The plane mask is 0 (all bits within pixels can be modified).

The pixel-processing operation is replaced (the source pixel value simply
replaces the destination pixel).

Transparency, plane masking, and pixel processing are described individually
below. Refer to the TMS34010 User’s Guide and to the TMS34020 User’s
Guide for additional information.

6.8.1 Transparency

Pixel transparency is useful in applications involving text, area-fill patterns,
and pixel arrays in which only the shapes, and not the extraneous pixels sur-
rounding them, are to be drawn to the screen. When a rectangular pixel array
containing a shape is written to the screen, the pixel transparency attribute can
be enabled to avoid modifying destination pixels in the rectangular region sur-
rounding the shape. In effect, the source pixels surrounding the shape are
treated as though they are transparent rather than opaque.

The library’s default transparency mode is enabled and disabled by calls to the
transp_on and transp_off functions. In TMS34020-based systems, additional

Operations on Pixels

6-16 Graphics Library Conventions

transparency modes may be selected by means of the set_transp function.
Only the default mode is available in TMS34010-based systems. Refer to the
TMS34020 User’s Guide for information on the additional modes.

When transparency is enabled in the default mode, a pixel that has a value of
0 is considered to be transparent, and it will not overwrite a destination pixel.
The check for a 0-valued pixel is applied not to the source pixel value, but to
the pixel value resulting from pixel processing and plane masking. In the case
of pixel-processing operations such as AND, MIN, and replace, a source pixel
value of 0 ensures that the result of the operation is a transparent pixel, regard-
less of the destination pixel value.

6.8.2 Plane Mask

The plane mask specifies which bits within a pixel are protected from modifica-
tion, and it affects all operations on pixels. The plane mask has the same num-
ber of bits as a pixel in the display memory. A value of 1 in a particular plane
mask bit means that the corresponding bit in a pixel is protected from modifica-
tion. Pixel bits corresponding to 0s in the plane mask can be modified.

The plane mask allows the bits within the pixels on the screen to be manipu-
lated as bit planes (or color planes) that can be modified independently of other
planes. A useful way to think of planes is as laminations or layers parallel to
the display surface. The number of planes is the same as the number of bits
in a pixel.

For example, at 4 bits per pixel, three contiguous planes can be dedicated to
8-color graphics, while the fourth is used to overlay text in a single color. The
plane mask permits the text layer to be manipulated independently of the
graphics layers, and vice versa.

During a write to a pixel in memory, the 1s in the plane mask designate which
bits in the pixel are write-protected; only pixel bits corresponding to 0s in the
plane mask are modified. During a pixel read, 1s designate which bits within
a pixel are always read as 0, regardless of their values in memory; only pixel
bits corresponding to 0s in the plane mask are read as they appear in memory.

The plane mask can be modified by means of a call to the library’s set_pmask
function.

6.8.3 Pixel-Processing Operations

During drawing operations, source and destination pixels are combined ac-
cording to a specified Boolean or arithmetic operation and written back to the
destination pixel. The library supports 16 Boolean pixel-processing operations
(or raster ops) and 6 arithmetic operations. The Booleans are performed in bit-
wise fashion on operand pixels, while the arithmetic operations treat pixels as
unsigned integers.

 Operations on Pixels

6-17

 A 5-bit PPOP code specifies one of the 22 pixel-processing operations, as
shown in Table 6–4 and Table 6–5. Legal PPOP codes are in the range 0 to
21. As shown in the two tables, codes for Boolean operations are in the range
0 to 15, and codes for arithmetic operations are in the range 16 to 21.

Table 6–4.Boolean Pixel-Processing Operation Codes

PPOP Code Description

0 replace destination with source

1 source AND destination

2 source AND NOT destination

3 set destination to all 0s

4 source OR NOT destination

5 source EQU destination

6 NOT destination

7 source NOR destination

8 source OR destination

9 destination (no change)

10 source XOR destination

11 NOT source AND destination

12 set destination to all 1s

13 NOT source or destination

14 source NAND destination

15 NOT source

Table 6–5.Arithmetic Pixel-Processing Operation Codes

PPOP Code Description

16 source plus destination (with overflow)

17 source plus destination (with saturation)

18 destination minus source (with overflow)

19 destination minus source (with saturation)

20 MAX(source, destination)

21 MIN(source, destination)

The result of an arithmetic pixel-processing operation is undefined at screen
pixel sizes of 1 and 2 bits on the TMS34010 and at a pixel size of 1 bit on the
TMS34020.

The PPOP code can be altered with a call to the set_ppop function.

Clipping Window

6-18 Graphics Library Conventions

6.9 Clipping Window

The graphics output produced by the TIGA drawing functions is always con-
fined to the interior of a rectangular clipping window that occupies all or a por-
tion of the screen. All TIGA drawing functions automatically inhibit attempted
writes to pixels outside this window.

The width, height, and position of the clipping window can be modified by a call
to the set_clip_rect function. The function call

set_clip_rect(w, h, x, y);

defines the window to be a rectangle of width w and height h whose top left
corner lies at coordinates (x, y). The x-y coordinates are specified relative to
the drawing origin in effect at the time the function is called. The four sides of
the clipping window are parallel to the x and y axes. If a clipping rectangle is
specified that lies partially outside the screen boundaries, the set_clip_rect
function automatically trims the window to the limits of the screen.

The default clipping window covers the entire screen. This default is in effect
immediately following initialization of the drawing environment by the
set_config function.

 Pixel-Size Independence

6-19

6.10 Pixel-Size Independence

The TMS34010 can support pixel sizes of 1, 2, 4, 8, and 16 bits, and the
TMS34020 can support pixel sizes of 1, 2, 4, 8, 16, and 32 bits. Any particular
TMS340-based display hardware system, however, may support only a sub-
set of the pixel sizes that the TMS340 processor itself can handle. Possible
hardware limitations include the amount of video RAM in the system and the
pixel sizes supported by the color palette device.

With the exception of the handful of system-dependent functions, the graphics
library functions are written to be independent of the pixel size. The library
achieves pixel-size independence by taking advantage of special graphics
hardware internal to the TMS34010 and TMS34020 chips. Changing the pixel
size in software is not much more difficult than loading the TMS340 proces-
sor’s PSIZE (pixel size) register with a new value.

Application programs based on the graphics library are potentially able to ex-
ecute on display systems that support a variety of pixel sizes. Ideally, an appli-
cation program should be flexible enough to take advantage of the large num-
ber of colors available in systems with large pixel sizes, yet also run satisfacto-
rily in systems that are limited to small pixel sizes. In practice, this ideal may
be difficult to achieve.

For instance, an application written to run on a 1-bit-per-pixel display should
be able to run with little modification at 2, 4, 8, 16, or 32 bits per pixel. This is
accomplished, however, by restricting the application’s choice of colors to
black and white, regardless of the number of colors supported by the display
hardware.

At the other end of the spectrum, consider an application that is written to con-
trol a true color display with 8 bits of red, green, and blue intensity per pixel.
The application writer may be able to stretch the program to reasonably ac-
commodate pixel sizes of 16 or even 8 bits per pixel, although at some loss
in image quality. This can be done by using certain well-known half-toning or
ordered-dithering algorithms to simulate a larger palette of colors. The applica-
tion may be unable to run satisfactorily on a 1-bit-per-pixel display.

To summarize, the graphics library’s high degree of pixel-size independence
represents a powerful and useful feature. This does not automatically guaran-
tee that all applications that call the library will not themselves contain inherent
color dependencies.

6-20 Graphics Library Conventions

7-1

Chapter 7

Bit-Mapped Text

The TIGA Interface supports the display of text in a variety of styles and fonts.
At the low end, block fonts emulate the cell-mapped text produced by a charac-
ter-ROM display. For desktop publishing applications, proportionally spaced
WYSIWYG (what you see is what you get) text allows you to preview a page
on the screen as it will appear when typeset.

Topics in this chapter include

Section Page
7.1 Bit-Mapped Font Parameters 7-2.
7.2 Font Data Structure 7-5.
7.3 Proportionally Spaced Versus Block Fonts 7-11.
7.4 Font Table 7-12.
7.5 Text Attributes 7-13.
7.6 Available Fonts 7-14.

Bit-Mapped Font Parameters

7-2 Bit-Mapped Text

7.1 Bit-Mapped Font Parameters

Table 7–1 lists the text-related functions available in both the core and ex-
tended graphics libraries. Refer to the individual descriptions of these func-
tions in Chapters 4 and 5 for details.

Table 7–1.Text-Related Functions

Function Description Type

delete_font
get_fontinfo
get_textattr
get_text_xy
in_font
init_text
install_font
select_font
set_textattr
set_text_xy
text_out
text_outp
text_width

Remove a font from font table
Return installed font information
Return text-rendering attributes
Return text x-y position
Verify characters in font
Initialize text-drawing environment
Install font into font table
Select an installed font
Set text rendering attributes
Set text x-y position
Render ASCII string
Render ASCII stirng at current x-y position
Return width of an ASCII string

Ext
Core
Ext
Core
Ext
Core
Ext
Ext
Ext
Core
Core
Core
Ext

A font is a complete assortment of characters of a particular size and style (or
typeface). TIGA currently supports fonts represented in bit-mapped form, al-
though other representations (stroke and outline font formats, for example)
may be supported in the future.

A bit-mapped representation of a font encodes the shape of each character
in a bit map—a two-dimensional array of bits representing a rectangular
image. The 1s in the bit map represent the body of the character, while the 0s
represent the background. The character shape is drawn to the screen by ex-
panding each bit to the pixel depth of the screen: 1s are expanded to the cur-
rent foreground color, and 0s to the background color.

Figure 7–1 illustrates the parameters that characterize a bit-mapped charac-
ter shape. These parameters are defined as follows:

Base Line The base line is an invisible reference line correspond-
ing to the bottom of the characters, not including the
descenders.

Ascent The ascent is measured as the number of vertical pixels
from the base line to the top of the highest character (or
more precisely, the top of the font rectangle, defined be-
low). For example, in Figure 7–1, the ascent is 16 pixels.

Descent The descent is measured as the number of vertical pix-
els from the base line to the bottom of the lowest des-
cender. For example, in Figure 7–1, the descent is six
pixels.

 Bit-Mapped Font Parameters

7-3

Leading The leading is the number of vertical pixels between the
descent line of one row of characters and the ascent line
of the row just beneath it. For example, in Figure 7–1,
the leading is five pixels. The term leading derives from
the time that typesetters used strips of lead to separate
rows of characters in their printing presses.

Character Origin The character origin is the point in the character whose
coordinates designate the position of the character
when it is drawn on the screen. The position of the origin
relative to the body of the character depends on the
state of the text alignment attribute. In the default state,
the origin lies at the top left corner of the character. Alter-
nately, as shown in Figure 7–1, the origin can be located
at the intersection of the base line with the left edge of
the character, excluding any portion of the character
which kerns to the left of the origin (as in the case of the
descender of the character “j” in the figure). The base-
line origin is useful when multiple fonts are mixed in a
single row of text, in which case, the base lines for all
characters should coincide.

Character Height The character height is the sum of the ascent, the de-
scent, and the leading. For example, in Figure 7–1, the
character height is 16+6+5=27 pixels. Character height
is constant for all characters within a particular font but
can vary between fonts.

Character Width The character width is the distance from the character
origin of the current character to the origin of the next
character to its right. This width typically spans both the
character image and the space separating the charac-
ter image from the next character. The character width
can vary from one character to the next within a font. For
example, in Figure 7–1, the widths of the characters “A”
and “j” are 18 and 6, respectively.

Character Rectangle The character rectangle is a rectangle enclosing the
character image. This image corresponds to the portion
of the font data structure containing the bitmap for the
character shape. The sides of the rectangle are defined
by the image width and the character height, as defined
below. For example, in Figure 7–1, the character rect-
angle for the letter “A” is 16 pixels wide by 27 pixels high.

Font Height The font height is the sum of the ascent and descent pa-
rameters for the font.

Bit-Mapped Font Parameters

7-4 Bit-Mapped Text

Character Offset The character offset is the horizontal displacement from
the character origin to the left edge of character image. If
the offset is negative, the character image extends to
the left of the character origin. For example, in
Figure 7–1, the descender of the lower-case “j” has an
offset of –2. In the case of an especially narrow charac-
ter, such as a lower-case “i” or “l”, a positive offset may
be required to position the left edge of the character
image to the right of the origin.

Image Width The image width is the width of the bit map within the
font data structure that contains the shape of the char-
acter. This width may not include the blank space sepa-
rating the character from the character to its left or right
when it is displayed. In general, the image width varies
from character to character within a font. For example,
in Figure 7–1, the image widths of the characters “A”
and “j” are 16 and 5, respectively.

Figure 7–1. Bit-Mapped Font Parameters

Character
Height

Width
“j” Image“A” Image Width

5

6

16

“A” Character Origin
Descent

“j” Character Origin

Ascent

Width
“j” Character“A” Character Width

Offset

Next Character Origin

Bas
e
Line

Leading

 Font Data Structure

7-5

7.2 Font Data Structure

The data structure for TIGA bit-mapped fonts is shown in Figure 7–2. The
header portion is fixed in size and specifies font parameters such as ascent,
descent, and so on. The other three parts—the pattern, location, and offset/
width tables—vary in size from one font to the next. The pattern table is a bit
map containing the shapes of the characters in the font. Each entry in the loca-
tion table is an offset indicating where in the bit map the shape of a particular
character is located. The offset/width table gives the character width, as de-
fined above, for each character and also the character offset from the origin
to the left edge of the character image. In general, the larger a particular font
appears on the screen, the larger the data structure must be to represent it.

Figure 7–2. Data Structure for Bit-Mapped Fonts

Header

Pattern Table

Location Table

Offset/width Table

7.2.1 Font Header Information

The header information is organized according to the FONT structure defined
in the following C typedef declaration:

typedef struct
{

unsigned short magic; /* bit–mapped font code 0x8040 */
long length; /* length of font data in bytes */
char facename[30]; /* ASCII string name of font */
short default; /* default for missing character */
short first; /* first ASCII code in font */
short last; /* last ASCII code in font */
short maxwide; /* maximum character width */
short maxkern; /* maximum kerning amount */
short charwide; /* block font character width */
short avgwide; /* average character width */
short charhigh; /* character height */
short ascent; /* ascent of highest character */
short descent; /* longest descender */
short leading; /* separation between text rows */
long rowpitch; /* bit pitch of pattern table */
long oPatnTbl; /* offset to pattern table */
long oLocTbl; /* offset to location table */
long oOwTbl; /* offset to offset/width table */

}FONT;

The fields of the FONT struct (font structure header) are defined as follows:

1) magic

This field contains the value 0x8040, a code that designates the FONT
structure for bit-mapped fonts above. If alternate data structures for stroke
or outline fonts are supported in the future, these will be distinguished by
alternate magic codes.

Font Data Structure

7-6 Bit-Mapped Text

2) length

The length of the entire font specified in 8-bit bytes. The length includes
the entire data structure from the start of the magic field to the end of the
offset/width table. The length parameter provides a convenient means for
programs to determine how much memory to allocate for a font without
having to analyze the internal details of the font data structure.

3) facename

A 30-character string consisting of a font name of up to 29 characters, and
a terminating null character. Some examples: TI Roman, TI Helvetica.

4) default

The ASCII code of the default character to be used in place of a character
missing from the font. When a missing character is encountered in an
ASCII string, the default character is printed in its place. The default char-
acter must be implemented in the font. Typical choices for a default char-
acter include a space (ASCII code 32), period (46), and question mark
(63). A value of 0 for the default field is a special case indicating that noth-
ing is to be printed in place of the missing character; it is simply ignored.

A missing character is any character that is not implemented in the font. By
definition, all characters with ASCII codes in the ranges [1...first–1] and
[last+1...255] are missing. (Note that ASCII code 0, or null, is reserved for
use as a string terminator.) If a particular character in the range [first...last]
is missing from the font, the offset/width table entry for the character is –1.

5) first

The ASCII code of the first character implemented in the font. For exam-
ple, ASCII character codes 0 through 31 may represent control functions
that are nonprinting. If the first implemented character in a font is a space,
with an ASCII code of 32, then the first field is set to 32.

6) last

ASCII code of last character implemented in font.

7) maxwide

The maximum character width. This is the width of the widest character in
the font.

8) maxkern

The maximum amount by which any character in the font kerns, expressed
a positive horizontal distance measured in pixels. The descender of a
character such as a lower-case j may extend or kern beneath the charac-
ter to its left. The amount of kerning is measured as the offset from the
character origin to the left edge of the character image. For example, if the
maximum amount any character in the font kerns to the left of the origin is
3, the maxkern value is specified as +3.

 Font Data Structure

7-7

9) charwide

The fixed character width in the case of a block font. For a proportionally
spaced font, this field is set to 0, in which case, the width for each individual
character appears as an entry in the offset/width table.

10) avgwide

Average width of all characters implemented in the font. This value is the
sum of all the character widths divided by the number of characters in the
font. This parameter is useful for selecting a best-fit font at a particular tar-
get display resolution.

11) charhigh

The font height. This is the sum of the ascent and descent fields and is a
constant across all characters within a particular font.

12) ascent

The distance in pixels from the base line to top of the highest character,
specified as a positive number.

13) descent

The distance in pixels from base line to bottom of lowest descender, speci-
fied as a positive number.

14) leading

The vertical spacing in pixels from bottom of one line of text to top of next
line of text, specified as a positive number.

15) rowpitch

The pitch per row of the pattern table. This is the difference in bit addresses
from the start of one row in the pattern table bit map to the start of the next
row. The TMS340 graphics processor’s addresses point to bit boundaries
in memory, and each row must start on an even 16-bit word boundary;
hence, the rowpitch value is always a multiple of 16.

16) oPatnTbl

The pattern table offset. This is the difference in bit addresses from the
start of the FONT structure (magic field) to the start of the pattern table.
This field is expressed as a positive value that is an even multiple of 16 (the
word size).

Font Data Structure

7-8 Bit-Mapped Text

17) oLocTbl

The location table offset. This is the difference in bit addresses from the
start of the FONT structure (magic field) to the start of the location table.
This field is expressed as a positive value that is an even multiple of 16 (the
word size).

18) oOwTbl

The offset/width table offset. This is the difference in bit addresses from
the start of the FONT structure (magic field) to the start of the offset/width
table. This field is expressed as a positive value that is an even multiple of
16 (the word size).

7.2.2 Font Pattern Table

The font pattern table is a two-dimensional bit map organized as shown in
Figure 7–3. The table contains the character images for all characters implem-
ented in the font, concatenated in order from left to right. The width of the table
(number of bits per row) is the sum of the individual character widths and must
be less than or equal to the pitch specified in the rowpitch field of the FONT
structure. The number of rows is equal to the value contained in the charhigh
field. The total number of bits in the bit map is obtained by multiplying rowpitch
by charhigh. The base address of the table is the address of the bit located in
the top left corner of the bit map. The top row of the bit map contains the top
row of each character shape, stored in left-to-right order; the second row from
the top contains the second row of each character shape, and so on.

 Font Data Structure

7-9

Figure 7–3. Bit-Mapped Font Representation

Row Pitch

Characters
Not Shown

Character Height

Font Data Structure

7-10 Bit-Mapped Text

7.2.3 Location Table

The location table specifies the locations of the images for the individual char-
acters in the pattern table. Each location table entry is 16 bits. One entry is pro-
vided for each character code in the range [first...last]. The table contains one
additional entry, and the total number of entries is (last – first + 2).

The table entry for each character is the bit displacement from the base ad-
dress of the pattern table (top left corner of the bit map in Figure 7–3) to the
top left corner of the corresponding character image. The image width for a
particular image is just the difference between the location table entries for that
character and for the character that immediately follows it. The location table
contains entries for all character codes from first to last, and an additional entry
that is used to calculate the image width of the last character. The final location
table entry is the offset of the first bit past the right edge of the top row in
Figure 7–3.

If a particular ASCII character n in the range [first...last] is missing from the font,
the image width is 0. In other words, location table entries n–first and n–first+1
contain the same offset value.

7.2.4 Offset/Width Table

The offset/width table contains the character offset and character width for all
characters in the range [first...last] that are implemented in the font. (Refer to
the definitions of the terms character offset and character width earlier in this
section.) Each offset/width table entry is 16 bits. One entry is provided for each
character code in the range [first...last]. The table also contains one final entry
that is always set to –1, and the total number of entries is (last – first + 2).

The table entry for each character implemented in the font is an 8-bit character
offset concatenated with an 8-bit character width. The offset is in the 8 MSBs
of the word, and the width is in the 8 LSBs. If a particular ASCII character in
the range [first...last] is missing from the font, the corresponding 16-bit entry
is set to –1.

 Proportionally Spaced Versus Block Fonts

7-11

7.3 Proportionally Spaced Versus Block Fonts

Two varieties of TIGA fonts are distinguished by the value of the charwide field
in the FONT structure. A proportionally spaced font is identified by a charwide
value of 0, while a nonzero charwide value identifies a block font. The system
font, which is permanently installed in the font table as font number 0, is always
a block font. The installable fonts may be either proportionally spaced or block
fonts.

In the case of a proportionally spaced font, the character width is permitted to
vary from one character to the next. The character image may cover only a por-
tion of the character width. In other words, the character image does not nec-
essarily overwrite the spaces separating successive characters in a string dis-
played on the screen. To replace an old line of text on the screen with a new
line, the old line typically must be erased completely. If this is not done, portions
of the old characters may be visible between the new characters. Also, the
space (ASCII code 32) character causes the character pointer to move to the
right on the screen but may not cause any pixels to actually be modified. Using
space characters from a proportionally spaced font to erase a line of text is
generally an ineffective technique.

In the case of a block font, on the other hand, the character width is uniform
across all characters implemented in the font. The character image completely
spans the character width, even in the case of a space character. Writing a
string of characters, which may include spaces, to the screen completely over-
writes an old line of characters lying beneath it.

This discussion assumes that the pixel-processing replace operation is in ef-
fect, and that transparency is disabled. Different effects can be achieved by
altering pixel processing and transparency, as described in the user’s guides
for the TMS34010 and TMS34020. The replace operation with transparency
enabled may be particularly useful in applications requiring proportionally
spaced text.

Font Table

7-12 Bit-Mapped Text

7.4 Font Table

The system font, permanently installed in TIGA’s font table as font number 0,
is always a block font. Additional fonts can be installed in the table and can be
any combination of proportionally spaced and block fonts. The installable fonts
are assigned table indices 1, 2, and so on by TIGA as they are installed, and
the fonts are thereafter identified by these indices during text operations.

The maximum number of fonts that may be installed is limited only by the
amount of memory available on the TMS340-based board.

 Text Attributes

7-13

7.5 Text Attributes

The graphics library provides application programs with direct control over
three text attributes:

1) Text Alignment

Specifies whether the character origin (see previous definition) for each
character is located at the base line or at the top edge of the character. The
default is the top edge.

2) Additional Intercharacter Spacing

Specifies an amount by which the default character width (see definition)
defined within the font data structure is increased. The default is 0.

3) Intercharacter Gaps

Specifies if the gaps between horizontally adjacent characters are auto-
matically filled with the background color. When this attribute is enabled,
one line of proportionally-spaced text may be cleanly written directly on top
of another without first erasing the text underneath. When the attribute is
disabled, only the rectangular area immediately surrounding each charac-
ter image (see definition of image width) is filled with the background color.

By default, the filling of intercharacter gaps is disabled.

Only proportionally spaced fonts are affected by the state of these attributes.
In the case of a block font, the text alignment is always to the top left corner
of each character, the intercharacter spacing is fixed at the charwide value de-
fined in the font structure, and intercharacter gaps are always filled.

Available Fonts

7-14 Bit-Mapped Text

7.6 Available Fonts

The TIGA Interface includes a bit-mapped font database consisting of 19 type-
faces available in a variety of sizes. The size of a font is specified in terms of
its character height in pixels. The available fonts are summarized in Table 7–2.
All TIGA-compatible fonts have a filename extension of .fnt and are located in
the \tiga\fonts directory.

Several of the fonts in Table 7–2 are labeled as monospaced (type M in the
rightmost column) rather than proportionally spaced. A monospaced font has
uniform character width across the font. The monospaced fonts in Table 7–2
use the same font data structure as the proportionally spaced fonts. In particu-
lar, the charwide field is 0, and the structure includes an offset/width table.

Table 7–2.Font Database Summary

Font Name Font Size in Pixels Type†

Arrows 25 31 M

Austin 11 15 20 25 38 50 P

Corpus Christi 15 16 26 29 49 M

Devonshire 23 28 41 P

Fargo 22 26 38 P

Galveston 12 15 21 22 28 42 P

Houston 14 17 20 26 38 50 P

Luckenbach 07 P

Math 16 19 24 32 44 64 P

San Antonio 22 28 40 P

System 16 24 B

Tampa 18 22 30 42 P

TI Art Nouveau 22 28 41 54 82 P

TI Bauhaus 11 14 17 19 22 24 28 43 56 P

TI Cloister 27 40 P

TI Dom Casual 23 25 30 42 46 P

TI Helvetica 11 15 18 20 22 24 28 32 36 42 54 82 P

TI Park Avenue 15 18 21 23 25 28 43 54 P

TI Roman 11 14 16 18 20 22 26 30 33 38 52 78 P

TI Typewriter Elite 11 14 16 18 20 22 26 38 M

Point. size equivalent
at 640 × 480 pixels

05 09 10 12 14 16 18 20 24 28 32 36 40 48 72

† P = Proportional spacing M = Mono spacing B = Block font

 Available Fonts

7-15

7.6.1 Installing Fonts

The application program must load the font(s) used by the application. Each
font is referred to by a filename that uniquely identifies it. Specify this filename
when you load the desired font. The filenames of the available fonts are pres-
ented in Table 7–3.

Table 7–3.Installable Font Names

Font Name Font Filename (all have . fnt extension)

Arrows font sizes 25 and 31: arrows25, arrows31

Austin font sizes 11 through 50: austin11, austin15, austin20, austin25, austin38, austin50

Corpus Christi font sizes 15 through 49: corpus15, corpus16, corpus26, corpus29, corpus49

Devonshire font sizes 23 through 41: devons23, devons28, devons41

Fargo font sizes 22 through 38: fargo22, fargo26, fargo38

Galveston font sizes 12 through 42: galves12, galves15, galves21, galves22, galves28, galves42

Houston font sizes 14 through 50: houstn14, houstn17, houstn20, houstn26, houstn38, houstn50

Luckenbach font size 7: lucken07

Math font sizes 16 through 64: math16, math19, math24, math32, math44, math64

San Antonio font sizes 22 through 40: sanant22, sanant28, sanant40

System font sizes 16 and 24 sys16, sys24

Tampa font sizes 18 through 42: tampa18, tampa22, tampa30, tampa42

TI Art Nouveau font sizes 22 through 82: ti_art22, ti_art28, ti_art41, ti_art54, ti_art82

TI Bauhaus font sizes 11 through 56: ti_bau11, ti_bau14, ti_bau17, ti_bau19, ti_bau22, ti_bau24,
ti_bau28, ti_bau43, ti_bau56

TI Cloister font sizes 27 and 40: ti_clo27, ti_clo40

TI Dom Casual font sizes 23 through 46: ti_dom23, ti_dom25, ti_dom30, ti_dom42, ti_dom46

TI Helvetica font sizes 11 through 82: ti_hel11, ti_hel15, ti_hel18, ti_hel20, ti_hel22, ti_hel24, ti_hel28,
ti_hel32, ti_hel36, ti_hel42, ti_hel54, ti_hel82

TI Park Avenue font sizes 15 through 54: ti_prk15, ti_prk18, ti_prk21, ti_prk23, ti_prk25, ti_prk28, ti_prk43,
ti_prk54

TI Roman font sizes 11 through 78: ti_rom11, ti_rom14, ti_rom16, ti_rom18, ti_rom20, ti_rom22,
ti_rom26, ti_rom30, ti_rom33, ti_rom38, ti_rom52, ti_rom78

TI Typewriter Elite font sizes 11 through 38: ti_typ11, ti_typ14, ti_typ16, ti_typ18, ti_typ20, ti_typ22, ti_typ26,
ti_typ38

Available Fonts

7-16 Bit-Mapped Text

The System font sizes 16 and 24 appearing in the bottom entry of Table 7–2
are the only two block fonts. One of these is typically designated as the system
font (the permanently installed font number 0) in a particular graphics mode.
These fonts can also be installed in the font table in the same manner as the
other fonts in Table 7–2.

See the install_font function description in Chapter 5 for an example of how
to load a TIGA font.

7.6.2 Alphabetical Listing of Fonts

Each of the fonts included with the library is described briefly in the remainder
of this section. Each typeface is presented separately, along with the list of
available font sizes, spacing, and recommendations regarding the use of the
face. Illustrations of each font are also presented at approximately true scale
to indicate the relative dimensions of the various font sizes available for each
typeface. The actual physical size of a font will vary, depending on the dimen-
sions of the display device.

Arrows Fonts arrows

7-17

Monospace
Original character set, no typesetter’s equivalent
Graphic accents, arrows, and symbols suitable for use in memos, transparen-
cies, posters, flyers, and newsletters.
25 and 31 pixels

Spacing
Derivation
Description

Sizes

Example

austin Austin Fonts

7-18 Bit-Mapped Text

Proportional
Original typeface, no typesetter’s equivalent
An upright, bold-weight, sans-serif typeface. Suited to many purposes. Small-
er sizes serve well for general usage as body text or headings, while larger
sizes are ideal for headlines and titles.
11, 15, 20, 25, 38, and 50 pixels

Spacing
Derivation
Description

Sizes

Example

Austin Fonts austin

7-19

corpus Corpus Christi Fonts

7-20 Bit-Mapped Text

Monospace
Original character set, no typesetter’s equivalent
Designed as a terminal display font. The 16-pixel size renders a standard
80-column display at 640 × 480 resolution. The 29-pixel renders a 40-column
display at the same resolution. Light- to bold-weight, depending on size.
15, 16, 26, 29, 49 pixels

Spacing
Derivation
Description

Sizes

Example

Corpus Christi Fonts corpus

7-21

devons Devonshire Fonts

7-22 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
A light-weight, stylized serif typeface. Elongated ascenders and descenders
distinguish this font. Suitable for invitations, newsletters, flyers, or anything re-
quiring a formal appearance.
23, 28, and 41 pixels

Spacing
Derivation
Description

Sizes

Example

Devonshire Fonts devons

7-23

fargo Fargo Fonts

7-24 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
An upright, medium-weight serif face. Small sizes suited for diagrams and la-
bels. Larger sizes are well suited to headlines and posters.
22, 26, and 38 pixels

Spacing
Derivation
Description

Sizes

Example

Fargo Fonts fargo

7-25

galves Galveston Fonts

7-26 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
An upright, bold-weight serif face. Suited to many purposes. Smaller sizes
serve well for general usage as body text or headings, while larger sizes are
ideal for headlines and titles.
12, 15, 21, 22, 28, and 42 pixels

Spacing
Derivation
Description

Sizes

Example

Galveston Fonts galves

7-27

houstn Houston Fonts

7-28 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
An upright, light-to-medium-weight serif typeface. Suited to many purposes.
Smaller sizes serve well for general usage as body text or headings while larg-
er sizes are ideal for headlines and titles.
14, 17, 20, 26, 38, and 50 pixels

Spacing
Derivation
Description

Sizes

Example

Houston Fonts houstn

7-29

lucken Luckenbach Fonts

7-30 Bit-Mapped Text

Proportional
Origin character set, no typesetter’s equivalent
Designed as the smallest legible font at 640 × 480 resolution. Useful for dia-
grams or any other task requiring very small text.
7 pixels

Spacing
Derivation
Description

Sizes

Example

Math Fonts math

7-31

Proportional
Original character set, no typesetter’s equivalent
Math and Greek symbols, including subscripts and superscripts. Light to me-
diumweight, depending on size.
16, 19, 24, 32, 44, and 64 pixels

Spacing
Derivation
Description

Sizes

Example

math Math Fonts

7-32 Bit-Mapped Text

San Antonio Fonts sanant

7-33

Proportional
Original character set, no typesetter’s equivalent
A serif typeface with hollow (commonly called in-line) uprights. Distinctive and
semiformal in appearance, ideal for memos, newsletters, flyers, and headings.
22, 28, and 40 pixels

Spacing
Derivation
Description

Sizes

Example

sanant San Antonio Fonts

7-34 Bit-Mapped Text

System Fonts sys

7-35

Monospaced (block font)
Original character set, no typesetter’s equivalent
Designed to emulate character-ROM fonts displayed by text terminals. The
smaller size is suitable for low-to-medium-resolution displays. The larger size
is suitable for high-resolution displays of 1024-by-768 and above. The charac-
ters defined within this font are compatible with the IBM EGA/VGA extended
character set.
16 and 24 pixels

Spacing
Derivation
Description

Sizes

Example

tampa Tampa Fonts

7-36 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
A bold-to-medium-weight serif typeface. Small sizes suited for diagrams and
labels. Larger sizes are well suited to headlines and posters.
18, 22, 30, and 42 pixels

Spacing
Derivation
Description

Sizes

Example

Tampa Fonts tampa

7-37

ti_art TI Art Nouveau Fonts

7-38 Bit-Mapped Text

Proportional
Art Nouveau
A bold-weight, stylized serif typeface. Very ornate; perfect for flyers, posters,
and newsletters.
22, 28, 41, 54, and 82 pixels

Spacing
Derivation
Description

Sizes

Example

TI Art Nouveau Fonts ti_art

7-39

ti_bau TI Bauhaus Fonts

7-40 Bit-Mapped Text

Proportional
Bauhaus Medium
A medium-weight sans-serif typeface. General-purpose font suited to all uses.
Commonly seen on business cards, letterheads, magazines, and other publi-
cations.
11, 14, 17, 19, 22, 24, 28, 43, 56 pixels

Spacing
Derivation
Description

Sizes

Example

TI Bauhaus Fonts ti_bau

7-41

ti_bau TI Bauhaus Fonts

7-42 Bit-Mapped Text

TI Cloister Fonts ti_clo

7-43

Proportional
Cloister Black
A highly stylized, bold-weight Olde English typeface. Best suited for invita-
tions, posters, and flyers. Very decorative.
27 and 40 pixels

Spacing
Derivation
Description

Sizes

ti_dom TI Dom Casual Fonts

7-44 Bit-Mapped Text

Proportional
Dom Casual
A bold-weight semi cursive typeface. Distinctive and informal. Ideal for news-
letters, posters, and flyers.
23, 25, 30, 42, and 46 pixels

\

Spacing
Derivation
Description

Sizes

TI Dom Casual Fonts ti_dom

7-45

ti_hel TI Helvetica Fonts

7-46 Bit-Mapped Text

Proportional
Helvetica
A light-weight sans-serif typeface. Patterned after one of the most widely used
typefaces in the United States. Appropriate for use in all business-related
applications, particularly correspondence and newsletters.
11, 15, 18, 20, 22, 24, 28, 32, 36, 42, 54, and 82 pixels

Spacing
Derivation
Description

Sizes

Example

TI Helvetica Fonts ti_hel

7-47

ti_hel TI Helvetica Fonts

7-48 Bit-Mapped Text

TI Park Avenue Fonts ti_prk

7-49

Proportional
Park Avenue/Zapf Chancery
A medium-weight, ornate cursive typeface. Suited to many purposes. Com-
monly seen on wedding invitations but appropriate wherever a formal font is
desired.
15, 18, 21, 23, 25, 28, 43, and 54 pixels

Spacing
Derivation
Description

Sizes

Example

ti_prk TI Park Avenue Fonts

7-50 Bit-Mapped Text

TI Park Avenue Fonts ti_prk

7-51

ti_rom TI Roman Fonts

7-52 Bit-Mapped Text

Proportional
Times-Roman
A light-to-medium-weight serif typeface. Patterned after the most widely used
typeface in the United States and most English-speaking countries. Appropri-
ate for use in all business-related applications, particularly correspondence
and newsletters.
11, 14, 16, 18, 20, 22, 26, 30, 33, 38, 52, and 78 pixels

Spacing
Derivation
Description

Sizes

Example

TI Roman Fonts ti_rom

7-53

ti_rom TI Roman Fonts

7-54 Bit-Mapped Text

TI Roman Fonts ti_rom

7-55

ti_typ TI Typewriter Elite Fonts

7-56 Bit-Mapped Text

Monospace
Typewriter Elite
A light-weight serif typeface. Small sizes suited to correspondence and news-
letters. Larger sizes perfect for labels and headlines.
11, 14, 16, 18, 20, 22, 26, and 38 pixels

Spacing
Derivation
Description

Sizes

Example

TI Typewriter Elite Fonts ti_typ

7-57

7-58 Bit-Mapped Text

8-1

Chapter 8

Extensibility

Prior to TIGA, the software developer was limited by fixed sets of graphics
drawing functions. In the rapidly changing graphics market, a fixed set of draw-
ing functions is unacceptable.

The extensibility designed into the TIGA interface was a major goal. As a re-
sult, TIGA provides functions that enable an application or driver to install cus-
tom graphics functions.

Topics in this chapter include

Section Page
8.1 Dynamic Load Module 8-2.
8.2 Generating a Dynamic Load Module 8-4.
8.3 Installing a Dynamic Load Module 8-6.
8.4 Invoking Functions in a Dynamic Load Module 8-9.
8.5 C-Packet Mode 8-12.
8.6 Direct Mode 8-16.
8.7 Downloaded Function Restrictions 8-28.
8.8 Using the TMS340-to-Host Callback Functions 8-31.
8.9 Installing Interrupts 8-36.
8.10 Object Code Compatibility 8-39.
8.11 TIGA Linking Loader 8-45.

Dynamic Load Module

8-2 Extensibility

8.1 Dynamic Load Module

The key to TIGA’s extensibility is the dynamic load module (DLM). This module
is a collection of C or assembly functions written by the application or device
driver programmer and linked together to form the module. The DLM is down-
loaded at runtime into TMS340 memory and integrated with the TIGA graphics
manager. Once downloaded, each function contained within the module can
be called with the same conventions as the TIGA core or extended graphics
library functions.

TIGA currently supports two types of dynamic load modules:

Relocatable load module (RLM), and

Absolute load module (ALM).

A dynamic load module comprises functions that can be either standard
C-type functions callable either from the host processor or from the TMS340,
or interrupt service routines called on reception of an interrupt via the TIGA
standard interrupt handler.

8.1.1 Relocatable Load Modules

Relocatable load modules (RLMs) are produced directly with the TMS340
compiler and assembly tools and are in common object file format, or COFF.
A description of this file format is given in the TMS340 Family Code Generation
Tools User’s Guide. These modules contain the necessary relocation entries
so that they can be loaded anywhere in TMS340 memory. They may also con-
tain unresolved references to TIGA core or graphics library functions, which
are resolved when the modules are loaded. Furthermore, the modules contain
all the necessary symbol information, stored after loading, so that subsequent
RLMs that are loaded may reference the functions in another RLM. You can
install an RLM by invoking the install_rlm function.

RLMs are the preferred format for creating a dynamic load module. They offer
the greatest flexibility because the module can be relocated anywhere in
TMS340 memory space, and the module’s symbols can be accessed by sub-
sequently loaded modules.

8.1.2 Absolute Load Modules

Absolute load modules (ALMs) were required in pre-2.0 versions of TIGA be-
cause the downloading of a user extension to TIGA was done by invoking the
linking loader. This is not the case in versions 2.0 and onward, and ALMs are
now redundant. ALMs are supported in TIGA purely to maintain downward
compatibility with TIGA drivers written for versions of TIGA prior to 2.0.

 Dynamic Load Module

8-3

You create ALMs from relocatable load modules by calling the create_alm
function, which uses the TIGA heap management routines to allocate a space
in TMS340 memory where the ALM will be loaded. The function create_alm
then links and relocates the module to the area starting address in heap. Thus,
the ALM can be loaded only into this one area in memory. The heap area for
the module is then freed by the create_alm function. It is therefore imperative
that the state of the heap in TMS340 memory is the same when the ALM is
created as when it is installed. Normally, you can achieve this by always initial-
izing heap before calling create_alm and then reinitializing heap when the
module is installed. You can perform heap initialization by calling
set_videomode with an INIT style.

When an ALM is loaded, heap is allocated to store the module. The start ad-
dress is compared to the one returned when the module was created. If they
are the same, the ALM is loaded into TIGA; if not, the load is aborted. There
is a further restriction: since the symbol information is no longer available with-
in the file (as it is with RLMs), modules loaded subsequently cannot reference
functions in an ALM.

With TIGA 2.0, the functionality of the relocating loader in TIGALNK has been
incorporated into the TIGA communication driver, thus eliminating the need to
invoke TIGALNK when loading RLMs. Therefore, RLMs can now be loaded
by any TIGA application, even if no free host memory is available.

Generating a Dynamic Load Module

8-4 Extensibility

8.2 Generating a Dynamic Load Module

A TIGA dynamic load module consists of the following three parts:

A collection of C and/or assembly functions, some (or all) of which are to
become TIGA extensions or interrupt service routines.

A TIGAEXT section declaration. Required only if TIGA extensions are be-
ing declared.

A TIGAISR section declaration. Required only if TIGA interrupt service
routines are being declared.

This document does not describe the mechanics of generating the TMS340
source and object code of a user function. This is discussed fully in the
TMS340 Family Code Generation Tools User’s Guide. If the user library is to
contain functions written with TMS340 assembly code, then certain guidelines
must to be met to ensure that the C environment is maintained by the assembly
language function. For a description of how to interface assembly language
routines with the C environment, see Chapter 5, Runtime Environment in the
TMS340 Family Code Generation Tools User’s Guide.

Depending on whether or not a DLM contains extensions or interrupt services
routines, one or two specially named COFF sections must be created and
linked with the module. If the module contains extensions, then a section called
TIGAEXT must be created. If the module contains interrupt service routines,
then a section called TIGAISR must be created. The format of these sections
is described below.

8.2.1 TIGAEXT Section

The TIGAEXT section must contain one and only one address reference for
each extension contained within the module (that is callable from the host). For
example, if the module contains two functions called my_func1 and
my_func2, the section declaration would look like this:

;–– ;
;TIGAEXT – This COFF section contains references for all ;
;extensions contained in the module it is linked with. ;
;–– ;
;External References

.globl _my_func1, _my_func2
;Start section declaration

.sect ”.TIGAEXT”

.long _my_func1 ;command number 0 within module

.long _my_func2 ;command number 1 within module

.text ;end section

8.2.2 The TIGAISR Section

The TIGAISR section contains two entries for every interrupt service routine
contained within the module. These entries specify an address reference to
the ISR and the interrupt number of the ISR.

 Generating a Dynamic Load Module

8-5

For example, if two ISRs called my_int1 and my_int10 were contained within
the module, then the section declaration would look like this:
;–– ;
;TIGAISR – This COFF section contains information for all ;
;of the ISRs contained in the module it is linked with. ;
;–– ;
;External References

.globl _my_int1, _my_int10
;Start section declaration

.sect ”.TIGAISR”

.long _my_int1

.word 1 ;interrupt number 1;

.long _my_int10

.word 10 ;interrupt number 10;

.text ;end section

Note:

The TIGAEXT and TIGAISR sections must contain the exact number of dec-
larations for the external functions to be installed. This is because the length
of these sections is used to determine the number of declarations.

8.2.3 Linking the Code and Special Sections Into an RLM

Once the user functions have been written, they are compiled and/or as-
sembled, producing a series of COFF object files (.obj). These files should be
partially linked together with the object files generated by assembling the
TIGAEXT and/or TIGAISR sections. Below is an example where two functions
and two interrupt service routines are created and linked into a RLM.

The source files contain the following:

myfuncs.c Functions my_func1 and my_func2
tigaext.asm References for the above (as in the example)
myints.asm Two interrupt routines, my_int1, and my_int10
tigaisr.asm References and trap numbers for the above ISRs

1) Assemble and/or compile all of the source files:

gspcl myfuncs.c tigaext.asm myints.asm tigaisr.asm

This produces four object files:

myfuncs.obj myints.obj
tigaext.obj tigaisr.obj

2) Partially link all the object modules together to form the RLM:

gsplnk –o EXAMPLE.RLM –r –cr myfuncs.obj tigaext.obj
myints.obj tigaisr.obj

The result of the linking is a relocatable load module entitled example.rlm.

Note:

In some versions of the linker, the warning –Unresolved Reference to
”_c_int00” is displayed. It can be ignored.

Installing a Dynamic Load Module

8-6 Extensibility

8.3 Installing a Dynamic Load Module

To invoke the commands in a dynamic load module, you must first install the
module into the TIGA graphics manager. The module file is in the form of a file
in a directory of the host PC. If this directory is not the current working directory,
the TIGA environment variable must first be set up to point to this directory. Use
the –l option of the TIGA environment variable to find the DLM. The actual in-
stallation procedure differs from RLM to ALM.

8.3.1 Installing a Relocatable Load Module

A relocatable load module is installed by the install_rlm function. Below is an
example program written in Microsoft C, which demonstrates how to install the
RLM example.rlm, described in subsection 8.2.3.

Example 8–1. Installation of the RLM example.rlm

#include <tiga.h>

main()
{

short module;
/*–– */
/* Initialize the TIGA environment */
/*–– */
init_tiga(0);
/*–– */
/* Attempt to load example.rlm */
/*–– */
if((module = install_rlm(”example”)) < 0)
{

printf(”Fatal Error – Could not install example.rlm\n”);
printf(”Error code: %d\n”, module);
term_tiga();

}
/*–– */
/* RLM loaded. We can now call any TIGA Core or RLM function */
/*–– */

:
:

/*–– */
/* Terminate TIGA */
/*–– */
term_tiga(); /* Terminate TIGA */

}

Note:

Refer to Section 3.4 for listings of the init_tiga and term_tiga functions used
in this example.

 Installing a Dynamic Load Module

8-7

The install_rlm function is invoked with the filename of the RLM file. If the RLM
file is in the same directory as the calling application or is in the directory speci-
fied by the –l TIGA environment variable, only the filename of the RLM must
be specified. Otherwise, the complete path must be specified. A default exten-
sion of .rlm is assumed unless one is given. The install_rlm function returns
either the module ID for the RLM, which is used when invoking the functions,
or an error code if some error occurred. Error codes are negative values; mod-
ule identifiers are always positive (including zero).

8.3.2 Installing an Absolute Load Module

An absolute load module must first be created from a relocatable load module.
Example 8–2 is a program written in Microsoft C that demonstrates how to
create an ALM from the example.rlm described in subsection 8.3.1.

Example 8–2. Creation of an ALM From EXAMPLE.RLM

#include <tiga.h>

main()
{

register short return_code;

/*––– */
/* Initialize the TIGA environment */
/*––– */
init_tiga(0);
/*––– */
/* Attempt to create the ALM module */
/*––– */
return_code = create_alm(”example”, ”example”);
if(return_code < 0)
{

printf(”Fatal Error – Could not create example.alm\n”);
printf(”Error code: %d\n”, return_code);
term_tiga();

}
/*––– */
/* Further initialization code would go here... */
/*––– */

:
:

/*––– */
/* Terminate TIGA */
/*––– */
term_tiga();

}

init_driver()
{

register short return_code;

/*––– */
/* Initialize the TIGA environment */
/*––– */
init_tiga(0);

Installing a Dynamic Load Module

8-8 Extensibility

/*––– */
/* Attempt to load example.alm */
/*––– */
if((return_code = install_alm(”example”)) < 0)
{

printf(”Fatal Error –Could not install example.alm\n”);
printf(”Error code: %d\n”, return_code);
term_tiga();

}
/*––– */
/* ALM loaded. We can now call any Core or ALM function */
/*––– */

:
:

/*––– */
/* Terminate TIGA */
/*––– */
term_tiga(); /* Terminate TIGA */

}

Note:

Refer to Section 3.4 for listings of the init_tiga and term_tiga functions used
in this example.

The example assumes that at the time the program is run initially, the function
create_alm can be invoked by create_alm to produce the ALM file. The invoca-
tion produces an example.alm file in the same directory as example.rlm. De-
fault extensions of .rlm and .alm are assumed unless overridden by the file
names supplied. The function create_alm produces an ALM file only if it does
not already exist. This generally restrains the program from unnecessarily rec-
reating the ALM every time the program is run. If the application requires a new
ALM, it must first delete the old one explicitly.

The example also assumes that the part of the program that uses the user ex-
tensions in the ALM is executed after the init_driver function is invoked. This
scenario is typical with application drivers. The main program actually does
very little more than initialization and calling the DOS TSR exit function. Later,
the application calls an init_driver type function to get the driver ready for sub-
sequent application calls. At this time, the TIGA environment is reinitialized,
and the ALM is installed. The install_alm function loads the code from the host
PC file into TMS340 memory.

 Invoking Functions in a Dynamic Load Module

8-9

8.4 Invoking Functions in a Dynamic Load Module

The process of invoking a function in a DLM is done in two parts:

Selection of the function, (described in this section).

Actual invocation of the function and passing of its parameters from the
host to the TMS34 (described in subsequent sections).

8.4.1 Command Number Format

User extensions that are installed in a DLM are identified by a unique com-
mand number. This command number consists of a 16-bit word divided into
the following fields, as Figure 8–1 shows:

Figure 8–1. Command Number Format

1) The function type (bits 14–15) :

00 = direct mode
01 = C-packet
10 = reserved for future use
11 = reserved for future use

2) The module number (between 0 and 31) (bits 9–13) :

31 = TIGA core functions
30 = TIGA graphics library functions installed via the
 install_primitives function
0 thru 29 for user modules in the order of installation

3) The function number within the module (bits 0–8).

The function type field currently selects between the C-packet mode and di-
rect-mode functions. These two modes determine the manner in which the pa-
rameters of the function are passed between the host and the TMS340. The
two modes are described in subsequent sections.

The module number is a unique identifier for each module. TIGA supports up
to 32 DLMs, numbered from 0 to 31. The TIGA core functions are always in-
stalled at initialization time as module number 31. Likewise, the DLM that con-
tains the TIGA graphics library functions is always assigned module number
30 by the install_primitives function. The remaining 30 module slots, num-
bered 0–29, are assigned to user DLMs as they are installed. The first user
DLM installed is assigned the number 0, the second DLM the number 1, and
so on.

Invoking Functions in a Dynamic Load Module

8-10 Extensibility

The function number specifies one of the 512 possible functions that can be
contained within a module. Function numbers are defined by the order in which
they are declared in the TIGAEXT section within a module. For example, as
described in subsection 8.2.1 my_func1 would be designated function num-
ber 0, and my_func2 would be designated function number 1.

8.4.2 Using Macros in Command Number Definitions

The format of the command number may be subject to change in future ver-
sions of TIGA. To minimize the potential changes to an application, macros are
provided in the tiga.* include files so that a command number of a function can
be specified without referencing the individual bits in the command number.
The macros are

CORE_CP(function_number)
CORE_DM(function_number)
EXT_CP(function_number)
EXT_DM(function_number)
USER_CP(module | function_number)
USER_DM(module | function_number)

The macros CORE_CP and CORE_DM select C-packet or direct-mode func-
tions with a module number of 31 (for the TIGA core functions). Similarly,
EXT_CP and EXT_DM select C-packet or direct-mode functions with a mod-
ule number of 30 (for the TIGA graphics library functions). USER_CP and
USER_DM designate user extensions. They take a single argument, which
is the module number returned by the install_rlm or install_alm function ORed
with the function number of the function from its position in the TIGAEXT sec-
tion. The module number should be passed as it is supplied from the install
procedure.

These macros should always be used when specifying command numbers.
If they are not, and if an application hard-codes the bits in a command number,
there is a risk of incompatibility with future versions of TIGA.

8.4.3 Passing Parameters to the TIGA Function

A TIGA function can be invoked in two ways, depending on the type of function
call that is made: C-packet or direct mode.

C-packet functions are the easiest of the two to write and have a more flexible
parameter format. C-packet functions receive their parameters on the stack;
this makes it very easy for you to develop a function that becomes a user ex-
tension, by first writing it and debugging it on the host side. The function can
then be extracted from the host code and recompiled with the TMS340 C com-
piler. Any parameters it received on the host side will be passed from the host
to the TMS340 via a TIGA communication driver routine and then pushed onto
the TMS340 C stack so that the function behaves just as if it were invoked lo-
cally to the host. To do this, however, extra data that describes the type and
size of each parameter must be sent along to the TMS340.

 Invoking Functions in a Dynamic Load Module

8-11

The extra overhead of sending this data, plus the time taken to format the pa-
rameters and push them onto the stack, can be eliminated by using direct
mode. This sends raw data into the communication buffer used for host-to-
TMS340 communication. The user extension function receives on the stack
a single parameter that is a pointer to the communication buffer where the data
is stored. The function itself must pick up the data from this buffer in the ex-
pected format.

Most applications are developed by using C-packet initially. Those functions
that are more time critical can be modified to use direct mode. Source code
changes to an extension to change it from C-packet to direct mode are not that
significant. Sections 8.5 and 8.6 give a complete description of C-packet and
direct modes, respectively.

C-Packet Mode

8-12 Extensibility

8.5 C-Packet Mode

To invoke a user extension using C-packet mode, you must supply three
pieces of information:

The type of call the function uses

The function’s command number

A description of the function arguments

8.5.1 The Type of Call

The current C-packet system supports three basic types of function calls:

cp_cmd This entry point is for functions that do not require any form of
return data.

cp_ret This entry point is for functions that require only a single stan-
dard C-type return value.

cp_alt This entry point is for those functions that pass pointers to data
that is modified indirectly by the function called.

draw_a_line(x1, y1, x2, y2) uses cp_cmd
poly_line(10, &point_list) uses cp_cmd
i = read_point(x, y) uses cp_ret
copy_mem(&src, &dst, len) uses cp_alt

An additional set of entry points is used when the argument list is potentially
too large for the size of the communication buffer used to transfer parameters
between the host and the TMS340. These entry points, cp_cmd_a, cp_ret_a,
and cp_alt_a, have the same functionality as those described above but can
also allocate additional space for passing larger amounts of data as parame-
ters to a TIGA extended function, at a cost of speed performance. Avoid these
entry points when you know that the argument length of the function in ques-
tion will not exceed the maximum size dictated by the communication buffer’s
data size (comm_buff_size is a field of the CONFIG structure returned by
get_config).

8.5.2 The Command Number

Subsection 8.4.1 describes in detail the command number format. The com-
mand number should always be specified in the form:

USER_CP (module | function_number)

for user C-packet extensions, where module is the module ID of the DLM re-
turned at install time and function_number is the position of the function in the
TIGAEXT section.

 C-Packet Mode

8-13

8.5.3 Description of Function Arguments

To call the desired function, each of that function’s arguments must be under-
stood by the graphics manager so that data can be passed to the DLM function
in the expected form. Each individual argument is called a packet and has its
own separate header. Entering the packet headers is made easier when addi-
tional defines in the tiga.* include files are used to represent the different data
types.

The packet header uses a keyword to describe the value being passed.
Table 8–1 describes the Microsoft C equivalent types for each keyword:

Table 8–1.Keyword Equivalent Types

Keyword Microsoft C Equivalent Type

BYTE 8-bit unsigned char

WORD 16-bit unsigned short

DWORD 32-bit signed long

SWORD 16-bit signed short

DOUBLE 64-bit double floating-point

These packet headers are currently supported by TIGA:

_WORD(a) Immediate WORD argument a
_SWORD(a) Immediate signed WORD argument a
_DWORD(a) Immediate double WORD argument a
_DOUBLE(a) Immediate double floating-point argument a
_BYTE_PTR(b,a) BYTE array pointer a with b elements
_WORD_PTR(b,a) WORD array pointer a with b elements
_DWORD_PTR(b,a) DWORD array pointer a with b elements
_DOUBLE_PTR(b,a) DOUBLE array pointer a with b elements
_STRING(a) Null-terminated string pointer a
_ALTBYTE_PTR(b,a) Function-altered BYTE array pointer
_ALTWORD_PTR(b,a) Function-altered WORD array pointer
_ALTDWORD_PTR(b,a) Function-altered DWORD array pointer
_ALTDOUBLE_PTR(b,a) Function-altered DOUBLE array pointer

Because the immediate arguments passed in Microsoft C are always pro-
moted to short type, there is no BYTE identifier. If immediate char values are
passed, either the_WORD or _SWORD identifier should be used. Also, since
immediate short types are the only data types that must be promoted (to 32
bits) by the graphics manager, they are the only data size to have a signed
identifier. All other arguments’ sign extension requirements should be handled
by the called routines.

C-Packet Mode

8-14 Extensibility

8.5.4 C-Packet Examples

The exact argument list of the C-packet entry points is as follows:

entry_point_name(cmd_number, num_packets, packet1, ..,packetn)

where:

cmd_number is the command number
num_packets is the number of C type packets
packet1...packetn is the packet data (see below)

The following are some examples of user extensions. These examples are not
supplied TI-extended functions.

Example function:

init_grafix()

The function requires no return data. (Use cp_cmd)
The function’s command number was stored in CMD_ID.

The function has no arguments.

Resulting include file entry:

#define init_grafix() cp_cmd(USER_CP(CMD_ID), 0)

Example function:

fill_rect(w, h, x, y)

The function requires no return data. (Use cp_cmd.)
The function’s command number was stored in CMD_ID.

The function has 4 arguments, all WORDS.

Resulting include file entry:

#define fill_rect(w,h,x,y) \
cp_cmd(USER_CP(CMD_ID),4,_WORD(w),_WORD(h),_WORD(x),_WORD(y

))

Example function:

poly_line(n, &linelist)

The function requires no return data (Use cp_cmd.)
The function’s command number was stored in CMD_ID.

The function has 2 arguments, WORDn, and WORD_PTR, line_list.

Resulting include file entry:

#define poly_line(n,ptr) \
cp_cmd(USER_CP(CMD_ID),2,_WORD(n),_WORD_PTR(2*n,ptr))

 C-Packet Mode

8-15

Example function:

init_matrix(&matrix)

The called function initializes the array pointed to indirectly by &matrix .
(Use cp_alt)
The function’s command number was stored in CMD_ID.

The function has one argument, which points to a 4 × 4 element-function-
altered array of longs.

Resulting include file entry:

#define init_matrix(ptr) \
cp_alt(USER_CP(CMD_ID),1,_ALTDWORD_PTR(16,ptr))

8.5.5 Overflow of the Command Buffer

When a command of any kind (TIGA or user function) is invoked by an applica-
tion, the communication driver functions transfer its parameters from host
memory into a temporary buffer in the TMS340 memory (called a command
buffer). If one of the parameters of the function is a pointer, then the pointer
itself is not copied over; only the data that is being pointed to is copied. If the
pointer is an array, as in the polyline function, then it can be of arbitrary length.
Thus, it is simple for the application to overflow this fixed length buffer by, for
example, asking TIGA to draw a million-element polyline. The application must
know the size of data that it is attempting to transfer into the TMS340 processor
memory and must check that it will fit in the command buffer. For this reason,
the command buffer size is included as an element in the configuration struc-
ture returned by get_config. Note that if a C-packet entry point is being used,
allowances must be made for the packet type and size words, which also use
space in the command buffer.

Memory space management is required for all direct-mode and three regular
C-packet entry points. However, the application can use the _a C-packet entry
points (for example, cp_cmd_a) that check the size of the parameters, and
download them in the normal way if they fit. If they do not fit, the entry points
attempt to allocate a temporary buffer from the TMS340 heap pool to store the
parameters. If the allocation is not successful, the error function is invoked.
The checking of the parameter size requires two passes through the argu-
ments. This technique incurs some speed overhead; however, a rapid
real-time function does not commonly use arrays too large to fit in the com-
mand buffer.

Another technique provided in TIGA for the management of large amounts of
data that may overflow the command buffer is the direct-mode entry points
dm_poly and dm_ipoly. These entry points turn the buffer into a circular queue
so that any size of data can download into the buffer. This technique requires
the writing of a custom TMS340 processor command that manages the data
and the handshaking employed.

Direct Mode

8-16 Extensibility

8.6 Direct Mode

The principal difference between C-packet and direct modes is that in direct
mode, when the downloaded function is invoked on the TMS340 side, the ar-
guments are not on the stack as in C-packet mode. The downloaded function
is invoked with a single argument, which is a pointer to a data area where the
host downloaded the parameters. The function itself must fetch the passed ar-
guments from this data area into the local variables.This process makes the
writing of functions slightly more complicated, but this is offset by the increase
in performance. These functions are intended to improve the process of invok-
ing TIGA extensions from the TMS340; they are not intended to be called from
other downloaded functions from the TMS340 side (although they could be).
Functions that need to be called from both the host and TMS340 (by another
downloaded function) are best written in C-packet or should have an alternate
C-callable entry point.

Note that for the fastest possible transfer of data, the direct-mode entry points
do not check the size of the data being transferred. The application must en-
sure that the data being transferred does not overflow the command buffer.

A further difference between C-packet and direct mode is that in C-packet
mode the arguments passed to a function could be of any combination of im-
mediate data and pointers in any particular order. This is not the case with di-
rect mode. No packet information is sent with the data to specify whether it is
immediate or not and what its size is. The direct-mode entry point itself deter-
mines what format the parameters can be specified in, and, in turn, how these
parameters are received in the TMS340 communication buffer. The following
sections provide a list of the direct-mode entry points and the parameterization
of their arguments.

8.6.1 Differences Between Microsoft C and High C/NDP Compilers

The MetaWare High C and Microway NDP compilers promote all argument
types to 32-bit long words when passing arguments between functions,
whereas the Microsoft C compiler promotes chars and shorts to 16-bit words.
This fundamental difference affects how arguments are passed via the direct-
mode entry points.

Those direct-mode entry points affected by the difference in immediate argu-
ment promotion described above have two calling definitions: one for use with
the Microsoft C compiler and the other for use with the High C/NDP compiler.
The High C/NDP definition has an additional argument, flags, which identifies
the actual significant words for each immediate value argument. For example,
the dm_cmd entry point definition for the High C/NDP compilers is

void dm_cmd(cmd_number, length, flags, arg1, ... , argn);
short cmd_number;
short length;
unsigned long flags;
short (or long) arg1...argn;

 Direct Mode

8-17

Here, length contains the number of significant words in the argument list. A
short and a char both have one significant word, whereas a long has two signif-
icant words. Although the arguments are defined as shorts, longs are passed
in many TIGA functions (including our own) as a single argument, and the 2
is added to the length instead of 1.

The flags argument is a simple identifier for the first 32 arguments passed to
the entry point. Bit 0 of flags corresponds to arg1, and so on. The bit should
be set to 1 if its corresponding argument is a long, and set to 0 if the argument
is a short or a char. These identifiers enable the High C/NDP AI libraries to con-
vert the call into the standard Microsoft C format, 16-bit segmented call, before
calling the appropriate TIGA CD function.

Another difference between the Microsoft and the High C/NDP AI libraries is
the way data pointers are handled. Refer to Section 3.2, page 3-3, for a de-
scription of how data pointers are interpreted in each AI library. The interpreta-
tion affects pointer types passed as arguments to direct-mode entry points.
For example, the definition for the dm_psnd entry point depends on which AI
library is being linked to as follows:

ai.lib , ai_com.lib : (far data references):

void dm_psnd(cmd_number, length, ptr)
short cmd_number;
short length;
void far *ptr;

hcai.lib , ndpai.lib (near data references):

void dm_psnd(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr;

Note that the only difference is the type of argument pointer. For far data refer-
ences, it is a far pointer. For near data references, it is a near pointer. It is impor-
tant to keep this in mind because the direct-mode entry point descriptions in
the following sections do not differentiate near and far pointers.

8.6.2 Standard Command Entry Point

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

void dm_cmd(cmd_number, length, arg1, ... , argn);
short cmd_number;
short length;
short arg1...argn;

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

void dm_cmd(cmd_number, length, flags, arg1, ... , argn);
short cmd_number;
short length;
unsigned long flags;
short (or long) arg1...argn;

Direct Mode

8-18 Extensibility

This command is the most commonly used for direct-mode commands in the
TIGA system. The length specified is the number of 16-bit words that are sent;
thus, to send a long, length should increase by 2.

The TIGA core function poke_breg uses this entry point. It sends a 16-bit regis-
ter number and a 32-bit value to be loaded into the register. Note that the length
is three because three16-bit words are pushed onto the stack (2 of them being
the MSW and LSW of value).

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

#define poke_breg(regno,value) \
dm_cmd(POKE_BREG,3,(short)(regno),(long)(value))

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

#define poke_breg(regno,value) \
dm_cmd(POKE_BREG,3,2,(short)(regno),(long)(value))

Note the additional flags argument value of 2. This specifies

Flag Bit Significant Words in Argument

bit 0 = 0: Argument 0 (regno) has 1 significant word

bit 1 = 1: Argument 1 (value) has 2 significant words

Figure 8–2 shows how the data in the communication buffer looks.

Figure 8–2. Data Structure of dm_cmd

The poke_breg function has one parameter on the stack, which is data_ptr.
The function contains the following TMS340 assembly code to extract the data
from the communication buffer:

_dm_poke_breg:
move A0,*–SP,1 ; save A0

; (Field Size 1 is 32–bits by default)
move *–A14,A8,1 ; get data_ptr
setf 16,1,0 ; set Field Size 0 to 16–bits
move *A8+,A0,0 ; get regno into A0
move *A8,A8,1 ; get value into A8

8.6.3 Standard Command Entry Point With Return

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

 Direct Mode

8-19

long dm_ret(cmd_number, length, arg1, ... , argn);
short cmd_number;
short length;
short (or long) arg1...argn;

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

long dm_ret(cmd_number, length, flags, arg1, ...,
argn);

short cmd_number;
short length;
unsigned long flags;
short (or long) arg1...argn;

This command is similar to dm_cmd described in subsection 8.6.2. The differ-
ence is that after calling the TMS340 function, the host waits for the command
to finish and then fetches and returns the standard C return value as a long,
but is of the same type as that returned by the called routine (signed or un-
signed, etc.). The value is returned in the DX:AX registers. As with dm_cmd,
dm_ret specifies length in 16-bit words.

The TIGA core function cvxyl uses the dm_ret entry point. It passes two 16-bit
arguments, x and y, returning a 32-bit long value.

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

#define cvxyl(x,y) \
dm_ret(CVXYL,2,(short)(x),(short)(y))

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

#define cvxyl(x,y) \
dm_ret(CVXYL,2,0,(short)(x),(short)(y))

Note the additional flags argument value of 0. This specifies that each argu-
ment x and y has only one significant word (flag bits are 0 for each).

8.6.4 Standard Memory Send Command Entry Point

void dm_psnd(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr; /* void far *ptr for ai, ai_com libs */

This command calls functions that require information in the form of an array
or structure. Note that in this case the length specified is in bytes, not 16-bit
words as in the previous two entry points. The ptr argument is a pointer into
host memory. The contents of this pointer are downloaded into the communi-
cation buffer.

The TIGA extended function draw_polyline uses this entry point. Notice that
the numpts is multiplied by 4 because every point consists of two coordinates
(x and y), each of which is 2 bytes long.

Direct Mode

8-20 Extensibility

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

#define draw_polyline(numpts,pts) \
dm_psnd(DRAW_POLYLINE, (short)(4*(numpts)), (short far

*)(pts))

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

#define draw_polyline(numpts,pts) \
dm_psnd(DRAW_POLYLINE, (short)(4*(numpts)), (short

*)(pts))

Figure 8–3 shows how the data in the communication buffer looks.

Figure 8–3. Data Structure of dm_psnd

16-Bit Words

numpts × 4data_ptr

pts[)],x x Coordinate of First Point

y Coordinate of First Point

x Coordinate of Second Point

y Coordinate of Second Point

pts[)],y

pts[1),x

pts[1),y

Because the entry point always sends the byte count into the first word of the
communication buffer, the TMS340 function itself must scale it to a point-count
by dividing the value by 4. The function contains the following TMS340 assem-
bly code to extract the data from the communication buffer:

_dm_draw_polyline:
 :
 :

move *–A14,A11,1 ;get data_ptr
setf 16,1,0 ;set field Size 0 to 16 bits
move *A11+,A10,0 ;1st word is number of bytes

;the post–increment of A11 means that
;it is now a pointer to pts[0]

srl 2,A10 ;convert to numpts

8.6.5 Standard Memory Return Command Entry Point

long dm_pget(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr; /* void far *ptr for ai, ai_com libs */

 Direct Mode

8-21

The dm_pget command calls functions that return information in the form of
an array or structure. The length (in bytes) is sent as the first element in the
command buffer. The function writes the return data into the communication
buffer at the word following the length. The dm_pget entry point then copies
the data from the communication buffer to the host address specified by the
argument ptr.

8.6.6 Standard String Entry Point

void dm_pstr(cmd_number, ptr)
short cmd_number;
void *ptr; /* void far *ptr for ai, ai_com libs */

The dm_pstr entry point is similar to dm_psnd, but instead of sending a pointer
with a known length, it sends a null-terminated string. In this case, the commu-
nication buffer has no length entry as the first word. Successive bytes of the
buffer contain the characters in ptr with a null (zero) terminator.

8.6.7 Altered Memory Return Command Entry Point

unsigned long dm_palt(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr; /* void far *ptr for ai, ai_com libs */

The long_palt entry point sends and returns information in the form of an array
or structure. This entry point combines the functionality of the dm_psnd and
dm_pget entry points to send the contents of a pointer (of length bytes), which
is then modified by the TMS340 function. When the command completes ex-
ecution, the data is returned back into the host memory pointed to by ptr.

8.6.8 Send/Return Memory Command Entry Point

unsigned long dm_ptrx(cmd_number, send_length, send_ptr,
return_length, return_ptr)

short cmd_number;
short send_length;
void *send_ptr; /* void far *send_ptr for ai, ai_com libs */
short return_length;
void *return_ptr; /* void far *return_ptr for ai, ai_com libs */

The dm_ptrx entry point is used to send information in an array or structure and
return information to a different array or structure. It is similar to dm_palt in sub-
section 8.6.7 except that data is returned to a different area of host memory.
The parameters send_length and return_length are in bytes.

Direct Mode

8-22 Extensibility

8.6.9 Mixed Immediate and Pointer Command Entry Point

void dm_pcmd(cmd_number, num_words, word1, word2,...,
num_ptrs, cnt1, ptr1, cnt2, ptr2, ...)

short cmd_number; /* command_number */
short num_words; /* number of words to send */
short word1; /* immediate data */
short word2;

:
short num_ptrs; /* number of pointers to send */
short cnt1; /* number of bytes in pointer 1 */
void *ptr1; /* void far *ptr1 for ai, ai_com libs */
short cnt2;
void *ptr2; /* void far *ptr2 for ai, ai_com libs */

The dm_pcmd entry point combines immediate and pointer data. The first pa-
rameter after the command number is the number of words (num_words) to
send in the same manner as dm_cmd. Following that are the words them-
selves on the stack. After the immediate data is a count of the number of point-
ers to send (num_ptrs). Each pointer is preceded by a count of the number of
bytes contained in the array or structure that the pointer is pointing to.

Note that the arguments word1, word2, ..., must be words (that is, not more
than 16-bits of significant data).

8.6.10 Mixed Immediate and Pointer Command Entry Point With Return

unsigned long dm_pret(cmd_number, num_words, word1, word,..,
num_ptrs, cnt1, ptrl, cnt2, ptr2, ..)

short cmd_numbers; /* command_number */
short num_words; /* number of words to send */
short word1; /* immediate data */
short word2;

:
short num_ptrs; /* number of pointers to send */
short cnt1; /* number of bytes in pointer 1 */
void *ptr1; /* void far *ptr1 for ai, ai_com libs */
short cnt2;
void *ptr2; /* void far *ptr2 for ai, ai_com libs */

The dm_pret command is similar to dm_pcmd except that it returns a standard
C value in the DX:AX registers.

Note that the arguments word1, word2, ..., must be words (that is, not more
than 16-bits of significant data).

8.6.11 Poly Function Command

void dm_poly(cmd_number, packet_number, packet_size, packet_ptr)
short cmd_number;
short packet_number;
short packet_size;
void *packet_ptr; /* void far *packet_ptr for ai, ai_com libs */

 Direct Mode

8-23

The dm_poly entry point is different from every other C-packet and di-
rect-mode entry point in that it does not simply transfer data from host to
TMS340 memory and invoke a command. This command supports parallel
operations on large amounts of data; that is, some of the data being sent can
be processed while the rest is being sent down.

The command buffer used by the communication driver to download the pa-
rameters is turned into a circular queue of packets. Figure 8–4 shows what the
command buffer contains.

Figure 8–4. Data Structure of dm_poly
16-Bit Words

Total Number of Packets

Number of Packets in a Burst

Packets Sent

Packets Used

Start of Packet 1

data_ptr

The dm_poly entry point sends a burst of packets down from the host to the
TMS340. It updates the packets-sent count and monitors the packets-used
count to ensure that there is enough room to download more packets. The user
function must be specially written to comprehend this handshaking scheme
and be responsible for the update of the packets-used entry.

Direct Mode

8-24 Extensibility

Example 8–3. TMS340 Shell Routine With dm_poly

;–– ;
; TIGA – Graphics Manager function ;
;–– ;
; Usage: Example TMS340 shell routine with dm_poly entry point ;
;––
; Include TMS340 register definitions
 .copy gspreg.inc
; Include macros
 .mlib gspmac.lib
; Declare globals
 .globl _example_dmpoly
; External References; Arguments Received from Host
aTOTAL .set 0 ;total number of packets
aPAGE .set 10h ;packets per page
aSENT .set 20h ;packets sent
aUSED .set 30h ;packets used
aDATA .set 40h ;data starts here; Register usage
Rarg .set A0 ;pointer to arguments
Rccurrent .set A1 ;count (current)
Rctotal .set A2 ;count (total packets)
Rctemp .set A3 ;count (temp)
Rcpage .set A4 ;count (total per page)
Rdata .set A5 ;pointer to data
BURST_SIZE .set 16
_example_dmpoly:
 mmtm SP,A0,A1,A2,A3,A4,A5,A6,A7,A9
 Popc Rarg ;get pointer to args
 move *Rarg(aTOTAL),Rctotal,0 ;get total packets
 move *Rarg(aPAGE),Rcpage,0 ;get packets per page
 clr Rccurrent ;clear current count
page_loop:
 move Rarg,Rdata
 addi aDATA,Rdata
 Push Rcpage
burst_loop:
 movk BURST_SIZE,Rctemp ;Rctemp is number pkts
 sub Rctemp,Rctotal
 jrge full_burst
 add Rctotal,Rctemp
 clr Rctotal
full_burst:
 add Rctemp,Rccurrent ;current count up to date
check_loop:
 move *Rarg(aSENT),A8,0 ;Get count ready
 sub Rccurrent,A8 ;Sub off desired count
 jrlt check_loop ;If not ready, then wait

packet_loop:
;––– ;
; Grab some data and do something with it ;
;––– ;
 move *Rdata+,A6,1
 move *Rdata+,A7,1
 move *Rdata+,A9,0
;––– ;
 dsjs Rctemp,packet_loop
 move Rccurrent,*Rarg(aUSED),0
 move Rctotal,Rctotal
 jrz exit
 subk BURST_SIZE,Rcpage
 jrgt burst_loop
 Pop Rcpage
 jruc page_loop
exit: Pop Rcpage
 mmfm SP,A0,A1,A2,A3,A4,A5,A6,A7,A9
 rets 2

 Direct Mode

8-25

8.6.12 Immediate and Poly Data Entry Point

void dm_ipoly(cmd_number, nShorts, sData,..., ItemSz, nItems, pData)
unsigned short cmd_number; /* command number */
unsigned short nShorts; /* # of immediate short words to send */
unsigned short sData; /* First short word of data to send */

:
unsigned short ItemSz; /* Size of items that follow (bytes) */
unsigned short nItems; /* # of items that follow */
void *pData; /* void far *pData for ai, ai_com libs */

This entry point is similar to dm_poly; it is used for operations that require a
large amount of data items to be transferred. The TMS340 has the ability to
operate on one or more data items at a time; some of the data can be pro-
cessed by the TMS340 while more is being sent down.

A user function located on the TMS340, which expects data sent by this entry
point, must be coded by using a specific set of rules. When the TMS340 func-
tion is called, it receives a data pointer in TMS340 memory. The data at that
address consists of the immediate data values. The poly data, which is sent
in bursts by the host, requires special processing and communication protocol
to be received. To isolate this processing from the user function, a service rou-
tine is provided called srv_ipoly. This service routine should be called, once the
user function is ready to process the poly data. The parameters for this function
are as follows:

srv_ipoly(pItemSrv, pDataBuf)
void (*pItemSrv)(); /* Ptr to item handler */
char *pDataBuf; /* Address after last immed. word */

The pDataBuf argument is the address immediately following the last immedi-
ate word received by the user function.

The pItemSrv is the address of a function that can, in turn, be called by srv_ipo-
ly to handle 1 or more Items. This function will be called repetitively by srv_ipoly
until all the items have been received by the host and serviced. This function
will be called with the following arguments:

(*pItemSrv)(nItems, pItems);
unsigned short nItems; /* Number of items this time */
char *pItems; /* Pointer to data */

The nItems argument is the number of items requiring service. The pItems ar-
gument is the address of a data buffer containing nItems worth of data.

The following is an example of how this entry point can be used. For this exam-
ple, a polypixel command is implemented. The function has two immediate ar-
guments: the foregound color of the pixel, and the raster op to be used to draw
the pixels. The remaining poly data is an array of points where pixels are to be
drawn.

Direct Mode

8-26 Extensibility

The host program to call the entry point would look like this:

dm_ipoly(CMD, 2, color, rop, 4, nPoints, pData)

where:

CMD is the command number of the polypixel function.

2 specifies that two immediate arguments follow: color and rop.

color is the first immediate argument.

rop is the second immediate value.

4 specifies the item size as four bytes. Each item is a point, which in
this case is two words. The first specifies the X coordinate, the sec-
ond specifies the Y.

nPoints specifies the number.

pData is the pointer in host memory where the point resides.

The downloaded TMS340 user function called polypixel looks like this:

;–––
; TIGA – POLYPIXEL – Example User function ;
–––
; Example of a downloaded TMS340 function that uses the
; dm_ipoly host entry point.
;–––
; Include TMS340 register definitions
 .copy gspreg.inc
; Include macros
 .mlib gspmac.lib
; Declare globals
 .globl _PolyPixel
; External References
 .globl _srv_ipoly
; Polypixel argument definition
aCOLOR .set 0h
aROP .set 10h
aDATA .set 20h ; address passed to srv_ipoly

 Direct Mode

8-27

_PolyPixel:
mmtm SP,A0,A1,A2
setf 16,0,0
move @CONTROL,A2,0 ;save CONTROL register
Popc A0 ;get pointer to data
move *A0(aCOLOR),A1,0 ;get color
move A1,COLOR1 ;set gsp foreground color
move *A0(aROP),A1,0 ;get raster op
setf 5,0,0
move A1,@CONTROL+10,0 ;use it to set gsp pp op
setf 16,0,0

; Ready for poly data, push the address following the
; immediate data and the address of the service routine

Push STK
move A0,A8
addi aDATA,A8
Pushc A8 ;push data address
movi drawpixels,A8
Pushc A8 ;push item service routine
calla _srv_ipoly

; All done, cleanup and exit
move A2,@CONTROL,0 ;restore CONTROL register
mmfm SP,A0,A1,A2
rets 2

;–––
;
; Item service routine: drawpixels
;
; This function is called repetitively by the srv_ipoly
; function until all the items sent by the host have been
; received and serviced. This function is called with two
; stack parameters: the 1st parameter is the number of
; items requiring service, and the 2nd argument is the
; address of the data items in TMS340 memory.
;
;–––
drawpixels:

mmtm SP,B10,B11,B12,B13 ;save registers
move STK,B13
move *–B13,B10,1 ;pop number of items
move *–B13,B11,1 ;pop ptr to item data
move B13,STK

drawloop:
addk 1,COLOR1
move *B11+,B12,1 ;get Y:X pixel coords
pixt COLOR1,*B12.XY ;draw a pixel
dsjs B10,drawloop ;loop until items exhausted
mmfm SP,B10,B11,B12,B13 ;restore registers
rets 2

Downloaded Function Restrictions

8-28 Extensibility

8.7 Downloaded Function Restrictions

User extended functions and interrupt service routines contained in a dynamic
load module have the ability to access functions or globals that were previously
installed into TIGA. This includes the core functions and the TIGA graphics li-
brary functions (provided that they have been installed by the application).
Note that certain functions are host-only functions and cannot be invoked by
a dynamically loaded routine. These functions are identified by the host-only
type field in Chapter 4, Core Functions.

The downloaded function, whether written in TMS340-C or assembly lan-
guage, can take advantage of all the facilities of the graphics manager. Specifi-
cally, it can

1) Invoke nearly all the TIGA core functions as if they were written on the host
side. Thus, it can invoke the function set_palet with the parameters used
in Microsoft C. Not all the functions can be invoked from the TMS340 side,
because some require access to host side data structures, such as those
concerned with the linking loader. Two include files (gsptiga.h and
gspextnd.h) containing the graphics manager core functions and graphics
library functions are supplied for this purpose. This capability has the ad-
vantage that an application can be written and debugged on the host side
by using Microsoft debug tools, and then individual functions can be down-
loaded onto the TMS340 side with no changes.

2) Access global variables of the graphics manager, such as those specifying
display coordinates, directly without invoking functions to do it. An include
file (gspglobs.h) containing the graphics manager global variables is
supplied for this purpose. The file shown in the following example lists the
global variables that the downloaded extension is free to access in the cur-
rent version of TIGA.

 Downloaded Function Restrictions

8-29

extern long bottom_of_stack; /* Declared in link file */
extern CONFIG config; /* Current configuration */
extern PALET DEFAULT_PALET[16]; /* Default palette */
extern CURSOR DefaultCursor; /* Default cursor struct */
extern long end_of_dram; /* Declared in link file */
extern ENVIRONMENT env; /* Environment variables */
extern ENVTEXT envtext; /* Text environment */
extern ENVCURS envcurs; /* Cursor environment */
extern MODEINFO *modeinfo; /* Operating mode info */
extern MODULE Module[32]; /* Function module descr. */
extern unsigned char *monitorinfo; /* Monitor timing info */
extern OFFSCREEN_AREA *offscreen; /* Pointer to current data */
extern unsigned char *page; /* Pointer to current data */
extern PALET palet[]; /* Current palette in use */
extern PATTERN pattern; /* Current pattern information */
extern unsigned char *setup; /* Current setup pointer */
extern unsigned short sin_tbl[]; /* Sine lookup table */
extern long stack_size; /* Declared in link file */
extern long start_of_dram /* Declared in link file */
extern FONT *sysfont; /* Pointer to system font */
extern FONT sys16, sys24; /* System font choices */
extern long *sys_memory; /* Pointer to heap packets */
extern long sys_size; /* Size of heap */
extern unsigned short *pHCOUNT, *pHEBLNK, *pHESYNC, *pHSBLNK, *pHTOTAL;
extern unsigned short *pVCOUNT, *pVEBLNK, *pVESYNC, *pVSBLNK, *pVTOTAL;

When these variables refer to a specific type of declaration, such as PALET,

the include file gsptypes.h should also be included to define this type of decla-
ration.

8.7.1 Register Usage Conventions

Assembly language functions used in conjunction with the TIGA functions
should follow certain guidelines for register use. The following registers must
be restored to their original states (the state before the function was called) be-
fore control is returned to the calling routine:

Status register fields FE1 and FS1. Fields FE0 and FS0 need not be re-
stored.

All A-file registers except A8.

In general, all B-file registers. However, certain B-file registers such as
COLOR0 and COLOR1 may be altered by attribute control functions that
update parameters .

In general, I/O registers CONTROL, DPYCTL, CONVDP, and INTENB.
However, some I/O register bits may be altered by attribute control func-
tions that update parameters such as the plane mask, pixel-processing
operation, or transparency flag. These register bits typically are not
changed by graphics output functions.

Downloaded Function Restrictions

8-30 Extensibility

Upon entry to a downloaded extension, certain registers are in a known state
and contain well-defined parameters. These assumptions cannot be made of
interrupt service routines, because they can interrupt a function that may be
using one of these registers for a different purpose. Extensions, however, can
assume that the following registers are in these states:

Status register:

FE1 = 0
FS1 = 32
FE0 and FS0 are undefined

A-File Registers: STK-A14 points to the C-parameter stack.

B-file registers:
DPTCH Screen pitch (difference in starting memory addresses of

any two successive scan lines in display memory).
OFFSET Memory address of pixel at top left of screen.
WSTART Top left corner of current window.
WEND Bottom right corner of current window.
COLOR0 Source background color.
COLOR1 Source foreground color.

I/O registers:
CONTROL Contains current pixel-processing operation code and

transparency control bit. These are set by the application
program and may vary from one call to the next. In contrast,
in the window mode, PBH and PBV bits are set to specific
values. The window mode is set to enable clipping without
interrupts (W = 3). The PBH and PBV bits are both zero.

CONVDP Is set up for the screen pitch.
PMASK Contains the current plane mask.

8.7.2 TIGA Graphics Manager System Parameters

The TIGA graphics manager assumes that certain system parameters are un-
der its control. Dynamic load modules should not alter the following register
bits:

The master interrupt enable bit (IE) in the status register.
The cache disable bit (CD) in the CONTROL register.
The DRAM refresh control bits (RR and RM) in the CONTROL register of
the TMS34010.
The four host interface registers (HSTADRL, HSTADRH, HSTDATA, and
HSTCTL) of the TMS34010.
The DRAM refresh control bits and RCA bus configuration mode in the
CONFIG register of the TMS34020.

 Using the TMS340-to-Host Callback Functions

8-31

8.8 Using the TMS340-to-Host Callback Functions

The mechanics used in implementing a TMS340 function that calls back to the
80x86 host are based on the same C-Packet scheme as the standard C-Pack-
et host-to-TMS340 call. One simplifying difference, however, is that the call-
back version of the packet handler contains only a single entry point. This entry
point handles all types of callback functions. Thus, to create a callback invoca-
tion line, only two pieces of information are required:

The function’s command number

The description of the function arguments.

8.8.1 The Command Number

Since callback functions are always application defined, there is no complex
mechanism for calculating callback function numbers. The function number is
determined solely by the position of the function pointer in the function pointer
array passed at callback initialization. (See subsection 8.8.4).

8.8.2 Description of the Function Arguments

To call the desired function, each of that function’s arguments must be under-
stood by the graphics manager so that data can be passed to the host routine
in the expected form. As with the standard TMS340 call, C-Packets are used
to describe the arguments. The following packet types are defined in gsptiga.h
for host calls:

__WORD(a) Immediate word, argument a
__DWORD(a) Immediate double word, argument a
__BYTE_PTR(b,a) Byte array pointer a with b elements
__WORD_PTR(b,a) Word array pointer a with b elements
__DWORD_PTR(b,a) Double-word array pointer a with b elements
__STRING(a) Null-terminated string pointer a
__ALTBYTE_PTR(b,a) Function-altered byte array pointer
__ALTWORD_PTR(b,a) Function-altered word array pointer
__ALTDWORD_PTR(b,a) Function-altered double-word array pointer
__INBYTE_PTR(b,a) Function-initialized byte array pointer
__INWORD_PTR(b,a) Function-initialized word array pointer
__INDWORD_PTR(b,a) Function-initialized double-word array pointer

These packets conform closely to those defined for the standard TMS340 call.
The added IN-type packets are used for functions that initialize arrays and are
not concerned with the initial values in the array. Note that each packet type
used in TMS340-to-host calls has two leading underscores, whereas host-to-
TMS340 packet types have one.

Using the TMS340-to-Host Callback Functions

8-32 Extensibility

8.8.3 Callback Examples

The exact argument list of the callback entry point is as follows:

host_command(cmd_number, num_packets, packet1, ... ,
packetn)

where:

cmd_number is the command number
num_packets is the number of C type packets
packet1...packetn is the packet data

Below are some examples of user extensions. The example functions used
are the standard file access functions as supplied with Microsoft C 5.1.

Example Function:

FILE *fopen(path, type)
char *path; ;Path name of file
char *type; ;Type of access permitted

Assume that the function number is stored in CMD_ID.

The function has two arguments, both null-terminated strings.

Resulting include file entry:

#define fopen(a,b)\
host_command(CMD_ID, 2, __STRING(a), __STRING(b))

Note:

This function returns a 32-bit pointer in FAR model; thus, it can be treated as
a DWORD on the TMS340.

Example Function:

short fread(buffer, size, count, stream)
void *buffer; Storage location for data
short size; Item size in bytes
short count; Max number of items to read
FILE *stream Pointer to FILE structure

Assume that the function number is stored in CMD_ID.

The function has four arguments. The first is a function-initialized pointer
(size * count elements), the second two are immediate words, and the last
is a FAR pointer, which is treated as a DWORD.

Resulting include file entry:

#define fread(a,b,c,d)\
host_command(CMD_ID, 4,
__INBYTE_PTR(b*c,a), __WORD(b), __WORD(c), __DWORD(d))

 Using the TMS340-to-Host Callback Functions

8-33

Example Function:

short fwrite(buffer, size, count, stream)
void *buffer; Storage location for data
short size; Item size in bytes
short count; Max number of items to read
FILE *stream Pointer to FILE structure

Assume that the function number is stored in CMD_ID.

The function has four arguments. The first is a nonaltered array pointer
(size * count elements), the second two are immediate words, and the last
is a FAR pointer, which is treated as a DWORD.

Resulting include file entry:

#define fwrite(a,b,c,d)\
host_command(CMD_ID, 4, __BYTE_PTR(b*c,a), __WORD(b),

__WORD(c), __DWORD(d))

Note:

This function returns a 32-bit pointer in FAR model; thus, it can be treated as
a DWORD on the TMS340.

Example Function:

FILE *fclose(stream)
 FILE *stream; Pointer to FILE structure

Assume that the function number is stored in CMD_ID.

The function has a single arguments: a FAR pointer, which is treated as
a DWORD.

Resulting include file entry:

#define fclose(a) host_command(CMD_ID, 1, __DWORD(a))

8.8.4 Initializing the Callback Environment

Because callback is purely an application option in TIGA 2.0, there are no as-
signed communications buffers to handle it. To initialize the callback environ-
ment, the TIGA application must

Allocate equal-sized host memory and TMS340 memory command buff-
ers

Define the host function array

Initialize the HOST_INIT structure and execute the TIGA core function
setup_hostcmd()

Using the TMS340-to-Host Callback Functions

8-34 Extensibility

For example, consider the file I/O functions discussed in the previous section.
The following is a host code excerpt, which performs the callback initialization
for these functions.

#include <tiga.h>
#include <typedefs.h>
#include <stdio.h> /* Microsoft C include file */

HOST_INIT far hinit;

void (*hcmds[4])() = {fopen,fread,fwrite,fclose};
short handle;
unsigned long gptr;
char *hptr;

init_callback()
{

/* Allocate TMS340 Side Buffer */
if(!(handle = gsph_alloc(BUFFER_SIZE)))

memory_error();
gptr = gsph_deref(handle);

/* Allocate Host Side Buffer */
if(!(hptr = (char*) malloc(BUFFER_SIZE)))

memory_error();

/* Initialize HOST_INIT structure */
hinit.host_buffer = hptr;
hinit.TMS340_buffer = gptr;
hinit.buffer_size = BUFFER_SIZE;
hinit.host_commands = &hcmds[0];
hinit.command_count = 4;

/* Initialize Callback*/
setup_hostcmd(&hinit);

}

For a more complete example, refer to the CBFILE example in the \tiga\demos
directory.

8.8.5 Sizing the Callback Buffer and Handling Overflow

Since the callback buffer is application-allocated, it is assumed that the size
allocated is large enough to handle the application’s requirements. In the event
that the packet data overflows the allocated buffer size, the command aborts
on the TMS340 side without calling the host.

 Using the TMS340-to-Host Callback Functions

8-35

To help calculate whether a command will fit into the command buffer allo-
cated, use the following packet sizes as a guide:

__WORD(a) 8 bytes
__DWORD(a) 8 bytes
__BYTE_PTR(b,a) (8 + b) bytes
__WORD_PTR(b,a) (8 + 2 * b) bytes
__DWORD_PTR(b,a) (8 + 4 * b) bytes
__STRING(a) (8 + sizeof(a) + 1) bytes
__ALTBYTE_PTR(b,a) (8 + b) bytes
__ALTWORD_PTR(b,a) (1 + 2 * b) bytes
__ALTDWORD_PTR(b,a) (8 + 4 * b) bytes
__INBYTE_PTR(b,a) (10 + b) bytes
__INWORD_PTR(b,a) (10 + 2 * b) bytes
__INDWORD_PTR(b,a) (10 + 4 * b) bytes

Because most functions have few arguments, you can calculate the static
packet size, and array sizes could be limited accordingly.

Installing Interrupts

8-36 Extensibility

8.9 Installing Interrupts

TIGA 2.0 has a built-in interrupt handler to ease the use of interrupt service
routines (ISR) within TIGA. TIGA’s ISR handler supports traps 0–31 and pro-
vides special support for the trap vectors shown in Table 8–2.

Table 8–2.Trap Vectors

Trap Description Mnemonic

1 External interrupt 1 X1

2 External interrupt 2 X2

9 Host interrupt HI

10 Display interrupt DI

11 Window violation interrupt WV

30 Illegal opcode interrupt ILLOP

The TIGA ISR handler properly manages the INTENB and INTPEND registers
for the traps listed in Table 8–2.

TIGA’s ISR handler provides support for chaining multiple ISRs on a single in-
terrupt level. Up to eight ISRs can be installed for the display interrupt (trap 10),
while a virtually unlimited number (limited only by processing time and avail-
able memory) of ISRs can be installed on the other supported traps.

The interrupt service routines are installed into the general interrupt handler
during the installation of a dynamic load module.The routines that are to be-
come interrupt service routines must be written, compiled, and assembled. A
specially named TIGAISR section must then be declared, identifying the name
of each interrupt service routine and the level where it should be installed. The
format of this section is explained in subsection 8.2.2 on page 8-4. During the
download process, the information within this special section is used to chain
interrupts into the TIGA interrupt handler, where each interrupt is assigned a
priority level.

ISRs are uniquely identified by the trap number that they service and their
priority of execution when the trap is called. ISRs are serviced in priority order,
with a priority of 0 being serviced first, then priority 1, and so on. The priority
of an ISR is assigned when the ISR is loaded into the TIGA graphics manager
using the install_rlm or install_alm functions. The function get_isr_priorities
can be called to obtain the priorities assigned to ISRs after loading. Additional
information about the get_isr_priorities function can be found on page 4-30.

When the TIGA graphics manager is initially loaded, or whenever
set_videomode(TIGA,INIT) is called, TIGA’s interrupt handler is initialized.
The ISRs shown in Table 8–3 are installed automatically during this initializa-
tion.

 Installing Interrupts

8-37

Table 8–3.Interrupt Service Routines

Trap # Priority Trap Function ISR Function

10 0 Display interrupt Cursor handling

10 1 Display interrupt Page flip servicing

10 2 Display interrupt Wait scan servicing

30 0 Illegal opcode trap Emulation of REV instruction

The set_interrupt function must be called to enable or disable a particular inter-
rupt service routine. The interrupt level and the associated priority must be
specified as arguments to this function. The TIGA core functions
set_curs_state, page_flip, and wait_scan automatically enable and disable
the interrupt service routines for the cursor, page flip, and waitscan interrupts,
respectively.

Interrupt service routines installed into the TIGA interrupt handler must follow
a strict set of conventions and can make certain assumptions concerning the
state of the TMS340 device:

An ISR is called by the TIGA interrupt handler with no arguments.

The ISR must terminate with a RETS 0 instruction. The TIGA interrupt
handler performs the required RETI after processing all ISRs.

The TIGA interrupt handler sets up a temporary C program stack (register
A14) to enable ISRs to make calls to C functions.

When the ISR is called, fields 0 and 1 are initialized as

Field 0: FS0: 16 FE0: 0
Field 1: FS1: 32 FE1: 0

The ISR does not need to restore fields 0 and 1 before exiting. The TIGA
interrupt handler resets them upon return from the ISR.

All A- and B-files registers that are modified by the ISR, with the exception
of A8, must be restored before exiting.

The ISR must not re-enable interrupts via the eint instruction.

Installing Interrupts

8-38 Extensibility

Note that it is possible for a downloaded extension to be executed from the
host and, in turn, set the traps to its own service routine to avoid the overhead
of the global interrupt handler in certain time-critical functions. However, care
must be taken, especially in the display interrupt used by TIGA functions such
as the cursor functions. If equivalent support is not given to these functions,
as provided by the global interrupt handler, certain TIGA functions may not ex-
ecute correctly.

Certain TMS340 boards provide external connection to the LINT1 and LINT2
TMS340 processor pins. In such cases, interrupt service routines can be writ-
ten for them by using the techniques outlined here. However, these techniques
are clearly not portable across all TMS340 processor boards.

For an example of how to create, load, and use an interrupt service routine with
TIGA, refer to the files in the \tiga\demos\isr directory.

 Object Code Compatibility

8-39

8.10 Object Code Compatibility

Because TIGA 2.0 encompasses both the TMS34010 and TMS34020 proces-
sors, you must keep in mind the differences between the two processors when
you write extensions to TIGA. The two processors are 100% object code com-
patible, and all code written for the TMS34010 runs on the TMS34020. Howev-
er, additional functionality has been added to the TMS34020; for this reason,
take care in executing the code on that processor. A full list of compatibility
guidelines are given in Appendix C of the TMS34010 User’s Guide and in
Chapter 1 of the TMS34020 User’s Guide. Those guidelines provide a thor-
ough list of restrictions to follow to maintain software compatibility. The follow-
ing subsections are not exhaustive but provide a more detailed approach on
how to deal with the differences between the two processors.

8.10.1 Determining the Processor

Because the processor checks in this section invariably involve a two-way
branch where different actions must be performed for each of the two proces-
sors (’34010 and ’34020), you must be able to distinguish them. The de-
vice_rev field of the CONFIG structure is provided for this purpose. The code
to perform the processor check in C and in assembly language is as follows:

Example 8–4. C Code to Determine the TMS340 Processor Type

#include <gsptypes.h>
#include <gspglobs.h>
#include <gspreg.h>

{
:

if(config.device_rev & (1 << REV_34010))
{

/* TMS34010-specific code */
:

}
if (config.device_rev & (1 << REV_34020))
{

/* TMS34020-specific code */
:

}
:

}

Object Code Compatibility

8-40 Extensibility

Example 8–5. Assembly Code to Determine the TMS340 Processor Type

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

:
move @_config+CONFIG_DEVICE_REV,A8,1
btst REV_34010,A8
jrz not_34010

is_34010:
: ;TMS34010-specific code

not_34010:
btst REV_34020,A8
jrz not_34020

is_34020:
:

;TMS34020-specific code
not_34020:

:

8.10.2 Pattern B-File Register

A simple modification must be made to the TMS34020’s LINE instruction be-
cause the B13 register is used to define a 32-bit pattern with which the line is
drawn. On the TMS34010, this register was not used, and, although the
TMS34010’s user guide states that this register should be set to all 1s to guar-
antee the drawing of a solid line, this was generally not done. If the routine is
to draw a solid line, then the code should be like this:

movi –1,B13 ;set PATTERN register to all 1s
move B11,B11 ;does line point up or down?
jrlt down
line 0 ;draw Bresenham line
jruc exit

down:
line 1 ;draw Bresenham line

exit:

Note that although this is required only for the TMS34020, it does not cause
a problem for the TMS34010, so, in this case, there is no need to provide a
branch around the initialization of B13 for the TMS34010.

8.10.3 Pitch Registers

Another potential problem is with the SPTCH/DPTCH B-file registers and the
CONVSP/CONVDP I/O registers. On the TMS34010, the CONVSP and
CONVDP I/O registers contain the value of the leftmost one of the SPTCH and
DPTCH registers, respectively, and these are used in the conversion of an XY
address to a linear address in certain graphics instructions (such as PIXBLT
XY,XY). Some of these graphics instructions, however, do not actually use the
values in the SPTCH and DPTCH registers; these become, in some sense,
spare registers and can be used as temporary variables. The TMS34020 be-

 Object Code Compatibility

8-41

haves in the same way, except that the TMS34020 eliminated one of the re-
strictions on the TMS34010: that the pitch for XY conversion must be a power
of 2. If an arbitrary pitch is to be used, CONVSP and CONVDP no longer con-
tain the leftmost one of the SPTCH and DPTCH registers. In these cases, the
I/O registers are not used, and SPTCH and DPTCH must contain the pitch.
Thus, these registers are no longer spare. This means that you must be careful
in using TMS34010 code written for power-of-two displays on TMS34020
boards with nonpower-of-2 displays. In this case, the SPTCH/CONVSP and
DPTCH/CONVDP instruction pairs should contain corresponding values, as
the TMS34010 User’s Guide indicates (although this is sometimes ignored).

The initialization of CONVSP and CONVDP in the TMS34010 is different from
that in the TMS34020. Although it is unlikely that you will need to initialize the
CONVDP register, it is quite likely that you will need to initialize the CONVSP
register. The initialization must be done as follows:

Example 8–6. Initialization of the CONVSP Register

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

_set_spitch:
; Assume A0 contains the desired pitch

move A0,SPTCH ; Initialize the SPTCH register
move @_config+CONFIG_DEVICE_REV, A8, 1
btst REV_34010,A8
jrz not_34010

is_34010: ; TMS34010 code (SPTCH must be a power of 2)
lmo A0,A0
setf 16,0,0
move A0,@CONVSP, 0 ; Put lmo (SPTCH) into CONVSP

not_34010:
btst REV_34020,A8
jrz not_34020

is_34020:
setcsp

not_34020:

8.10.4 Video Timing Registers

Most applications do not need to access the video timing I/O registers, be-
cause they are set up by TIGA at initialization time and thereafter are never
accessed directly. The video timing I/O registers are useful for functions that
need to synchronize themselves to the display (such as cursor handling, page
flipping etc.). These functions are provided by the TIGA graphics manager di-
rectly. TIGA also provides mechanisms to allow an application to install an in-
terrupt

Object Code Compatibility

8-42 Extensibility

service routine that is invoked whenever a particular line of the frame buffer
is being displayed. Despite these provisions, there may be a reason to syn-
chronize an application directly into the display hardware and therefore to in-
terrogate the state of the video I/O registers.

Due to enhancements made to the video controller on the TMS34020, it was
necessary to modify the addresses where the video I/O registers reside. TIGA
provides global pointers that allow an application to access these registers.
The global pointers are automatically initialized to either the TMS34010 or the
TMS34020 processor I/O addresses, depending on which processor is in-
stalled on the board. The application should use these pointers rather than ac-
cess the I/O addresses directly. The pointers and the TIGA function that initial-
izes them are shown in the following example:

Example 8–7. Initialization of the Video Timing I/O Register Pointers

unsigned short *pHCOUNT, *pHEBLNK, *pHESYNC, *pHSBLNK, *pHTOTAL;
unsigned short *pVCOUNT, *pVEBLNK, *pVESYNC, *pVSBLNK, *pVTOTAL;

#include <gsptypes.h>
#include <gspglobs.h>
#include <gspreg.h>

init_ioreg_ptrs()
{
 if(config.device_rev & (1 << REV_34010))
 {
 pHCOUNT = (unsigned short *)HCOUNT10;
 pHEBLNK = (unsigned short *)HEBLNK10;
 pHESYNC = (unsigned short *)HESYNC10;
 pHSBLNK = (unsigned short *)HSBLNK10;
 pHTOTAL = (unsigned short *)HTOTAL10;
 pVCOUNT = (unsigned short *)VCOUNT10;
 pVEBLNK = (unsigned short *)VEBLNK10;
 pVESYNC = (unsigned short *)VESYNC10;
 pVSBLNK = (unsigned short *)VSBLNK10;
 pVTOTAL = (unsigned short *)VTOTAL10;
 }
 if(config.device_rev & (1 << REV_34020))
 {
 pHCOUNT = (unsigned short *)HCOUNT20;
 pHEBLNK = (unsigned short *)HEBLNK20;
 pHESYNC = (unsigned short *)HESYNC20;
 pHSBLNK = (unsigned short *)HSBLNK20;
 pHTOTAL = (unsigned short *)HTOTAL20;
 pVCOUNT = (unsigned short *)VCOUNT20;
 pVEBLNK = (unsigned short *)VEBLNK20;
 pVESYNC = (unsigned short *)VESYNC20;
 pVSBLNK = (unsigned short *)VSBLNK20;
 pVTOTAL = (unsigned short *)VTOTAL20;
 }
}

 Object Code Compatibility

8-43

8.10.5 TM34020-Specific Instructions

Although all TMS34010 instructions run on the TMS34020, the TMS34020
contains new instructions that are not available on the TMS34010. In many
cases, these instructions provide considerably increased performance over
the TMS34010-only instructions, so it is in the application programmer’s inter-
est to detect the TMS34020 and use its instructions whenever possible. The
following code uses the TMS34020’s fast line instruction FLINE, which is 1
cycle per pixel faster than the regular LINE instruction:

Example 8–8. Use of TMS34020-Specific Instructions

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

btst REV_34020,A8
jrz not_34020

is_34020: ;TMS34020–specific code
cvdxyl B2 ;convert to linear address
move B11,B11 ;does line point up or down?
jrlt fdown
fline 0 ;draw Bresenham line
jruc exit

fdown:
fline 1 ;draw Bresenham line
jruc exit

not_34020: ;TMS34010–compatible code
move B11,B11 ;does line point up or down?
jrlt down
line 0 ;draw Bresenham line
jruc exit

down:
line 1 ;draw Bresenham line

exit:

8.10.6 VRAM Block Mode

The TMS34020 supports two instructions (VFILL and VBLT) that use the spe-
cial VRAM block mode. Certain restrictions limit the use of these instructions.
These instructions can be used only if

1) The particular VRAMs used on the board support block mode (the
TMS44C251s do support it)

2) DPTCH is an integral multiple of 080h

3) PSIZE is 4, 8, 16, or 32

Object Code Compatibility

8-44 Extensibility

4) Pixel processing is set to replace

5) Transparency is disabled

To assist the checking of these restrictions, TIGA has a silicon_capability field
in its MODEINFO structure (a substructure of the CONFIG structure), which
is a combination of the first three restrictions. If Bit 0 of this field is a 1, then the
VRAMs do support block write, and DPTCH and PSIZE of the current mode
do allow correct operation of the block write feature. If bit 0 of this field is a 0,
then block write support is not available.

Note that this field may change from mode to mode because a board may sup-
port different pixel sizes. If block write is supported in an 8-bit-per-pixel mode,
it will not be supported in a 1-bit-per-pixel mode. Also note that restrictions 4
and 5 must be checked by an application before the VFILL or VBLT instruction
can be executed, but this can be done by a simple check of the CONTROL reg-
ister. An example of a piece of code showing the use of the VFILL instruction
is given below.

Example 8–9. Use of the VFILL Instruction

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

btst REV_34020,A8 ;Suppose B–file is set up for a FILL XY
jrne no_vfill

is_34020: ;34020–specific code
setf 1,0,0
move@(_config+CONFIG_SILICON_CAPABILITY), A8, 0
jrz no_vfill ;Check the VRAM_BLOCK_WRITE flag set
setf 10,0,0
move @CONTROL+5,A8,0
andi 3E1h,A8 ;T and PPOP must be zero for VFILL
jrnz no_vfill
clip
jrz exit
cvdxyl B2 ;convert to linear dest address
vlcol ;load VRAM color latches
vfill L ;perform linear fill
jruc exit

no_vfill:
fill XY ;fill the rectangle

exit:

 The TIGA Linking Loader

8-45

8.11 The TIGA Linking Loader

The TIGA linking loader, TIGALNK, was the mechanism by which extensibility
was made possible in TIGA versions prior to TIGA 2.0. The functions per-
formed by TIGALNK are now included in the TIGA communication driver, so
TIGALNK is useful only for debugging the installation of relocatable load mod-
ules, because it provides useful error messages. Furthermore, the
error_check option, described in subsection 8.11.3, cannot be performed by
an equivalent procedure in the CD. It can be performed only through TI-
GALNK.

TIGALNK is a full TMS340 linker that provides object code relocation any-
where in TMS340 memory. It is fully portable, using the TIGA communication
driver to interface to any TMS340 board that has TIGA ported to it. TIGALNK
has extensibility control built into it, so that it can read the TIGAEXT and
TIGAISR sections and inform the graphics manager of the user extensions
that are to be installed.

TIGALNK’s options can be performed via equivalent functions in TIGA’s com-
munication driver. A list of the linking loader options with their procedural
equivalents is given in Table 8–4.

Table 8–4.Linking Loader Options

Option Files Description Equivalent Function

–ca RLMNAME,
ALMNAME

Link, then create an ALM create_alm

–cs COFFNAME Create external symbol table create_esym

–ec RLMNAME Check the RLM for errors None

–fs SYMNAME Flush external symbol table flush_esym

–la ALMNAME Load ALM into GM install_alm

–lr RLMNAME Link, then load into GM install_rlm

–lx COFFNAME Load and execute COFF file load_coff / gsp_execute

The rest of this section contains a detailed description of the TIGALNK options.
These options can be placed anywhere on the command line; they do not have
to be placed before filename arguments.

In addition to the flags are a –q (quiet) option and a –v (verbose) option. If no
options are specified, then the linker assumes normal command line opera-
tion, and all working messages and error messages are displayed normally.
Selecting quiet mode operation suppresses all textual messages, and only er-
ror codes are returned upon termination. In verbose mode operation, the linker
provides messages during every internal operation.

The TIGA Linking Loader

8-46 Extensibility

8.11.1 /ca — Create Absolute Load Module

This option creates an absolute load module (.alm) from the specified relocat-
able load module (.rlm). If the name of the output ALM file is not specified on
the command line, then the base name of the RLM file is used, but with a forced
file extension of .alm. Also, if no path information is supplied for the output file,
then it is placed in the path specified by the –l option of the TIGA environment
variable.

8.11.2 /cs — Create External Symbol Table

This option reads the symbolic information from the TIGA’s graphics manager,
tigagm.out and builds a new symbol table from it.

8.11.3 /ec — Error Check

This command line option can be used to check the integrity of an RLM before
installing it.

Once executed, the /ec option scans the specified RLM and prints out the num-
ber of extensions or interrupt service routines contained within the module. If
none are present — that is, if no .TIGAEXT or .TIGAISR section is present—
then a warning message is displayed. The amount of heap required to load the
module is then displayed, and the largest available block of TMS340 heap is
also displayed.

If the module contains any unresolved references that would not be resolved
at loadtime, these are printed out. This allows you to resolve symbol refer-
ences before actually attempting to download and install the file.

Note:

Only symbols contained in the TIGA external symbol table are used to re-
solve symbol references. As supplied, or after creation by the /lx or /cs op-
tion, this file contains only the symbols for tigagm.out, the TIGA core func-
tions. If the module being checked contains references to other modules,
such as the TIGA extended functions, then these must be loaded before per-
forming the check.

Example:

TIGALNK /LX – load and execute TIGAGM.OUT
TIGALNK /LR extprims – load TIGA extended functions

(EXTPRIMS.RLM)
TIGALNK /EC user – check integrity of user.rlm

 The TIGA Linking Loader

8-47

8.11.4 /fs — Flush External Symbol Table

This option flushes all symbols from the external symbol table, except those
in the TIGA graphics manager, tigagm.out. As the symbols for each installed
module are deleted, a call to the TIGA graphics manager is made to delete the
module from TMS340 memory.

8.11.5 /la — Load and Install an Absolute Load Module

This option loads and installs an ALM into the active TIGA graphics manager
running on the target; this makes it possible for functions contained in the mod-
ule to be invoked from the host.

Note:

ALMs contain no symbolic information, so modules loaded after an ALM can-
not make references to symbols contained within an ALM.

8.11.6 /lr — Load and Install a Relocatable Load Module

This option loads and installs an RLM into the TIGA graphics manager so that
functions contained in the module can be invoked from the host.

Symbols contained in the module are added to the external symbol table so
that they can be referenced by modules loaded afterwards.

8.11.7 /lx — Load and Execute a COFF File / Execute TIGA GM

This option has the ability to perform two distinct functions, depending on
whether or not a COFF file is specified as a command line argument. If a COFF
file name is provided on the command line, then it is loaded and executed
much like the stand-alone COFF loader provided with the TI software develop-
ment board.

If a COFF file name is not provided, then it is assumed that the TIGA graphics
manager is to be loaded and executed. In this case, two additional functions
are performed after tigagm.out is loaded and executed. The TIGA external
symbol table is created, and the symbols contained in tigagm.out are written
to it. Once these two functions are complete, a call to the TIGA communication
driver function handshake is performed to initialize communications between
the host and the TMS340.

8-48 Extensibility

A-1

Appendix A

Data Structures

This appendix contains the data structure definitions required by TIGA appli-
cations. They are defined in the include files typedefs.h and typedefs.pl.

Section Page
A.1 Integral Data Types A-2.
A.2 CONFIG Structure A-3.
A.3 CURSOR Structure A-5.
A.4 ENVIRONMENT Structure A-7.
A.5 FONTINFO Structure A-8.
A.6 MODEINFO Structure A-9.
A.7 OFFSCREEN Structure A-13.
A.8 PALET Structure A-14.
A.9 PATTERN Structure A-15.

The structure definitions supplied refer to the C syntax. In the assembly lan-
guage equivalent file, typedefs.inc, the structure name precedes every field
name. Thus, the hot_x field in the cursor structure becomes cursor_hot_x.
This is because in the macro assembler, all fields must be unique. Note that
this also applies to the TMS340-side equivalent file gsptypes.inc. All type defi-
nitions in this file are in upper case. The two TMS340-side type definition files,
gsptypes.h and gsptypes.inc, contain additional type definitions internal to
TIGA and are not generally of use to the applications programmer.

Integral Data Types

A-2 Data Structures

A.1 Integral Data Types

The TIGA data structures use the following type definitions throughout:

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;
typedef unsigned long PTR;
typedef uchar far *HPTR;

 CONFIG Structure

A-3

A.2 CONFIG Structure

The CONFIG structure contains the TMS340 board and display mode configu-
ration information. Part of this structure is the MODEINFO structure defined
in Section A.6, which describes the display mode configuration. If alternate
configurations are available, they can be set with set_config.

typedef struct
{

ushort version_number;
ulong comm_buff_size;
ulong sys_flags;
ulong device_rev;
ushort num_modes;
ushort current_mode;
ulong program_mem_start;
ulong program_mem_end;
ulong display_mem_start;
ulong display_mem_end;
ulong stack_size;
ulong shared_mem_size;
HPTR shared_host_addr;
PTR shared_gsp_addr;
MODEINFO mode;

}CONFIG;

The CONFIG structure consists of the following fields:

version_number TIGA Graphics Manager revision number, assigned by
Texas Instruments. The major revision number appears
in the 8 MSBs, the minor revision number in the 8 LSBs.
For example, the TIGA 2.0 Graphics Manager version
number assigned to the version_number field is
0x0200.

comm_buff_size Size, in bytes, of each communication buffer. This field
can be used by an application to determine if the data
being sent to a TIGA function has the potential of over-
flowing the communications buffer. If so, an alternate
entry point can be called.

sys_flags This 32-bit field describes the silicon devices resident
on the target TMS340-based board as follows:
Bit 0 TMS34082 #0 is present (0=no,1=yes)
Bit 1 TMS34082 #1 is present (0=no,1=yes)
Bit 2 TMS34082 #2 is present (0=no,1=yes)
Bit 3 TMS34082 #3 is present (0=no,1=yes)
Bit 4 Reserved (broadcast ID)
Bits 5–6 Reserved for future devices
Bit 7 User-defined coprocessor is present
Bits 8–31 Reserved for future use by TI

CONFIG Structure

A-4 Data Structures

device_rev This 32-bit field describes the revision of the TMS340
processor on the target board as follows:
Bits 0–2 Silicon revision number
Bit 3 ’34010 present (0=’34020,1=’34010)
Bit 4 ’34020 present (0=’34010,1=’34020)
Bits 5–15 Reserved for future generation parts
Bits 16–31 Reserved for use by TI

num_modes Total number of display modes available. The mode
number argument specified to the set_config function
must be in the range from 0 to num_modes–1.

current_mode Mode number corresponding to the current display
mode. This value will be in the range from 0 to
num_modes–1.

program_mem_start Starting linear address of the largest block of TMS340
program memory.

program_mem_end Ending linear address of the largest block of TMS340
program memory.

display_mem_start Starting linear address of TMS340 display memory.

display_mem_end Ending linear address of TMS340 display memory.

stack_size Size (in bits) of the TIGA graphics manager system
stack.

shared_mem_size Size (in bytes) of shared memory area that is available
for use by a TIGA application. This field is 0 for TMS340
boards that do not support shared memory.

shared_host_addr If shared_mem_size is nonzero, then this field contains
the starting host address of the shared memory area. If
shared_mem_size is zero, then this field is undefined.

shared_gsp_addr If shared_mem_size is nonzero, then this field contains
the starting TMS340 address of the shared memory
area. If shared_mem_size is zero, then this field is un-
defined.

mode This structure contains information pertaining to the cur-
rent display mode. See the MODEINFO structure defini-
tion in Section A.6 for detailed information.

 CURSOR Structure

A-5

A.3 CURSOR Structure

This structure defines the cursor shape parameter for the set_curs_shape
function.

typedef struct
{

short hot_x;
short hot_y;
ushort width;
ushort height;
ushort pitch;
ulong color;
ushort mask_rop;
ushort shape_rop;
ulong mask_color;
PTR data;

}CURSOR;

This structure consists of the following fields:

hot_x This value is added to the x coordinate of the top-left corner of
the cursor shape array to position the cursor hotspot at the pixel
specified by the set_curs_xy function.

hot_y This value is added to the y coordinate of the top-left corner of
the cursor shape array to position the cursor hotspot at the pixel
specified by the set_curs_xy function.

width Width (x-dimension) of the cursor shape in pixels.

height Height (y-dimension) of the cursor shape in pixels.

pitch Linear bit difference in the addresses of successive rows of the
cursor data.

color Cursor shape foreground color. This value is automatically rep-
licated by the pixel size before use.

mask_rop This field specifies the pixel-processing and transparency op-
erations used to draw the cursor mask data to the screen as
follows:
Bits 0–4 Pixel processing operating code
Bit 5 Transparency enable (0=disable,1=enable)
Bits 6–15 Reserved for future use

Consult the set_ppop function description on page 4-120 for
further information on valid pixel processing operating codes.
Also, note that the transparency mode is always set to 0 (trans-
parency on result equal 0) for theTMS34020 device by the cur-
sor drawing functions.

shape_rop This field specifies the pixel-processing and transparency op-
erations used to draw the cursor shape data to the screen. The
field bit definitions are the same as those described in the
mask_rop field above.

CURSOR Structure

A-6 Data Structures

mask_color Cursor mask foreground color. This value is automatically rep-
licated by the pixel size before use.

data Pointer to TMS340 memory containing two contiguous arrays.
The dimensions of these arrays are specified by the width and
height CURSOR structure fields. The bit pitch of the arrays is
specified by the pitch CURSOR structure field. The first array
contains the cursor mask data. The second array contains the
cursor shape information.

 ENVIRONMENT Structure

A-7

A.4 ENVIRONMENT Structure

The ENVIRONMENT structure contains the TIGA graphics library environ-
ment global variables.

typedef struct
{

ulong xyorigin;
ulong pensize;
PTR srcbm;
PTR dstbm;
ulong stylemask;

}ENVIRONMENT;

The ENVIRONMENT structure consists of the following fields:

xyorigin Current drawing origin in y::x format. The x drawing origin is con-
tained in the 16 LSBs, and the y drawing origin is contained in the
16 MSBs. The drawing origin is modified by using the
set_draw_origin graphics library function.

pensize Current size of drawing pen in y::x format. The x dimension of the
drawing pen is contained in the 16 LSBs, the y dimension in the
16 MSBs. The pen size is modified by using the set_pensize
graphics library function.

srcbm The address in TMS340 memory of the source bitmap structure.
The elements of this structure are modified by using the
set_srcbm graphics library function.

dstbm The address in TMS340 memory of the destination bitmap struc-
ture. The elements of this structure are modified by using the
set_dstbm graphics library function.

stylemask Contains the current line style mask used in the styled_line,
styled_oval, styled_ovalarc, and styled_piearc graphics library
functions.

FONTINFO Structure

A-8 Data Structures

A.5 FONTINFO Structure

The FONTINFO structure contains parameters describing the font currently in
use in TIGA. These parameters can be obtained by an application through the
core function get_fontinfo.

typedef struct
{

char facename[30];
short deflt; /* ASCII code of default character */
short first; /* ASCII code of first character */
short last; /* ASCII code of last character */
short maxwide; /* maximum character width */
short avgwide; /* Average width of characters */
short maxkern; /* Max character kerning amount */
short charwide;/* Width of characters (0=proportional) */
short charhigh;/* character height */
short ascent; /* ascent (how far above base line) */
short descent; /* descent (how far below base line) */
short leading; /* leading (row bottom to next row top) */
PTR fontptr; /* address of font in TMS340 memory */
short id; /* id of font (set at install time) */

}FONTINFO;

The majority of the fields within the FONTINFO structure are identical to those
defined in the FONT structure. An application uses the FONT structure to ob-
tain font information from a font file, while it uses the FONTINFO structure to
obtain font information about a loaded font. Consult Chapter 7, Bit-Mapped
Text, for a complete description of TIGA fonts. Section 7.1, Bit-Mapped Font
Parameters on page 7-2describes some of the parameters in the FONTINFO
structure. Subsection 7.2.1, page 7-5, describes the fields of the FONT struc-
ture.

The following FONTINFO structure fields are not described in Section 7.1:

fontptr The address, in TMS340 memory, where the font shape data is
located.

id The font identifier, returned by the function install_font, which is
used in subsequent text functions to identify the desired font.

 MODEINFO Structure

A-9

A.6 MODEINFO Structure

This structure contains configuration information for the current display mode.
It is part of the configuration structure returned by get_config (which returns
only the MODEINFO for the current display mode). The get_modeinfo function
can be used to query the configuration information for any display mode sup-
ported by the TMS340 board.

typedef struct
{

ulong disp_pitch;
ushort disp_vres;
ushort disp_hres;
short screen_wide;
short screen_high
ushort disp_psize;
ulong pixel_mask;
ushort palet_gun_depth
ulong palet_size;
short palet_inset;
ushort num_pages;
short num_offscrn_areas;
ulong wksp_addr;
ulong wksp_pitch;
ushort silicon_capability;
unsigned short color_class;
unsigned long red_mask;
unsigned long blue_mask;
unsigned long green_mask;
unsigned short x_aspect;
unsigned short y_aspect;
unsigned short diagonal_aspect;

}MODEINFO;

The MODEINFO structure consists of the following fields:

disp_pitch Linear difference (in bits) in the starting memory ad-
dresses of adjacent rows of the display memory.

disp_vres Vertical resolution, in scan lines, of the visible portion
of the screen.

disp_hres Horizontal resolution, in pixels, of the visible portion of
the screen.

screen_wide Physical width, in millimeters, of the monitor attached
to the TMS340-based board.

screen_high Physical height, in millimeters, of the monitor attached
to the TMS340-based board.

disp_psize Pixel size, in bits. Valid pixel sizes are 1, 2, 4, 8, and 16.
In addition, boards based on the TMS34020 may also
support a 32-bit pixel size.

pixel_mask Bits within a pixel with valid data.The pixel_mask field
normally contains the value (2^disp_psize)–1, indicating
that every bit of the pixel is pertinent. However, on
some boards, the frame buffer may be arranged by 8

MODEINFO Structure

A-10 Data Structures

bits (disp_psize = 8), but with only 6 bits actually im-
plemented. In this case, pixel_mask would contain the
value 0x3F.

palet_gun_depth Number of bits of resolution in the digital-to-analog
converter (DAC) in the display hardware. For a mono-
chrome display, this value is one. For color displays,
this value is the maximum of the number of red, blue,
or green bits that are used to drive the RGB gun.

palet_size Number of valid color values for this display mode. For
a monochrome system, this value is two. For a single
color index system, this value is the number of valid in-
dices. For systems with individual red, green, and blue
indices, this value is the maximum valid index for the
red, blue or green index.

palet_inset Linear offset, from the beginning of the scan line to the
first valid pixel data, for display boards using the
TMS34070 color palette, which stores the palette data
in the frame buffer. For most systems, this field is 0.

num_pages Number of display pages available. Some boards may
support display modes with multiple pages. Multiple
pages are extremely useful in animation applications.
The core function, page_flip, can be used to flip rapidly
between display pages.

num_offscrn_areas Number of offscreen memory blocks available in this
display mode. If nonzero, then information describing
these offscreen areas can be obtained by calling the
core function get_offscreen_memory.

wksp_addr Starting linear address, in TMS340 memory, of a one-
bit-per-pixel workspace, with the same dimensions as
the visible screen. This field is valid only if argument
wksp_pitch is nonzero. This workspace is not required
for any of TIGA’s drawing functions.

wksp_pitch Pitch, in bits, of the workspace area. If wksp_pitch=0,
then no workspace area is currently allocated.

silicon_capability Silicon features available in the current display mode.
This 16-bit field contains the following bit definitions:
Bit 0 VRAM block write support (0=no,

1=yes)
Bits 1–15 Reserved for future use

 MODEINFO Structure

A-11

color_class This 16-bit field describes the color capabilities of the
current display mode. Valid color classes are:

Color Color Palette Color Type Pixel Value

Class Description R/W Fixed Color Gray Index RGB

0 Gray scale √ √ √

1 Static gray √ √ √

2 Pseudo color √ √ √

3 Static color √ √ √

4 Direct color √ √ √

5 True color √ √ √

Color capabilities are dependent on three physical attributes of the
TMS340-based display board:

1) Palette type; either programmble (R/W) or nonprogrammable (fixed or no
palette at all).

2) Color type; either color or gray scale.

3) Pixel-value usage; the pixel value is either a single index for RG&B or is
composed of separate RGB values, which index into different RGB color-
map entries.

Note that a monochrome mode is simply a gray-scale or static-gray class with
a two-element colormap.

red_mask, green_mask, blue_mask
These 32-bit fields are used for the direct color and
true color classes where there is a separate colormap
for each primary color. Each mask defines within a pix-
el value those bits that index into the appropriate red,
green, or blue colormap. Each mask is composed of
one contiguous set of bits, with no bits in common with
the other masks. These fields are zero for color
classes 0–3.

x_aspect, y_aspect, diagonal_aspect
These fields specify the relative width, height, and di-
agonal dimensions of a screen pixel and correspond
directly to the screen’s aspect ratio. The x_aspect and
y_aspect values are calculated so that the following is
true:

(x_aspect * disp_hres) / screen_wide = (y_aspect * disp_vres) / screen_high

For example, a monitor screen with physical dimensions of 280 × 203 millime-
ters and a display mode of 1024 pixels × 768 lines (horizonal, vertical, respec-
tively) would result in x, y, and diagonal aspects of 1, 0.97, and 1.39, respec-

MODEINFO Structure

A-12 Data Structures

tively. This corresponds to an aspect ratio of 100 horizontal pixels to every 97
vertical pixels. For screens whose pixels do not have integral diagonal lengths,
the field values should be multiplied by a constant factor to derive integral re-
sults. Therefore, the correct values for x, y, and diagonal aspects in our pre-
vious example would be 100, 97, and 139, respectively. For numerical stability,
these field values should be kept under 1000.

 OFFSCREEN Structure

A-13

A.7 OFFSCREEN Structure

This structure defines the offscreen areas returned by the
get_offscreen_memory function.

typedef struct
{

PTR addr;
ushort xext;
ushort yext;

}OFFSCREEN_AREA;

The OFFSCREEN structure consists of the following fields:

addr Address in TMS340 memory of the offscreen area.

xext x extension (width) of the offscreen area in pixels.

yext y extension (height) of the offscreen area in scan lines.

PALET Structure

A-14 Data Structures

A.8 PALET Structure

This structure contains the red, green, blue, and intensity components for a
palette entry.

typedef struct
{

uchar r;
uchar g;
uchar b;
uchar i;

}PALET;

This structure consists of the following fields of the palette entry:

r Value of the red color component

g Value of the green color component

b Value of the blue color component

i Value of the intensity

 PATTERN Structure

A-15

A.9 PATTERN Structure

The PATTERN structure defines the pattern shape information passed to the
set_patn function.

typedef structure
{

ushort width;
ushort height;
ushort depth;
PTR data;

}PATTERN;

This structure consists of the following fields:

width Width of the pattern in bits. Currently, only 16-bit wide patterns
are supported.

height Height of pattern in bits. Currently, only 16-bit high patterns are
supported.

depth Depth (bits/pixel) of pattern. Currently, only monochrome (1 bit-
per-pixel) patterns are supported.

data Pointer to pattern data in TMS340 memory.

A-16 Data Structures

B-1

Appendix B

TIGA Reserved Symbols

This appendix lists the TIGA and TMS340 reserved symbols in the following
sections:

Section Page
B.1 Reserved Functions B-2.
B.2 TIGA Core Functions Symbols B-3.
B.3 TIGA Extended Graphics Library Symbols B-6.

Reserved Functions

B-2 TIGA Reserved Symbols

B.1 Reserved Functions

TIGA currently reserves the following functions for internal use. Do not choose
function names that conflict with these. Avoid calling functions from an applica-
tion program, because future versions of TIGA may not contain these func-
tions.

add_interrupt
add_module
del_all_modules
del_interrupt
del_module
get_memseg
get_module
get_msg
get_state
get_xstate
gm_is_alive
handshake
init_cursor
init_interrupts
init_video_regs
makename

oem_init
read_hstaddr
read_hstadrh
read_hstadrl
read_hstctl
read_hstdata
rstr_commstate
save_commstate
set_memseg
set_msg
set_xstate
write_hstaddr
write_hstadrh
write_hstadrl
write_hstctl
write_hstdata

 TIGA Core Functions Symbols

B-3

B.2 TIGA Core Functions Symbols

TIGA currently uses the following symbols in its core functions and in the
TMS340 C environment. To guarantee successful operation, do not use down-
loadable extensions whose names conflict with any of these symbols.

Downloadable extensions used with the graphics library functions should have
names that do not conflict with those in Section B.3.

IsrCStk
IsrEntryTable
IsrSrv
_CoreFunc
_CursorISR
_DEFAULT_PALET
_DefaultCursor
_DiTable
_IsrEnabled
_ModIntIoRegs
_Module
_NextDiEntry
_OutTTY
_PageFlipISR
_TrapVector
_WaitScanISR
_abort
_add_interrupt
_add_module
_ai_rev
_atexit
_c_int00
_cb_buffer
_cb_size
_check_dpyint
_clear_frame_buffer
_clear_page
_clear_screen
_comm_info
_config
_cpacket
_cpw
_csa
_curs_offset

_cvxyl
_default_setup
_del_all_modules
_del_interrupt
_del_module
_delay
_dm_clear_frame_buffer
_dm_clear_page
_dm_clear_screen
_dm_cpw
_dm_cvxyl
_dm_get_nearest_color
_dm_gsp2gsp
_dm_init_palet
_dm_lmo_dm_peek_breg
_dm_poke_breg
_dm_rmo
_dm_set_ai_rev
_dm_set_bcolor
_dm_set_cbbuf
_dm_set_clip_rect
_dm_set_colors
_dm_set_curs_shape
_dm_set_curs_state
_dm_set_cursattr
_dm_set_fcolor
_dm_set_palet_entry
_dm_set_pmask
_dm_set_ppop
_dm_set_text_xy
_dm_set_windowing
_dm_set_wksp
_dm_text_outp

TIGA Core Functions Symbols

B-4 TIGA Reserved Symbols

_envtext
_envcurs
_env
_esym
_exit
_field_insert
_field_extract
_flush_extended
_flush_module
_function_implemented
_get_colors
_get_config
_get_curs_state
_get_curs_xy
_get_fontinfo
_get_isr_priorities
_get_module
_get_nearest_color
_get_offscreen_memory
_get_palet_entry
_get_palet
_get_pmask
_get_ppop
_get_state
_get_text_xy
_get_transp
_get_vector
_get_windowing
_get_wksp
_getrev
_gm_idlefunction
_gsp2gsp
_gsp_calloc
_gsp_free
_gsp_handle
_gsp_malloc
_gsp_maxheap
_gsp_minit
_gsp_realloc
_gsph_alloc
_gsph_compact
_gsph_deref
_gsph_falloc
_gsph_findhandle

_gsph_findmem
_gsph_free
_gsph_init
_gsph_maxheap
_gsph_memtype
_gsph_realloc
_gsph_sinit
_gsph_totalfree
_handleBlock
_handleAlloc
_handle
_handleGrow
_hblock_handle
_high_water_mark
_highlevel_minit
_host_command
_idlefunc_ptr
_illop
_init_cursor
_init_interrupts
_init_ioreg_ptrs
_init_palet
_init_text
_init_trap_vectors
_init_video_regs
_lastMP
_lastSeg
_linmem
_lmem
_lmo
_lowlevel_minit
_main
_makekey
_memcpy
_memmove
_modeinfo
_monitorinfo
_movmem
_mpFree
_null_patn_line
_numMP
_numSegs
_numstr

 TIGA Core Functions Symbols

B-5

_oemdata
_oemmsg
_offscreen
_pHCOUNT
_pHEBLNK
_pHESYNC
_pHSBLNK
_pHTOTAL
_pVCOUNT
_pVEBLNK
_pVESYNC
_pVSBLNK
_pVTOTAL
_page_busy
_page
_page_flip
_palet
_palloc
_pattern
_peek_breg
_poke_breg
_printf
_release_buffer
_rmo
_set_bcolor
_set_clip_rect
_set_colors
_set_config
_set_curs_shape
_set_curs_state
_set_cursattr
_set_dpitch
_set_fcolor
_set_interrupt
_set_module_state

_set_palet
_set_palet_entry
_set_pmask
_set_ppop
_set_text_xy
_set_vector
_set_windowing
_set_wksp
_setup
_srv_ipoly
_stack_size
_strcmp
_strcpy
_strlen
_sym_chk
_sym_close
_sym_flush
_sym_getstate
_sym_get
_sym_init
_sym_open
_sym_put
_sys16
_sys_memory
_sysfont
_text_out
_text_outp
_tmphandles
_transp_off
_transp_on
_video_enable
_wait_scan
cp_call
dm_call

TIGA Extended Graphics Library Symbols

B-6 TIGA Reserved Symbols

B.3 TIGA Extended Graphics Library Symbols

TIGA uses the following symbols in its extended graphics library functions. To
guarantee successful operation, downloadable extensions with graphics li-
brary functions should not use names that conflict with any of these symbols.

_arc_draw
_arc_fill
_arc_pen
_arc_quadrant
_arc_quad
_arc_slice
_bitblt
_decode_rect
_delete_font
_dm_bitblt
_dm_draw_line
_dm_draw_oval
_dm_draw_ovalarc
_dm_draw_piearc
_dm_draw_point
_dm_draw_polyline
_dm_draw_rect
_dm_fill_convex
_dm_fill_oval
_dm_fill_piearc
_dm_fill_polygon
_dm_fill_rect
_dm_frame_oval
_dm_frame_rect
_dm_get_pixel
_dm_move_pixel
_dm_patnfill_convex
_dm_patnfill_oval
_dm_patnfill_piearc
_dm_patnfill_polygon
_dm_patnfill_rect
_dm_patnframe_oval
_dm_patnframe_rect
_dm_patnpen_line
_dm_patnpen_ovalarc
_dm_patnpen_piearc
_dm_patnpen_point
_dm_patnpen_polyline
_dm_pen_line

_dm_pen_ovalarc
_dm_pen_piearc
_dm_pen_point
_dm_pen_polyline
_dm_put_pixel
_dm_seed_fill
_dm_seed_patnfill
_dm_set_draw_origin
_dm_set_patn
_dm_set_pensize
_dm_styled_ovalarc
_dm_styled_oval
_dm_zoom_rect
_draw_eliparc
_draw_line
_draw_oval
_draw_ovalarc
_draw_piearc
_draw_point
_draw_polyline
_draw_rect
_encode_rect
_fill_convex
_fill_eliparc
_fill_oval
_fill_piearc
_fill_polygon
_fill_rect
_frame_oval
_frame_rect
_get_env
_get_pixel
_get_textattr
_in_font
_install_font
_move_pixel
_onarc
_patn_line

_patnfill_convex
_patnfill_oval
_patnfill_piearc
_patnfill_polygon
_patnfill_rect
_patnframe_oval
_patnframe_rect
_patnpen_line
_patnpen_ovalarc
_patnpen_piearc
_patnpen_point
_patnpen_polyline
_pen_eliparc
_pen_line
_pen_ovalarc
_pen_piearc
_pen_point
_pen_polyline
_put_pixel
_seed_fill
_seed_patnfill
_select_font
_set_draw_origin
_set_dstbm
_set_patn
_set_pensize
_set_srcbm
_set_textattr
_sin_tbl
_styled_line
_styled_oval
_styled_ovalarc
_styled_piearc
_swap_bm
_text_width
_trig_values
_zoom_rect

C-1

Appendix C

Debugger Support for TIGA

TIGA is the definitive interface standard for applications software written to run
on the TMS340 architecture. However, it gives no guidelines to debugger
developers with special hardware accessing requirements.

A set of routines has been included in TIGA to meet the often unique needs
of debugger developers. This appendix contains those routines.

Section Page
C.1 Debugger Routines C-2.
C.2 TIGA / Debugger Interface C-12.
C.3 Compatibility Functions C-14.

Debugger Functions

C-2 Debugger

C.1 Debugger Functions

A separate document describing the use of the debugger functions will be
published in the future. Development of debugger functions will be based on
user feedback received and on the following criteria:

Portability to any TIGA environment, which potentially includes all
TMS34010- and TMS34020-based PC graphics displays.

Transparency to share the TMS34010’s host interface registers with an
application that is being debugged and that uses the host interface for
communication between host and TMS340-resident software.

Ability to support the symbolic debugging of RLMs (Relocatable Load
Modules).

The following is a list of the routines in TIGA that provide debugger support:

get_vector Return contents of TMS340 trap vector

set_vector Set contents of TMS340 trap vector

get_xstate Return TMS340 execution state

set_xstate Set TMS340 execution state

get_memseg Return high/low bounds of TMS340 memory segment

set_memseg Set high/low bounds of TMS340 memory segment

get_msg Receive a message from the TMS340

set_msg Send a message to the TMS340

save_commstate Save communication state

rstr_commstate Restore communication state

oem_init Initialize board-specific data

Note:

The get_vector and set_vector functions are described in Chapter 4 because
their usefulness is not restricted to debuggers.

 Return High/Low Bounds of TMS340 Memory Segment get_memseg

C-3

void get_memseg(addrlo, addrhi);
unsigned long *addrlo, *addrhi;

Host-only

The get_memseg function is not for general use. It is intended for debuggers
and other such tools that have special hardware accessing requirements. This
function returns the low and high bit addresses of a usable block of TMS340
memory. Note that if the TIGA graphics manager is active (determined by a call
to gm_is_alive), then this block of memory has been appropriated by the TIGA
memory manager and should not be used. Instead, a call to TIGA should
allocate usable memory. The two arguments, addrlo and addrhi, are pointers
to unsigned longs where the TMS340 addresses are to be placed.

Syntax

Type

Description

get_msg Return a Message From the TMS340

C-4 Debugger Support for TIGA

unsigned short get_msg();

Host-only

The get_msg function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements.This
function receives a 3-bit message from the TMS340. The message is located
in bits 0–2 of the returned value. The fourth bit, bit 3, is an interrupt bit and
indicates that an interrupt was requested by the host.

Syntax

Type

Description

 Return TMS340 Execution State get_xstate

C-5

unsigned short get_xstate();

Host-only

The get_xstate function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements. This
function returns the current TMS340 execution state. The returned 16 bits are
described below:

Bit 0 1 if TMS340 is halted, 0 if not

Bit 1 1 if NMI set, 0 if not

Bit 2 1 if NMIMODE set, 0 if not

Bit 3 1 if cache flushed, 0 if not

Bit 4 1 if cache disabled, 0 if not

Bit 5 1 if host interrupt (the INTIN bit of the host control register) is set, 0 if
it is cleared.

Bits 6–15 Reserved for future use

#include <tiga.h>
main()
{

if (tiga_set(CD_OPEN) >= 0)
{

if (get_xstate() & 1)
printf(”TMS340 is halted\n”);

else
printf(”TMS340 is running\n”);

tiga_set(CD_CLOSE);
}

}

Syntax

Type

Description

Example

oem_init Initialize Board-Specific Data

C-6 Debugger Support for TIGA

unsigned long oem_init(gm_size)
unsigned long gm_size;

Host-only

The oem_init function halts the TMS340 and performs any board-specific
initialization required before loading a COFF file. It also performs TMS340
heap memory initialization using the size of the TIGA graphics manager (GM)
in its calculations. This size, in bytes, is specified by the argument gm_size.

The oem_init function returns a TMS340 address corresponding to the start
of the TIGA GM. This address is not the execution entry point of the TIGA GM,
but rather the relocation address of the TIGA GM COFF file.

Syntax

Type

Description

 Restore Communication State rstr_commstate

C-7

unsigned short rstr_commstate();

Host-only

The rstr_commstate function is not for general use. It is intended for
debuggers and other such tools that have special hardware accessing
requirements. This function restores the state of TMS340 communications to
the state it was in after a previous call to save_commstate.The function returns
zero if it is unable to save the state, nonzero if it is successful.

Syntax

Type

Description

save_commstate Save Communication State

C-8 Debugger Support for TIGA

unsigned short save_commstate();

Host-only

The save_commstate function is not for general use. It is intended for
debuggers and other such tools that have special hardware accessing
requirements. This function saves the state of TMS340 communications. The
function returns zero if it is unable to save the state, nonzero if it is successful.

Syntax

Type

Description

 Set High/Low Bounds of TMS340 Memory Segment set_memseg

C-9

void set_memseg(addrlo, addhi);
unsigned long addrlo, addrhi;

Host-only

The set_memseg function is not for general use. It is intended for debuggers
and other such tools that have special hardware accessing requirements. This
function sets the low and high bit addresses of a usable block of TMS340
memory. It should be called to reflect the new memory size after some of the
memory returned by get_memseg is used.

Syntax

Type

Description

set_msg Set a Message From the TMS340

C-10 Debugger Support for TIGA

void set_msg(msg);
unsigned short msg;

Host-only

The set_msg function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements. This
function sends a 3-bit message to the TMS340. The message is located in bits
0–2 of argument msg. The fourth bit, bit 3, is an interrupt bit and requests a host
interrupt into the TMS340.

Syntax

Type

Description

 Set TMS340 Execution State set_xstate

C-11

void set_xstate(options);
unsigned short options;

Host-only

The set_xstate function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements. This
function sets the current TMS340 execution state. The returned 16 bits are
described below:

Bit 0 1 to halt the TMS340, 0 to let it run

Bit 1 1 to invoke an NMI, 0 to clear NMI

Bit 2 1 to set NMIMODE, 0 to clear NMIMODE

Bit 3 1 to flush cache, 0 to stop cache flush

Bit 4 1 to disable cache, 0 to enable cache

Bit 5 1 to set the host interrupt (the INTIN bit of the host control register);
0 does nothing because the bit can be cleared only by the TMS340.

Bits 6–15 Reserved for future use; must be set to 0s

#include <tiga.h>

main()
{

if (tiga_set(CD_OPEN) >=0)
{

set_xstate(1); /* halt the TMS340 */
set_xstate(0); /* run the TMS340 */
tiga_set(CD_CLOSE);

}
}

Syntax

Type

Description

Example

TIGA /Debugger Interface

C-12 Debugger Support for TIGA

C.2 TIGA / Debugger Interface

TIGA 2.2 provides the capability for symbolic debugging of relocatable load
modules (RLMs) by providing RLM relocation and filename information to a
TMS340-resident debugger monitor via the TRAP 29 software interface. This
capability is enabled by specifying the –d2 option when loading the TIGA
communication driver (tigacd.exe).

For a debugger to take advantage of this capability, it must provide and install
an interrupt service routine (ISR) into the trap 29 vector. The following three
services must be provided by the debugger ISR to fully support TIGA’s debug
capability:

1) Load symbols into the debugger that correspond to an RLM or the TIGA
graphics manager.

2) Flush symbols that correspond to a previously loaded RLM.

3) Flush all symbols that correspond to all previously loaded RLMs.

Whenever an application loads or flushes an RLM, TIGA first services the
request and then passes the request onto the debugger ISR, via a trap 29
software interrupt, for processing. When control is passed to the debugger’s
ISR, the stack is set up as follows:

old PC (msw)
old PC (lsw)
ST (msw)
ST (lsw)SP memory addresses

Information regarding the request is stored relative to the old PC on the stack.
Once the ISR has fetched the value of the old PC (for example, in Addr), the
request information can then be read relative to Addr as follows:

1) Module Load (ML) request

Addr: RETS instruction (0x0960)
Addr+0x10: Magic number (0x0468)
Addr+0x20 Request type (0x4D4C, ASCII for ML)
Addr+0x30: Module ID
Addr+0x40: Number of sections (starts with section 0)
Addr+0x50: LSW of section 0 relocation
Addr+0x60: MSW of section 0 relocation

: :
Addr+0x50+(n–1)*0x20: LSW of section n–1 relocation
Addr+0x50+(n–1)*0x20: MSW of section n–1 relocation
Addr+0x50+n*0x20: Filename[0]
Addr+0x58+n*0x20: Filename[1]

: :

 TIGA /Debugger Interface

C-13

Note:

Filename is a null-terminated, fully qualified (drive and directory included)
string.

2) Module Flush (MF) request

Addr: RETS instruction (0x0960)
Addr+0x10: Magic number (0x0468)
Addr+0x20: Request type (0x4D46, ASCII for MF)
Addr+0x30: Module ID

3) Flush all Modules (MA) request

Addr: RETS instruction (0x0960)
Addr+0x10: Magic number (0x0468)
Addr+0x20: Request type (0x4D41, ASCII for MA)

After servicing the request, the debugger ISR should call the RETI instruction
to properly terminate the interrupt.

Compatibility Functions

C-14 Debugger Support for TIGA

C.3 Compatibility Functions

It is recommended that you do not use the compatibility functions. Their
operations functions can be performed by the entry points in the previous
section and by the communication functions described in Chapter 4. These
functions talk directly to TMS34010 hardware, which is not present on the
TMS34020. Their functionality can be emulated only on the TMS34020.
However, since the TMS34010 has been available for some years now, many
utilities have been written that interface to the TMS34010 hardware directly.
If these utilities are to be ported to TIGA with the understanding that they may
not run correctly on the TMS34020 or other future products, then these
functions may provide a quick method of porting.

read_hstaddr Read the TMS34010 host address register

read_hstadrh Read the TMS34010 host address high register

read_hstadrl Read the TMS34010 host address low register

read_hstctl Read the TMS34010 host control register

read_hstdata Read the TMS34010 host data register

write_hstaddr Write to the TMS34010 host address register

write_hstadrh Write to the TMS34010 host address high register

write_hstadrl Write to the TMS34010 host address low register

write_hstctl Write to the TMS34010 host control register

write_hstdata Write to the TMS34010 host data register

Read the TMS34010 Host Address Register read_hstaddr

C-15

unsigned long read_hstaddr();

Host-only

The read_hstaddr function returns the contents of the host address register of
the TMS34010.

Syntax

Type

Description

read_hstadrh Read the TMS34010 Host Address High Register

C-16 Debugger Support for TIGA

unsigned short read_hstadrh();

Host-only

The read_hstadrh function returns the contents of the host address high
register of the TMS34010.

Syntax

Type

Description

Read the TMS34010 Host Address Low Register read_hstadrl

C-17

unsigned short read_hstadrl();

Host-only

The read_hstadrl function returns the contents of the host address low register
of the TMS34010.

Syntax

Type

Description

read_hstctl Read the TMS34010 Host Control Register

C-18 Debugger Support for TIGA

unsigned short read_hstctl();

Host-only

The read_hstctl function returns the contents of the host control register of the
TMS34010.

Syntax

Type

Description

Read the TMS34010 Host Data Register read_hstdata

C-19

unsigned short read_hstdata();

Host-only

The read_hstdata function returns the contents of the host data register of the
TMS34010.

Syntax

Type

Description

write_hstaddr Write to the TMS34010 Host Address Register

C-20 Debugger Support for TIGA

void write_hstaddr(value)
 unsigned long value;

Host-only

The write_hstaddr function writes the supplied 32-bit value into the host
address register of the TMS34010.

Syntax

Type

Description

Write to the TMS34010 Host Address High Register write_hstadrh

C-21

void write_hstadrh(value)
 unsigned short value;

Host-only

The write_hstadrh function writes the supplied 16-bit value into the host
address high register of the TMS34010.

Syntax

Type

Description

write_hstadrl Write to the TMS34010 Host Address Low Register

C-22 Debugger Support for TIGA

void write_hstadrl(value)
unsigned short value;

Host-only

The write_hstadrl function writes the supplied 16-bit value into the host
address low register of the TMS34010.

Syntax

Type

Description

Write to the TMS34010 Host Control Register write_hstctl

C-23

void write_hstctl(value)
unsigned short value;

Host-only

The write_hstctl function writes the supplied 16-bit value into the host control
register of the TMS34010. Note that for TIGA to function properly, the values
of the INCR, INCW, and LBL bits in host control must be set in a particular
manner. If these bits are modified, they must be restored before invoking
another TIGA function, or else the TIGA environment may be corrupted.

Syntax

Type

Description

write_hstdata Write to the TMS34010 Host Data Register

C-24 Debugger Support for TIGA

void write_hstdata(value)
unsigned short value;

Host-only

The write_hstdata function writes the supplied 16-bit value into the host data
register of the TMS34010.

Syntax

Type

Description

D-1

Appendix D

Error Messages / Error Codes

Error messages are returned by the standard TIGA error handler if problems
are encountered while a TIGA driver or application is running. The problems
associated with these errors are likely caused by the application or by the driv-
er itself.

Error codes are returned when problems occur during loading of the TIGA
Communication Driver (CD), the TIGA Graphics Manager (GM), or TIGA ex-
tensions contained in ALM or RLM files. These problems may be caused by
the TIGA application or by the driver but are more apt to be the result of improp-
er installation of TIGA or the TMS340 board. The following TIGA functions and
utility programs, which provide the CD, GM, RLM and ALM load support in
TIGA, are the most likely to generate these error codes:

tigalnk.exe TIGA linking loader utility
create_alm() Create alm file
create_esym() Create external symbol file
flush_esym() Flush external symbols from symbol file
install_alm() Load TIGA extensions from ALM file
install_primitives() Load TIGA graphics library functions
install_rlm() Load TIGA extensions from RLM file
sym_flush() Flush relocatable load module symbols

Each description of error message / error code contains the following informa-
tion:

The status code returned to signify that an error has occurred

The status message returned to signify that an error has occurred

The general type of error that has occurred

A list of possible causes that prompted the error

Possible solutions to fix the cause of the error

This appendix contains a list of error messages and error codes returned by
TIGA, in the following sections:

Section Page
D.1 Error Messages D-2.
D.2 Error Codes D-3.
D.3 Communication Driver (CD) Errors D-7.

Error Code

Error Msg.

Error Type

Cause(s)

Fix(es)

Error Messages

D-2 Error Messages / Error Codes

D.1 Error Messages

Timeout waiting for a free command buffer

TIGA extended function error

TIGA graphics manager has been corrupted. A called TIGA extended function
did not execute to completion

Check TIGA function source for problems. Also, check host entry point invoca-
tion to ensure that arguments are being passed correctly

Timeout waiting for current TIGA command

TIGA extended function error

TIGA graphics manager has been corrupted. A called TIGA extended function
did not execute to completion

Check TIGA function source for problems. Also, check host entry point invoca-
tion to ensure that arguments are being passed correctly

Not enough memory to store parameters

TIGA function calling error

An alternate (_a) entry point was called, but not enough TMS340 memory was
available to allocate temporary command buffer

Reduce the amount of data being sent to the function

Error Msg.

Error Type

Cause(s)

Fix(es)

Error Msg.

Error Type

Cause(s)

Fix(es)

Error Msg.

Error Type

Cause(s)

Fix(es)

 Error Codes

D-3

D.2 Error Codes

–1

TIGA system error (TIGA 1.1 and lower only)

The file tigalnk.exe could not be found

1) Ensure that the –m option of the TIGA environment variable is set to your
main TIGA directory

2) If so, verify that the file tigalnk.exe is contained in the directory specified by
the –m option

–2

TIGA communication driver (CD) error

Invalid command line arguments specified for tigacd.exe

Ensure that the command line arguments are specified when running
tigacd.exe are valid. Check Section 2.6 for valid options

–3

TIGA memory error

1) Not enough host memory to invoke TIGALNK (TIGA versions 1.1 and lower
only) or

2) Not enough TMS340 memory available to load specified module

1) Free memory on host by eliminating unused TSR’s
2) Ensure that your TMS340 board has enough memory to run the application.

If not, add additional memory to TMS340 board, if possible

–4

TIGA communication driver (CD) error

TIGA communication driver (tigacd.exe) not running

Run tigacd.exe to install the TIGA communications driver before running a
TIGA application or driver

–5

TIGA graphics manager (GM) error

1)TIGA graphics manager (tigagm.out) load error or
2) TMS340 board failure

1) Ensure that the file tigagm.out exists in the directory specified by the –m op-
tion of the TIGA environment variable

2) Run the manufacturer’s supplied diagnostics to ensure your TMS340 board
is operating properly

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Codes

D-4 Error Messages / Error Codes

–6

RLM load error

1) RLM does not exist in the directory specified in the application or
2) RLM does not exist in the directory specified by the –l option of the TIGA

environment variable

1, 2) Ensure that the RLM file exists in either the directory specified by the
application or in the directory specified by the –l option of the TIGA environ-
ment variable

3) Obtain a new copy of the RLM file

–7

Symbol file error (TIGA versions 1.1 and lower only)

1) TIGA could not find the file tiga340.sym
2) The tiga340.sym file is corrupt

1) Ensure that the –m option of the TIGA environment variable is set to your
main TIGA directory. Also, make sure that the file tiga340.sym exists in this
directory

2) Run tigalnk /ca to create a new tiga340.sym file

–8

ALM load error

1) ALM does not exist in directory specified in the application
2) ALM does not exist in directory specified by the –l option of the TIGA envi-

ronment variable
3) ALM file is corrupt

1, 2) Ensure that the ALM file exists in either the directory specified by the
application or in the directory specified by the –l option of the TIGA environ-
ment variable

3) Obtain a new copy of the ALM file

–9

COFF (.out) file load error

TIGA could not locate specified COFF .out file

Ensure that the specified COFF.out file exists in the directory expected by the
application

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

 Error Codes

D-5

–10

Symbol reference error

An unresolved symbol was encountered when the specified RLM or ALM file
was loading

1) Run tigalnk /lx to reinitialize external symbol table
2) Run tigalnk /ec filename to determine undefined symbols

–11

Symbol file creation error (TIGA versions1.1 and lower only)

The COFF file specified in tigalnk /cs filename is not linked at an absolute ad-
dress

Relink the specified COFF file without the –ar or –r linker option

–12

Symbol file error

The modules installed in the symbol table do not match those the TIGA graph-
ics manager has installed

Run tigalnk –fs to flush the symbols. Then, rerun your TIGA application

–13

Handshake error

1) TIGA graphics manager (tigagm.out) load error
2) Wrong tigagm.out being used
3) TMS340 board failure

1, 2) Ensure that the correct file tigagm.out exists in the directory specified by
the –m option of the TIGA environment variable

3) Run the manufacturer’s supplied diagnostics to make sure your TMS340
board is operating properly.

–14

COFF load error (TIGA versions 2.0 and higher only)

An error was encountered while attempting to load a COFF file

Recreate the COFF file and try again

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Codes

D-6 Error Messages / Error Codes

–15

Symbol table error (TIGA versions 2.0 and higher only)

Not enough TMS340 memory available to store the symbols associated with
an RLM

1) Use the %f option of the install_rlm function to disable loading of symbols
2) Reduce the number and name length of symbols in RLM
3) Add more memory to the TMS340 board, if possible

–25

TMS340 board error (TIGA versions 2.0 and higher only)

Communications error with target TMS340 board

1) Ensure that you installed the TMS340 board properly
2) Run the manufacturer’s supplied diagnostics to ensure your TMS340 board

is operating properly

–26

TIGA communication driver error (TIGA versions 2.0 and higher only)

The TIGA communications driver was already closed when the TIGA function
tiga_set(CD_CLOSE) was issued

No fix required

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

 Communication Driver (CD) Errors

D-7

D.3 Communication Driver (CD) Errors

TIGA Driver already installed in interrupt level 0x ??

An attempt was made to load the TIGA CD at the current TIGA interrupt level
when it is already installed.

Do not reload the TIGA CD once it is installed. The TIGA CD remains memory
resident until:

1) The PC is rebooted or powered off, or

2) The TIGA CD is uninstalled (using the command tigacd –u from the DOS
command line.

NonTIGA Driver installed in interrupt level 0x ??

An attempt was made to load the TIGA CD at an interrupt level currently in use
by another driver.

Load the TIGA CD at a different interrupt level. To change the TIGA interrupt
level, modify the –i option of the TIGA environment variable. See Section 2.5.

Abort (No response from display board)

Initialization of the TIGA display board failed. Possible causes are:

1) The TIGA display board is not installed or is defective.

2) The TIGA display board is not is not set up properly.

3) The wrong TIGA CD is being used.

4) The wrong TIGA configuration file (tiga.cfg) is being used.

To fix the causes lilsted above:

1) Ensure that the TIGA display board is installed properly in your PC.

Is the board connector fully seated into the adapter slot?
Is the board installed in the correct slot? A board with a 16-bit connec-
tor should be installed in a 16-bit slot.
Are all socketed components fully seated into their sockets?
Run any diagnostics provided with the display board to determine if
the board is damaged.

2) Rerun the TIGA board setup program that came with the board (if
supplied). Ensure that all I/O addresses and memory addresses required
during setup correspond to the actual configuration of your diplay board.
You may want to try various combinations of options presented during set-
up to see if any of them work with your display board.

3) Ensure that the TIGA CD you are using is intended for your display board.
If in doubt, refer to your board’s software installation manual.

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

Communication Driver (CD) Errors

D-8 Error Messages / Error Codes

Ensure that the file tiga.cfg in use is intended for your display board. If in
doubt, refer to your board’s software installation manual.

TIGA driver is not installed!

An attempt was made to unload the TIGA CD from memory (using the com-
mand tigacd –u from the DOS command line), but it failed because no interrupt
vector is present at the current TIGA interrupt level.

1) Do not attempt to unload the TIGA CD when it is not installed.
2) Do not modify the TIGA interrupt level (by changing the –i option of the TIGA

environment variable) after loading the TIGA CD.

Attempt to unload TIGA driver failed!

An attempt was made to unload the TIGA CD from memory (using the com-
mand tigacd –u from the DOS command line), but it failed because the inter-
rupt vector present at the current TIGA interrupt level does not belong to TIGA.

1) Do not modify the TIGA interrupt level (by changing the –i option of the TIGA
environment variable) after loading the TIGA CD.

2) Ensure that no other driver is using the same interrupt level as TIGA.

Required file TIGA.CFG not found

The file tiga.cfg could not be found in the directory specified by the –m option
of the TIGA environment variable.

1) Ensure that the –m option of the TIGA environment is set to the main TIGA
directory. See Section 2.5 for more information.
2) Ensure that the file tiga.cfg exists in the directory specified by the –m option

of the TIGA envronment variable
3) Ensure that the hidden or read-only file attributes are not set for tiga.cfg.
4) Ensure that the file tiga.cfg is not damaged. If in doubt, refer to your board’s

software installation manual.

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

E-1

Appendix E

Glossary

A
A_DIR: An MS-DOS environment variable; identifies the directories

searched when you specify include and macro files for the TMS340 fami-
ly assembler.

AI: Application interface. A part of TIGA consisting of a linkable application
library and include files that reference TIGA type and function definitions.
The AI provides the interface between an application and the TIGA com-
munication driver (CD).

ALM: Absolute load module. An extension to the TIGA standard in the form
of TMS340 object code. It is linked to an absolute memory location and
stored in a memory image format. An application can load the ALM to in-
voke custom TMS340 functions.

B
bitblt: Bit-aligned block transfer. Transfer of a rectangular array of pixel in-

formation from one location in a bitmap to another with the potential of
applying 1 of 16 logical operators during the transfer.

bitmap: 1. The digital representation of an image in which bits are mapped
to pixels. 2. A block of memory used to hold raster images in a device-
specific format.

C
CD: Communication driver. This is a terminate-and-stay-resident program

that runs on the PC. It is specific to a particular board and is supplied by
the board manufacturer with the board.The CD contains functions that
are invoked by an application’s calls to the AI to communicate via the PC
bus to the target TMS340 board.

C_DIR: An MS-DOS environment variable; it identifies the directories
searched when you specify include files for the TMS340 C compiler and
object directories for the TMS340 linker.

Glossary

E-2 Glossary

COFF: Common object file format. An implementation of the object file for-
mat of the same name developed by AT&T. The TMS340 family compiler,
assembler, and linker use and produce COFF files.

command buffer: An area of TMS340 memory used by the TIGA interface
buffer data passed by the application and read by the TMS340 proces-
sor.

command number: An identifier of a function to be invoked by an applica-
tion when the function resides on the TMS340 board. The command
number consists of three parts: 1) The function type, which specifies the
format in which the parameters are referenced by the TMS340. 2) The
module number, which acts as an identifier to the group of functions. Ev-
ery DLM receives a module number when it is installed . 3) The function
number, which specifies the specific function within the DLM that is to be
invoked.

communication buffer: See command buffer.

configuration: The hardware setting of the TMS340 board, comprising dis-
play resolution, pixel size, palette size, availability of shared memory, etc.

coprocessor: Microdevice that offloads numeric operations from the main
processor to speed up overall operation. The TMS34082 is a coproces-
sor to the TMS34020. The two devices are tightly coupled together. The
coprocessor adds to the register and instruction capability of the
TMS34020, resulting in improved handling of floating-point arithmetic. In
this manual, the TMS340 processors are occasionally defined as copro-
cessors to the 80x86 PC processor. This is to emphasize that the
TMS340 is a programmable processor and can offload much of the bur-
den of the graphics processing and bitmap manipulation from the host
PC.

core functions: A group of TIGA functions that can always be invoked by
an application after TIGA has been installed, as opposed to the extended
functions that need to be loaded explicitly by an application.

C-packet mode: A method of passing parameters in TIGA from the host to
a function on the TMS340 board. It enables the parameters pushed onto
the host stack to appear on the TMS340 program stack, as if the function
had been invoked locally to the TMS340.

cursor: In TIGA, an icon on the screen. The cursor is generally under mouse
control and is used as a pointing device in a graphics application.

 Glossary

E-3

D
DDK: Driver developer’s kit. A product provided by Texas Instruments to al-

low software developers to write application drivers that interface to the
TIGA-340 standard.

direct mode: A TIGA mode that is the fastest mechanism to transfer param-
eters from the host to a function on the TMS340 board. The parameter
data is passed in raw form to a TIGA communication buffer, and the
TMS340 function receives a pointer to the data.

DLM: Dynamic load module. The DLM is a key part of TIGA’s extensibility.
The module consists of a collection of custom C or assembly routines
that are not otherwise part of TIGA; thus, they are an extension of TIGA’s
functionality. The DLM is loaded by an application so that the custom
TMS340 functions can be invoked by the application. There are two
types of modules: relocatable load modules (RLMs) and absolute load
modules (ALMs).

E
environment or drawing environment: A group of attributes consisting of

drawing origin, pen size, fill pattern, source and destination bitmaps, and
line style.

environment variable: An MS-DOS variable that can have a string as-
signed by an end-user with the MS-DOS SET command. This string can
be interrogated by a program running under MS-DOS.

extended functions: A portion of the TIGA interface functions that can be
invoked only by a TIGA application after they have been explicitly in-
stalled.They consist mostly of drawing functions.

extensibility: A key feature of TIGA that consists of an expandable function
set. An application programmer can write custom TMS340 functions,
which can be installed at runtime and invoked from the host application
in the same manner as the standard TIGA functions.

F
font: A set of characters in predefined format that contain alignment infor-

mation, allowing the text routines to produce a visually correct represen-
tation of a given character string.

frame buffer: A portion of memory used to buffer rasterized data to be out-
put to a CRT display monitor. The contents of the frame buffer are often
referred to as the bitmap of the display and contain the logical pixels cor-
responding to the points on the monitor screen.

Glossary

E-4 Glossary

G
GM: Graphics manager. A TMS340 object file specific to a particular board,

supplied with the board by the manufacturer. It contains a command ex-
ecutive to process commands sent from the application, and a set of
functions. Some of these are integral TIGA functions, and some may be
user extensions.

GSP: Graphics system processor. A TMS340 family-based system with the
processing power and control capabilities necessary to manage high-
performance bitmapped graphics.

H
heap: An area of memory that a program can allocate dynamically.

I
ISR: Interrupt service routine. A routine to service an interrupt on the

TMS340 processor. The most common interrupt is that produced by the
display interrupt, but other interrupts are available from the host proces-
sor and from two external interrupt pins for window violation. ISRs can
be downloaded by an application as part of a DLM .

ISV: Independent software vendor. A company that produces software prod-
ucts. In this guide, ISV refers to a company that writes a software product
to interface directly with TIGA. ISVs include Microsoft, Autodesk, etc.

L
linking loader: A program called TIGALNK that runs under MS-DOS and is

an integral part of TIGA. It loads and links a dynamic load module with
user extensions to TIGA into the TIGA Graphics Manager on the
TMS340.

M
memory management: Also referred to as dynamic memory allocation. It

consists of a group of functions that are used for heap management.

mode: A particular configuration of a board. An individual board may have
several modes, for example: 1024 pixels × 768 lines at 8 bits per pixel,
or 640 pixels × 480 lines at 4 bits per pixel.

MS-DOS : Microsoft disk operating system. A PC-based operating system.
Because MS-DOS and PC-DOS are essentially the same operating sys-
tem, this manual uses the term MS-DOS to refer to both systems.

 Glossary

E-5

N
NMI: Nonmaskable Interrupt.The NMI cannot be disabled; it is usually gen-

erated by a host processor.

O
OEM: Original equipment manufacturer. A hardware manufacturing compa-

ny. In this user’s guide, it refers to companies that manufacture PC
graphics add-in boards with a TMS340 processor on them.

offscreen memory: The part of the frame buffer not being output to a dis-
play. A frame buffer, although typically one contiguous area of linear
memory, can be viewed as a rectangular area with a specific pitch. Each
row of the rectangular area corresponds to a row of pixels on the screen.
If the length is less than the frame buffer pitch, or if there are more lines
in the frame buffer than are displayed on the screen, there will be an area
of the frame buffer not used for display. This area is named offscreen
memory. Offscreen memory does not include the program memory used
to store code and data.

origin: The zero intersection of X and Y axes from which all points are calcu-
lated.

P
page: Some TMS340 boards may have enough memory in their frame buff-

er to hold two complete copies of the bitmap output to the screen. This
technique, sometimes called double buffering, allows one area of the
screen to be displayed (the display page) while another is being updated
(the drawing page). When the drawing is completed, the drawing and dis-
play pages are interchanged (page flipping). The flip is synchronized to
the vertical blank time to ensure a flicker-free display. This technique is
useful for producing animation sequences.

palette: A digital-lookup table used in a computer graphics display for trans-
lating data from the bitmap into the pixel values shown on the display.

pattern or fill pattern: A design that some TIGA graphics output functions
use to fill an area with a pattern rather than a solid color. The pattern is
specified as a 1-bit-per-pixel map. When the pattern is drawn, 0s in the
bitmap are drawn in the current background color, and 1s are drawn in
the current foreground color.

pen or drawing pen: A software drafting tool that some TIGA graphics func-
tions use to draw a pixel outline on the screen. The application can select
the width and the height of the pen. The area covered by the pen can be
solid or pattern-filled.

Glossary

E-6 Glossary

pixel processing: A logical or arithmetic combination of two pixel values
(source and destination).

PixBlt: Pixelblock transfer. Operations on arrays of pixels in which each pix-
el is represented by one or more bits. PixBlt operations are a superset
of bitblt operations and include not only commonly used logical opera-
tions, but also integer arithmetic and other multibit operations.

plane: (Also bit plane or color plane). A bitmap layer in a display device with
multiple bits per pixel. If the pixel size is n bits and the bits in each pixel
are numbered 0 to n–1, plane 0 is made up of bits 0 from all the pixels,
and plane n–1 is made up of bits numbered n–1 from all the pixels. A lay-
ered graphics display allows planes or groups of planes to be manipu-
lated independently of the other planes.

R
raster-op: Raster operation. See pixel processing.

RLM: Relocatable load module. An extension to the TIGA standard in the
form of TMS340 object code. The RLM file is in COFF file format. It is
loaded by an application so that the application can invoke custom
TMS340 functions.

S
SDB: Software development board. A PC-compatible board manufactured

by Texas Instruments. Two SDBs are produced by Texas Instruments:
a TMS34010-based board and a TMS34020-based board.

SDK: Software developer’s kit. A Texas Instruments product that allows soft-
ware developers to write TMS340 code. The SDK may be used to devel-
op a TIGA extension, but it is equally applicable for programmers who
wish to develop stand-alone TMS340 applications.

shift-register transfer: A transfer between RAM storage and the internal
shift register in a video RAM.

SPK: Software porting kit. A Texas Instruments product that allows man-
ufacturers of TMS340-based boards to port TIGA to their board. It con-
tains all TIGA software source code.

 Glossary

E-7

swizzle: The reversal of every bit in a byte. This is required to convert from
big-endian processors (where the smallest numbered bit in a word is
most significant) to little-endian processors (where the smallest num-
bered bit in a word is least significant).

symbol table: A file containing the symbol names of all the variables and
functions on the TMS340 side of TIGA. The symbol table is used by the
linking loader when it is downloading an RLM to resolve references to
those symbols. This enables the functions in the RLM to call TIGA func-
tions that are resident on the TMS340 board.

T

TDB: TIGA development board. A TMS34010-based graphics board avail-
able from Texas Instruments.

TIGA: Texas Instruments Graphics Architecture. A software interface stan-
dard that allows a host processor to communicate with the TMS340
graphics processors that are typically resident on an add-in board. The
current implementation of TIGA is for the PC market and interfaces the
80x86 processor running under MS-DOS with the TMS340.

TIGACD: The filename of the executable program containing the communi-
cation driver that you run to install TIGA on your system.

TIGALNK: See linking loader.

time-out: The time allowed for a command to complete. An application in-
vokes a TIGA TMS340 function by placing a command number and ap-
propriate parameters in one of several command buffers. After loading
several commands, the command buffers may be full; the host must wait
until the TMS340 finishes the current command and frees up a buffer.
Also, if the function invoked needs to return data back to the application,
the application must wait until the TMS340 completes the command. If
the application waits longer than a specified time, a time-out warning
message is displayed.

TMS340: A family of graphics system processors and peripherals manufac-
tured by Texas Instruments.

TMS34010: First-generation graphics processor manufactured by Texas In-
struments.

TMS34020: Second-generation graphics processor manufactured by Texas
Instruments.

TMS34070: First-generation color palette manufactured by Texas Instru-
ments.

Glossary

E-8 Glossary

TMS34082: Floating-point unit manufactured by Texas Instruments; copro-
cessor to the TMS34020.

transparency: The attribute of effective invisibility in a pixel. When a trans-
parent pixel is written to the screen, it does not alter that portion of the
screen it is written to. For example, in a pixel array containing the pattern
for the letter A, all pixels surrounding the A pattern could be given a spe-
cial value indicating that they are transparent. When the array is written
to the screen, the A pattern, but not the pixels in the rectangle containing
it, would be invisible.

trap vector: A specific 32-bit address in TMS340 memory that contains the
address of an interrupt service routine.

TSR: Terminate and stay resident. A type of program that runs under MS-
DOS. When it terminates, this type of program leaves a portion of itself
in memory.

W
window: A specified rectangular area of virtual space on the display.

workspace: An area of memory that is equal in size to a 1-bit-per-pixel re-
presentation of the current display resolution. Polygon fill functions use
the workspace as a temporary drawing area before drawing on the
screen. The workspace can reside either in offscreen memory or in heap.

Index-1

Index

A
absolute load module, ALM, 4-14, 4-81, 8-3, 8-7,

8-45, 8-47
installation, 8-7

addr, A-13
AI libraries, development tools, 3-4
application interface, AI, 1-3, 2-5, 2-10
application program, 4-29, 4-32, 4-89, 5-84
area-fill, pattern, 4-101, 5-56, 5-57, 5-59, 5-61, 5-62,

5-75, 5-76, 5-82, 5-101, 6-12
ascent, 7-2
attributes, 8-29
autoexec modification, 2-7
aux_command, 3-10

B
b, A-14
back-face test, 5-25
background color, 8-29
base line, 7-2
bitblt, 3-14
block font, 4-140, 5-86
Bresenham’s algorithm, 5-11

C
C-packet, 8-9, 8-10, 8-12, 8-16
callback functions, 8-31
cd_is_alive, 2-15, 4-57
cd_is_alive replacement, 2-13
changes in TIGA 2.0, 2-13
character height, 7-3
character offset, 7-4

character origin, 7-3
character rectangle, 7-3
character width, 7-3
clear functions, 3-10
clear_frame_buffer, 3-11
clear_page, 3-11
clear_screen, 3-11
clipping, 5-73, 5-75, 5-79, 5-84, 5-99

window, 6-18
cltiga batch file, 2-10
COFF loader, 4-57
color, A-5
comm_buff_size, A-3
command buffer, 1-4, 3-13, 8-10, 8-12, 8-15, 8-16
command number, 1-4, 4-85, 8-4, 8-9, 8-10, 8-12
communication driver, CD, 1-3, 2-8, 2-9, 3-13, 8-10,

8-12, 8-15, 8-45
communication functions, 1-3, 3-18
compatibility functions, C-14
CONFIG structure, 3-10, 3-13, 3-16, 4-61, 8-12,

8-15, A-3
coordinate

pixel, 4-12, 4-16
screen, 4-101
x-y, 4-12, 4-45, 4-97, 4-122, 4-133

cop2gsp, 3-18, 4-11
coprocessor, 3-18, 4-11, 4-52
core functions, reserved symbols, B-3
cp_alt, 8-12, 8-14
cp_cmd, 8-12, 8-14
cp_ret, 8-12
cpw, 3-11
create_alm, 3-18, 4-14, 4-112, 8-2, 8-3, 8-7, 8-8,

8-45
create_esym, 3-18, 8-45
current_mode, A-4

Index

Index-2

cursor, 4-26, 4-27, 4-61, 4-103, 4-108, 4-109, 8-36,
A-5

CURSOR structure, A-5
CURSOR structure change, 2-13
CURSOR structure, version 1.1, 2-14
CURSOR structure, version 2.0, 2-14
cvxyl, 3-16

D
data, A-6, A-15
debugger functions, C-2
decode_rect, 3-14
delete_font, 3-15
depth, A-15
descent, 7-2
destination bit map, 5-4
development tools, 3-2
device_rev, A-4
direct mode, 8-9, 8-10, 8-16, 8-28
disp_hres, A-9
disp_pitch, A-9
disp_psize, A-9
disp_vres, A-9
display_mem_end, A-4
display_mem_start, A-4
dm_cmd, 8-17
dm_ipoly, 8-15, 8-25
dm_palt, 8-21
dm_pcmd, 8-22
dm_pget, 8-20
dm_poly, 8-15, 8-22
dm_pret, 8-22
dm_psnd, 8-19
dm_pstr, 8-21
dm_ptrx, 8-21
dm_ret, 8-18
documentation files, 2-5
double buffering, 4-92
downward compatibility, 2-13
draw_line, 3-12, 6-3, 6-8
draw_oval, 3-12, 6-3, 6-8
draw_ovalarc, 3-12, 6-3, 6-8
draw_piearc, 3-12, 6-3, 6-8

draw_point, 3-12, 6-3
draw_polyline, 3-12, 3-14, 6-3, 6-8
draw_rect, 3-12, 6-3, 6-8
drawing origin, 4-27, 4-109, A-7
driver developer’s kit, DDK, 2-2
driver development package, DDP

subdirectories, 2-5
system requirements, 2-3

dstbm, A-7
dynamic load module, DLM, 8-2, 8-9

E
elliptical arc, 5-13
encode_rect, 3-14
ENVIRONMENT structure, 3-11, A-7
environment variable, 2-7, 2-8, 4-14, 8-6, 8-45

–i option, 2-8
–l option, 2-8
–m option, 2-8

extended function development, 3-5
extended functions, reserved symbols, B-6
extensibility, 1-2, 1-3, 1-5, 4-14, 4-20, 4-30, 4-61,

4-81, 4-83, 4-112, 8-1
extensibility functions, 3-18

F
field_extract, 3-18
field_insert, 3-18
fill_convex, 3-12, 3-14, 6-3
fill_oval, 3-12, 6-3
fill_piearc, 3-12, 6-3
fill_polygon, 3-12, 3-14, 6-3
fill_rect, 3-12, 6-3
flush_esym, 3-18
flush_extended, 3-18, 4-20
flush_module, 3-18
font, 2-11

alphabetical listing, 7-16
available, 7-14
bit-mapped parameters, 7-2
block, 7-11
data structure, 7-5
database summary, 7-14
header information, 7-5
height, 7-3

Index

Index-3

installing, 7-15
location table, 7-10
names, 7-15
offset/width, 7-10
pattern table, 7-8
proportionally spaced, 4-13, 7-11
size, 4-80
table, 5-9, 5-41, 5-77, 7-12
TIGA-compatible, 2-5

font structure
ascent, 7-7
avgwide, 7-7
charhigh, 7-7
charwide, 7-7
default, 7-6
descent, 7-7
facename, 7-6
first, 7-6
last, 7-6
leading, 7-7
length, 7-6
magic, 7-5
maxkern, 7-6
maxwide, 7-6
oLocTbl, 7-8
oOwTbl, 7-8
oPatnTbl, 7-7
rowpitch, 7-7

FONTINFO structure, A-8
fontptr, A-8
foreground color, 8-29
frame thickness, 5-34
frame_oval, 3-13, 6-3
frame_rect, 3-13, 6-3
function argument, 8-13
function_implemented, 3-10, 4-11, 4-22

G
g, A-14
get_colors, 3-11
get_config, 3-10, 4-61, 8-12, 8-15
get_curs_state, 3-15, 4-26
get_curs_xy, 3-15, 4-27
get_env, 3-11
get_fontinfo, 3-15
get_isr_priorities, 3-18, 4-30, 4-81, 4-83, 4-112
get_memseg, C-3

get_modeinfo, 3-10
get_msg, C-4
get_nearest_color, 3-12
get_offscreen_memory, 3-17, A-13
get_palet, 3-12
get_palet_entry, 3-12
get_pixel, 3-16
get_pmask, 3-11
get_ppop, 3-11
get_text_xy, 3-15
get_textattr, 3-15
get_transp, 3-11
get_vector, 3-19
get_videomode, 3-10, 4-48, 4-126
get_windowing, 3-11
get_wksp, 3-16
get_xstate, C-5
gm_idlefunc, 3-10
graphics attributes control functions, 3-11
graphics cursor functions, 3-15
graphics drawing functions, 3-12
graphics library, 2-11
graphics library functions, 4-82, 8-10
graphics manager, GM, 1-4, 2-9, 3-13, 4-57, 4-81,

4-83, 8-13, 8-28, 8-30, 8-47
graphics utility functions, 3-16
gsp_calloc, 3-17, 4-56
gsp_execute, 3-10, 4-57, 4-88
gsp_free, 3-17, 4-58
gsp_malloc, 3-17, 4-59
gsp_maxheap, 3-17, 4-60
gsp_minit, 3-17, 4-61
gsp_realloc, 3-17, 4-62
gsp2cop, 3-18, 4-22, 4-52
gsp2gsp, 3-18
gsp2host, 3-18, 4-54
gsp2hostxy, 3-18, 4-55
gsph_alloc, 3-17
gsph_calloc, 3-17
gsph_compact, 3-17
gsph_deref, 3-17
gsph_falloc, 3-17
gsph_fcalloc, 3-17
gsph_findhandle, 3-17
gsph_findmtype, 3-17

Index

Index-4

gsph_free, 3-17

gsph_init, 3-17

gsph_maxheap, 3-17

gsph_memtype, 3-17

gsph_realloc, 3-17

gsph_totalfree, 3-17

H
handle-based functions, 3-16

header, 5-80, 5-101

height, A-5, A-15

host-PC development tools, 3-2

host-PC include files, 3-3

host-PC libraries, 3-3

host2gsp, 3-18

host2gspxy, 3-18, 4-78

hot_x, A-5

hot_y, A-5

I
i, A-14

I/O functions, 3-18

id, A-8

image width, 7-4

in_font, 3-15

include files, 2-5, 2-7, 3-3, 3-5, 8-10, 8-13, 8-28, A-1

include files for PC development, 3-3

INIT_GM, 4-127

init_palet, 3-12, 4-22

init_text, 3-15

initialization, 2-9, 3-6, 4-61, 8-47

initialization functions, 3-10

initialization/termination, 2-13

install_alm, 3-18, 4-30, 4-81, 4-112, 8-8, 8-10, 8-45

install_font, 3-15

install_primitives, 3-10, 3-18, 4-82, 8-9

install_rlm, 3-18, 4-30, 4-83, 4-112, 8-7, 8-10, 8-45

install_usererror, 3-10, 4-85, 4-123, 4-127

installation, 2-4, 8-6, 8-36

integral data types, A-2

intercharacter spacing, 5-38, 5-86, 5-87

interrupt, 2-8, 3-18, 4-30, 4-81, 4-83, 4-112, 8-2, 8-4,
8-28, 8-30

interrupt handler functions, 3-19

L
leading, 7-3
leftmost one, 4-87

libraries, 3-5
line-style, pattern, 4-101, 5-88, 5-89, 5-90, 5-92,

5-93, 5-94, 5-95, 6-13
linking loader, 8-45

options, 8-45

lmo, 3-16
loadcoff, 3-10, 4-57, 4-88

M
magic, 5-22
mask_color, A-6

mask_rop, A-5
math/graphics, 2-10
memory management, 8-3, A-3

handle-based functions, 3-16
pointer-based functions, 3-17

mg2tiga utility, 2-11
mode, A-4

mode arguments, 4-126
AI_8514, 4-126
CGA, 4-126
EGA, 4-126
HERCULES, 4-126
MDA, 4-126
OFF_MODE, 4-126
PREVIOUS, 4-126
tiga, 4-126
VGA, 4-126

MODEINFO structure, A-9

N
new functions, 2-15
NO_ENABLE, 4-127

num_modes, A-4
num_offscrn_areas, A-10
num_pages, A-10

Index

Index-5

O
oem_init, C-6
OFFSCREEN structure, A-13
offscreen workspace, 2-15
operations on pixels, 6-15
origin

character, 5-87
drawing, 4-12, 4-16, 4-45, 4-97, 4-101, 4-122,

4-133, 5-57, 5-59, 5-62, 5-65, 5-67, 5-70,
5-72, 5-73, 5-75, 5-78, 5-81, 5-88, 5-90, 5-92,
5-94, 5-98

outcode, 4-12

P
packet header, 8-13
page flip, 4-89
page_busy, 3-19
page_flip, 3-19
PALET structure, A-14
palet_gun_depth, A-9, A-10
palet_inset, A-10
palet_size, A-10
palette, 4-7, 4-8, 4-34, 4-38, 4-40, 4-79, 4-101,

4-115, 4-116, 4-117, A-14
palette functions, 3-12
patn, 6-12
patnfill_convex, 3-13, 3-14, 6-2, 6-6
patnfill_oval, 3-13, 6-2, 6-6
patnfill_piearc, 3-13, 6-2, 6-6
patnfill_polygon, 3-13, 3-14, 6-2, 6-6
patnfill_rect, 3-13, 6-2
patnframe_oval, 3-13, 6-3
patnframe_rect, 3-13, 6-3
patnpen_line, 3-13, 6-2
patnpen_ovalarc, 3-13, 6-3
patnpen_piearc, 3-13, 6-3
patnpen_point, 6-2
patnpen_polyline, 3-13, 3-14, 6-2
pattern, 3-11, 3-13, 5-81, 5-83, 6-3, A-15

area-fill, 4-101, 5-56, 5-57, 5-59, 5-61, 5-62,
5-75, 5-76, 5-82, 5-101

line-style, 4-101, 5-88, 5-89, 5-90, 5-92, 5-93,
5-94, 5-95

PATTERN structure, A-15
peek_breg, 3-16
pen, 3-13, 4-101, 5-57, 5-59, 5-61, 5-62, 5-64, 5-65,

5-67, 5-69, 5-70, 5-83, 6-2, 6-10, A-7
pen_line, 3-13, 6-2
pen_ovalarc, 3-13, 6-2
pen_piearc, 3-13, 6-2
pen_point, 3-13, 6-2
pen_polyline, 3-13, 3-14, 6-2
pie chart, 5-28
pitch, 5-79, 5-80, 5-84, 5-85, A-5
pixel array function, 3-14
pixel processing, 4-103
pixel_mask, A-9
pixel-processing operation, 4-101, 4-138, 4-139,

5-4, 5-100, 6-16
pixel-size independence, 6-19
plane mask, 4-42, 4-46, 4-101, 4-118, 4-138, 4-139,

5-4, 6-16
pointer-based functions, 3-17
poke_breg, 3-16
poly drawing functions, 3-13, 6-3, 8-15
program_mem_end, A-4
program_mem_start, A-4
proportionally spaced, 4-80, 5-86, 5-87
proprietary extension, 4-129
put_pixel, 3-13

R
r, A-14
read_hstaddr, C-15
read_hstadrh, C-16
read_hstadrl, C-17
read_hstctl, C-18
read_hstdata, C-19
rectangular drawing pen, 6-10
register usage, 8-29
relocatable load module, RLM, 4-14, 4-83, 8-2, 8-5,

8-46, 8-47
installation, 8-6

rightmost one, 4-95
rmo, 3-16
rstr_commstate, C-7
run-length encoding, 5-21

Index

Index-6

S
sample TIGA application, 3-6
save_commstate, C-8
screen_high, A-9
seed fill, 5-73
seed_fill, 3-13
seed_patnfill, 3-13
select_font, 3-15
set_bcolor, 3-11
set_clip_rect, 3-11
set_colors, 3-11
set_config, 2-14, 3-10, A-3

return value, 2-14
set_curs_shape, 3-15, 4-61, 4-103, A-5
set_curs_state, 3-15, 4-108
set_curs_xy, 3-15, 4-103, 4-109
set_cursattr, 3-15
set_draw_origin, 3-11, A-7
set_dstbm, 3-14, A-7
set_fcolor, 3-11
set_interrupt, 3-19, 4-112, 8-37
set_memseg, C-9
set_module_state, 3-18
set_msg, C-10
set_palet, 3-12, 4-22
set_palet_entry, 3-12, 4-22
set_patn, 3-11, 6-12, A-15
set_pensize, 3-11
set_pmask, 3-11
set_ppop, 3-11
set_srcbm, 3-14, A-7
set_text_xy, 3-15
set_textattr, 3-15
set_timeout, 3-10, 4-123
set_transp, 3-11, 4-22
set_vector, 3-19
set_videomode, 2-9, 3-10, 4-48, 4-126
set_videomode replacement, 2-13
set_windowing, 3-11
set_wksp, 3-16, 4-61
set_xstate, C-11
setup_hostcmd, 3-10
shape_rop, A-5

share_gsp_addr, A-4
share_host_addr, A-4
share_mem_size, A-4
silicon_capability, A-10
software developer’s kit, SDK, 2-2
software development package, SDP, subdirecto-

ries, 2-5
software porting kit, SPK, 2-2
software porting package, SPP

subdirectories, 2-5
system requirements, 2-3

source bit map, 5-4
srcbm, A-7
stack_size, 4-61, A-4
style argument

CLR_SCREEN, 4-127
INIT, 4-127
INIT_GLOBALS, 4-126
NO_INIT, 4-126

styled_line, 3-13
styled_oval, 3-13
styled_ovalarc, 3-13
styled_piearc, 3-13
stylemask, A-7
supported development tools, 3-2
swap_bm, 3-14
sym_flush, 3-18
symbol table, 3-18, 8-46, 8-47
synchronize, 3-10, 4-132
sys_flags, 4-11, 4-52, A-3
system requirements, 2-3

T
termination, 3-6
text

alignment, 5-38, 5-87
functions, 2-11, 3-15

text attributes
alignment, 7-13
intercharacter gaps, 7-13
intercharacter spacing, 7-13

text_out, 3-15
text_outp, 3-15
text_width, 3-15
text-related functions, 7-2
TIGA, 5-22

Index

Index-7

TIGA 1.1, 2-13
tiga_busy, 3-10
tiga_set, 3-10
tigacd, 2-9
TIGAEXT section, 4-81, 4-83, 8-4, 8-5, 8-10, 8-12,

8-45
TIGAISR section, 8-4, 8-36, 8-45
TIGALNK, 8-45

options, 8-45
TMS340 development products, 2-2
TMS340 development tools, 3-2
TMS340 function library, 2-11
TMS340 include files and libraries, 3-5
TMS34082 coprocessor, 4-52
transp_off, 3-11
transp_on, 3-11
transparency, 4-22, 4-42, 4-46, 4-101, 4-118, 4-124,

4-138, 4-139, 5-4, 5-100, 6-15, 8-29
trap vector, 4-47, 8-36

U
unsupported functions, 2-15
utilities, 2-5, 2-10, 3-16

V
version_number, A-3

W
wait_scan, 3-19
width, A-5, A-15
windowing modes, 4-49

default, 4-49
wksp_addr, A-10
wksp_pitch, A-10
write_hstaddr, C-20
write_hstadrh, C-21
write_hstadrl, C-22
write_hstctl, C-23
write_hstdata, C-24

X
x-y coordinates, 4-13
xext, A-13
xyorigin, A-7

Y
yext, A-13

Z
zoom, 5-98
zoom_rect, 3-14

Index

Index-8

