Description
The PMP30364_RevC reference design uses the UCC28910 flyback controller with integrated MOSFET to generate a non-isolated output (6.5V@0.6A) from an 100VDC to 411VDC input. The UCC28910 provides constant-voltage and constant-current output regulation without the use of an optical coupler. The valley switching operation reduces switching losses and achieves high efficiency.
1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>108VDC - 411VDC</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>6.5@0.6A</td>
</tr>
<tr>
<td>Nominal switching frequency</td>
<td>50kHz</td>
</tr>
</tbody>
</table>
2 Testing and Results

2.1 Efficiency Graphs

Figure 1. Efficiency

![Efficiency Graph](image)

2.2 Efficiency Data

Figure 2. Load Regulation

![Load Regulation Graph](image)
2.3 Thermal Images

Figure 3. The images below show the infrared images taken from the FlexCam after 15min at full load output power.

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snubber R4</td>
<td>40.3°C</td>
</tr>
<tr>
<td>Controller U1</td>
<td>44.5°C</td>
</tr>
<tr>
<td>Transformer T1</td>
<td>39.3°C</td>
</tr>
<tr>
<td>Diode D3</td>
<td>39.9°C</td>
</tr>
<tr>
<td>Diode D1</td>
<td>38.1°C</td>
</tr>
</tbody>
</table>

Input Voltage = 411VDC
Output Power = 4.9W

2.4 Dimensions

59mm x 22mm
3 Waveforms

3.1 Switching

Figure 4. Switchnode

Input Voltage = 411VDC
Output Power = 4.9W
Figure 5. Switchnode

Input Voltage = 411VDC
Output Power = 4.9W
3.2 **Output Voltage Ripple**

![Figure 6. 6.5Vout Ripple Voltage](image)

*Input Voltage = 250VDC
Output Power = 4.9W*
3.3 Load Transients

Figure 7. Load Transient Response 6.5V output

Input Voltage = 108VDC
6.5Vout Load current = 0.1 to 0.6A
15Vout Load current = 0A
Figure 8. Load Transient Response 6.5V output

Input Voltage = 250VDC
6.5Vout Load current = 0.1 to 0.6A
15Vout Load current = 0A
Input Voltage = 410VDC
6.5Vout Load current = 0.1 to 0.6A
15Vout Load current = 0A
3.4 Start-up Sequence

Figure 10. Startup

Input Voltage = 108VDC
6.5Vout Load current = 0.6A
15Vout Load current = 0A
Figure 11. Startup

Input Voltage = 250VDC
6.5Vout Load current = 0.6A
15Vout Load current = 0A
Figure 12. Startup

Input Voltage = 411VDC
6.5Vout Load current = 0.6A
15Vout Load current = 0A
3.5 Shutdown Sequence

Figure 13. Shutdown

Input Voltage = 250VDC
6.5Vout Load current = 0.6A
15Vout Load current = 0A
3.6 Other

Figure 14. Secondary Side Switchnode 6.5Vout

Input Voltage = 250VDC
6.5Vout Load current = 0.6A
Output Power = 4.9W
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated