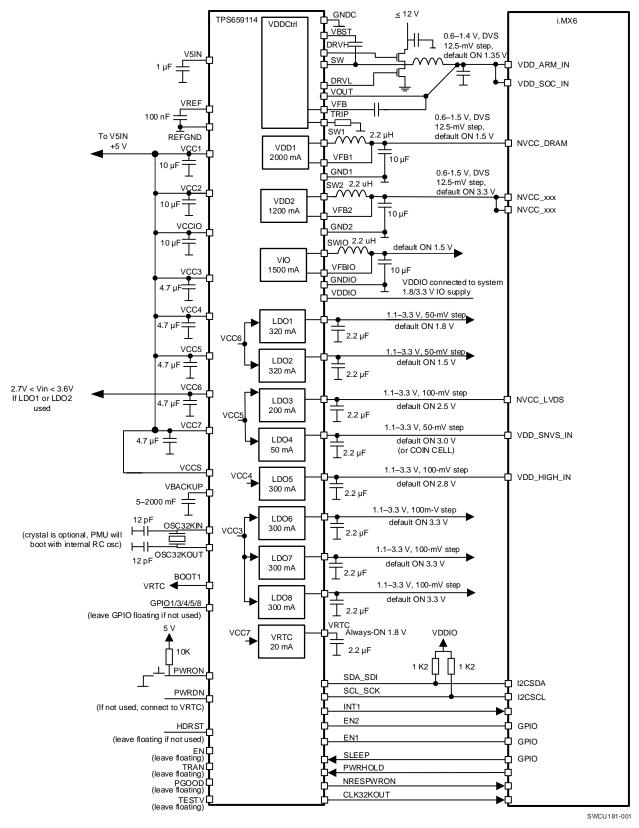
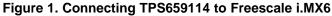


TPS659114 for Freescale i.MX6 Dual/Quad User's Guide

1 Introduction


This document is an application note describing the EEPROM configuration and the power-up sequence of the TPS659114 power-management integrated circuit (PMIC). For details of the PMIC features and performance, refer to the full specification document TPS65911 data manual (SWCS049).


1

Platform Connection

2 Platform Connection

www.ti.com

3 EEPROM Setting

Table 1 describes the EEPROM configuration for the TPS659114 power-up sequence with BOOT1 = 1.

When a resource is associated to time slot 0, it means that the resource is OFF at power up.

REGISTER	BIT	DESCRIPTION	OPTION SELECTED
VDD1_OP_REG/ VDD1_SR_REG	SEL	VDD1 voltage level selection for boot.	1.5 V
VDD1_REG	VGAIN_SEL	VDD1 gain selection, x1 or x2	x1
EEPROM		VDD1 time slot selection	7
DCDCCTRL_REG	VDD1_PSKIP	VDD1 pulse skip mode enable	Skip enabled
VDD2_OP_REG/ VDD2_SR_REG	SEL	VDD2 voltage level selection for boot	1.1 V
VDD2_REG	VGAIN_SEL	VDD2 gain selection, x1 or x3	x3
EEPROM		VDD2 time slot selection	3
DCDCCTRL_REG	VDD2_PSKIP	VDD2 pulse skip mode enable	Skip enabled
VIO_REG	SEL[3:9]	VIO voltage selection	1.5 V
EEPROM		VIO time slot selection	7
DCDCCTRL_REG	VIO_PSKIP	VIO pulse skip mode enable	Skip enabled
VDDCtrl_OP_REG/ VDDCtrl_SR_REG	SEL	VDDCtrl voltage level selection for boot	1.35 V
EEPROM		VDDCtrl time slot	6
LDO1_REG	SEL[7:2]	LDO1 voltage selection	1.8 V
EEPROM		LDO1 time slot	5
_DO2_REG	SEL[7:2]	LDO2 voltage selection	1.5 V
EEPROM		LDO2 time slot	4
_DO3_REG	SEL[6:2]	LDO3 voltage selection	2.5 V
EEPROM		LDO3 time slot	5
_DO4_REG	SEL[7:2]	LDO4 voltage selection	3.0 V
EEPROM		LDO4 time slot	1
LDO5_REG	SEL[6:2]	LDO5 voltage selection	2.8 V
EEPROM		LDO5 time slot	2
LDO6_REG	SEL[6:2]	LDO6 voltage selection	3.3 V
EEPROM		LDO6 time slot	4
LDO7_REG	SEL[6:2]	LDO7 voltage selection	3.3 V
EEPROM		LDO7 time slot	4
_DO8_REG	SEL[6:2]	LDO8 voltage selection	3.3 V
EEPROM		LDO8 time slot	5
CLK32KOUT pin		CLK32KOUT time slot	8
NRESPWRON, NRESPWRON2		NRESPWRON time slot	9
GPIO0 pin		GPIO0 time slot	1
GPIO2 pin		GPIO2 time slot	0
GPIO6 pin		GPIO6 time slot	0
GPIO7 pin		GPIO7 time slot	0
VRTC_REG	VRTC_OFFMASK	 0 = VRTC LDO will be in low-power mode during OFF state. 1 = VRC LDO will be in full-power mode during OFF state. 	Full-power mode
DEVCTRL_REG	CK32K_CTRL	0 = Clock source is crystal/external clock. 1 = Clock source is internal RC oscillator.	External

Table 1. EEPROM Configuration for TPS659114

EEPROM Setting

TEXAS INSTRUMENTS

_

www.ti.com

REGISTER	BIT	DESCRIPTION	OPTION SELECTED
DEVCTRL_REG	DEV_ON	0 = No impact 1 = Will maintain device on, in ACTIVE or SLEEP state	0
DEVCTRL2_REG	TSLOT_LENGTH	Boot sequence time slot duration: 0 = 0.5 ms 1 = 2 ms	2 ms
DEVCTRL2_REG	PWON_LP_OFF	0 = Turn-off after PWRON long press not allowed. 1 = Turn-off after PWRON long press.	1
DEVCTRL2_REG	PWON_LP_RST	0 = No impact 1 = Reset digital core when device is OFF.	0
DEVCTRL2_REG	IT_POL	0 = INT1 signal will be active low. 1 = INT1 signal will be active high.	Active low
INT_MSK_REG	VMBHI_IT_MSK	0 = Device automatically switches on at NO SUPPLY-to-OFF or BACKUP-to-OFF transition.1 = Start-u activity on F or PW1 = Start-up is reason required before switch- on.or PW	
INT_MSK3_REG	GPIO5_F_IT_MSK	 0 = GPIO5 falling edge detection interrupt not masked. 1 = GPIO5 falling edge detection interrupt masked. 	Masked
INT_MSK3_REG	GPIO5_R_IT_MSK	 0 = GPIO5 rising edge detection interrupt not masked. 1 = GPIO5 rising edge detection interrupt masked. 	Masked
INT_MSK3_REG	GPIO4_F_IT_MSK	 0 = GPIO4 falling edge detection interrupt not masked. 1 = GPIO4 falling edge detection interrupt masked. 	Masked
INT_MSK3_REG	GPIO4_R_IT_MSK	 0 = GPIO4 rising edge detection interrupt not masked. 1 = GPIO4 rising edge detection interrupt masked. 	Masked
GPIO0_REG	GPIO_ODEN	0 = GPIO0 configured as push-pull output. 1 = GPIO0 configured as open-drain output.	Push-pull
WATCHDOG_REG	WATCHDOG_EN	0 = Watchdog disabled 1 = Watchdog enabled, periodic operation with 100 s	Disabled
VMBCH_REG	VMBBUF_BYPASS	0 = Enable input buffer for external resistive divider. Enable buf 1 = In single-cell system, disable buffer for lower power consumption. Enable buffer for lower power consumption.	
VMBCH_REG	VMBCH_SEL[5:1]	Select threshold for boot gating comparator COMP1, 2.5–3.5 V.	3.1 V
EEPROM	AUTODEV_ON	0 = PWRHOLD pin is used as PWRHOLD feature. 1 = PWRHOLD pin is GPI. After power-on, DEV_ON is set high internally, no processor action needed to maintain supplies.	
EEPROM	PWRDN_POL	0 = PWRDN signal is active low. 1 = PWRDN signal is active high.	Active low

Table 1. EEPROM Configuration for TPS659114 (continued)

4

EEPROM Setting www.ti.com **PWRON** button VDD_RTC/VRTC TPS65911 internal clock CLK32KOUT OSCK32KOUT 32-kHz active GPIO0, push-pull VCC7 LDO4, 50-mA limit 3.0 V LDO5, 300-mA limit 2.8 V VDD2, 1.2-A limit 3.3 V LDO2, 320-mA limit 1.5 V LDO6, 300-mA limit 3.3 V LDO7, 300-mA limit 3.3 V LDO1, 320-mA limit 1.8 V 2.5 V LDO3, 200-mA limit 3.3 V LDO8, 300-mA limit VDDCTRL, 6-A+ limit 1.35 V (ARM_IN, SOC_IN) 1.5 V VDD1, 2-A limit 1.5 V VIO, 1.3-A limit VDDIO NRESPWRON Event: 1 2 3 Time slot (2 ms between slots): 8 0 1 2 3 4 5 6 7 9 10 11 12 **Event Description** 1 PWRON button press falling edge

2 Valid press after debounce

3 First step of power up sequence available for DCDC, LDO activation.

Figure 2. Timing Diagram

4 Getting Started With TPS659114

4.1 First Initialization

4.1.1 DCDC Maximum Current Capability

Upon reset, all buck converters initialize with ILMAX = 0, which may not allow proper regulation across all expected loads. In VIO_REG, VDD1_REG, and VDD2_REG, set the ILMAX bit according to the required maximum current.

4.1.2 I/O Polarity/Muxing Configuration

Voltage scaling for VDD1, VDD2, and VDDCtrl can be done either through the main I²C interface or through dedicated interface EN1/EN2. Refer to the processor documentation for information on which one is supported. To enable the dedicated voltage scaling interface, set the SR_CTL_I2C_SEL bit to 0 in the DEVCTRL_REG register.

If sleep mode is supported, program the SLEEPSIG_POL bit in the DEVCTRL2_REG register according to the GPIO from the processor. This can be set to active-low or active-high for SLEEP transitions. Software can configure specific power resources to enter the LOW-POWER or OFF state in sleep mode.

In the DEVCTRL_REG register, set the DEV_SLP bit to 1 to allow the SLEEP transition when requested through the SLEEP pin.

Update the GPIOx configuration (GPIOx_REG) based on the specification needs.

4.1.3 Define Wake Up/Interrupt Event (SLEEP or OFF)

Select the appropriate bits in the INT_MSK_REG, INT_MSK2_REG, and INT_MSK3_REG registers to activate an interrupt to the processor on the INT1 line.

4.1.4 Backup Battery Configuration

Backup Battery charging is disabled by default. To enable, set the BBCHEN bit to 1 in the BBCH_REG register. The maximum voltage can be set based on backup battery specifications by using the BBSEL bits in the BBCH_REG register.

4.1.5 Sleep Platform Configuration

Sleep mode is disabled by default. To use the sleep pin, sleep mode must first be enabled by setting DEV_SLP to 1 in the DEVCTRL_REG. Configure the state of the DC-DCs and LDOs when the SLEEP signal is used. By default, in sleep mode all resources maintain their output voltage and load capability, but response to transients (load change) is reduced. GPIO0 can follow sleep state.

Resources that must provide full load capability must be set in the SLEEP_KEEP_LDO_ON_REG and SLEEP_KEEP_RES_ON_REG registers.

Resources that can be set to off in the SLEEP state to optimize power consumption must be set in the SLEEP_SET_LDO_OFF_REG and SLEEP_SET_RES_OFF_REG registers.

4.2 Event Management Through Interrupts

This section describes the TPS659114 interrupts.

4.2.1 INT_STS_REG.VMBHI_IT

The VMBHI_IT interrupt bit indicates that a supply (VBAT) is connected (PMIC leaving the BACKUP or NO SUPPLY state) and the system must be initialized (see Section 4.1, *First Initialization*).

4.2.2 INT_STS_REG.PWRON_IT

6

The PWRON_IT interrupt bit is triggered by pressing the PWRON button. If the device is in the OFF or SLEEP state, then this acts as a wake-up event and resources are reinitialized.

www.ti.com

4.2.3 INT_STS_REG.PWRON_LP_IT

The PWRON_LP_IT interrupt bit is the PWRON long-press interrupt. This interrupt is generated when the PWRON button is pressed for 4 seconds. The application processor can make a decision to acknowledge the interrupt. If this interrupt is not acknowledged within the next second, the device interprets this as a power-down event.

4.2.4 INT_STS_REG.HOTDIE_IT

The HOTDIE_IT interrupt bit indicates that the temperature of the die is reaching the limit. The software must take action to decrease the power consumption before automatic shutdown.

4.2.5 INT_STS_REG.PWRHOLD_R/F_IT

The PWRHOLD_R/F_IT interrupt bit indicates a GPI interrupt event.

4.2.6 INT_STS_REG.RTC_ALARM_IT

The RTC_ALARM_IT interrupt bit is triggered when the RTC alarm set time is reached.

4.2.7 INT_STS2(3)_REG.GPIO_R/F_IT

The GPIOx_R/F_IT interrupt bit indicates a GPIO1, GPIO2 or GPIO3 interrupt event. It can be used to wake up the device from SLEEP state. This can be an interrupt coming from any peripheral device or alike.

4.2.8 INT_STS3_REG.PWRDN_IT

The PWRDN_IT interrupt bit is triggered when PWRDN reset is detected.

4.2.9 INT_STS3_REG.VMBDCH2_H/L_IT

The VMBDCH2_H_IT or VMBDCH2_L_IT interrupt bit is triggered when comparator 2 input (VCCS) is above or below the threshold, respectively.

4.2.10 INT_STS3_REG.WATCHDOG_IT

The WATCHDOG_IT interrupt bit is triggered from the watchdog (periodic or interrupt mode).

5 Ordering Information

Table 2. Ordering Information

PART NUMBER	ORDERING INFORMATION	PROCESSOR
TPS659114	TPS659114A2ZRC/R	Freescale i.MX6

7

Revision History

www.ti.com

Revision History

Changes from B Revision (August 2016) to C Revision	Page
Changed document title from TPS659114 User's Guide : to TPS659114 for Freescale i.MX6 Dual/Q	uad User's Guide 1
Changes from A Revision (January 2016) to B Revision	Page
Changed VMBHI_IT_MSK Bit OPTION SELECTED in Table 1	
Changes from Original (January 2016) to A Revision	Page
Updated Figure 1	2

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Audio Amplifiers Data Converters DLP® Products	www.ti.com/audio amplifier.ti.com dataconverter.ti.com www.dlp.com	Applications Automotive and Transportation Communications and Telecom Computers and Peripherals Consumer Electronics	www.ti.com/automotive www.ti.com/communications www.ti.com/computers www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated