

 SWRA124 Page 1 of 15

CC1110/ CC2430/ CC2510
Debug and Programming Interface

Specification

Rev. 1.2

 SWRA124 Page 2 of 15

1 Introduction...3
2 Hardware interface ...3

2.1 Debug Interface AC Characteristics..4
2.2 Debug Lock Bit ..4
2.3 Debug Init ..5
2.4 Debug Commands ..5

2.4.1 CHIP_ERASE() ...6
2.4.2 WR_CONFIG(IN: config_8)...6
2.4.3 READ_STATUS(OUT: status_8)...6
2.4.4 GET_CHIP_ID(OUT: chip_id_8, chip_rev_8)..7
2.4.5 HALT() ...7
2.4.6 RESUME()...8
2.4.7 DEBUG_INSTR(IN: in0_8, OUT: out0_8); ..8
2.4.8 DEBUG_INSTR(IN: in0_8, in1_8, OUT: out0_8); ...8
2.4.9 DEBUG_INSTR(IN: in0_8, in1_8, in2_8, OUT: out0_8); ..8

3 Flash Programming ..9
3.1.1 READ_CODE_MEMORY(IN: address_16, bank_8, count_16, OUT: outputArray_8)......9
3.1.2 READ_XDATA_MEMORY(IN: address_16, count_16, OUT: outputArray_8)..................9
3.1.3 WRITE_XDATA_MEMORY(IN: address_16, count_16, inputArray_8)10
3.1.4 SET_PC(IN: address_16)..10
3.1.5 CLOCK_INIT() ...10
3.1.6 WRITE_FLASH_PAGE(IN: address_17, inputArray_8, erase_page_1).........................11
3.1.7 READ_FLASH_PAGE(IN: linearAddress_17, OUT: outputArray_8)12
3.1.8 MASS_ERASE_FLASH() ..13
3.1.9 PROGRAM_FLASH(IN: imageArray_8, OUT: verificationIsOk_1)13
3.1.10 Flash Write Timing ..14

4 Document history..15

 SWRA124 Page 3 of 15

1 Introduction
The debug interface implements a proprietary two-wire serial interface that is used for in-circuit
debugging. Through this debug interface it is possible to perform an erasure of the entire flash
memory, control which oscillators are enabled, stop and start execution of the user program, execute
supplied instructions on the 8051 core, set code breakpoints, and single step through instructions in
the code. This document describes the programming interface for the following Chipcon devices:

Device Name Flash memory size(Kbytes)
CC1110 32 / 16 / 8

CC2430 128 / 64 / 32

CC2431 128 / 64 / 32

CC2510 32 / 16 / 8

CC2511 32 / 16 / 8

2 Hardware interface
The debug interface uses an SPI-like two-wire interface consisting of the bi-directional Debug Data
(P2_1) and Debug Clock (P2_2) input pin. Data is driven on the bi-directional Debug Data pin at the
positive edge of Debug Clock and data is sampled on the negative edge of this clock.

Debug commands are sent by an external host and consist of 1 to 4 output bytes from the host and
an optional input byte read by the host. Figure 1 shows a timing diagram of data on the debug
interface.
The first byte of the debug command is a command byte and is encoded as follows:

• bits 7 to 3 : instruction code

• bit 2 : return input byte to host

• bits 1 to 0 : number of output bytes from host following instruction code byte

P2_2

P2_1 command first data byte second data byte host input byte

Figure 1: Debug interface timing diagram

 SWRA124 Page 4 of 15

2.1 Debug Interface AC Characteristics

TA= -40°C to 85°C, VDD=3.0V if nothing else stated.

Parameter Min Typ Max Unit Condition/Note

CC2430,
CC2431 31.25

CC1110,
CC2510 38.46

Debug
clock
period:

CC2511 41.67

ns See item 1 Figure 2

Debug data setup 5 ns See item 2 Figure 2

Debug data hold 5 ns See item 3 Figure 2

Clock to data delay 10 ns See item 4 Figure 2, load = 10 pF

RESET_N inactive
after P2_2 rising

10 ns See item 5 Figure 2

Table 1: Debug Interface AC Characteristics

1

3

2

DEBUG CLK
P2_2

DEBUG DATA
P2_1

DEBUG DATA
P2_1

4

5RESET_N

Figure 2: Debug Interface AC Characteristics

2.2 Debug Lock Bit
For software code security the Debug Interface may be locked. When the Debug Lock bit, DBGLOCK, is
set all debug commands except CHIP_ERASE, READ_STATUS and GET_CHIP_ID are disabled and
will not function.

The CHIP_ERASE command is used to clear the Debug Lock bit.

 SWRA124 Page 5 of 15

2.3 Debug Init
Debug mode is entered by forcing two rising edge transitions on pin P2_2 (Debug Clock) while the
RESET_N input is held low.

DEBUG_INIT()
Resets the chip for debug mode.

Debug Clock

ResetN

2.4 Debug Commands
The debug commands are shown in Table 2. Some of the debug commands are described in further
detail in the following sections.

Command Instruction code Description

CHIP_ERASE 0001 0x00 Perform flash chip erase (mass erase) and clear lock bits. If any other
command, except READ_STATUS, is issued, then the use of
CHIP_ERASE is disabled.

WR_CONFIG 0001 1x01 Write configuration data.

RD_CONFIG 0010 0100 Read configuration data. Returns value set by WR_CONFIG command.

GET_PC 0010 1000 Return value of 16-bit program counter. Returns 2 bytes regardless of
value of bit 2 in instruction code

READ_STATUS 0011 0x00 Read status byte.

SET_HW_BRKPNT 0011 1x11 Set hardware breakpoint

HALT 0100 0100 Halt CPU operation

RESUME 0100 1100 Resume CPU operation. The CPU must be in halted state for this
command to be run.

DEBUG_INSTR 0101 01xx Run debug instruction. The supplied instruction will be executed by the
CPU without incrementing the program counter. The CPU must be in
halted state for this command to be run.

STEP_INSTR 0101 1100 Step CPU instruction. The CPU will execute the next instruction from
program memory and increment the program counter after execution.
The CPU must be in halted state for this command to be run.

STEP_REPLACE 0110 01xx Step and replace CPU instruction. The supplied instruction will be
executed by the CPU instead of the next instruction in program memory.
The program counter will be incremented after execution. The CPU must
be in halted state for this command to be run.

GET_CHIP_ID 0110 1000 Return value of 16-bit chip ID and version number. Returns 2 bytes
regardless of value of bit 2 of instruction code

Table 2: Debug Commands

 SWRA124 Page 6 of 15

2.4.1 CHIP_ERASE()
Erases the entire flash memory, including lock bits.

Debug command header = 0x14.

Debug Clock

Debug Data

Data Direction

discard

2.4.2 WR_CONFIG(IN: config_8)
Writes the debug configuration byte, which contains the following bits:

• 0x08 - TIMERS_OFF
• 0x04 - DMA_PAUSE
• 0x02 - TIMER_SUSPEND
• 0x01 - SEL_FLASH_INFO_PAGE

Debug command header = 0x1D.

Debug Clock

Debug Data

Data Direction

config discard

2.4.3 READ_STATUS(OUT: status_8)
Reads the debug status byte, which contains the following bits:

• 0x80 - CHIP_ERASE_DONE
• 0x40 - PCON_IDLE
• 0x20 - CPU_HALTED
• 0x10 - POWER_MODE_0
• 0x08 - HALT_STATUS
• 0x04 - DEBUG_LOCKED
• 0x02 - OSCILLATOR_STABLE
• 0x01 - STACK_OVERFLOW

Debug command header = 0x34.

Debug Clock

Debug Data

Data Direction

status

The READ_STATUS command is used e.g. for polling the status of flash chip erase after a
CHIP_ERASE command or oscillator stable status required for debug commands HALT, RESUME,
DEBUG_INSTR, STEP_REPLACE and STEP_INSTR.

 SWRA124 Page 7 of 15

2.4.4 GET_CHIP_ID(OUT: chip_id_8, chip_rev_8)
Writes the debug configuration byte, where bit 0 selects the flash information page (containing the
lock bits).

Debug command header = 0x68.

Debug Clock

Debug Data

Data Direction

chip id chip rev.

The GET_CHIP_ID command returns the Chip_ID and version number. Chip ID and version number
is also accessible for the MCU in the XDATA address range. Table 5 list Chip ID for the Chipcon
devices. Version number normally corresponds to the letter describing the revision of the device: 0x01
= A, 0x02 = B, 0x03 = C.

There is one common Chip ID for all memory configurations.

Bit Name Reset R/W Description
7:0 CHIPID[7:0] 0xXX R Chip identification number, see table for chip

Table 3: Register CHIPID

Bit Name Reset R/W Description
7:0 VERSION[7:0] 0xXX R Chip revision number

Table 4: Register CHVER

Device Name Chip ID
CC1110 0x01

CC2430 0x85

CC2431 0x89

CC2510 0x81

CC2511 0x91

Table 5: Chip ID for Chipcon devices

2.4.5 HALT()
Halts the CPU

Debug command header = 0x44.

Debug Clock

Debug Data

Data Direction

discard

 SWRA124 Page 8 of 15

2.4.6 RESUME()
Starts/resumes the CPU

Debug command header = 0x4C.

Debug Clock

Debug Data

Data Direction

discard

2.4.7 DEBUG_INSTR(IN: in0_8, OUT: out0_8);
Executes a 1-byte 8051 instruction on the CPU, without changing the program counter (unless the
debug instruction is a jump operation).

Debug command header = 0x55.

Debug Clock

Debug Data

Data Direction

in0 out0

2.4.8 DEBUG_INSTR(IN: in0_8, in1_8, OUT: out0_8);
Executes a 2-byte 8051 instruction on the CPU, without changing the program counter (unless the
debug instruction is a jump operation).

Debug command header = 0x56.

Debug Clock

Debug Data

Data Direction

in0 in1 out0

2.4.9 DEBUG_INSTR(IN: in0_8, in1_8, in2_8, OUT: out0_8);
Executes a 3-byte 8051 instruction on the CPU, without changing the program counter (unless the
debug instruction is a jump operation).

Debug command header = 0x57.

Debug Clock

Debug Data

Data Direction

in0 in1 in2 out0

 SWRA124 Page 9 of 15

3 Flash Programming
Programming of the on-chip flash is performed via the debug interface. The external host must initially send instructions using the DEBUG_INSTR debug
command to perform the flash programming with the Flash Controller as described below. The sequences are based on the commands listed in chapter 2.4.
For complete description of the flash controller, please see the flash controller section of each datasheet.

#define LOBYTE(w) ((BYTE)(w))
#define HIBYTE(w) ((BYTE)(((WORD)(w) >> 8) & 0xFF))

3.1.1 READ_CODE_MEMORY(IN: address_16, bank_8, count_16, OUT: outputArray_8)
Reads from the specified bank in CODE memory into outputArray, byte by byte.

address < 0x8000: Linear address = address
address >= 0x8000: Linear address = (address & 0x7FFF) + (bank * 0x8000)
DEBUG_INSTR(IN: 0x75, 0xC7, (bank * 16) + 1, OUT: Discard); MOV MEMCTR, (bank * 16) + 1;
DEBUG_INSTR(IN: 0x90, HIBYTE(address), LOBYTE(address), OUT: Discard); MOV DPTR, address;
for (n = 0; n < count_16; n++) {
 DEBUG_INSTR(IN: 0xE4, OUT: Discard); CLR A;
 DEBUG_INSTR(IN: 0x93, OUT: outputArray[n]); MOVC A, @A+DPTR; (outputArray[n] = A)
 DEBUG_INSTR(IN: 0xA3, OUT: Discard); INC DPTR;
}

3.1.2 READ_XDATA_MEMORY(IN: address_16, count_16, OUT: outputArray_8)
Reads from XDATA memory into inputArray, byte by byte.

DEBUG_INSTR(IN: 0x90, HIBYTE(address), LOBYTE(address), OUT: Discard); MOV DPTR, address;
for (n = 0; n < count; n++) {
 DEBUG_INSTR(IN: 0xE0, OUT: outputArray[n]); MOVX A, @DPTR; (outputArray[n] = A)
 DEBUG_INSTR(IN: 0xA3, OUT: Discard); INC DPTR;
}

 SWRA124 Page 10 of 15

3.1.3 WRITE_XDATA_MEMORY(IN: address_16, count_16, inputArray_8)
Writes data from inputArray into XDATA memory, byte by byte.

DEBUG_INSTR(IN: 0x90, HIBYTE(address), LOBYTE(address), OUT: Discard); MOV DPTR, address;
for (n = 0; n < count; n++) {
DEBUG_INSTR(IN: 0x74, inputArray[n], OUT: Discard); MOV A, #inputArray[n];
 DEBUG_INSTR(IN: 0xF0, OUT: Discard); MOVX @DPTR, A;
 DEBUG_INSTR(IN: 0xA3, OUT: Discard); INC DPTR;
}

3.1.4 SET_PC(IN: address_16)
Modifies the program counter value

DEBUG_INSTR(IN: 0x02, HIBYTE(address), LOBYTE(address), OUT: Discard); LJMP address;

3.1.5 CLOCK_INIT()
Initializes the 32 MHz crystal oscillator

Important:
• The loop can lock up if the operation fails (due to communication or chip errors). If polling is not desirable, then wait for 1 ms instead.

DEBUG_INSTR(IN: 0x75, 0xC6, 0x00); MOV CLKCON, #00H;

do {
 DEBUG_INSTR(IN: 0xE5, 0xBE, OUT: sleepReg); MOV A, SLEEP; (sleepReg = A)
} while (!(sleepReg & 0x40));

 SWRA124 Page 11 of 15

3.1.6 WRITE_FLASH_PAGE(IN: address_17, inputArray_8, erase_page_1)
Writes a single flash page by loading the image into XDATA memory, together with an assembly routine that performs the actual update. This is done by
using unified mapping.

The marked section, which performs page erasure, should only be included in the routine when the erase_page_1 = 1. The pseudo-code does not refer to
this parameter!

routine_8[] = {
 0x75, 0xAD, ((address >> 8) / FLASH_WORD_SIZE) & 0x7E, // MOV FADDRH, #imm;
 0x75, 0xAC, 0x00, // MOV FADDRL, #00;
 0x75, 0xAE, 0x01, // MOV FLC, #01H; // ERASE
 // ; Wait for flash erase to complete
 0xE5, 0xAE, // eraseWaitLoop: MOV A, FLC;
 0x20, 0xE7, 0xFB, // JB ACC_BUSY, eraseWaitLoop;
 // ; Initialize the data pointer
 0x90, 0xF0, 0x00, // MOV DPTR, #0F000H;
 // ; Outer loops
 0x7F, HIBYTE(WORDS_PER_FLASH_PAGE), // MOV R7, #imm;
 0x7E, LOBYTE(WORDS_PER_FLASH_PAGE), // MOV R6, #imm;
 0x75, 0xAE, 0x02, // MOV FLC, #02H; // WRITE
 // ; Inner loops
 0x7D, FLASH_WORD_SIZE, // writeLoop: MOV R5, #imm;
 0xE0, // writeWordLoop: MOVX A, @DPTR;
 0xA3, // INC DPTR;
 0xF5, 0xAF, // MOV FWDATA, A;
 0xDD, 0xFA, // DJNZ R5, writeWordLoop;
 // ; Wait for completion
 0xE5, 0xAE, // writeWaitLoop: MOV A, FLC;
 0x20, 0xE6, 0xFB, // JB ACC_SWBSY, writeWaitLoop;
 0xDE, 0xF1, // DJNZ R6, writeLoop;
 0xDF, 0xEF, // DJNZ R7, writeLoop;
 // ; Done, fake a breakpoint
 0xA5 // DB 0xA5;
};

 SWRA124 Page 12 of 15

WRITE_XDATA_MEMORY(IN: 0xF000, FLASH_PAGE_SIZE, inputArray_8);
WRITE_XDATA_MEMORY(IN: 0xF000 + FLASH_PAGE_SIZE, sizeof(routine), routine);
DEBUG_INSTR(IN: 0x75, 0xC7, 0x51, OUT: Discard); MOV MEMCTR, (bank * 16) + 1;
SET_PC(0xF000 + FLASH_PAGE_SIZE);
RESUME();

do {
 READ_STATUS(OUT: statusByte);
} while (!(statusByte & CPU_HALTED));

3.1.7 READ_FLASH_PAGE(IN: linearAddress_17, OUT: outputArray_8)
Reads one page from flash memory

READ_CODE_MEMORY(address & 0xFFFF, (linearAddress >> 15) & 0x03, FLASH_PAGE_SIZE, outputArray);

 SWRA124 Page 13 of 15

3.1.8 MASS_ERASE_FLASH()
Initiates a mass erase, which blanks out the entire flash memory and lock bits, and then waits for the operation to complete.
The initial NOP ensures that the status byte has been updated

Important:
• The loop can lock up if the operation fails (due to communication or chip errors). If polling is not desirable, then wait for 20 ms instead.

DEBUG_INSTR(IN: 0x00, OUT: Discard); NOP;
CHIP_ERASE();
do {
 READ_STATUS(OUT: statusByte);
} while (!(statusByte & CHIP_ERASE_DONE));

3.1.9 PROGRAM_FLASH(IN: imageArray_8, OUT: verificationIsOk_1)
Programs the entire flash memory and verifies it.

The logic in this pseudo-code requires that the size of the image array matches the total size of the flash memory in the device to be programmed (e.g. 128
kB for the CC2430F128). It also requires unused addresses to be set to 0xFF.

DEBUG_INIT();
CLOCK_INIT();
MASS_ERASE_FLASH();
verificationArray_8[FLASH_PAGE_SIZE];
verificationIsOk = 1;

for (p = 0; p < (FLASH_SIZE / FLASH_PAGE_SIZE); p++) {
 pageAddress = p * FLASH_PAGE_SIZE;
 memset(verificationArray, 0xFF, FLASH_PAGE_SIZE);
 if (memcmp(verificationArray, &inputArray[pageAddress], FLASH_PAGE_SIZE)) {
 WRITE_FLASH_PAGE(IN: pageAddress, &inputArray[pageAddress], 0);
 READ_FLASH_PAGE(IN: pageAddress, verificationArray);
 if (memcmp(verificationArray, &inputArray[pageAddress], FLASH_PAGE_SIZE)) {
 verificationIsOk = 0;
 return;
 }
 }
}

 SWRA124 Page 14 of 15

3.1.10 Flash Write Timing
The Flash Controller contains a timing generator, which controls the timing sequence of flash write and erase operations. The timing generator uses the
information set in the Flash Write Timing register, FWT.FWT[5:0], to set the internal timing. FWT.FWT[5:0] must be set to a value according to the currently
selected CPU clock frequency.

The value set in the FWT.FWT[5:0] shall be set according to the CPU clock frequency by the following equation.

910*16
21000 CPUFFWT ∗

=

FCPU is the CPU clock frequency. The initial value held in FWT.FWT[5:0] after a reset is 0x2A which corresponds to 32 MHz CPU clock frequency.

The FWT values for common CPU clock frequencies are given in Table 6.

CPU clock
frequency (MHz)

FWT

12 0x10

13 0x11

16 0x15

24 0x20

26 0x23

32 0x2A

Table 6: Flash timing (FWT) values

 SWRA124 Page 15 of 15

4 Document history

Version Data Description/Changes
1.2 22-12-2006 Removed classification “Chipcon internal and partners with NDA”,

added CC1110, CC2510, CC2511 data.
1.1 27-04-2006 Bug fix in WRITE_FLASHPAGE, changed value in HALT and

RESUME, deleted chapter READ_FLASH_PAGE (was written twice).
1.0 Initial

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	Introduction
	Hardware interface
	Debug Interface AC Characteristics
	Debug Lock Bit
	Debug Init
	Debug Commands
	CHIP_ERASE()
	WR_CONFIG(IN: config_8)
	READ_STATUS(OUT: status_8)
	GET_CHIP_ID(OUT: chip_id_8, chip_rev_8)
	HALT()
	RESUME()
	DEBUG_INSTR(IN: in0_8, OUT: out0_8);
	DEBUG_INSTR(IN: in0_8, in1_8, OUT: out0_8);
	DEBUG_INSTR(IN: in0_8, in1_8, in2_8, OUT: out0_8);

	Flash Programming
	READ_CODE_MEMORY(IN: address_16, bank_8, count_16, OUT: outp
	READ_XDATA_MEMORY(IN: address_16, count_16, OUT: outputArray
	WRITE_XDATA_MEMORY(IN: address_16, count_16, inputArray_8)
	SET_PC(IN: address_16)
	CLOCK_INIT()
	WRITE_FLASH_PAGE(IN: address_17, inputArray_8, erase_page_1)
	READ_FLASH_PAGE(IN: linearAddress_17, OUT: outputArray_8)
	MASS_ERASE_FLASH()
	PROGRAM_FLASH(IN: imageArray_8, OUT: verificationIsOk_1)
	Flash Write Timing

	Document history

