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1 Introduction 
The debug interface implements a proprietary two-wire serial interface that is used for in-circuit 
debugging. Through this debug interface it is possible to perform an erasure of the entire flash 
memory, control which oscillators are enabled, stop and start execution of the user program, execute 
supplied instructions on the 8051 core, set code breakpoints, and single step through instructions in 
the code. This document describes the programming interface for the following Chipcon devices: 
 
 

Device Name Flash memory size(Kbytes) 
CC1110 32 / 16 / 8 

CC2430 128 / 64 / 32 

CC2431 128 / 64 / 32 

CC2510 32 / 16 / 8 

CC2511 32 / 16 / 8 

 
 
 

2 Hardware interface 
The debug interface uses an SPI-like two-wire interface consisting of the bi-directional Debug Data 
(P2_1) and Debug Clock (P2_2) input pin. Data is driven on the bi-directional Debug Data pin at the 
positive edge of Debug Clock and data is sampled on the negative edge of this clock. 
 
Debug commands are sent by an external host and consist of 1 to 4 output bytes from the host and 
an optional input byte read by the host. Figure 1 shows a timing diagram of data on the debug 
interface. 
The first byte of the debug command is a command byte and is encoded as follows: 
 
• bits 7 to 3  : instruction code 

• bit 2  : return input byte to host 

• bits 1 to 0  : number of output bytes from host following instruction code byte 

P2_2

P2_1 command first data byte second data byte host input byte

Figure 1: Debug interface timing diagram 
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2.1 Debug Interface AC Characteristics 
 
TA= -40°C to 85°C, VDD=3.0V if nothing else stated. 

Parameter Min Typ Max Unit Condition/Note 

CC2430, 
CC2431 31.25   

CC1110, 
CC2510 38.46   

Debug 
clock 
period: 

CC2511 41.67   

ns See item 1 Figure 2 

Debug data setup  5   ns See item 2 Figure 2 

Debug data hold 5   ns See item 3 Figure 2 

Clock to data delay   10 ns See item 4 Figure 2, load = 10 pF 

RESET_N inactive 
after P2_2 rising 

10   ns See item 5 Figure 2 

Table 1: Debug Interface AC Characteristics 

1

3

2

DEBUG CLK
P2_2

DEBUG DATA
P2_1

DEBUG DATA
P2_1

4

5RESET_N

 
Figure 2: Debug Interface AC Characteristics 

2.2 Debug Lock Bit 
For software code security the Debug Interface may be locked. When the Debug Lock bit, DBGLOCK, is 
set all debug commands except CHIP_ERASE, READ_STATUS and GET_CHIP_ID are disabled and 
will not function. 
 
The CHIP_ERASE command is used to clear the Debug Lock bit. 
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2.3 Debug Init 
Debug mode is entered by forcing two rising edge transitions on pin P2_2 (Debug Clock) while the 
RESET_N input is held low.  
 
DEBUG_INIT() 
Resets the chip for debug mode. 
 

Debug Clock

ResetN  

2.4 Debug Commands 
The debug commands are shown in Table 2. Some of the debug commands are described in further 
detail in the following sections. 
 

Command Instruction code Description 

CHIP_ERASE 0001 0x00 Perform flash chip erase (mass erase) and clear lock bits. If any other 
command, except READ_STATUS, is issued, then the use of 
CHIP_ERASE is disabled. 

WR_CONFIG 0001 1x01 Write configuration data. 

RD_CONFIG 0010 0100 Read configuration data. Returns value set by WR_CONFIG command. 

GET_PC 0010 1000 Return value of 16-bit program counter. Returns 2 bytes regardless of 
value of bit 2 in instruction code 

READ_STATUS 0011 0x00 Read status byte.  

SET_HW_BRKPNT 0011 1x11 Set hardware breakpoint 

HALT 0100 0100 Halt CPU operation 

RESUME 0100 1100 Resume CPU operation. The CPU must be in halted state for this 
command to be run. 

DEBUG_INSTR 0101 01xx Run debug instruction. The supplied instruction will be executed by the 
CPU without incrementing the program counter. The CPU must be in 
halted state for this command to be run. 

STEP_INSTR 0101 1100 Step CPU instruction. The CPU will execute the next instruction from 
program memory and increment the program counter after execution. 
The CPU must be in halted state for this command to be run. 

STEP_REPLACE 0110 01xx Step and replace CPU instruction. The supplied instruction will be 
executed by the CPU instead of the next instruction in program memory. 
The program counter will be incremented after execution. The CPU must 
be in halted state for this command to be run. 

GET_CHIP_ID 0110 1000 Return value of 16-bit chip ID and version number. Returns 2 bytes 
regardless of value of bit 2 of instruction code 

Table 2: Debug Commands 
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2.4.1 CHIP_ERASE() 
Erases the entire flash memory, including lock bits. 
 
Debug command header = 0x14. 
 

Debug Clock

Debug Data

Data Direction

discard

 

2.4.2 WR_CONFIG(IN: config_8) 
Writes the debug configuration byte, which contains the following bits: 

• 0x08 - TIMERS_OFF 
• 0x04 - DMA_PAUSE 
• 0x02 - TIMER_SUSPEND 
• 0x01 - SEL_FLASH_INFO_PAGE 

 
Debug command header = 0x1D. 
 

Debug Clock

Debug Data

Data Direction

config discard

 
 

2.4.3 READ_STATUS(OUT: status_8) 
Reads the debug status byte, which contains the following bits: 

• 0x80 - CHIP_ERASE_DONE 
• 0x40 - PCON_IDLE 
• 0x20 - CPU_HALTED 
• 0x10 - POWER_MODE_0 
• 0x08 - HALT_STATUS 
• 0x04 - DEBUG_LOCKED 
• 0x02 - OSCILLATOR_STABLE 
• 0x01 - STACK_OVERFLOW 

 
Debug command header = 0x34. 
 

Debug Clock

Debug Data

Data Direction

status

 
 
The READ_STATUS command is used e.g. for polling the status of flash chip erase after a 
CHIP_ERASE command or oscillator stable status required for debug commands HALT, RESUME, 
DEBUG_INSTR, STEP_REPLACE and STEP_INSTR. 
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2.4.4 GET_CHIP_ID(OUT: chip_id_8, chip_rev_8) 
Writes the debug configuration byte, where bit 0 selects the flash information page (containing the 
lock bits).  
 
Debug command header = 0x68. 
 

Debug Clock

Debug Data

Data Direction

chip id chip rev.

 
The GET_CHIP_ID command returns the Chip_ID and version number. Chip ID and version number 
is also accessible for the MCU in the XDATA address range. Table 5 list Chip ID for the Chipcon 
devices. Version number normally corresponds to the letter describing the revision of the device: 0x01 
= A, 0x02 = B, 0x03 = C.  
 
There is one common Chip ID for all memory configurations. 
 
 
Bit Name Reset R/W Description 
7:0 CHIPID[7:0] 0xXX R Chip identification number, see table for chip  

Table 3: Register CHIPID 

 
Bit Name Reset R/W Description 
7:0 VERSION[7:0] 0xXX R Chip revision number 

Table 4: Register CHVER 

 
 
 

Device Name Chip ID 
CC1110 0x01 

CC2430 0x85 

CC2431 0x89 

CC2510 0x81 

CC2511 0x91 

Table 5: Chip ID for Chipcon devices 

2.4.5 HALT() 
Halts the CPU 
 
Debug command header = 0x44. 
 

Debug Clock

Debug Data

Data Direction

discard
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2.4.6 RESUME() 
Starts/resumes the CPU 
 
Debug command header = 0x4C. 
 

Debug Clock

Debug Data

Data Direction

discard

 

2.4.7 DEBUG_INSTR(IN: in0_8, OUT: out0_8);                   
Executes a 1-byte 8051 instruction on the CPU, without changing the program counter (unless the 
debug instruction is a jump operation). 
 
Debug command header = 0x55. 
 

Debug Clock

Debug Data

Data Direction

in0 out0

 
 

2.4.8 DEBUG_INSTR(IN: in0_8, in1_8, OUT: out0_8);                   
Executes a 2-byte 8051 instruction on the CPU, without changing the program counter (unless the 
debug instruction is a jump operation). 
 
Debug command header = 0x56. 
 

Debug Clock

Debug Data

Data Direction

in0 in1 out0

 
 

2.4.9 DEBUG_INSTR(IN: in0_8, in1_8, in2_8, OUT: out0_8);                   
Executes a 3-byte 8051 instruction on the CPU, without changing the program counter (unless the 
debug instruction is a jump operation). 
 
Debug command header = 0x57. 
 

Debug Clock

Debug Data

Data Direction

in0 in1 in2 out0

 
 
 



   

 

 SWRA124 Page 9 of 15  
 

3 Flash Programming 
Programming of the on-chip flash is performed via the debug interface. The external host must initially send instructions using the DEBUG_INSTR debug 
command to perform the flash programming with the Flash Controller as described below. The sequences are based on the commands listed in chapter 2.4. 
For complete description of the flash controller, please see the flash controller section of each datasheet. 
 
 
#define LOBYTE(w)           ((BYTE)(w)) 
#define HIBYTE(w)           ((BYTE)(((WORD)(w) >> 8) & 0xFF)) 
 

3.1.1 READ_CODE_MEMORY(IN: address_16, bank_8, count_16, OUT: outputArray_8) 
Reads from the specified bank in CODE memory into outputArray, byte by byte. 
 
address < 0x8000:   Linear address = address 
address >= 0x8000: Linear address = (address & 0x7FFF) + (bank * 0x8000) 
DEBUG_INSTR(IN: 0x75, 0xC7, (bank * 16) + 1, OUT: Discard);                  MOV MEMCTR, (bank * 16) + 1; 
DEBUG_INSTR(IN: 0x90, HIBYTE(address), LOBYTE(address), OUT: Discard);       MOV DPTR, address; 
for (n = 0; n < count_16; n++) { 
    DEBUG_INSTR(IN: 0xE4, OUT: Discard);                                     CLR A; 
    DEBUG_INSTR(IN: 0x93, OUT: outputArray[n]);                              MOVC A, @A+DPTR; (outputArray[n] = A) 
    DEBUG_INSTR(IN: 0xA3, OUT: Discard);                                     INC DPTR; 
} 

3.1.2 READ_XDATA_MEMORY(IN: address_16, count_16, OUT: outputArray_8) 
Reads from XDATA memory into inputArray, byte by byte. 
 
DEBUG_INSTR(IN: 0x90, HIBYTE(address), LOBYTE(address), OUT: Discard);       MOV DPTR, address; 
for (n = 0; n < count; n++) { 
    DEBUG_INSTR(IN: 0xE0, OUT: outputArray[n]);                              MOVX A, @DPTR; (outputArray[n] = A) 
    DEBUG_INSTR(IN: 0xA3, OUT: Discard);                                     INC DPTR; 
}        
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3.1.3 WRITE_XDATA_MEMORY(IN: address_16, count_16, inputArray_8) 
Writes data from inputArray into XDATA memory, byte by byte. 
 
DEBUG_INSTR(IN: 0x90, HIBYTE(address), LOBYTE(address), OUT: Discard);       MOV DPTR, address; 
for (n = 0; n < count; n++) { 
DEBUG_INSTR(IN: 0x74, inputArray[n], OUT: Discard);                      MOV A, #inputArray[n]; 
    DEBUG_INSTR(IN: 0xF0, OUT: Discard);                                     MOVX @DPTR, A; 
    DEBUG_INSTR(IN: 0xA3, OUT: Discard);                                     INC DPTR;  
} 

3.1.4 SET_PC(IN: address_16) 
Modifies the program counter value 
 
DEBUG_INSTR(IN: 0x02, HIBYTE(address), LOBYTE(address), OUT: Discard);       LJMP address; 

3.1.5 CLOCK_INIT() 
Initializes the 32 MHz crystal oscillator 
 
Important: 
• The loop can lock up if the operation fails (due to communication or chip errors). If polling is not desirable, then wait for 1 ms instead. 
 
DEBUG_INSTR(IN: 0x75, 0xC6, 0x00);                                     MOV CLKCON, #00H; 

do { 
    DEBUG_INSTR(IN: 0xE5, 0xBE, OUT: sleepReg);                              MOV A, SLEEP; (sleepReg = A) 
} while (!(sleepReg & 0x40)); 
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3.1.6 WRITE_FLASH_PAGE(IN: address_17, inputArray_8, erase_page_1) 
Writes a single flash page by loading the image into XDATA memory, together with an assembly routine that performs the actual update. This is done by 
using unified mapping. 

 
The marked section, which performs page erasure, should only be included in the routine when the erase_page_1 = 1. The pseudo-code does not refer to 
this parameter!  
 
routine_8[] = { 
    0x75, 0xAD, ((address >> 8) / FLASH_WORD_SIZE) & 0x7E,     //                 MOV FADDRH, #imm; 
    0x75, 0xAC, 0x00,                                          //                 MOV FADDRL, #00; 
    0x75, 0xAE, 0x01,                                          //                 MOV FLC, #01H; // ERASE 
                                                               //                 ; Wait for flash erase to complete 
    0xE5, 0xAE,                                                // eraseWaitLoop:  MOV A, FLC; 
    0x20, 0xE7, 0xFB,                                          //                 JB ACC_BUSY, eraseWaitLoop; 
                                                               //                 ; Initialize the data pointer 
    0x90, 0xF0, 0x00,                                          //                 MOV DPTR, #0F000H; 
                                                               //                 ; Outer loops 
    0x7F, HIBYTE(WORDS_PER_FLASH_PAGE),                        //                 MOV R7, #imm; 
    0x7E, LOBYTE(WORDS_PER_FLASH_PAGE),                        //                 MOV R6, #imm; 
    0x75, 0xAE, 0x02,                                          //                 MOV FLC, #02H; // WRITE 
                                                               //                     ; Inner loops 
    0x7D, FLASH_WORD_SIZE,                                     // writeLoop:          MOV R5, #imm; 
    0xE0,                                                      // writeWordLoop:          MOVX A, @DPTR; 
    0xA3,                                                      //                         INC DPTR; 
    0xF5, 0xAF,                                                //                         MOV FWDATA, A;  
    0xDD, 0xFA,                                                //                     DJNZ R5, writeWordLoop; 
                                                               //                     ; Wait for completion 
    0xE5, 0xAE,                                                // writeWaitLoop:      MOV A, FLC; 
    0x20, 0xE6, 0xFB,                                          //                     JB ACC_SWBSY, writeWaitLoop; 
    0xDE, 0xF1,                                                //                 DJNZ R6, writeLoop; 
    0xDF, 0xEF,                                                //                 DJNZ R7, writeLoop; 
                                                               //                 ; Done, fake a breakpoint 
    0xA5                                                       //                 DB 0xA5; 
}; 
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WRITE_XDATA_MEMORY(IN: 0xF000, FLASH_PAGE_SIZE, inputArray_8); 
WRITE_XDATA_MEMORY(IN: 0xF000 + FLASH_PAGE_SIZE, sizeof(routine), routine); 
DEBUG_INSTR(IN: 0x75, 0xC7, 0x51, OUT: Discard);                             MOV MEMCTR, (bank * 16) + 1; 
SET_PC(0xF000 + FLASH_PAGE_SIZE); 
RESUME(); 

do { 
    READ_STATUS(OUT: statusByte); 
} while (!(statusByte & CPU_HALTED)); 

 

3.1.7 READ_FLASH_PAGE(IN: linearAddress_17, OUT: outputArray_8) 
Reads one page from flash memory 

 
READ_CODE_MEMORY(address & 0xFFFF, (linearAddress >> 15) & 0x03, FLASH_PAGE_SIZE, outputArray); 
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3.1.8 MASS_ERASE_FLASH() 
Initiates a mass erase, which blanks out the entire flash memory and lock bits, and then waits for the operation to complete. 
The initial NOP ensures that the status byte has been updated 
 
Important: 
• The loop can lock up if the operation fails (due to communication or chip errors). If polling is not desirable, then wait for 20 ms instead. 
 

DEBUG_INSTR(IN: 0x00, OUT: Discard);                                         NOP; 
CHIP_ERASE(); 
do { 
    READ_STATUS(OUT: statusByte); 
} while (!(statusByte & CHIP_ERASE_DONE)); 

3.1.9 PROGRAM_FLASH(IN: imageArray_8, OUT: verificationIsOk_1) 
Programs the entire flash memory and verifies it. 
 
The logic in this pseudo-code requires that the size of the image array matches the total size of the flash memory in the device to be programmed (e.g. 128 
kB for the CC2430F128). It also requires unused addresses to be set to 0xFF. 
 
DEBUG_INIT(); 
CLOCK_INIT(); 
MASS_ERASE_FLASH(); 
verificationArray_8[FLASH_PAGE_SIZE]; 
verificationIsOk = 1; 

for (p = 0; p < (FLASH_SIZE / FLASH_PAGE_SIZE); p++) { 
    pageAddress = p * FLASH_PAGE_SIZE; 
    memset(verificationArray, 0xFF, FLASH_PAGE_SIZE); 
    if (memcmp(verificationArray, &inputArray[pageAddress], FLASH_PAGE_SIZE)) { 
        WRITE_FLASH_PAGE(IN: pageAddress, &inputArray[pageAddress], 0); 
        READ_FLASH_PAGE(IN: pageAddress, verificationArray); 
        if (memcmp(verificationArray, &inputArray[pageAddress], FLASH_PAGE_SIZE)) { 
            verificationIsOk = 0; 
            return; 
        } 
    } 
} 
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3.1.10 Flash Write Timing 
The Flash Controller contains a timing generator, which controls the timing sequence of flash write and erase operations. The timing generator uses the 
information set in the Flash Write Timing register, FWT.FWT[5:0], to set the internal timing. FWT.FWT[5:0] must be set to a value according to the currently 
selected CPU clock frequency. 
 
The value set in the FWT.FWT[5:0] shall be set according to the CPU clock frequency by the following equation. 

910*16
21000 CPUFFWT ∗

=  

 
FCPU is the CPU clock frequency. The initial value held in FWT.FWT[5:0] after a reset is 0x2A which corresponds to 32 MHz CPU clock frequency. 
 
The FWT values for common CPU clock frequencies are given in Table 6. 
 

CPU clock 
frequency (MHz) 

FWT 

12 0x10 

13 0x11 

16 0x15 

24 0x20 

26 0x23 

32 0x2A 

Table 6: Flash timing (FWT) values 
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4 Document history 
 
Version Data Description/Changes 
1.2 22-12-2006 Removed classification “Chipcon internal and partners with NDA”, 

added CC1110, CC2510, CC2511 data. 
1.1 27-04-2006 Bug fix in WRITE_FLASHPAGE, changed value in HALT and 

RESUME, deleted chapter READ_FLASH_PAGE (was written twice). 
1.0  Initial 
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