CC3200 SimpleLink™ Wi-Fi® and Internet of Things Solution With MCU LaunchPad™ Hardware

User’s Guide

Literature Number: SWRU372C
June 2014–Revised March 2020
Contents

1 **Introduction** .. 4
 1.1 CC3200 LaunchPad Development Kit ... 4
 1.2 Key Features ... 4
 1.3 What's Included ... 5
 1.4 FCC/IC Regulatory Compliance ... 5
 1.5 Trademarks ... 5

2 **Hardware Description** ... 6
 2.1 Block Diagram .. 6
 2.2 Hardware Features ... 7
 2.3 Connecting a BoosterPack Plug-in Module .. 7
 2.4 Jumpers, Switches, and LEDs .. 8
 2.5 Power ... 14
 2.6 Measure CC3200 Current Draw ... 16
 2.7 RF Connections .. 17
 2.8 Design Files ... 18

3 **Software Examples** ... 19
 3.1 Development Environment Requirements ... 19

4 **Additional Resources** .. 19
 4.1 LaunchPad Kit Wiki ... 19
 4.2 Information on the CC3200 ... 19
 4.3 Download a Development Environment .. 19
 4.4 The CC3200 Code Examples .. 19
 4.5 CC3200 Application Notes ... 19
 4.6 Support Resources ... 20

5 **Known Limitations** .. 20
 5.1 Hardware Limitations ... 20

Revision History .. 21
List of Figures

1. CC3200 LaunchPad Development Kit Overview ... 6
2. CC3200 Block Diagram .. 6
3. Pn-1 Marking on the LaunchPad Kit (White Triangle) ... 7
4. JTAG Headers ... 8
5. I2C Connections ... 8
6. UART Signals .. 10
7. SOP Jumpers .. 10
8. 2x20 Pin Connector ... 14
9. Powering From USB ... 15
10. Battery Power ... 15
11. Measuring Low Power ... 16
12. Measuring Active Power ... 16
13. Radiated Testing Using Chip Antenna .. 17
14. Board Set for Conducted Testing ... 17

List of Tables

1. JTAG Headers ... 8
2. Jumper Settings ... 9
3. Default I2C Addresses ... 9
4. Jumper Settings ... 9
5. UART Signals ... 10
6. SOP Lines ... 10
7. Miscellaneous Settings ... 11
8. Push Buttons ... 12
9. LEDs ... 13
10. Change Log .. 18
1 Introduction

1.1 CC3200 LaunchPad Development Kit

The high-performance CC3200 is the industry's first single-chip microcontroller (MCU) with built-in Wi-Fi® connectivity for the LaunchPad™ ecosystem. Created for the Internet of Things (IoT), the SimpleLink Wi-Fi CC3200 device is a wireless MCU that integrates a high-performance Arm® Cortex®-M4 MCU allowing customers to develop an entire application with a single IC. With on-chip Wi-Fi, internet, and robust security protocols, no prior Wi-Fi experience is needed for faster development.

The CC3200 LaunchPad development kit is a low-cost evaluation platform for Arm Cortex-M4F-based microcontrollers. The LaunchPad kit design highlights the CC3200 Internet-on-a-chip™ solution and Wi-Fi capabilities. The CC3200 LaunchPad kit also features programmable user buttons, RGB LED for custom applications, and onboard emulation for debugging. The stackable headers of the CC3200 LaunchPad XL interface demonstrate how easy it is to expand the functionality of the LaunchPad kit when interfacing with other peripherals on many existing BoosterPack™ plug-in modules, such as graphical displays, audio codecs, antenna selection, environmental sensing, and more. Figure 1 shows a photo of the CC3200 LaunchPad kit.

Free software development tools are also available, including TI’s Eclipse-based Code Composer Studio™ and IAR Embedded Workbench®. More information about the LaunchPad kit, the supported BoosterPack modules, and the available resources can be found at TI’s LaunchPad portal. Also visit the CC3200 Wiki page for design resources and example projects.

NOTE: The antennas used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

NOTE: All figures and references in this document apply to the Rev3.2. Most of the document also applies to the Rev4.1, unless otherwise stated. For the exact list of changes made across board revisions, refer to Section 2.8.2.

1.2 Key Features

- CC3200, SimpleLink Wi-Fi, Internet-on-a-chip solution with integrated MCU
- 40-pin LaunchPad standard that leverages the BoosterPack ecosystem
- FTDI-based JTAG emulation with serial port for flash programming
- Two buttons and three LEDs for user interaction
- Backchannel universal asynchronous receiver/transmitter (UART) through USB to PC
- On-board chip antenna with U.FL for conducted testing
- On-board accelerometer and temperature sensor for out-of-box demo
- Micro USB connector for power and debug connections
1.3 What’s Included

1.3.1 Kit Contents
- CC3200 LaunchPad development kit
- Micro USB cable
- Quick start guide

1.4 FCC/IC Regulatory Compliance
The CC3200 SimpleLink Wi-Fi and IoT solution with MCU LaunchPad kit hardware is FCC Part 15 and IC ICES-003 Class A compliant.

1.5 Trademarks
LaunchPad, Internet-on-a-chip, BoosterPack, Code Composer Studio, E2E are trademarks of Texas Instruments.
Arm, Cortex are registered trademarks of Arm Limited.
IAR Embedded Workbench is a registered trademark of IAR Systems AB.
Wi-Fi is a registered trademark of Wi-Fi Alliance.
All other trademarks are the property of their respective owners.
2 Hardware Description

2.1 Block Diagram
2.2 Hardware Features

- CC3200, SimpleLink Wi-Fi, Internet-on-a-chip solution with integrated MCU
- 40-pin LaunchPad standard that leverages the BoosterPack ecosystem
- FTDI-based JTAG emulation with serial port for flash programming
- Supports both 4-wire JTAG and 2-wire SWD
- Two buttons and three LEDs for user interaction
- Virtual COM port UART through USB on PC
- On-board chip antenna with U.FL for conducted testing
- On-board accelerometer and temperature sensor for out-of-box demo, with option to isolate them from the inter-integrated circuit (I²C) bus
- Micro USB connector for power and debug connections
- Headers for current measurement and external JTAG connection
- Bus-powered device with no external power required for Wi-Fi
- Long-range transmission with highly optimized antenna (200 m typical in open air with a 6-dBi antenna AP)
- Can be powered externally, with 2xAA or 2xAAA alkaline batteries working down to 2.3 V typical

2.3 Connecting a BoosterPack Plug-in Module

A compatible BoosterPack module can be stacked on top of the LaunchPad kit using the 2x20 pin connectors. Note that the connectors do not have a key to prevent the misalignment of the pins or reverse connection. Ensure that VCC and 5V pins are aligned with the BoosterPack module header pins. On the CC3200 LaunchPad kit, a small white triangle symbol is provided near Pin-1 (see Figure 3) to orient all BoosterPack modules. This same marking, provided on compatible BoosterPack modules, must be aligned before powering up the boards.

Figure 3. Pn-1 Marking on the LaunchPad Kit (White Triangle)
2.4 Jumers, Switches, and LEDs

2.4.1 JTAG Headers
The headers are provided on the board to isolate the CC3200 device from the mounted FTDI JTAG emulator. These jumpers are shorted by default when the board is shipped from TI. To connect an external emulator, remove these jumpers and place the external emulator on the pins closer to the CC3200 device. When a battery is used, disconnect all the JTAG headers to prevent any reverse leakage current.

Figure 4. JTAG Headers

![Image of JTAG Headers](image)

Table 1. JTAG Headers

<table>
<thead>
<tr>
<th>Reference</th>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8 (TCK)</td>
<td>JTAG</td>
<td>Short: Routes the on-board emulator to the CC3200</td>
</tr>
<tr>
<td>J9 (TMS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J10 (TDI)</td>
<td>Open: Isolate the on-board emulator from the CC3200.</td>
<td></td>
</tr>
<tr>
<td>J11(TDO)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) For the SWD mode, only TCK and TMS must be shorted to the CC3200.

2.4.2 I^2C Connections
The board features an accelerometer and a temperature sensor for the out-of-box demo. These are connected to the I^2C bus and can be isolated using the jumpers provided. By removing J2 and J3, the accelerometer and the temperature sensors are isolated from the I^2C bus. This also removes any pullup resistor from the I^2C bus.

Figure 5. I^2C Connections

![Image of I^2C Connections](image)
2.4.2.1 Jumper Settings

Table 2. Jumper Settings

<table>
<thead>
<tr>
<th>Reference</th>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2</td>
<td>I^2C SDA</td>
<td>Short: Connect the CC3200 I^2C bus to the on-board sensors with pullup Open: Isolate the sensors from the CC3200</td>
</tr>
<tr>
<td>J3</td>
<td>I^2C SCL</td>
<td>Short: Connect the CC3200 I^2C bus to the on-board sensors with pullup Open: Isolate the sensors from the CC320</td>
</tr>
<tr>
<td>J4</td>
<td>INT</td>
<td>Short: Connect the accelerometer interrupt to the CC3200 on GPIO13</td>
</tr>
</tbody>
</table>

2.4.2.2 Default I^2C Address

Table 3. Default I^2C Addresses

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Ref</th>
<th>Part Number</th>
<th>Slave Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp sensor</td>
<td>U6(1)</td>
<td>TMP008</td>
<td>0x41</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>U10</td>
<td>BMA222</td>
<td>0x18</td>
</tr>
</tbody>
</table>

(1) U6 is DNP on newer CC3200-LAUNCHXL builds.

2.4.3 Power Connections

The board can be powered by using the on-board micro USB connector. An on-board LDO provides 3.3 V for the CC3200 and the rest of the board to operate. This supply can be isolated from the LDO using the jumpers on the board.

Table 4. Jumper Settings

<table>
<thead>
<tr>
<th>Reference</th>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J12</td>
<td>Current measurement</td>
<td>Measures the current flowing into the CC3200 device.</td>
</tr>
<tr>
<td>J13</td>
<td>Board power</td>
<td>Short: Supply the board power from the on-board LDO. Open: Supply the board power from the J20 (battery connector)</td>
</tr>
<tr>
<td>J19</td>
<td>5-V power</td>
<td>5-V output from the USB VBUS (has a diode drop of up to 0.4 V)</td>
</tr>
<tr>
<td>J20</td>
<td>3.3-V power input</td>
<td>Can be used to power the board from an external 2xAA battery pack. It has in-built reverse voltage protection to prevent the battery from being plugged in the reverse manner.</td>
</tr>
</tbody>
</table>
2.4.4 UART Signals

The board supports a USB-based virtual COM port, which is used on the FTDI device FT2232D. There are two ports on the FT2232: the first port is dedicated for the emulation (JTAG/SWD) and the second port is used for the virtual COM port. The UART can also be routed to the 20-pin connector and the selection is performed using jumpers on the board.

Table 5. UART Signals

<table>
<thead>
<tr>
<th>Reference</th>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J6, J7</td>
<td>UART for flash programming</td>
<td>Short 1-2: Route the signals to the 20-pin connector. Short 2-3: Route the signals to the FTDI for flash programming.</td>
</tr>
</tbody>
</table>

2.4.5 Sense on Power

The CC3200 can be set to operate in three different modes based on the state of the sense-on-power (SOP) lines. These are pins 21, 34, and 35 on the CC3200 device. The state of the device is described in **Table 6**.

Table 6. SOP Lines

<table>
<thead>
<tr>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP[2:0]</td>
<td>100 = Flash programming 000 = Functional mode + 4-Wire JTAG 001 = Functional mode + 2-Wire JTAG</td>
</tr>
</tbody>
</table>

SOP[2:0] corresponds to J15, J16, and J17 in the LaunchPad kit schematic design.
2.4.6 Other Miscellaneous

Table 7. Miscellaneous Settings

<table>
<thead>
<tr>
<th>Reference</th>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J4</td>
<td>Accelerometer interrupt</td>
<td>Short = Route the accelerometer sensor interrupt to the GPIO_13 Open = Isolates the interrupt to the GPIO_13</td>
</tr>
<tr>
<td>J5</td>
<td>Debug header</td>
<td>To observe the network processor (NWP), MAC logs.</td>
</tr>
<tr>
<td>J14</td>
<td>SOP2 isolation</td>
<td>Isolate SOP2 (GPIO_25) from the 20-pin connector</td>
</tr>
</tbody>
</table>
2.4.7 Push Buttons and LEDs

Table 8. Push Buttons

<table>
<thead>
<tr>
<th>Reference</th>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>RESET</td>
<td>This is used to RESET the CC3200 device. This signal is also output on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the 20-pin connector to RESET any external BoosterPack module which</td>
</tr>
<tr>
<td></td>
<td></td>
<td>may be stacked.</td>
</tr>
<tr>
<td>SW2</td>
<td>GPIO_22</td>
<td>When pushed, the GPIO_22 is pulled to VCC.</td>
</tr>
<tr>
<td>SW3</td>
<td>GPIO_13</td>
<td>When pushed, the GPIO_13 is pulled to VCC.</td>
</tr>
</tbody>
</table>
Table 9. LEDs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Color</th>
<th>Usage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Yellow</td>
<td>nRESET</td>
<td>This LED indicates the state of nRESET pin. If this LED is glowing, the device is functional.</td>
</tr>
<tr>
<td>D2</td>
<td>Green</td>
<td>Debug</td>
<td>This LED glows whenever debugging is enabled over the JTAG.</td>
</tr>
<tr>
<td>D4</td>
<td>RED</td>
<td>Power</td>
<td>Indicates when the 3.3-V power is supplied to the board.</td>
</tr>
<tr>
<td>D5</td>
<td>GREEN</td>
<td>GPIO_11 (1)</td>
<td>Glows when the GPIO is logic-1</td>
</tr>
<tr>
<td>D6</td>
<td>YELLOW</td>
<td>GPIO_10 (1)</td>
<td>Glows when the GPIO is logic-1</td>
</tr>
<tr>
<td>D7</td>
<td>RED</td>
<td>GPIO_09</td>
<td>Glows when the GPIO is logic-1</td>
</tr>
</tbody>
</table>

(1) GPIO_10 and GPIO_11 are also used as I²C. Thus, when the pullups are enabled, the LEDs glow.
2.4.8 2x20 Pin Connector Assignment

The signal assignment on the 2x20 pin connector is shown in Figure 8. The P1-Pn naming convention is used for 2x20 pin connectors only.

Figure 8. 2x20 Pin Connector

![2x20 Pin Connector Diagram]

<table>
<thead>
<tr>
<th>Ref</th>
<th>Signal</th>
<th>Dev Pin#</th>
<th>Dev Pin#</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3V</td>
<td>5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADC_CH1</td>
<td>58*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UART0_RX</td>
<td>4</td>
<td>57</td>
<td>ADC_CH0</td>
</tr>
<tr>
<td>4</td>
<td>UART0_TX</td>
<td>3</td>
<td>60</td>
<td>ADC_CH3</td>
</tr>
<tr>
<td>5</td>
<td>GPIO</td>
<td>61</td>
<td>58*</td>
<td>ADC_CH1</td>
</tr>
<tr>
<td>6</td>
<td>ADC_CH2</td>
<td>59</td>
<td>59*</td>
<td>ADC_CH2</td>
</tr>
<tr>
<td>7</td>
<td>SPI_CLK</td>
<td>5</td>
<td>63</td>
<td>AUD_SYNC</td>
</tr>
<tr>
<td>8</td>
<td>GPIO</td>
<td>62</td>
<td>53</td>
<td>AUD_CLK</td>
</tr>
<tr>
<td>9</td>
<td>I2C_SCL</td>
<td>1</td>
<td>64</td>
<td>AUD_DOUT</td>
</tr>
<tr>
<td>10</td>
<td>I2C_SDA</td>
<td>2</td>
<td>50</td>
<td>AUD_DIN</td>
</tr>
</tbody>
</table>

The signal mappings are as indicated in Figure 8. All the signals are referred to by the pin number in the SDK; Figure 8 shows the default mappings. Some of the pins are repeated across the connector. For instance, pin 62 is available on P1 and P4, but only P1 is connected by default. The signal on P4 is marked with a *(star) to signify that it is not connected by default. It can be routed to the pin by using a 0-Ω resistor in the path. For the exact resistor placement, see the schematics and placement diagram.

2.5 Power

The LaunchPad kit is designed to be powered by the USB connection or by external 2xAA or 2xAAA batteries.
2.5.1 USB Power

The LaunchPad kit is designed to work from the USB-provided power supply. The LaunchPad kit enumerates as a bus-powered device on the computer. When the board is powered from the USB connector, the jumpers must be placed on the following headers, as shown in Figure 9.

J12 (shorted)
J13 (shorted)

Figure 9. Powering From USB

2.5.2 Battery Power (2 x 1.5 V)

The LaunchPad kit can also be powered from an external battery pack by feeding the voltage on the J20 header. This input features reverse voltage protection to ensure that the board is not damaged due to an accidental reverse voltage. The following care should be taken while using the board with a battery.

1. Remove the USB cable.
2. Plug-in the battery pack on J20 with correct polarity (see Figure 10).

Figure 10. Battery Power

2.5.3 BoosterPack Module Power Supply

The CC3200 LaunchPad kit can be powered by a stacked booster-pack, which can provide a 3.3-V power on P1.1. During this mode, remove the J13 so that the on-board LDO is not overloaded.
2.6 Measure CC3200 Current Draw

To measure the current draw of the CC3200, use the 3V3 jumper on the jumper isolation block (J12). The current measured in this mode includes only the CC3200 current and no external blocks. However, if a GPIO of the CC3200 is driving a high current load like LED, then that is also included in this measurement.

2.6.1 Measuring Low Power (<1 mA)

Follow these steps to measure ultra-low power:

1. Remove the 3V3 jumper (J12); attach an ammeter across this jumper.
2. The CC3200 should not drive any high-current loads directly, such as an LED, as this can draw a large current.
3. Begin target execution and set the device to low-power modes (LPDS or hibernate).
4. Measure the current. If the current levels are fluctuating, it may be difficult to get a stable measurement. It is easier to measure quiescent states.

2.6.2 Measuring Active Power

1. Remove the 3V3 jumper (J12).
2. Solder a 0.1-Ω resistor on the board at R62. Or, attach a jumper wire between J12 so that it can be used with a current probe.
3. Measure the voltage across the R62 using an oscilloscope with a differential probe. (For the current probe, coil the wire around the sensor multiple times for good sensitivity).
4. An ammeter can also be used for this measurement, but the results may be erroneous due to the switching nature of the current.
2.7 RF Connections

2.7.1 Radiated Testing (AP connection)

By default, the board ships with the RF signals routed to the on-board chip antenna. An on-board u.fl (Murata) connector provides a means to perform the testing in the lab using a compatible cable.

Figure 13. Radiated Testing Using Chip Antenna

Figure 14. Board Set for Conducted Testing
2.8 Design Files

2.8.1 Hardware

All design files include schematics, layout, Bill of Materials (BOM), Gerber files, and documentation, which are made available for download from the following URL: http://www.ti.com/tool/cc3200-launchxl-rd.

2.8.2 Revision History

<table>
<thead>
<tr>
<th>PCB Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 3.0B</td>
<td>• First baseline revision</td>
</tr>
<tr>
<td>Rev 3.1</td>
<td>The main changes pertain to the bill of materials (BOM) and the layout:</td>
</tr>
<tr>
<td></td>
<td>• Replaced the caps C23, C24 with ceramic ones to minimize leakage current</td>
</tr>
<tr>
<td></td>
<td>• R62 is made to DNP by default so that the jumper is used to measure the hibernate current</td>
</tr>
<tr>
<td></td>
<td>• Miscellaneous silk screen changes to clearly annotate components on the board.</td>
</tr>
<tr>
<td>Rev 3.2</td>
<td>• Layout changes for the DC-DC section to improve the mask margin</td>
</tr>
<tr>
<td></td>
<td>• Updated the silk screen to reflect the final markings.</td>
</tr>
<tr>
<td>Rev 4.1</td>
<td>• Added pullup and pulldowns for the serial flash: (Reduces hibernate current to around 17 uA)</td>
</tr>
<tr>
<td></td>
<td>• Moved the nRESET pull from VCC_BRD to VBAT_CC (ensures always pulled high).</td>
</tr>
<tr>
<td></td>
<td>• Added pullup on UART_TX going to the FTDI to prevent false start bits.</td>
</tr>
<tr>
<td></td>
<td>• Added pullup resistor for accelerometer address to avoid conflict with audio booster pack</td>
</tr>
<tr>
<td></td>
<td>• Added 100K pullup on RESET_OUT net for any BP without RESET pulls.</td>
</tr>
<tr>
<td></td>
<td>• Changed R61 to 2.7K, R57-> 270 Ω (To solve false entering to bootloader mode)</td>
</tr>
<tr>
<td></td>
<td>• Miscellaneous silk changes</td>
</tr>
</tbody>
</table>

2.8.3 Software

All design files including firmware patches, software example projects, and documentation are made available from the SimpleLink Wi-Fi Platform page.

The software development kit (SDK) for the CC3200 LaunchPad kit can be obtained from http://www.ti.com/tool/cc3200sdk.
3 Software Examples

3.1 Development Environment Requirements

The following software examples with the LaunchPad kit require an integrated development environment (IDE) that supports the CC3200 device.

For more details on where to download the latest IDE, see Section 4.3.

The CC3200 programmer's guide (SWRU369) has detailed information on software environment setup, with examples. Refer to this document for further details on the software sample examples.

3.1.1 CCS

CCS 6.0 or higher is required. When CCS has been launched, and a workspace directory chosen, use Project → Import Existing CCS Eclipse Project. Direct it to the desired demo’s project directory containing main.c.

3.1.2 IAR

IAR 6.70 or higher is required. To open the demo in IAR, choose File → Open → Workspace…., and direct it to the *.eww workspace file inside the IAR subdirectory of the desired demo. All workspace information is contained within this file.

The subdirectory also has an *.ewp project file; this file can be opened into an existing workspace, using Project → Add-Existing-Project….

4 Additional Resources

4.1 LaunchPad Kit Wiki

Most updated information is available on the CC3200 Wiki page.

4.2 Information on the CC3200

For more information on CC3200, visit the product page (http://www.ti.com/product/cc3200), which includes the data sheet (SWAS032) and key documents such as the technical reference manual (SWRU367) and Wiki (http://www.ti.com/simplelinkwifi-wiki). These resources contain information on getting started, hardware details, software details including porting information, testing and certification, support, and the CC3200 community.

4.3 Download a Development Environment

Although the files can be viewed with any text editor, more can be done with the projects if they are opened with a development environment such as Code Composer Studio (CCS), IAR, or Energia.

CCS and IAR are each available in a full version, or a free, code-size-limited version. The full out-of-box demo cannot be built with the free version of CCS or IAR (IAR Kickstart), due to the code-size limit. To bypass this limitation, a code-size-limited CCS version is provided that has most functionality integrated into a library. The code built into the library is able to be viewed by the user, but it cannot be edited. For full functionality, download the full version of either CCS or IAR.

4.4 The CC3200 Code Examples

The user's guide for each example can be found within the Software Development Kit (SDK) or on the SimpleLink Wiki.

4.5 CC3200 Application Notes

There are many application notes with practical design examples and topics located at the SimpleLink(TM) Wi-Fi(R) Wiki page and the main landing page.
4.6 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5 Known Limitations

5.1 Hardware Limitations

5.1.1 Floating IO (All Revisions)

All GPIO outputs from the CC3200 device float while the device enters hibernate state. This can cause glitches on the lines if they are not pulled externally.

5.1.2 Board Modification for LPDS Mode

There must be a 100K pulldown resistor on pin19 (JTAG_TCK) for the device to reliably enter LPDS mode. This is not present on the boards.

5.1.3 Floating S-Flash Lines (Rev 3.2 and Earlier)

The SPI lines routed from the CC3200 to the on-board serial flash are not pulled up or down using resistors on the board. When the device enters hibernate state, these pins can be floating, and high currents can be drawn by the serial flash.
Revision History

Changes from B Revision (January 2015) to C Revision

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added note (1) to Table 3 Default FC Addresses</td>
<td>9</td>
</tr>
</tbody>
</table>

STANDARD TERMS FOR EVALUATION MODULES

1. **Delivery:** TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.

 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software.

 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2. **Limited Warranty and Related Remedies/Disclaimers:**

 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.
Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices
NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices
NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Concernant les EVMs avec antennes détachables

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

3.4 European Union

3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
EVM Use Restrictions and Warnings:

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

Accuracy of Information:

5. To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

Disclaimers:

6. EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED “AS IS” AND “WITH ALL FAULTS.” TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFEERING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSEORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

User's Indemnity Obligations and Representations:

7. USER’S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, IT’S LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, “CLAIMS”) ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
8. Limitations on Damages and Liability:

8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMs, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the component(s), excluding any postage or packaging costs.

10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated