Test Report: PMP21479
65W Active clamp flyback with Si FETs reference design for a high power density 5-20V AC/DC adapter

Description

PMP21479 uses the UCC28780 active clamp flyback controller to generate a 20V/15V/9V/5V adjustable output voltage. The maximum power rating is 65W at 20V output, and up to 3A at all other output voltage settings. This design reaches a peak efficiency of over 93% using silicon MOSFETs. The average efficiency and standby power levels are designed to meet DoE level VI limits. Board dimensions are 1.9” x 1.9” x 1” (49mm x 49mm x 25mm).
CONTENTS

1 Test Prerequisites .. 3
 1.1 Voltage and Current Requirements .. 3
 1.2 Required Equipment ... 3

2 Testing and Results ... 4
 2.1 Efficiency .. 4
 2.2 Thermal Images ... 13
 2.3 Switching Waveforms ... 19
 2.4 Output Voltage Ripple at Maximum Load Current .. 21
 2.5 Output Voltage Ripple during Burst Mode .. 25
 2.6 Bode Plot .. 29
 2.7 5V Output Load Transients ... 31
 2.8 9V Output Load Transients ... 35
 2.9 15V Output Load Transients ... 39
 2.10 20V Output Load Transients .. 43
 2.11 Startup ... 47
 2.12 Voltage Transitions .. 47
 2.13 Conducted EMI .. 59
1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Input Voltage Range</td>
<td>90VACrms – 265VACrms</td>
</tr>
<tr>
<td>Line Input Frequency</td>
<td>50Hz/60Hz</td>
</tr>
</tbody>
</table>

1.2 Required Equipment

- AC voltage source
- AC power meter
- Electronic load
- Multi-meters
- Oscilloscope
2 Testing and Results

2.1 Efficiency

2.1.1 Average Efficiency

![Average Efficiency Chart]

2.1.2 20V Output

![20V Output Chart]
90VAC/60Hz Load Increasing

<table>
<thead>
<tr>
<th>Load Current (Amps)</th>
<th>Power Loss (W)</th>
<th>90VAC/60Hz Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USB-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0250</td>
<td>19.98</td>
<td>90.2</td>
<td>0.0253 0.693</td>
<td>0.50 0.19</td>
</tr>
<tr>
<td>0.321</td>
<td>19.98</td>
<td>90.1</td>
<td>0.211 7.19</td>
<td>0.378 6.41</td>
</tr>
<tr>
<td>0.815</td>
<td>19.98</td>
<td>90.1</td>
<td>0.472 17.99</td>
<td>0.424 16.28</td>
</tr>
<tr>
<td>1.224</td>
<td>19.99</td>
<td>90.0</td>
<td>0.642 26.82</td>
<td>0.464 24.47</td>
</tr>
<tr>
<td>1.626</td>
<td>19.99</td>
<td>89.9</td>
<td>0.795 35.38</td>
<td>0.495 32.50</td>
</tr>
<tr>
<td>2.026</td>
<td>19.99</td>
<td>89.9</td>
<td>0.943 43.81</td>
<td>0.517 40.50</td>
</tr>
<tr>
<td>2.448</td>
<td>19.99</td>
<td>90.1</td>
<td>1.098 52.73</td>
<td>0.533 48.94</td>
</tr>
<tr>
<td>2.849</td>
<td>19.99</td>
<td>90.0</td>
<td>1.247 61.31</td>
<td>0.546 56.95</td>
</tr>
<tr>
<td>3.253</td>
<td>20.00</td>
<td>90.0</td>
<td>1.398 70.09</td>
<td>0.557 65.06</td>
</tr>
</tbody>
</table>

120VAC/60Hz Load Increasing

<table>
<thead>
<tr>
<th>Load Current (Amps)</th>
<th>Power Loss (W)</th>
<th>120VAC/60Hz Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USB-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0251</td>
<td>19.98</td>
<td>120.0</td>
<td>0.0209 0.700</td>
<td>0.50 0.20</td>
</tr>
<tr>
<td>0.322</td>
<td>19.99</td>
<td>120.1</td>
<td>0.172 7.26</td>
<td>0.351 6.44</td>
</tr>
<tr>
<td>0.803</td>
<td>19.99</td>
<td>120.1</td>
<td>0.380 17.76</td>
<td>0.389 16.05</td>
</tr>
<tr>
<td>1.224</td>
<td>19.99</td>
<td>120.0</td>
<td>0.549 26.83</td>
<td>0.408 24.47</td>
</tr>
<tr>
<td>1.628</td>
<td>19.99</td>
<td>120.0</td>
<td>0.693 35.52</td>
<td>0.427 32.54</td>
</tr>
<tr>
<td>2.032</td>
<td>19.99</td>
<td>120.0</td>
<td>0.814 43.92</td>
<td>0.450 40.62</td>
</tr>
<tr>
<td>2.439</td>
<td>19.99</td>
<td>119.9</td>
<td>0.929 52.39</td>
<td>0.470 48.76</td>
</tr>
<tr>
<td>2.852</td>
<td>20.00</td>
<td>119.9</td>
<td>1.045 61.04</td>
<td>0.487 57.04</td>
</tr>
<tr>
<td>3.251</td>
<td>20.00</td>
<td>119.8</td>
<td>1.156 69.46</td>
<td>0.501 65.02</td>
</tr>
</tbody>
</table>

TIDT096 - March 2019

65-W active clamp flyback reference design using silicon FETs for an AC/DC adapter

Copyright © 2019, Texas Instruments Incorporated
230VAC/50Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout (A)</th>
<th>Vout (V)</th>
<th>Vout USB-C (V)</th>
<th>Vin (V)</th>
<th>lin (A)</th>
<th>Pin (W)</th>
<th>PF</th>
<th>Pout AC/DC (W)</th>
<th>Pout USB-C (W)</th>
<th>Losses (W)</th>
<th>Efficiency AC/DC (%)</th>
<th>Efficiency USBC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0249</td>
<td>19.98</td>
<td>19.98</td>
<td>229.7</td>
<td>0.0201</td>
<td>0.868</td>
<td>0.50</td>
<td>0.50</td>
<td>0.37</td>
<td>57.3%</td>
<td>57.3%</td>
<td></td>
</tr>
<tr>
<td>0.319</td>
<td>19.99</td>
<td>19.99</td>
<td>230.0</td>
<td>0.116</td>
<td>7.65</td>
<td>0.288</td>
<td>6.38</td>
<td>6.38</td>
<td>1.27</td>
<td>83.4%</td>
<td>83.4%</td>
</tr>
<tr>
<td>0.803</td>
<td>19.99</td>
<td>19.98</td>
<td>230.3</td>
<td>0.241</td>
<td>18.15</td>
<td>0.327</td>
<td>16.05</td>
<td>16.04</td>
<td>2.11</td>
<td>88.4%</td>
<td>88.4%</td>
</tr>
<tr>
<td>1.221</td>
<td>19.99</td>
<td>19.98</td>
<td>230.2</td>
<td>0.346</td>
<td>27.30</td>
<td>0.343</td>
<td>24.41</td>
<td>24.40</td>
<td>2.90</td>
<td>89.4%</td>
<td>89.4%</td>
</tr>
<tr>
<td>1.629</td>
<td>19.99</td>
<td>19.98</td>
<td>230.2</td>
<td>0.444</td>
<td>36.13</td>
<td>0.353</td>
<td>32.56</td>
<td>32.55</td>
<td>3.58</td>
<td>90.1%</td>
<td>90.1%</td>
</tr>
<tr>
<td>2.022</td>
<td>20.00</td>
<td>19.98</td>
<td>230.2</td>
<td>0.533</td>
<td>44.40</td>
<td>0.361</td>
<td>40.44</td>
<td>40.40</td>
<td>4.00</td>
<td>91.1%</td>
<td>91.0%</td>
</tr>
<tr>
<td>2.439</td>
<td>20.00</td>
<td>19.98</td>
<td>230.2</td>
<td>0.623</td>
<td>52.96</td>
<td>0.369</td>
<td>48.78</td>
<td>48.73</td>
<td>4.23</td>
<td>92.1%</td>
<td>92.0%</td>
</tr>
<tr>
<td>2.847</td>
<td>20.00</td>
<td>19.97</td>
<td>230.2</td>
<td>0.708</td>
<td>61.41</td>
<td>0.377</td>
<td>56.94</td>
<td>56.85</td>
<td>4.56</td>
<td>92.7%</td>
<td>92.6%</td>
</tr>
<tr>
<td>3.255</td>
<td>20.00</td>
<td>19.97</td>
<td>230.1</td>
<td>0.789</td>
<td>69.87</td>
<td>0.385</td>
<td>65.10</td>
<td>65.00</td>
<td>4.87</td>
<td>93.2%</td>
<td>93.0%</td>
</tr>
</tbody>
</table>

265VAC/50Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout (A)</th>
<th>Vout (V)</th>
<th>Vout USB-C (V)</th>
<th>Vin (V)</th>
<th>lin (A)</th>
<th>Pin (W)</th>
<th>PF</th>
<th>Pout AC/DC (W)</th>
<th>Pout USB-C (W)</th>
<th>Losses (W)</th>
<th>Efficiency AC/DC (%)</th>
<th>Efficiency USBC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0247</td>
<td>19.98</td>
<td>19.98</td>
<td>265.4</td>
<td>0.0193</td>
<td>0.907</td>
<td>0.49</td>
<td>0.49</td>
<td>0.41</td>
<td>54.4%</td>
<td>54.4%</td>
<td></td>
</tr>
<tr>
<td>0.325</td>
<td>20.00</td>
<td>19.99</td>
<td>265.4</td>
<td>0.110</td>
<td>8.07</td>
<td>0.275</td>
<td>6.50</td>
<td>6.50</td>
<td>1.57</td>
<td>80.6%</td>
<td>80.6%</td>
</tr>
<tr>
<td>0.809</td>
<td>20.00</td>
<td>19.99</td>
<td>265.4</td>
<td>0.229</td>
<td>19.26</td>
<td>0.317</td>
<td>16.18</td>
<td>16.17</td>
<td>3.09</td>
<td>84.0%</td>
<td>84.0%</td>
</tr>
<tr>
<td>1.231</td>
<td>20.00</td>
<td>19.99</td>
<td>265.4</td>
<td>0.320</td>
<td>28.15</td>
<td>0.331</td>
<td>24.62</td>
<td>24.61</td>
<td>3.54</td>
<td>87.5%</td>
<td>87.4%</td>
</tr>
<tr>
<td>1.628</td>
<td>20.00</td>
<td>19.98</td>
<td>265.3</td>
<td>0.404</td>
<td>36.59</td>
<td>0.341</td>
<td>32.56</td>
<td>32.53</td>
<td>4.06</td>
<td>89.0%</td>
<td>88.9%</td>
</tr>
<tr>
<td>2.022</td>
<td>20.00</td>
<td>19.98</td>
<td>265.3</td>
<td>0.484</td>
<td>44.80</td>
<td>0.349</td>
<td>40.44</td>
<td>40.40</td>
<td>4.40</td>
<td>90.3%</td>
<td>90.2%</td>
</tr>
<tr>
<td>2.435</td>
<td>20.00</td>
<td>19.98</td>
<td>265.3</td>
<td>0.564</td>
<td>53.21</td>
<td>0.355</td>
<td>48.70</td>
<td>48.65</td>
<td>4.56</td>
<td>91.5%</td>
<td>91.4%</td>
</tr>
<tr>
<td>2.858</td>
<td>20.00</td>
<td>19.98</td>
<td>265.3</td>
<td>0.645</td>
<td>61.94</td>
<td>0.362</td>
<td>57.16</td>
<td>57.10</td>
<td>4.84</td>
<td>92.3%</td>
<td>92.2%</td>
</tr>
<tr>
<td>3.252</td>
<td>20.00</td>
<td>19.97</td>
<td>265.3</td>
<td>0.719</td>
<td>70.10</td>
<td>0.367</td>
<td>65.04</td>
<td>64.94</td>
<td>5.16</td>
<td>92.8%</td>
<td>92.6%</td>
</tr>
</tbody>
</table>

2.1.3 15V Output

![Graph showing efficiency vs. load current for different input voltages at 15V output.](image)
65-W active clamp flyback reference design using silicon FETs for an AC/DC adapter

<table>
<thead>
<tr>
<th>Load Increasing</th>
<th>90VAC/60Hz</th>
<th>120VAC/60Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iout (A)</td>
<td>Vin (V)</td>
<td>lin (V)</td>
</tr>
<tr>
<td>0.0255</td>
<td>15.04</td>
<td>15.04</td>
</tr>
<tr>
<td>0.299</td>
<td>15.04</td>
<td>15.04</td>
</tr>
<tr>
<td>0.749</td>
<td>15.04</td>
<td>15.04</td>
</tr>
<tr>
<td>1.124</td>
<td>15.04</td>
<td>15.03</td>
</tr>
<tr>
<td>1.500</td>
<td>15.04</td>
<td>15.03</td>
</tr>
<tr>
<td>1.876</td>
<td>15.04</td>
<td>15.03</td>
</tr>
<tr>
<td>2.252</td>
<td>15.04</td>
<td>15.03</td>
</tr>
<tr>
<td>2.625</td>
<td>15.04</td>
<td>15.02</td>
</tr>
<tr>
<td>3.000</td>
<td>15.04</td>
<td>15.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Increasing</th>
<th>230VAC/50Hz</th>
<th>265VAC/50Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iout (A)</td>
<td>Vin (V)</td>
<td>lin (V)</td>
</tr>
<tr>
<td>0.0255</td>
<td>15.04</td>
<td>15.04</td>
</tr>
<tr>
<td>0.297</td>
<td>15.04</td>
<td>15.04</td>
</tr>
<tr>
<td>0.750</td>
<td>15.04</td>
<td>15.04</td>
</tr>
<tr>
<td>1.126</td>
<td>15.04</td>
<td>15.04</td>
</tr>
<tr>
<td>1.501</td>
<td>15.04</td>
<td>15.03</td>
</tr>
<tr>
<td>1.875</td>
<td>15.04</td>
<td>15.03</td>
</tr>
<tr>
<td>2.250</td>
<td>15.04</td>
<td>15.03</td>
</tr>
<tr>
<td>2.625</td>
<td>15.05</td>
<td>15.02</td>
</tr>
<tr>
<td>3.000</td>
<td>15.05</td>
<td>15.02</td>
</tr>
</tbody>
</table>
230VAC/50Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout (A)</th>
<th>Vout AC/DC (V)</th>
<th>Vout USB-C (V)</th>
<th>Vin (V)</th>
<th>lin (mA)</th>
<th>Pin (mA)</th>
<th>PF</th>
<th>Pout AC/DC (W)</th>
<th>Pout USB-C (W)</th>
<th>Losses (W)</th>
<th>Efficiency AC/DC (%)</th>
<th>Efficiency USBC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0258</td>
<td>15.04</td>
<td>15.04</td>
<td>229.6</td>
<td>0.0167</td>
<td>0.660</td>
<td>0.39</td>
<td>0.39</td>
<td>0.27</td>
<td>58.8%</td>
<td>58.8%</td>
<td></td>
</tr>
<tr>
<td>0.295</td>
<td>15.04</td>
<td>15.04</td>
<td>230.0</td>
<td>0.090</td>
<td>5.56</td>
<td>0.269</td>
<td>4.44</td>
<td>1.12</td>
<td>79.8%</td>
<td>79.8%</td>
<td></td>
</tr>
<tr>
<td>0.748</td>
<td>15.04</td>
<td>15.04</td>
<td>230.0</td>
<td>0.179</td>
<td>12.90</td>
<td>0.313</td>
<td>11.25</td>
<td>1.65</td>
<td>87.2%</td>
<td>87.2%</td>
<td></td>
</tr>
<tr>
<td>1.125</td>
<td>15.04</td>
<td>15.03</td>
<td>230.0</td>
<td>0.251</td>
<td>18.95</td>
<td>0.328</td>
<td>16.92</td>
<td>2.04</td>
<td>89.3%</td>
<td>89.2%</td>
<td></td>
</tr>
<tr>
<td>1.499</td>
<td>15.04</td>
<td>15.03</td>
<td>230.0</td>
<td>0.322</td>
<td>25.05</td>
<td>0.338</td>
<td>22.54</td>
<td>2.52</td>
<td>90.0%</td>
<td>89.9%</td>
<td></td>
</tr>
<tr>
<td>1.874</td>
<td>15.04</td>
<td>15.03</td>
<td>229.9</td>
<td>0.393</td>
<td>31.31</td>
<td>0.347</td>
<td>28.18</td>
<td>3.14</td>
<td>90.0%</td>
<td>90.0%</td>
<td></td>
</tr>
<tr>
<td>2.250</td>
<td>15.04</td>
<td>15.03</td>
<td>229.9</td>
<td>0.456</td>
<td>37.02</td>
<td>0.353</td>
<td>33.84</td>
<td>3.20</td>
<td>91.4%</td>
<td>91.3%</td>
<td></td>
</tr>
<tr>
<td>2.625</td>
<td>15.04</td>
<td>15.02</td>
<td>229.9</td>
<td>0.520</td>
<td>42.81</td>
<td>0.358</td>
<td>39.48</td>
<td>3.38</td>
<td>92.2%</td>
<td>92.1%</td>
<td></td>
</tr>
<tr>
<td>3.002</td>
<td>15.04</td>
<td>15.02</td>
<td>229.9</td>
<td>0.582</td>
<td>48.68</td>
<td>0.363</td>
<td>45.15</td>
<td>3.59</td>
<td>92.7%</td>
<td>92.6%</td>
<td></td>
</tr>
</tbody>
</table>

265VAC/50Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout (A)</th>
<th>Vout AC/DC (V)</th>
<th>Vout USB-C (V)</th>
<th>Vin (V)</th>
<th>lin (mA)</th>
<th>Pin (mA)</th>
<th>PF</th>
<th>Pout AC/DC (W)</th>
<th>Pout USB-C (W)</th>
<th>Losses (W)</th>
<th>Efficiency AC/DC (%)</th>
<th>Efficiency USBC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0247</td>
<td>15.04</td>
<td>15.04</td>
<td>265.4</td>
<td>0.0163</td>
<td>0.671</td>
<td>0.37</td>
<td>0.37</td>
<td>0.30</td>
<td>55.4%</td>
<td>55.4%</td>
<td></td>
</tr>
<tr>
<td>0.297</td>
<td>15.04</td>
<td>15.04</td>
<td>264.5</td>
<td>0.086</td>
<td>5.83</td>
<td>0.256</td>
<td>4.47</td>
<td>1.36</td>
<td>76.6%</td>
<td>76.6%</td>
<td></td>
</tr>
<tr>
<td>0.749</td>
<td>15.04</td>
<td>15.04</td>
<td>264.5</td>
<td>0.165</td>
<td>13.15</td>
<td>0.299</td>
<td>11.26</td>
<td>1.89</td>
<td>85.7%</td>
<td>85.7%</td>
<td></td>
</tr>
<tr>
<td>1.124</td>
<td>15.04</td>
<td>15.03</td>
<td>264.5</td>
<td>0.228</td>
<td>19.07</td>
<td>0.316</td>
<td>16.90</td>
<td>2.18</td>
<td>88.6%</td>
<td>88.6%</td>
<td></td>
</tr>
<tr>
<td>1.500</td>
<td>15.04</td>
<td>15.03</td>
<td>264.5</td>
<td>0.292</td>
<td>25.25</td>
<td>0.327</td>
<td>22.56</td>
<td>2.71</td>
<td>89.3%</td>
<td>89.3%</td>
<td></td>
</tr>
<tr>
<td>1.876</td>
<td>15.04</td>
<td>15.03</td>
<td>264.5</td>
<td>0.355</td>
<td>31.49</td>
<td>0.335</td>
<td>28.22</td>
<td>3.29</td>
<td>89.6%</td>
<td>89.5%</td>
<td></td>
</tr>
<tr>
<td>2.249</td>
<td>15.04</td>
<td>15.03</td>
<td>264.5</td>
<td>0.413</td>
<td>37.24</td>
<td>0.341</td>
<td>33.82</td>
<td>3.44</td>
<td>90.8%</td>
<td>90.8%</td>
<td></td>
</tr>
<tr>
<td>2.624</td>
<td>15.04</td>
<td>15.03</td>
<td>264.5</td>
<td>0.469</td>
<td>43.00</td>
<td>0.346</td>
<td>39.46</td>
<td>3.56</td>
<td>91.8%</td>
<td>91.7%</td>
<td></td>
</tr>
<tr>
<td>3.001</td>
<td>15.05</td>
<td>15.02</td>
<td>264.5</td>
<td>0.526</td>
<td>48.89</td>
<td>0.351</td>
<td>45.17</td>
<td>3.81</td>
<td>92.4%</td>
<td>92.2%</td>
<td></td>
</tr>
</tbody>
</table>

2.1.4 9V Output

[Graph showing efficiency vs. load current for different AC/DC voltages.]

Note: The table and graph above illustrate the performance of a 65-W active clamp flyback reference design using silicon FETs for an AC/DC adapter. The data includes measurements under various load conditions for 230VAC/50Hz and 265VAC/50Hz, showing efficiency and losses at different output currents. The graph visualizes efficiency across a range of load currents for 9V output under different AC/DC voltage settings.
90VAC/60Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout</th>
<th>Vout AC/DC</th>
<th>Vout USB-C</th>
<th>Vin</th>
<th>lin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout AC/DC</th>
<th>Pout USB-C</th>
<th>Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0244</td>
<td>8.95</td>
<td>8.95</td>
<td>89.9</td>
<td>0.0134</td>
<td>0.326</td>
<td></td>
<td>0.22</td>
<td>0.22</td>
<td>0.11</td>
<td>67.0%</td>
<td>67.0%</td>
</tr>
<tr>
<td>0.299</td>
<td>8.95</td>
<td>8.95</td>
<td>90.1</td>
<td>0.101</td>
<td>3.14</td>
<td>0.346</td>
<td>2.68</td>
<td>2.68</td>
<td>0.46</td>
<td>85.2%</td>
<td>85.2%</td>
</tr>
<tr>
<td>0.749</td>
<td>8.95</td>
<td>8.94</td>
<td>90.0</td>
<td>0.220</td>
<td>7.53</td>
<td>0.380</td>
<td>6.70</td>
<td>6.70</td>
<td>0.83</td>
<td>89.0%</td>
<td>89.0%</td>
</tr>
<tr>
<td>1.126</td>
<td>8.95</td>
<td>8.94</td>
<td>90.0</td>
<td>0.314</td>
<td>11.23</td>
<td>0.398</td>
<td>10.08</td>
<td>10.07</td>
<td>1.16</td>
<td>89.7%</td>
<td>89.7%</td>
</tr>
<tr>
<td>1.500</td>
<td>8.95</td>
<td>8.94</td>
<td>90.0</td>
<td>0.400</td>
<td>14.82</td>
<td>0.411</td>
<td>13.43</td>
<td>13.41</td>
<td>1.41</td>
<td>90.6%</td>
<td>90.6%</td>
</tr>
<tr>
<td>1.878</td>
<td>8.95</td>
<td>8.93</td>
<td>89.9</td>
<td>0.482</td>
<td>18.46</td>
<td>0.426</td>
<td>16.81</td>
<td>16.77</td>
<td>1.69</td>
<td>91.1%</td>
<td>91.1%</td>
</tr>
<tr>
<td>2.252</td>
<td>8.95</td>
<td>8.93</td>
<td>89.9</td>
<td>0.555</td>
<td>22.04</td>
<td>0.441</td>
<td>20.16</td>
<td>20.11</td>
<td>1.93</td>
<td>91.4%</td>
<td>91.2%</td>
</tr>
<tr>
<td>2.625</td>
<td>8.95</td>
<td>8.93</td>
<td>89.9</td>
<td>0.623</td>
<td>25.58</td>
<td>0.457</td>
<td>23.49</td>
<td>23.44</td>
<td>2.14</td>
<td>91.8%</td>
<td>91.6%</td>
</tr>
<tr>
<td>3.000</td>
<td>8.95</td>
<td>8.93</td>
<td>89.9</td>
<td>0.689</td>
<td>29.17</td>
<td>0.471</td>
<td>26.85</td>
<td>26.79</td>
<td>2.38</td>
<td>92.0%</td>
<td>91.8%</td>
</tr>
</tbody>
</table>

120VAC/60Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout</th>
<th>Vout AC/DC</th>
<th>Vout USB-C</th>
<th>Vin</th>
<th>lin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout AC/DC</th>
<th>Pout USB-C</th>
<th>Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0246</td>
<td>8.95</td>
<td>8.95</td>
<td>120.1</td>
<td>0.0114</td>
<td>0.336</td>
<td></td>
<td>0.22</td>
<td>0.22</td>
<td>0.12</td>
<td>65.5%</td>
<td>65.5%</td>
</tr>
<tr>
<td>0.300</td>
<td>8.95</td>
<td>8.95</td>
<td>120.0</td>
<td>0.082</td>
<td>3.18</td>
<td>0.323</td>
<td>2.69</td>
<td>2.69</td>
<td>0.50</td>
<td>84.4%</td>
<td>84.4%</td>
</tr>
<tr>
<td>0.751</td>
<td>8.95</td>
<td>8.95</td>
<td>120.0</td>
<td>0.179</td>
<td>7.61</td>
<td>0.354</td>
<td>6.72</td>
<td>6.72</td>
<td>0.89</td>
<td>88.3%</td>
<td>88.3%</td>
</tr>
<tr>
<td>1.125</td>
<td>8.95</td>
<td>8.94</td>
<td>120.0</td>
<td>0.253</td>
<td>11.22</td>
<td>0.370</td>
<td>10.07</td>
<td>10.06</td>
<td>1.16</td>
<td>89.7%</td>
<td>89.6%</td>
</tr>
<tr>
<td>1.500</td>
<td>8.95</td>
<td>8.94</td>
<td>120.0</td>
<td>0.323</td>
<td>14.82</td>
<td>0.383</td>
<td>13.43</td>
<td>13.41</td>
<td>1.41</td>
<td>90.6%</td>
<td>90.5%</td>
</tr>
<tr>
<td>1.878</td>
<td>8.95</td>
<td>8.94</td>
<td>120.0</td>
<td>0.393</td>
<td>18.48</td>
<td>0.391</td>
<td>16.81</td>
<td>16.79</td>
<td>1.69</td>
<td>91.0%</td>
<td>90.9%</td>
</tr>
<tr>
<td>2.251</td>
<td>8.95</td>
<td>8.94</td>
<td>120.0</td>
<td>0.461</td>
<td>22.03</td>
<td>0.399</td>
<td>20.15</td>
<td>20.12</td>
<td>1.91</td>
<td>91.5%</td>
<td>91.3%</td>
</tr>
<tr>
<td>2.624</td>
<td>8.95</td>
<td>8.93</td>
<td>119.9</td>
<td>0.525</td>
<td>25.53</td>
<td>0.406</td>
<td>23.48</td>
<td>23.43</td>
<td>2.10</td>
<td>92.0%</td>
<td>91.8%</td>
</tr>
<tr>
<td>3.002</td>
<td>0.95</td>
<td>8.93</td>
<td>119.9</td>
<td>0.588</td>
<td>29.11</td>
<td>0.412</td>
<td>26.85</td>
<td>26.81</td>
<td>2.30</td>
<td>9.8%</td>
<td>92.1%</td>
</tr>
</tbody>
</table>
230VAC/50Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout (A)</th>
<th>Vout (V)</th>
<th>Pin (W)</th>
<th>PF</th>
<th>Pout AC/DC (W)</th>
<th>Pout USB-C (W)</th>
<th>Losses (W)</th>
<th>Efficiency AC/DC (%)</th>
<th>Efficiency USB-C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0256</td>
<td>8.95</td>
<td>8.95</td>
<td>229.7</td>
<td>0.0130</td>
<td>0.439</td>
<td>0.23</td>
<td>52.2%</td>
<td>52.2%</td>
</tr>
<tr>
<td>0.300</td>
<td>8.95</td>
<td>8.95</td>
<td>230.0</td>
<td>0.066</td>
<td>3.74</td>
<td>0.245</td>
<td>71.8%</td>
<td>71.8%</td>
</tr>
<tr>
<td>0.750</td>
<td>8.95</td>
<td>8.95</td>
<td>230.0</td>
<td>0.121</td>
<td>8.11</td>
<td>0.291</td>
<td>82.8%</td>
<td>82.8%</td>
</tr>
<tr>
<td>1.126</td>
<td>8.95</td>
<td>8.94</td>
<td>230.0</td>
<td>0.163</td>
<td>11.59</td>
<td>0.309</td>
<td>87.0%</td>
<td>86.9%</td>
</tr>
<tr>
<td>1.502</td>
<td>8.95</td>
<td>8.94</td>
<td>230.0</td>
<td>0.205</td>
<td>15.22</td>
<td>0.323</td>
<td>88.3%</td>
<td>88.2%</td>
</tr>
<tr>
<td>1.875</td>
<td>8.95</td>
<td>8.93</td>
<td>230.0</td>
<td>0.248</td>
<td>18.86</td>
<td>0.330</td>
<td>89.0%</td>
<td>88.8%</td>
</tr>
<tr>
<td>2.250</td>
<td>8.95</td>
<td>8.93</td>
<td>230.0</td>
<td>0.289</td>
<td>22.39</td>
<td>0.337</td>
<td>89.9%</td>
<td>89.7%</td>
</tr>
<tr>
<td>2.625</td>
<td>8.95</td>
<td>8.93</td>
<td>230.0</td>
<td>0.328</td>
<td>25.79</td>
<td>0.342</td>
<td>91.1%</td>
<td>90.9%</td>
</tr>
<tr>
<td>3.000</td>
<td>8.95</td>
<td>8.93</td>
<td>230.0</td>
<td>0.368</td>
<td>29.29</td>
<td>0.346</td>
<td>91.7%</td>
<td>91.5%</td>
</tr>
</tbody>
</table>

265VAC/50Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout (A)</th>
<th>Vout (V)</th>
<th>Pin (W)</th>
<th>PF</th>
<th>Pout AC/DC (W)</th>
<th>Pout USB-C (W)</th>
<th>Losses (W)</th>
<th>Efficiency AC/DC (%)</th>
<th>Efficiency USB-C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0255</td>
<td>8.95</td>
<td>8.95</td>
<td>264.4</td>
<td>0.0131</td>
<td>0.451</td>
<td>0.23</td>
<td>50.6%</td>
<td>50.6%</td>
</tr>
<tr>
<td>0.300</td>
<td>8.95</td>
<td>8.95</td>
<td>264.5</td>
<td>0.065</td>
<td>3.98</td>
<td>0.233</td>
<td>67.5%</td>
<td>67.5%</td>
</tr>
<tr>
<td>0.750</td>
<td>8.95</td>
<td>8.95</td>
<td>264.5</td>
<td>0.114</td>
<td>8.39</td>
<td>0.276</td>
<td>80.0%</td>
<td>80.0%</td>
</tr>
<tr>
<td>1.125</td>
<td>8.95</td>
<td>8.94</td>
<td>264.5</td>
<td>0.154</td>
<td>11.98</td>
<td>0.295</td>
<td>84.0%</td>
<td>84.0%</td>
</tr>
<tr>
<td>1.500</td>
<td>8.95</td>
<td>8.94</td>
<td>264.5</td>
<td>0.189</td>
<td>15.31</td>
<td>0.307</td>
<td>87.7%</td>
<td>87.6%</td>
</tr>
<tr>
<td>1.875</td>
<td>8.95</td>
<td>8.94</td>
<td>264.5</td>
<td>0.229</td>
<td>19.17</td>
<td>0.317</td>
<td>87.5%</td>
<td>87.4%</td>
</tr>
<tr>
<td>2.250</td>
<td>8.95</td>
<td>8.94</td>
<td>264.5</td>
<td>0.266</td>
<td>22.73</td>
<td>0.323</td>
<td>88.6%</td>
<td>88.5%</td>
</tr>
<tr>
<td>2.625</td>
<td>8.95</td>
<td>8.93</td>
<td>264.5</td>
<td>0.299</td>
<td>25.97</td>
<td>0.328</td>
<td>90.5%</td>
<td>90.3%</td>
</tr>
<tr>
<td>3.001</td>
<td>8.95</td>
<td>8.93</td>
<td>264.5</td>
<td>0.334</td>
<td>29.44</td>
<td>0.333</td>
<td>91.2%</td>
<td>91.0%</td>
</tr>
</tbody>
</table>

2.1.5 5V Output

![Graph showing efficiency vs. load current for different input voltages and frequencies.](chart.png)
90VAC/60Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout</th>
<th>Vout AC/DC</th>
<th>Vout USB-C</th>
<th>Vin</th>
<th>lin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout AC/DC</th>
<th>Pout USB-C</th>
<th>Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USB-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0250</td>
<td>5.00</td>
<td>5.00</td>
<td>90.0</td>
<td>0.0088</td>
<td>0.196</td>
<td>0.13</td>
<td>0.13</td>
<td>0.07</td>
<td>63.8%</td>
<td>63.8%</td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>5.01</td>
<td>5.00</td>
<td>90.1</td>
<td>0.062</td>
<td>1.82</td>
<td>0.326</td>
<td>1.50</td>
<td>1.50</td>
<td>0.32</td>
<td>82.6%</td>
<td>82.4%</td>
</tr>
<tr>
<td>0.751</td>
<td>5.01</td>
<td>5.00</td>
<td>90.1</td>
<td>0.137</td>
<td>4.42</td>
<td>0.359</td>
<td>3.76</td>
<td>3.76</td>
<td>0.67</td>
<td>85.1%</td>
<td>85.0%</td>
</tr>
<tr>
<td>1.125</td>
<td>5.00</td>
<td>5.00</td>
<td>90.0</td>
<td>0.195</td>
<td>6.54</td>
<td>0.374</td>
<td>5.63</td>
<td>5.63</td>
<td>0.92</td>
<td>86.0%</td>
<td>86.0%</td>
</tr>
<tr>
<td>1.501</td>
<td>5.00</td>
<td>4.99</td>
<td>90.0</td>
<td>0.251</td>
<td>8.70</td>
<td>0.386</td>
<td>7.51</td>
<td>7.49</td>
<td>1.21</td>
<td>86.3%</td>
<td>86.1%</td>
</tr>
<tr>
<td>1.875</td>
<td>5.00</td>
<td>4.99</td>
<td>90.0</td>
<td>0.305</td>
<td>10.87</td>
<td>0.395</td>
<td>9.38</td>
<td>9.36</td>
<td>1.51</td>
<td>86.2%</td>
<td>86.1%</td>
</tr>
<tr>
<td>2.250</td>
<td>5.00</td>
<td>4.99</td>
<td>90.0</td>
<td>0.354</td>
<td>12.84</td>
<td>0.403</td>
<td>11.25</td>
<td>11.23</td>
<td>1.61</td>
<td>87.6%</td>
<td>87.4%</td>
</tr>
<tr>
<td>2.625</td>
<td>5.00</td>
<td>4.98</td>
<td>90.0</td>
<td>0.403</td>
<td>14.87</td>
<td>0.411</td>
<td>13.13</td>
<td>13.07</td>
<td>1.80</td>
<td>88.3%</td>
<td>87.9%</td>
</tr>
<tr>
<td>2.999</td>
<td>5.00</td>
<td>4.98</td>
<td>90.0</td>
<td>0.450</td>
<td>16.94</td>
<td>0.419</td>
<td>15.00</td>
<td>14.94</td>
<td>2.00</td>
<td>88.5%</td>
<td>88.2%</td>
</tr>
</tbody>
</table>

120VAC/60Hz Load Increasing

<table>
<thead>
<tr>
<th>Iout</th>
<th>Vout AC/DC</th>
<th>Vout USB-C</th>
<th>Vin</th>
<th>lin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout AC/DC</th>
<th>Pout USB-C</th>
<th>Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USB-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0247</td>
<td>5.00</td>
<td>5.00</td>
<td>119.9</td>
<td>0.0077</td>
<td>0.198</td>
<td>0.12</td>
<td>0.12</td>
<td>0.07</td>
<td>62.4%</td>
<td>62.4%</td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>5.01</td>
<td>5.00</td>
<td>120.1</td>
<td>0.050</td>
<td>1.85</td>
<td>0.306</td>
<td>1.50</td>
<td>1.50</td>
<td>0.35</td>
<td>81.2%</td>
<td>81.1%</td>
</tr>
<tr>
<td>0.750</td>
<td>5.00</td>
<td>5.00</td>
<td>120.1</td>
<td>0.111</td>
<td>4.48</td>
<td>0.335</td>
<td>3.75</td>
<td>3.75</td>
<td>0.73</td>
<td>83.7%</td>
<td>83.7%</td>
</tr>
<tr>
<td>1.125</td>
<td>5.00</td>
<td>5.00</td>
<td>120.1</td>
<td>0.158</td>
<td>6.60</td>
<td>0.348</td>
<td>5.63</td>
<td>5.63</td>
<td>0.98</td>
<td>85.2%</td>
<td>85.2%</td>
</tr>
<tr>
<td>1.500</td>
<td>5.00</td>
<td>4.99</td>
<td>120.1</td>
<td>0.202</td>
<td>8.74</td>
<td>0.360</td>
<td>7.50</td>
<td>7.49</td>
<td>1.26</td>
<td>85.8%</td>
<td>85.6%</td>
</tr>
<tr>
<td>1.875</td>
<td>5.00</td>
<td>4.99</td>
<td>120.1</td>
<td>0.246</td>
<td>10.89</td>
<td>0.370</td>
<td>9.38</td>
<td>9.36</td>
<td>1.53</td>
<td>86.1%</td>
<td>85.9%</td>
</tr>
<tr>
<td>2.250</td>
<td>5.00</td>
<td>4.99</td>
<td>120.1</td>
<td>0.284</td>
<td>12.81</td>
<td>0.376</td>
<td>11.25</td>
<td>11.23</td>
<td>1.58</td>
<td>87.8%</td>
<td>87.6%</td>
</tr>
<tr>
<td>2.625</td>
<td>5.00</td>
<td>4.98</td>
<td>120.1</td>
<td>0.324</td>
<td>14.88</td>
<td>0.383</td>
<td>13.13</td>
<td>13.07</td>
<td>1.81</td>
<td>88.2%</td>
<td>87.9%</td>
</tr>
<tr>
<td>3.000</td>
<td>5.00</td>
<td>4.98</td>
<td>120.1</td>
<td>0.363</td>
<td>16.88</td>
<td>0.430</td>
<td>15.00</td>
<td>14.94</td>
<td>1.94</td>
<td>88.9%</td>
<td>88.5%</td>
</tr>
</tbody>
</table>
230VAC/50Hz

<table>
<thead>
<tr>
<th>Load Increasing</th>
<th>Iout AC/DC</th>
<th>Vout AC/DC</th>
<th>Vout USB-C</th>
<th>Vin</th>
<th>lin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout AC/DC</th>
<th>Pout USB-C</th>
<th>Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0249</td>
<td>5.00</td>
<td>5.00</td>
<td>230.0</td>
<td>0.0091</td>
<td>0.252</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
<td>49.4%</td>
<td>49.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.301</td>
<td>5.00</td>
<td>5.00</td>
<td>230.2</td>
<td>0.047</td>
<td>2.39</td>
<td>0.220</td>
<td>1.51</td>
<td>1.51</td>
<td>0.89</td>
<td>63.0%</td>
<td>63.0%</td>
<td></td>
</tr>
<tr>
<td>0.751</td>
<td>5.00</td>
<td>5.00</td>
<td>230.2</td>
<td>0.082</td>
<td>5.03</td>
<td>0.266</td>
<td>3.76</td>
<td>3.76</td>
<td>1.28</td>
<td>74.7%</td>
<td>74.7%</td>
<td></td>
</tr>
<tr>
<td>1.126</td>
<td>5.00</td>
<td>4.99</td>
<td>230.2</td>
<td>0.109</td>
<td>7.14</td>
<td>0.286</td>
<td>5.63</td>
<td>5.62</td>
<td>1.52</td>
<td>78.9%</td>
<td>78.7%</td>
<td></td>
</tr>
<tr>
<td>1.501</td>
<td>5.00</td>
<td>4.99</td>
<td>230.2</td>
<td>0.134</td>
<td>9.26</td>
<td>0.299</td>
<td>7.51</td>
<td>7.49</td>
<td>1.77</td>
<td>81.0%</td>
<td>80.9%</td>
<td></td>
</tr>
<tr>
<td>1.875</td>
<td>5.00</td>
<td>4.99</td>
<td>230.2</td>
<td>0.160</td>
<td>11.41</td>
<td>0.309</td>
<td>9.38</td>
<td>9.36</td>
<td>2.05</td>
<td>82.2%</td>
<td>82.0%</td>
<td></td>
</tr>
<tr>
<td>2.250</td>
<td>5.00</td>
<td>4.99</td>
<td>230.2</td>
<td>0.181</td>
<td>13.15</td>
<td>0.316</td>
<td>11.25</td>
<td>11.23</td>
<td>1.92</td>
<td>85.6%</td>
<td>85.4%</td>
<td></td>
</tr>
<tr>
<td>2.625</td>
<td>5.00</td>
<td>4.98</td>
<td>230.2</td>
<td>0.205</td>
<td>15.14</td>
<td>0.346</td>
<td>13.13</td>
<td>13.07</td>
<td>2.07</td>
<td>86.7%</td>
<td>86.3%</td>
<td></td>
</tr>
<tr>
<td>2.998</td>
<td>5.00</td>
<td>4.98</td>
<td>230.2</td>
<td>0.228</td>
<td>17.10</td>
<td>0.327</td>
<td>14.99</td>
<td>14.93</td>
<td>2.17</td>
<td>87.7%</td>
<td>87.3%</td>
<td></td>
</tr>
</tbody>
</table>

265VAC/50Hz

<table>
<thead>
<tr>
<th>Load Increasing</th>
<th>Iout AC/DC</th>
<th>Vout AC/DC</th>
<th>Vout USB-C</th>
<th>Vin</th>
<th>lin</th>
<th>Pin</th>
<th>PF</th>
<th>Pout AC/DC</th>
<th>Pout USB-C</th>
<th>Losses</th>
<th>Efficiency AC/DC</th>
<th>Efficiency USBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0243</td>
<td>5.00</td>
<td>5.00</td>
<td>264.4</td>
<td>0.0106</td>
<td>0.261</td>
<td>0.12</td>
<td>0.12</td>
<td>0.14</td>
<td>46.6%</td>
<td>46.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>5.01</td>
<td>5.00</td>
<td>265.4</td>
<td>0.044</td>
<td>2.49</td>
<td>0.212</td>
<td>1.50</td>
<td>1.50</td>
<td>0.99</td>
<td>60.4%</td>
<td>60.2%</td>
<td></td>
</tr>
<tr>
<td>0.750</td>
<td>5.01</td>
<td>5.00</td>
<td>265.4</td>
<td>0.079</td>
<td>5.32</td>
<td>0.252</td>
<td>3.76</td>
<td>3.75</td>
<td>1.57</td>
<td>70.6%</td>
<td>70.5%</td>
<td></td>
</tr>
<tr>
<td>1.125</td>
<td>5.01</td>
<td>5.00</td>
<td>265.4</td>
<td>0.104</td>
<td>7.44</td>
<td>0.270</td>
<td>5.64</td>
<td>5.63</td>
<td>1.82</td>
<td>75.8%</td>
<td>75.6%</td>
<td></td>
</tr>
<tr>
<td>1.500</td>
<td>5.01</td>
<td>4.99</td>
<td>265.4</td>
<td>0.127</td>
<td>9.55</td>
<td>0.284</td>
<td>7.52</td>
<td>7.49</td>
<td>2.07</td>
<td>78.7%</td>
<td>78.4%</td>
<td></td>
</tr>
<tr>
<td>1.876</td>
<td>5.01</td>
<td>4.99</td>
<td>265.4</td>
<td>0.149</td>
<td>11.68</td>
<td>0.318</td>
<td>9.40</td>
<td>9.36</td>
<td>2.32</td>
<td>80.5%</td>
<td>80.1%</td>
<td></td>
</tr>
<tr>
<td>2.250</td>
<td>5.01</td>
<td>4.99</td>
<td>265.4</td>
<td>0.170</td>
<td>13.61</td>
<td>0.325</td>
<td>11.27</td>
<td>11.23</td>
<td>2.38</td>
<td>82.8%</td>
<td>82.5%</td>
<td></td>
</tr>
<tr>
<td>2.626</td>
<td>5.01</td>
<td>4.98</td>
<td>265.4</td>
<td>0.188</td>
<td>15.34</td>
<td>0.307</td>
<td>13.16</td>
<td>13.08</td>
<td>2.26</td>
<td>85.8%</td>
<td>85.3%</td>
<td></td>
</tr>
<tr>
<td>3.000</td>
<td>5.01</td>
<td>4.98</td>
<td>265.4</td>
<td>0.208</td>
<td>17.15</td>
<td>0.312</td>
<td>15.03</td>
<td>14.94</td>
<td>2.21</td>
<td>87.6%</td>
<td>87.1%</td>
<td></td>
</tr>
</tbody>
</table>

2.1.6 Standby

<table>
<thead>
<tr>
<th>Vin RMS</th>
<th>Line Frequency</th>
<th>Pin (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V</td>
<td>60</td>
<td>23.5</td>
</tr>
<tr>
<td>230V</td>
<td>50</td>
<td>33.2</td>
</tr>
</tbody>
</table>
2.2 Thermal Images
All images captured open frame, after a 30-minute warm up period.

2.2.1 90VAC/60Hz Input, 20V/3.25A Output
2.2.2 120VAC/60Hz Input, 20V/3.25A Output

[Thermal image with temperature readings]

Bx1 Max 80.5 °C

Bx1 Max 83.3 °C
2.2.3 230VAC/50Hz Input, 20V/3.25A Output

[Thermal images showing temperature distribution]
2.2.4 265VAC/50Hz Input, 20V/3.25A Output
2.3 Switching Waveforms

2.3.1 Primary Switch Node, 265VAC/50Hz Input, 20V/3.25A Output

2.3.2 Primary Switch Node, 265VAC/50Hz Input, 20V/0A Output
2.3.3 Vds of SR FET (Q7), 265VAC/50Hz Input, 20V/3.25A Output

2.3.4 Vds of SR FET (Q7), 265VAC/50Hz Input, 20V/0A Output
2.4 Output Voltage Ripple at Maximum Load Current

2.4.1 5V/3A Output, 120VAC/60Hz Input

2.4.2 5V/3A Output, 230VAC/50Hz Input
2.4.3 9V/3A Output, 120VAC/60Hz Input

2.4.4 9V/3A Output, 230VAC/50Hz Input
2.4.5 15V/3A Output, 120VAC/60Hz Input

2.4.6 15V/3A Output, 230VAC/50Hz Input
2.4.7 20V/3.25A Output, 120VAC/60Hz Input

2.4.8 20V/3.25A Output, 230VAC/50Hz Input
2.5 Output Voltage Ripple during Burst Mode

2.5.1 5V/2A Output, 120VAC/60Hz Input

2.5.2 5V/2A Output, 230VAC/50Hz Input
2.5.3 9V/2A Output, 120VAC/60Hz Input

2.5.4 9V/2A Output, 230VAC/50Hz Input
2.5.5 15V/1.6A Output, 120VAC/60Hz Input

2.5.6 15V/1.8A Output, 230VAC/50Hz Input
2.5.7 20V/1.5A Output, 120VAC/60Hz Input

2.5.8 20V/1.5A Output, 230VAC/50Hz Input
2.6 Bode Plot

2.6.1 5V/3A Output

Plot #1 - 90VAC/60Hz Input
Plot #2 – 265VAC/50Hz Input

2.6.2 9V/3A Output

Plot #1 - 90VAC/60Hz Input
Plot #2 – 265VAC/50Hz Input
2.6.3 15V/3A Output

2.6.4 20V/3.25A Output
2.7 5V Output Load Transients

2.7.1 5V Output, 0A to 750mA Load Step, 120VAC/60Hz Input

![Graph showing 5V Output Load Transients for 120VAC/60Hz Input]

2.7.2 5V Output, 0A to 750mA Load Step, 230VAC/50Hz Input

![Graph showing 5V Output Load Transients for 230VAC/50Hz Input]
2.7.3 5V Output, 750mA to 1.5A Load Step, 120VAC/60Hz Input

2.7.4 5V Output, 750mA to 1.5A Load Step, 230VAC/50Hz Input
2.7.5 5V Output, 1.5A to 2.25A Load Step, 120VAC/60Hz Input

2.7.6 5V Output, 1.5A to 2.25A Load Step, 230VAC/50Hz Input
2.7.7 5V Output, 2.25A to 3.0A Load Step, 120VAC/60Hz Input

2.7.8 5V Output, 2.25A to 3.0A Load Step, 230VAC/50Hz Input
2.8 9V Output Load Transients

2.8.1 9V Output, 0A to 750mA Load Step, 120VAC/60Hz Input

2.8.2 9V Output, 0A to 750mA Load Step, 230VAC/50Hz Input
2.8.3 9V Output, 750mA to 1.5A Load Step, 120VAC/60Hz Input

2.8.4 9V Output, 750mA to 1.5A Load Step, 230VAC/50Hz Input
2.8.5 9V Output, 1.5A to 2.25A Load Step, 120VAC/60Hz Input

2.8.6 9V Output, 1.5A to 2.25A Load Step, 230VAC/50Hz Input
2.8.7 9V Output, 2.25A to 3.0A Load Step, 120VAC/60Hz Input

2.8.8 9V Output, 2.25A to 3.0A Load Step, 230VAC/50Hz Input
2.9 15V Output Load Transients

2.9.1 15V Output, 0A to 750mA Load Step, 120VAC/60Hz Input

2.9.2 15V Output, 0A to 750mA Load Step, 230VAC/50Hz Input
2.9.3 15V Output, 750mA to 1.5A Load Step, 120VAC/60Hz Input

2.9.4 15V Output, 750mA to 1.5A Load Step, 230VAC/50Hz Input
2.9.5 15V Output, 1.5A to 2.25A Load Step, 120VAC/60Hz Input

2.9.6 15V Output, 1.5A to 2.25A Load Step, 230VAC/50Hz Input
2.9.7 15V Output, 2.25A to 3.0A Load Step, 120VAC/60Hz Input

2.9.8 15V Output, 2.25A to 3.0A Load Step, 230VAC/50Hz Input
2.10 20V Output Load Transients

2.10.1 20V Output, 0A to 750mA Load Step, 120VAC/60Hz Input

2.10.2 20V Output, 0A to 750mA Load Step, 230VAC/50Hz Input
2.10.3 20V Output, 750mA to 1.5A Load Step, 120VAC/60Hz Input

2.10.4 20V Output, 750mA to 1.5A Load Step, 230VAC/50Hz Input
2.10.5 20V Output, 1.5A to 2.25A Load Step, 120VAC/60Hz Input

2.10.6 20V Output, 1.5A to 2.25A Load Step, 230VAC/50Hz Input
2.10.7 20V Output, 2.25A to 3.25A Load Step, 120VAC/60Hz Input

2.10.8 20V Output, 2.25A to 3.25A Load Step, 230VAC/50Hz Input
2.11 Startup
Output voltage measured at connector when USB-C cable inserted with no load.

2.12 Voltage Transitions
2.12.1 5V to 9V, 120VAC/60Hz Input, No Load
2.12.2 5V to 9V, 230VAC/50Hz Input, No Load

2.12.3 5V to 15V, 120VAC/60Hz Input, No Load
2.12.4 5V to 15V, 230VAC/50Hz Input, No Load

2.12.5 5V to 20V, 120VAC/60Hz Input, No Load
2.12.6 5V to 20V, 230VAC/50Hz Input, No Load

2.12.7 9V to 5V, 120VAC/60Hz Input, No Load
2.12.8 9V to 5V, 230VAC/50Hz Input, No Load

2.12.9 9V to 15V, 120VAC/60Hz Input, No Load
2.12.10 9V to 15V, 230VAC/50Hz Input, No Load

2.12.11 9V to 20V, 120VAC/60Hz Input, No Load
2.12.12 9V to 20V, 230VAC/50Hz Input, No Load

2.12.13 15V to 5V, 120VAC/60Hz Input, No Load
2.12.14 15V to 5V, 230VAC/50Hz Input, No Load

2.12.15 15V to 9V, 120VAC/60Hz Input, No Load
2.12.16 15V to 9V, 230VAC/50Hz Input, No Load

2.12.17 15V to 20V, 120VAC/60Hz Input, No Load
2.12.18 15V to 20V, 230VAC/50Hz Input, No Load

2.12.19 20V to 5V, 120VAC/60Hz Input, No Load
2.12.20 20V to 5V, 230VAC/50Hz Input, No Load

2.12.21 20V to 9V, 120VAC/60Hz Input, No Load
2.12.22 20V to 9V, 230VAC/50Hz Input, No Load

2.12.23 20V to 15V, 120VAC/60Hz Input, No Load
2.12.24 20V to 15V, 230VAC/50Hz Input, No Load

2.13 Conducted EMI
Results below are using a peak detector with a maximum-hold setting, comparing results to the quasi-peak limit lines. Actual quasi-peak results will be lower than the peak, max-hold results shown here.
2.13.1 120VAC/60Hz Input, 20V/3.25A Output

Peak Detector, Max-Hold
120VAC/60Hz Input; 20Vout/3.25A; Un-earthed Load

Class B QPK
Line
Neutral
2.13.2 230VAC/50Hz Input, 20V/3.25A Output

Peak Detector, Max-Hold
230VAC/50Hz Input; 20Vout/3.25A; Un-earthed Load

Frequency (MHz)
2.13.3 120VAC/60Hz Input, 15V/3A Output

Peak Detector, Max-Hold
120VAC/60Hz Input; 15Vout/3A; Un-earthed Load

- Class B QPK
- Line
- Neutral

Frequency (MHz)
2.13.4 230VAC/50Hz Input, 15V/3A Output

Peak Detector, Max-Hold
230VAC/50Hz Input; 15Vout/3A; Un-earthed Load

- Class B QPK
- Line
- Neutral
2.13.5 120VAC/60Hz Input, 9V/3A Output

Peak Detector, Max-Hold
120VAC/60Hz Input; 9Vout/3A; Un-earthed Load
2.13.6 230VAC/50Hz Input, 9V/3A Output

Peak Detector, Max-Hold
230VAC/50Hz Input; 9Vout/3A; Un-earthed Load

![Graph showing peak detector response for 230VAC/50Hz input, 9V/3A output.]
2.13.7 120VAC/60Hz Input, 5V/3A Output

Peak Detector, Max-Hold

120VAC/60Hz Input; 5Vout/3A; Un-earthed Load

![Graph of Peak Detector, Max-Hold](image)

- **Class B QPK**
- **Line**
- **Neutral**

Frequency (MHz) vs. dBmV graph showing the performance of the peak detector in a 120VAC/60Hz input configuration.
2.13.8 230VAC/50Hz Input, 5V/3A Output

Peak Detector, Max-Hold
230VAC/50Hz Input; 5Vout/3A; Un-earthed Load