Contents

1 Introduction .. 4

2 Module Variant Table ... 5
 2.1 WL18xx WLAN Antenna Configuration .. 6

3 Critical Connections .. 7

4 Power Supply .. 7
 4.1 Power Up/Shutdown Sequence .. 7
 4.2 Power Sequencing .. 8

5 Clocks .. 9
 5.1 Slow Clock .. 9
 5.2 Fast Clock ... 9

6 Current Consumption .. 9
 6.1 Performance Parameters - Typical .. 9

7 Antenna .. 10

8 Ground Connections ... 11

9 Layout .. 11

10 Hardware Troubleshoot ... 11
 10.1 System Requirements .. 11
 10.2 Power Rails .. 12
 10.3 Critical Supplies ... 12
 10.4 Sense on Reset .. 12
 10.5 WLAN ... 13
 10.6 BT and BLE .. 15
 10.7 Reserved Pins .. 16
 10.8 Debug ... 16

11 WiFi/Zigbee Coex .. 17

12 References ... 18
List of Figures

1 SISO .. 6
2 MIMO ... 6
3 IO Connection Operational Mode .. 7
4 Power Sequencing .. 8
5 Antenna Matching Network in PI Configuration .. 10
6 RNR Configuration .. 11
7 WLAN_IRQ Signal on System Wake Up ... 14
8 HOST HCI UART Interface ... 15
9 Bootup Sequence Complete ... 15
10 HOST PCM Interface .. 16
11 WLAN ZigBee Coexistence ... 17
12 Zigbee_LS ... 17
13 Zigbee_RNR ... 18

List of Tables

1 WL18XXMODGB (2.4 GHz only module variants) ... 5
2 WL18X7MODGI (2.4 GHz and 5 GHz modules) ... 5
3 Supply Lines .. 7
4 Recommended Current Requirement ... 9
5 Approved Antenna Types and Maximum Gain Values .. 10
6 Critical Supplies .. 12
7 SDIO Interface Lines .. 13
8 HCI UART Interface Lines ... 15
9 PCM Interface Lines .. 16
10 Debug/RS232 Interface Lines ... 16
11 WLAN ZigBee Coex Lines ... 17

Copyright © 2015, Texas Instruments Incorporated
1 Introduction

This document provides the necessary BT/BLE and WLAN hardware operation information to aid in system design. This is a review of the integration process of TI's WL18XX Module into final product PCB. When designing your own system around the TI module, it is recommended to step through the guidelines outlined below.

- [WL18xxMOD product page](#) [1]

NOTE: You can check your TI module WL18XXMOD design to PCB integration with the WL18XXMOD series of easy-to-follow excel Checklist.
Module Variant Table

Table 1. WL18XXMODGB (2.4 GHz only module variants)

<table>
<thead>
<tr>
<th>Device</th>
<th>Reduced integration interfaces Compared to the Main 1835 Module</th>
<th>WLAN 2.4-GHz SISO</th>
<th>WLAN 2.4-GHz MIMO</th>
<th>WLAN 2.4-GHz MRC</th>
<th>Bluetooth</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL1835MOD</td>
<td>• Full version (all of the integration checklist must be applied)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WL1831MOD</td>
<td>• Only the main RF antenna, ANT1 is used and the second one should be left N.C.</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>WL1805MOD</td>
<td>• For BT IP removal. BT EN line must be connected to VSS. BT HCI, PCM and logger lines should be left N.C.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>WL1801MOD</td>
<td>• Only the main RF antenna, ANT1, is used and the second one should be left N.C.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For BT IP removal. BT EN line must be connected to VSS. BT HCI, PCM and logger lines should be left N.C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. WL18X7MODGI (2.4 GHz and 5 GHz modules)

<table>
<thead>
<tr>
<th>Device</th>
<th>Redundant Capabilities Compared to the Main 1837 Module</th>
<th>WLAN 2.4-GHz SISO (1)</th>
<th>WLAN 2.4-GHz MIMO (2)</th>
<th>WLAN 2.4-GHz MRC (3)</th>
<th>Bluetooth</th>
<th>WLAN 5-GHz SISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL1837MOD</td>
<td>• Full version (all of the integration checklist must be applied)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WL1807MOD</td>
<td>• For BT IP removal: BT EN line must be connected to VSS. BT HCI, PCM and logger lines should be left N.C.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

(1) Single input, single output (SISO)
(2) Multiple input, multiple output (MIMO)
(3) Maximum ratio combining (MRC)

NOTE: Customers working with WL1837MOD/WL1807MOD modules that require only the single antenna solution (2.4 Ghz WLAN SISO/ BT/ 5 GHz single antenna), while reusing the original certification, can do so by making sure that no RF comes out of the second antenna port (2.4 MIMO only / 5 Ghz diversity). To do this, use the following requirements:
- Leave the second module RF port open (pin number 18 = N.C.)
- In the WL1837MOD INI [4], make sure that only 1 antenna is selected for 2.4 GHz by setting parameter NumberOfAssembledAnt2_4 = 1;
2.1 WL18xx WLAN Antenna Configuration

2.1.1 Single-Input Single-Output (SISO)

SISO is an acronym for single-input and single-output system. SISO technology use of only one antenna both in the transmitter and receiver side.

Figure 1. SISO

2.1.2 Multiple-Input Multiple-Output (MIMO) / Maximum Ratio Combining (MRC)

MIMO is an acronym for multiple input multiple output. This technology can multiply the throughput capacity by delivering multiple data streams over multiple antennas.

MRC is an acronym for maximum ration combining, This technology enables diversity of the reception signal, done by combining the signal received in each antenna with the proper gain factor according to its quality.

Figure 2. MIMO
3 Critical Connections

![Figure 3. IO Connection Operational Mode](image)

NOTE: The reference is built using AM335 processor integration. For some of the other processors, the RTS/CTS, TX/RX lines can be routed directly.

4 Power Supply

4.1 **Power Up/Shutdown Sequence**

Make sure the power up and shutdown sequence is kept at all times.

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>WL_EN</td>
<td>WLAN enable line from system</td>
</tr>
<tr>
<td>41</td>
<td>BT_EN</td>
<td>Bluetooth enable line from system</td>
</tr>
<tr>
<td>36</td>
<td>SCLK</td>
<td>Slow clock is running at 32 kHz</td>
</tr>
<tr>
<td>46,47</td>
<td>VBAT</td>
<td>VBAT is high and stable at approximately 3.3 V</td>
</tr>
<tr>
<td>38</td>
<td>VIO</td>
<td>VIO is high and stable at approximately 1.8 V</td>
</tr>
</tbody>
</table>
4.1.1 Power Up

To power up, do the following:

1. Ensure slow clock, \(V_{IO} \) and \(V_{BAT} \) are stable.
2. Assert BT_EN or WL_EN high.

Internal DC2DCs, LDOs, and clocks start to ramp and stabilize.

4.1.2 Shutdown

Shutdown

1. Ensure the supplies to the device (\(V_{BAT} \), \(V_{IO} \), and slow clock) are stable and available.
2. De-assert BT_EN and WL_EN.
3. De-assert the supplies to the chip (\(V_{BAT} \) and \(V_{IO} \)).

4.2 Power Sequencing

The most crucial points during integration of the WL18xx Module is that proper power-up and power-down sequences must be followed in order to avoid damage to the device.

Figure 4. Power Sequencing

(1) On system level, either \(V_{BAT} \) and \(V_{IO} \) can come up first.
(2) \(V_{BAT} \) supplies, \(V_{IO} \) supplies, and slow clock (SCLK) must be enabled before EN is asserted and at all times when EN is active.
(3) Keep a 60-µs delay between two consecutive device enables. The device is assumed to be in a shutdown state during that period; all enables to the device are low for that minimum duration.
(4) Deassert the enable line at least 10 µs before the \(V_{BAT} \) or \(V_{IO} \) can be lowered. (The order in which supplies are turned off after EN shutdown is immaterial).
(5) The SCLK I/O cell is a fail safe; the clock can be supplied before the \(V_{BAT} \) and \(V_{IO} \) supplies.
5 Clocks

5.1 Slow Clock

• The slow clock must be a free-running 32.768 KHz digital square wave
• The slow clock should be connected to pin 36 of the module
• Verify that the voltage range is between 0 V-1.8 V

5.2 Fast Clock

The WL18xxMOD uses a dedicated on-board 26 MHz fast clock TCXO.

6 Current Consumption

The power supplies for Vbat and VIO must handle the maximum current loads incurred by the WL18xx. Please verify that your power supply can handle the maximum loads listed in Table 4 for each subsystem.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Power Supply Required Current</th>
<th>Typical Values</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN SISO or MIMO 2.4 GHz, 5 GHz SISO/MRC, Bluetooth</td>
<td>VBAT (1)</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>WLAN SISO and BT</td>
<td>VBAT (1)</td>
<td>750</td>
<td>mA</td>
</tr>
<tr>
<td>VIO</td>
<td>VIO (2)</td>
<td>200</td>
<td>mA</td>
</tr>
</tbody>
</table>

(1) VBAT current is based on calibration current as well as maximum TX currents from all IPs
(2) VIO current requirement takes into account slow clock supply and LS, which are powered with the same supply from the WL8 side.

6.1 Performance Parameters - Typical

• System design power scheme must comply with both peak and average TX bursts
• WLAN maximum VBAT current draw of 725 mA with MIMO continues burst configuration
• Peak current VBAT can hit 850 mA during device calibration (1)

(1) • At wakeup, the WiLink™ 8 module performs the entire calibration sequence at the center of the 2.4-GHz band.
• Once a link is established, calibration is performed periodically (every 5 minutes) on the specific tuned channel.
• The maximum VBAT value is based on peak calibration consumption with a 30% margin.

For more information on WiLink8 current consumption and Max VBAT / VIO, see the WL18xxmod device-specific data sheet (http://www.ti.com/lit/ds/symlink/wl18xxmod.pdf).
7 Antenna

This device is intended only for OEM integrators under the following conditions:

- The antenna must be installed so that 20 cm is maintained between the antenna and users.
- The transmitter module cannot be co-located with any other transmitter or antenna.
- The radio transmitter can operate only using an antenna of a type and maximum (or lesser) gain approved by TI. Table 5 lists the antennas approved by TI for use with the radio transmitter along with maximum allowable gain values. Antenna types not included in the list or having a gain greater than the maximum indicated are strictly prohibited for use with this transmitter.

Table 5. Approved Antenna Types and Maximum Gain Values

<table>
<thead>
<tr>
<th>Antenna Type</th>
<th>Brand</th>
<th>2.4 GHz</th>
<th>4.9 to 5.9 GHz (1)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB</td>
<td>Ethertronics</td>
<td>−0.600</td>
<td>4.50</td>
<td>dBi</td>
</tr>
<tr>
<td>Dipole</td>
<td>LSR</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>Laird</td>
<td>2.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Chip</td>
<td>Pulse</td>
<td>3.20</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>PIFA</td>
<td>LSR</td>
<td>2.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Chip</td>
<td>TDK</td>
<td>2.27</td>
<td>3.96</td>
<td></td>
</tr>
</tbody>
</table>

(1) Range is approximate.

NOTE: If these conditions cannot be met (for example, with certain laptop configurations or co-location with another transmitter), the FCC/IC authorization will not be considered valid and the FCC ID/IC ID cannot be used on the final product. In these circumstances, the OEM integrator is responsible for reevaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.

- It is suggested to place a Pi matching network place holder before the antenna on board

![Figure 5. Antenna Matching Network in PI Configuration](image)

- It is strongly advised to have a debug miniature connector on the PCB
- Switching between the antenna and the debug connector should be done in RNR configuration to avoid stubs
Figure 6. RNR Configuration

- Antenna should be placed away from the rest of the circuit
 - Avoid digital and analog routing in the area, metal enclosure.
- MIMO antenna spacing
 - Distance between the two antennas is advised to be greater than half of the wavelength (62.5 mm at 2.4 GHz)

8 Ground Connections

All the ground pins of the module must be connected to ground on the main PCB.

9 Layout

For more information, see the WL1837 User's Guide [5].

10 Hardware Troubleshoot

This section is intended to cover the basic hardware troubleshoot that you may come across bringing up the WL18xxMOD on the final board; the device has several interfaces and sequences that must be kept in order to operate the device in properly.

10.1 System Requirements

For basic integration, the process requires the following components:
- Wireless Tool Package located at TI.COM
- Minimum requirements: PC running Pentium II
- Operating systems: Windows® 2000, Windows XP, Windows 7
- Serial communication port (RS-232) or USB port with UART-to-USB adapter (to enable the RS232 interface on the WiLink 8.0 IC)
- Access to WL_UART_DBG pin
- Access to BT_UART_DBG
- Access to RS232 Tx , RS232 Rx Pins
 - HCI UART Pins
- Oscilloscope
- Multimeter
Debug and calibration tools for WLAN and Bluetooth® require four UART ports. The most efficient way to drive these ports to the PC is to use a UART-to-USB converter (not included in the wireless tools package). TI recommends using the WL18XXCOM82SDMMC SDMMC-to-COM8 adapter with the TI WL1837MODCOM8I module or the WL1835MODCOM8B module on the COM8 board.

NOTE: Multiple UART-to-COM8 adapters are available on the market, such as the FTDI Chip development modules.

10.2 Power Rails

There are two power rails that must feed into the WL18xx system:

- **VBAT** - Main power supply source (typically 3.3 V - 3.6 V)
 - VBAT should be connected to pin 46 and 47 of the module
- **VIO** - Voltage reference from host (1.8 V)
 - VIO should be connected to pin 38 of the module
 - Can be used for Level shifter supply and slow clock OSC supply

10.3 Critical Supplies

Make sure all of the critical supplies are in the range of the following expected values:

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Name</th>
<th>Description</th>
<th>Frequency [Hz]</th>
<th>Amplitude [V]</th>
<th>Current [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>DC_IN</td>
<td>Depends on the system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Slow Clock</td>
<td>External 32 kHz slow clock</td>
<td>32K</td>
<td>1.8</td>
<td>–</td>
</tr>
<tr>
<td>46,47</td>
<td>VBAT</td>
<td>DC supply range for all modes</td>
<td>–</td>
<td>3.3-3.6</td>
<td>1000</td>
</tr>
<tr>
<td>38</td>
<td>VIO</td>
<td>I/O ring power supply voltage</td>
<td>–</td>
<td>1.8</td>
<td>200</td>
</tr>
</tbody>
</table>

1. VBAT and VIO amplitude and current are maximum values.

10.4 Sense on Reset

Wilink8 has several wake-up options that are entered through sense on reset by three IO's of the device: IRQ_WL, UART(DBG_BT, AUD_OUT_BT).

Once BT or WLAN enable bit is set to high, the device checks the state of the lines and wakes up in that specific mode.

There are only two modes or configurations that are supported by the device, all of the rest are prohibited and the user must verify that there is no option on the system level to enter the prohibited modes.

The supported modes are:

- Operational mode:
 - IRQ_WL = 0, UART(DBG_BT = 1, AUD_OUT_BT = 0
 - Operational mode is set by default using internal pull of WL18xx (90K typical).
- Debug mode:
 - WLAN RS232 debug interface and Jtag interface are muxed out to the WL18XX IO's by default, nevertheless, this mode is only for debug a 10K resistor pull up place holder on the IRQ line should be placed. It can be applied only in case the debug mode is required:
 - IRQ_WL = 1, UART(DBG_BT = 1, AUD_OUT_BT = 0
In order to avoid an undefined state of the device, be extremely careful when level-shifting those three I/Os to ensure that only those one of the two supported configurations of the device are applied.

For further details, see Level Shifting WL18xx I/Os (SWRA448).

10.5 WLAN

10.5.1 WLAN Host Interface (SDIO)

The SDIO is the host interface for WLAN. The interface between the host and the WL18xx module uses an SDIO interface and supports a maximum clock rate of 52 MHz.

The device SDIO also supports the following features of the SDIO V3 specification:

- 4-bit data bus
- Synchronous and asynchronous in-band interrupt
- Default and high-speed (HS, 52 MHz) timing
- Sleep and wake commands
- The WLAN subsystem is controlled via an SDIO interface. The WLAN acts as a slave with the processor as host. The host should generate the SDIO clock and read/write from the WLAN interface.
- Verify that the SDIO bus pins are connected to the host. These pins include:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>SDIO_CMD</td>
<td>I/O</td>
<td>SDIO command line. This is a bidirectional line. The host sends commands and the WLAN responds to these commands.</td>
</tr>
<tr>
<td>8</td>
<td>SDIO_CLK</td>
<td>I</td>
<td>SDIO clock input line. This line is generated by the host.</td>
</tr>
<tr>
<td>10</td>
<td>SDIO_D0</td>
<td>I/O</td>
<td>SDIO data 0 line. This is the primary data line used in both 1-bit and 4-bit SDIO mode. This is a bidirectional line.</td>
</tr>
<tr>
<td>11</td>
<td>SDIO_D1</td>
<td>I/O</td>
<td>SDIO data 1 line. This is one of four data lines. This line is used only in 4-bit mode. This is a bidirectional line.</td>
</tr>
<tr>
<td>12</td>
<td>SDIO_D2</td>
<td>I/O</td>
<td>SDIO data 2 line. This is one of four data lines. This line is used only in 4-bit mode. This is a bidirectional line.</td>
</tr>
<tr>
<td>13</td>
<td>SDIO_D3</td>
<td>I/O</td>
<td>SDIO data 3 line. This is one of four data lines. This line is used only in 4-bit mode. This is a bidirectional line.</td>
</tr>
<tr>
<td>14</td>
<td>WLAN_IRQ</td>
<td>O</td>
<td>Generates interrupt from the WLAN chip toward the HOST. It is used to signal the HOST on many events like received data from the WLAN media is ready at the firmware (WLAN Chip) queue, the last Tx frame that was transmitted, all kind of asynchronous messages (events), and so on.</td>
</tr>
<tr>
<td>40</td>
<td>WLAN_EN</td>
<td>I</td>
<td>WLAN enable signal, should be "1" in order enable the WLAN operation, once the WLAN enable signal is "0" the WLAN part of the chip is reset in a way that the firmware has to be loaded again after enabling the WLAN.</td>
</tr>
</tbody>
</table>

- Host must provide PU using a 10-K resistor for all non-CLK SDIO signals.
- In order to follow the wakeup/shutdown requirements, the WL_EN (pin number 40) should be connected to host GPIO. Must be pulled high for WLAN operation. This GPIO should have internal pull-up allowing the WL18xx pin to remain high on host suspend. In order to enable WOW feature, a pull up on the line is required during HOST shutdown.
- IRQ_WL should be connected to host GPIO. This GPIO should be able to wake the host from suspend, therefore it's better to always connect the pin (number 14) to the always on domain of the Host. The IRQ_WL pin serves as interrupt generation from WL18xx to the host.
NOTE: It is recommended to connect the SDIO directly to the 1.8 V SDIO interface on the host side. In case Level Shifter is inevitable, see Level Shifting WL18xx I/Os Application Report (SWRA448).

10.5.2 WLAN IRQ Operation (SDIO Out-of-Band Interrupt)

The WLAN IRQ is an out-of-band interrupt request line that is not defined by the SDIO standard specification. Therefore, a good understanding on how it works is required in order to work with the WL8xx solution.

The WLAN_IRQ line operates as follows:
- The default state of the WLAN_IRQ prior to device enable is internal 100K pulldown (in case of a debug mode there is external 10K pull up)
- After the enable line is applied high, the WL_IRQ is changed to drive logic ‘0’.
- During firmware initialization, the WLAN_IRQ is configured by the SDIO module.
 - The WLAN firmware creates an interrupt-to-host request, indicated by a 0-to-1 transition on the WLAN_IRQ line (the host must be configured as active high or rising-edge detect).
 - After the host is available, depending on the interrupt priority and other host tasks, it masks the firmware interrupt. The WLAN_IRQ line returns to 0 (a 1-to-0 transition on the WLAN_IRQ line).
 - The host reads the internal register status to determine the interrupt sources. The register is cleared after the read.
 - The host processes all the interrupts read from this register in sequence.
 - The host unmask the firmware interrupts.
- The host is ready to receive another interrupt from the WLAN device.

![Figure 7. WLAN_IRQ Signal on System Wake Up](image)

For more details on the Wake on Wlan feature, see [3].
10.6 BT and BLE

10.6.1 Bluetooth UART HCI Interface

- The Bluetooth subsystem is controlled via an HCI 4-wire UART interface (H4).
- Verify that the HCI interface is connected as shown in Figure 8. Note that a TX pin always routes to a RX pin, and a RTS pin always routes to a CTS pin.

![Figure 8. HOST HCI UART Interface](image)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>BT_EN</td>
<td>I</td>
<td>Bluetooth Enable</td>
</tr>
<tr>
<td>50</td>
<td>BT_HCI_RTS</td>
<td>O</td>
<td>Bluetooth HCI UART request to send output</td>
</tr>
<tr>
<td>51</td>
<td>BT_HCI_CTS</td>
<td>I</td>
<td>Bluetooth HCI UART clear to send input</td>
</tr>
<tr>
<td>52</td>
<td>BT_HCI_TX</td>
<td>O</td>
<td>Bluetooth HCI UART transmit output</td>
</tr>
<tr>
<td>53</td>
<td>BT_HCI_RX</td>
<td>I</td>
<td>Bluetooth HCI UART receive input</td>
</tr>
</tbody>
</table>

- FUNC1_BT should be NC.
- FUNC2_BT should be NC.

NOTE: In the AM335x integration reference, the RTS and CTS lines are crossed, as shown. For some of the other processors, the RTS/CTS lines must be connected directly.

- In case of host processor I/O is at 3.3 V, use a standard 245 level shifter and not a direction sensing one. For more information, see Level Shifting WL18xx I/Os (SWRA448).
- Once BT EN is asserted to high the BT FW stored in ROM start to execute, during this time the RTS is driven high to prevent HCI transaction and not to interfere with device boot, once the FW finish the boot process RTS line goes low after approximately 100 mS.

If logger is configured at this point, WL18xx should print boot up message.

![Figure 9. Bootup Sequence Complete](image)
• Connect HCI Tester and Set Baud Rate - 115200, Data Bits - 8, Stop bits -1, Parity - none, Flow Control - HW. On this port, send basic HCI commands (BD Address) to verify connectivity.
• In case UART lines are not operating, make sure that the CTS line is set to 0 on the PC side - the signal on the WL18xx Rx input line that comes from the PC (on the port Probe). For every packet on Rx, there should be a response on the Tx line from WL18xx.

10.6.2 BT PCM

There are two lines that can be bidirectional (CLK/FSYNC) to support master and slave configuration and two directional pins: AUD_OUT (output) and AUD_IN (input).

All four lines should be connected to the HOST PCM interface.

![Figure 10. HOST PCM Interface](image)

In case the PCM interface is not used, leave not connected (N.C.).

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>BT_AUD_IN</td>
<td>I</td>
<td>Bluetooth PCM data output</td>
</tr>
<tr>
<td>57</td>
<td>BT_AUD_OUT</td>
<td>O</td>
<td>Bluetooth PCM data output</td>
</tr>
<tr>
<td>58</td>
<td>BT_AUD_FSYNC</td>
<td>I/O</td>
<td>Bluetooth PCM frame sync input or output</td>
</tr>
<tr>
<td>60</td>
<td>BT_AUD_CLK</td>
<td>I/O</td>
<td>Bluetooth PCM clock input or output</td>
</tr>
</tbody>
</table>

10.7 Reserved Pins

- Reserved 1, 2, 3, can be used for Audio sync otherwise, leave N.C.
- GPIO 9, 10, and 12 can be used for ZigBee coexistence
 - GPIO11 can be used for Audio sync, otherwise, leave N.C.

10.8 Debug

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>WLAN RS232 RX</td>
<td>I</td>
<td>WLAN debug interface</td>
</tr>
<tr>
<td>27</td>
<td>WLAN RS232 TX</td>
<td>O</td>
<td>WLAN debug interface</td>
</tr>
<tr>
<td>42</td>
<td>WL_UART_DBG</td>
<td>O</td>
<td>WLAN FW logger</td>
</tr>
<tr>
<td>43</td>
<td>BT_UART_DBG</td>
<td>O</td>
<td>BT FW logger</td>
</tr>
</tbody>
</table>

For bring up and evaluation of the module, the following should be connected:
• Pin out GPIO1 and GPIO2 for WLAN RS232 interface to enable RTTT tool for controlling RF test in the absence of a host.
• There is a need to pull up WL_IRQ (10k pull up) at power-on to enable this RS232 UART interface.
• WLAN logger must have at least a TP to allow Wi-Fi Firmware logs to be captured by gLogger. Requires a 1.8 V LVCMOS to USB cable for capture.
BT logger must have at least a TP to allow Bluetooth Firmware logs to be captured by gLogger. Requires a 1.8 V LVCMOS to USB cable for capture.

WLAN RS232 lines - Check transmission on Rx/Tx line, for every packet on Rx should be a response in Tx.

WiFi_Zigbee Coex

For Zigbee/WiFi Coexistence, the following should be connected:

![Figure 11. WLAN ZigBee Coexistence](image)

Table 11. WLAN ZigBee Coex Lines

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>WL18xxMOD IO (1.8 V)</th>
<th>CC2530 Zigbee IO (3.3 V)</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx Active</td>
<td>GPIO12 (Pin 5)</td>
<td>P1_7 (Pin 37)</td>
<td>From WLAN</td>
</tr>
<tr>
<td>Rx Active</td>
<td>GPIO10 (Pin 4)</td>
<td>P0_0 (Pin 19)</td>
<td>From WLAN</td>
</tr>
<tr>
<td>PA SHUTDOWN/REQUEST</td>
<td>GPIO9 (Pin 3)</td>
<td>P1_6 (Pin 38)</td>
<td>To WLAN</td>
</tr>
</tbody>
</table>

For signals level shifting between WL18XXMOD and CC2530, TI recommends the TXS0102 Bidirectional Voltage-Level Translator.

![Figure 12. Zigbee_LS](image)
• For the TX disable, one of the options is to use resistor divider or use single bit Level Shifter.

![Zigbee_RNR Diagram](image)

Figure 13. Zigbee_RNR

12 References

2. *Level Shifting WL18xx I/Os Application Report* (SWRA448)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated