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TI Designs – Precision Circuit Description

TI Designs – Precision are analog solutions created 
by TI’s analog experts.  Verified Designs offer the 
theory, component selection, simulation, complete 
PCB schematic & layout, bill of materials, and 
measured performance of useful circuits.  Circuit 
modifications that help to meet alternate design goals 
are also discussed. 

This design can be used to drive capacitive loads 
such as cable shields, reference buffers, MOSFET 
gates, and diodes. The circuit uses an isolation 
resistor (Riso) to stabilize the output of an op amp. Riso 
modifies the open loop gain of the system to ensure 
the circuit has sufficient phase margin.  The OPA192 
is highlighted because it can drive large capacitive 
loads using a small isolation resistor.
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1 Design Summary  

The design requirements are as follows:  

 Supply Voltage: 30 V (+/-15 V)  

 Capacitive Loads: 100 pF, 1000 pF, 0.01 µF, 0.1 µF, 1 µF 

The design goals and performance are summarized in Table 1.  Figure 1 depicts the transient response of 
the OPA192 driving a 0.1 µF load capacitance (Cload) using an isolation resistor (Riso) of 6.2 Ω to obtain a 
percent overshoot (PO) of 23.1% and corresponding phase margin (PM) of 45.2°. 

 

Table 1: Comparison of Design Goals and Measured Performance 

OPA192 

Capacitive Load 100 pF 1000 pF 0.01 µF 0.1 µF 1 µF 

Phase Margin 
Goal 

45° 60° 45° 60° 45° 60° 45° 60° 45° 60° 

Riso (Ω) 47.0 360.0 24.0 100.0 20.0 51.0 6.2 15.8 2.0 4.7 

Measured 
Overshoot (%) 

23.2 10.4 22.5 9.0 22.1 8.7 23.1 8.6 21.0 8.6 

Calculated PM 45.1° 58.1° 45.8° 59.7° 46.1° 60.1° 45.2° 60.2° 47.2° 60.2° 

 

 

Figure 1: OPA192 Transient Response, Cload=0.1 µF, Riso=6.2 Ω, PM=45.2º 
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2 Theory of Operation 

Figure 2 depicts a unity-gain buffer driving a capacitive load.  Equation (1) shows the transfer function for 
the circuit in Figure 2.  Not depicted in Figure 2 is the open-loop output impedance of the op amp, Ro. 
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Figure 2: Unity-Gain Buffer with Riso Stability Compensation 
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The transfer function in Equation (1) has a pole and a zero.  The frequency of the pole (fp) is determined 
by (Ro+Riso) and Cload.  Riso and Cload determine the frequency of the zero (fz).  A stable system is obtained 
by selecting Riso such that the rate of closure (ROC) between the open loop gain (Aol) and 1/β is 
20 dB/decade. [1]  Figure 3 depicts the concept.  For further information, please consult References [1]-[3].  
Note that the 1/β curve for a unity-gain buffer is 0 dB. 
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Figure 3: Unity-gain Amplifier with Riso Compensation 

ROC stability analysis is typically simulated.  The validity of the analysis depends on multiple factors, 
especially the accurate modeling of the open-loop output impedance of the amplifier (Ro).   
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In addition to simulating the ROC, a robust stability analysis includes a measurement of the circuit’s 
percent overshoot and ac gain peaking using a function generator, oscilloscope, and gain/phase analyzer.  
Phase margin is then calculated from these measurements.  Table 2 shows the percent overshoot and ac 
gain peaking that correspond to phase margins of 45° and 60°.  The theory behind these values is in 
Appendix B and the corresponding software simulation is located in the design file. 

Table 2: Phase Margin vs. Overshoot and AC Gain Peaking 

Phase Margin Overshoot (%) AC Gain Peaking (dB) 

45° 23.3 2.35 

60 8.8 0.28 

3 Component Selection 

This Precision Design intends to provide Riso values for a variety of op amps and capacitive loads.  Table 3 
lists the op amps and some of their characteristics.  The OPA192 is featured because of its ability to drive 
large capacitive loads using a small isolation resistor. 

Table 3: Selected Op Amps 

Op Amp 
Vsupply 

Range (V) 

IQ @ 25ºC 

(max, mA) 

VOS @ 25ºC  

(max, µV) 

VOS Drift 

(max, µV/C) 

Vn @ 25ºC 

(typ, nV/√Hz) 

BW  

(typ, MHz) 
Notes 

OPA192 4.5 – 36 1.2 25 0.5 5.5 10 RRI/O, Low Noise 

OPA140 4.5 – 36 2 120 1 5.1 11 RRO, JFET input, Low Noise 

OPA170 2.7 – 36 0.145 1800 2 19 1.2 RRO, Value Line 

OPA171 2.7 – 36 0.595 1800 2 14 3.0 RRO, Value Line 

OPA172 4.5 – 36 1.8 1000 1.5 7 10 RRO, Low Power 

OPA180 4.0 – 36 0.525 75 0.35 10 2 RRO, Low Noise, Zero-Drift 

OPA209 4.5 – 36 2.5 150 3 2.2 18 RRO, Low Noise 

OPA320 1.8 – 5.5 1.6 150 5 8.5 20 RRI/O, Low Noise 

OPA340 2.7 – 5.5 0.95 500 2.5 (typ) 25 5.5 RRI/O. SR=6V/µs 

OPA350 2.7 – 5.5 7.5 500 4 (typ) 15 38 RRI/O, SR=22V/µs 

OPA365 2.2 – 5.5 5 200 1 (typ) 13 50 RRI/O, SR=25V/µs 
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4 Simulation 

ROC analysis (or ac analysis) is used to determine an approximate value of Riso.  Figure 4 depicts the 
TINA-TI™ schematic topology used in ROC analysis.  This topology is thoroughly discussed in [2].   
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Figure 4: TINA-TI™ Circuit used for ROC Stability Analysis 

Figure 5 shows the corresponding ROC analysis of Voa in Figure 4 with SW1 closed.  Note that the ROC is 
~40 dB/decade and the phase margin is only 8.4º.  While a phase margin of 8.4º is technically stable, it is 
not a robust design.  Variation in process and environmental conditions may reduce the phase margin 
such that the system becomes unstable.  Therefore, a phase margin of at least 45º is recommended. 
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Figure 5: OPA192, Cload=0.1 µF, Riso=0.0 Ω, PM=8.4º 
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Placing a zero at the frequency where Aol=20 dB, as shown in Figure 6, adds ~90º of phase margin. [3]  
Further analysis will refine the location of the zero to reduce the value of Riso while maintaining a stable 
system. 
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Figure 6: Frequency of Zero for Increased Phase Margin 

Riso is calculated as shown in Equation (2).  

 





 74.23
F1.0kHz04.672

1

Cf2

1
R

loadz
iso  (2)  

Setting Riso in Figure 4 to 23.7 Ω (nearest 1% standard value) and opening SW1 yields the ROC analysis 
shown in Figure 7.  Notice the ROC and phase margin indicate a stable system. 
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Figure 7: OPA192, Cload=0.1 µF, Riso=23.7 Ω, PM=105.5º 

One drawback to stabilizing capacitive loads using an isolation resistor is dc accuracy. [2]  If the op amp is 
required to supply significant current, a voltage drop will develop across Riso.  Therefore it is recommended 
to minimize Riso to increase dc accuracy. 

However, reducing Riso will also reduce phase margin.  45° and 60° of phase margin are commonly used 
in practical designs. [1] 

The values of Riso that correspond to phase margins of ~45° and ~60° were determined empirically and 
are depicted in Figure 8 and Figure 9, respectively. 
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Figure 8: OPA192, Cload=0.1 µF, Riso=4.87 Ω, PM=44.7° 
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Figure 9: OPA192, Cload=0.1 µF, Riso=7.15 Ω, PM=59.5º 
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Component tolerance also affects the phase margin of the system.  The simulation in Figure 10 shows a 
reduction in phase margin of 1.3º given Riso and Cload tolerances of 1% and 5%, respectively.  Appendix D 
contains additional simulations of component tolerance on phase margin. 

 

 

Figure 10: OPA192, Cload=100 nF-5%, Riso=4.87 Ω-1%, PM=43.7º 
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5 PCB Design 

The PCB schematic and bill of materials can be found in Appendix A.   

5.1 PCB Layout 

The PCB shown in Figure 11 is composed of two layers with signals and power routed on the top layer.  
The remainder of the top layer was poured with ground copper and stitched to a solid ground plane on the 
bottom layer.  The bottom layer is a solid ground plane to ensure a low impedance path for return currents.  
General guidelines for PCB layout were followed.  For example, input signal trace lengths were kept to a 
minimum and decoupling capacitors were placed close to the power pins of the device. 

 

Figure 11: PCB Layout 
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6 Verification & Measured Performance 

6.1 Transient Response 

Figure 12 shows the transient response to a 10 mVpp step input where Cload=0.1 µF and Riso=4.87 Ω.  The 
overshoot measured at Vopa is 29.62%, which corresponds to a phase margin of 39.4°. The equations in 
Appendix B were used to calculate phase margin given percent overshoot. 

 

Figure 12: OPA192, Cload=0.1 µF, Riso=4.87 Ω, PM=39.4° 

 

Many factors can cause this discrepancy, including passive element tolerances, Aol and Ro variation due to 
process shifts, and measurement/PCB non-idealities. 

 

To achieve a phase margin of ~45º, Riso was increased to 6.2 Ω.  The resulting transient response is shown in 
Figure 13.  

 

Figure 13: OPA192, Cload=0.1 µF, Riso=6.2 Ω, PM=45.2° 



  

 www.ti.com 

12 Capacitive Load Drive Solution using an Isolation Resistor TIDU032C-December 2013-Revised November 2014 
Copyright © 2013, Texas Instruments Incorporated 

For some scenarios (e.g. large capacitive loads), the magnitude of the input stimulus was reduced until the 
output response had a waveform similar to Figure 13.  For more information, please refer to [4]. 

6.2 AC Response 

Figure 14 depicts the ac response of the OPA192 when Cload=0.1 µF and Riso=6.2 Ω.  The ac gain peaking 
is 2.5 dB, which corresponds to a phase margin of 44.2°.  These results correlate with the phase margin 
reported in Figure 8. 

 

 

Figure 14: OPA192, Cload=0.1 µF, Riso=6.2 Ω, PM=44.2º 
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6.3 Riso vs. Cload 

Using the described methodology, the values of Riso that yield phase margins of 45º and 60º for various 
capacitive loads were determined.  The results are shown in Figure 15.   

 

Figure 15: OPA192, Riso vs. Cload 

Additional Riso vs. Cload graphs for various op amps can be found in Appendix C. 

It is sometimes desirable to know the phase margin for a capacitive load without Riso compensation.  
Figure 16 depicts the phase margin for a variety of capacitive loads where Riso=0 Ω.  Note that the 
OPA192 can deliver reasonable PM for larger capacitive loads than most op amps. 

 

Figure 16: OPA192, PM vs. Cload, Riso=0 Ω 
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7 Modifications 

As mentioned earlier, one drawback to Riso compensation is dc accuracy.  One alternative is ‘Riso with dual 
feedback’ compensation, as shown in Figure 17.  This technique has an additional feedback path that 
corrects for the voltage drop across Riso.  The design of this compensation technique is discussed in 
references [1]-[3]. 
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Figure 17: Riso with Dual Feedback 
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Appendix A.  

A.1 Electrical Schematic  

 

Figure A-1: Electrical Schematic  
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A.2 Bill of Materials 

 

  QTY Designator Value Description Manufacturer Manufacturer PN DigiKey PN 

1 1 U1 OPA192 Op Amp, SOIC-8 
Texas 
Instruments 

    

2 1 Riso Various RES, 0.25W, 1206 Various Various Various 

3 1 Cload Various CAP, CERM, 1206 Various Various Various 

4 1 TP6 Vout TEST POINT PC COMPACT .063"D WHT Keystone 5007 5007K-ND 

5 1 TP5 Vopa TEST POINT PC COMPACT .063"D WHT Keystone 5007 5007K-ND 

6 1 TP4 Input TEST POINT PC COMPACT .063"D YLW Keystone 5009 5009K-ND 

7 2 TP1, TP3 VCC, -VCC TEST POINT PC COMPACT .063"D RED Keystone 5005 5005K-ND 

8 4 
TP2, TP7, TP8, 
TP9 

GND TEST POINT PC COMPACT .063"D BLK Keystone 5006 5006K-ND 

9 1 R2 9.76 RES, 9.76 ohm, 1%, 0.25W, 1206 Vishay-Dale CRCW12069R76FKEA 541-9.76FFCT-ND 

10 1 R1 40.2 RES, 40.2 ohm, 1%, 0.25W, 1206 Vishay-Dale CRCW120640R2FKEA 541-40.2FCT-ND 

11 2 J4, J5 Input, Vopa CONN BNC JACK R/A 50 OHM PCB 
TE 
Connectivity 

1-1337543-0 A97553-ND 

12 3 J1, J2, J3 
VCC, GND, 
-VCC 

JACK NON-INSULATED .218" Keystone 575-4 575-4K-ND 

13 2 C9, C10 100pF 
CAP, CERM, 100pF, 100V, +/-5%, 
C0G/NP0, 1206 

AVX 12061A101JAT2A 478-1444-1-ND 

14 2 C5, C6 10uF 
CAP, TA, 10uF, 25V, +/-10%, 0.5 ohm, 
SMD 

AVX TPSC106K025R0500 478-1762-1-ND 

15 2 C3, C4 1uF 
CAP, CERM, 1uF, 100V, +/-10%, X7R, 
1206 

MuRata GRM31CR72A105KA01L 490-3909-1-ND 

16 4 C1, C2, C7, C8 0.1uF 
CAP, CERM, 0.1uF, 100V, +/-20%, X7R, 
1206 

AVX 12061C104MAT2A 478-3786-1-ND 

17 4 
U94, U95, U96, 
U97 

N/A MACHINE SCREW PAN PHILLIPS 4-40 B&F Fastener PMSSS 440 0025 PH H703-ND 

18 4 
U90, U91, U92, 
U93 

N/A STANDOFF HEX 4-40THR ALUM 1L" Keystone 2205 2205K-ND 

Figure A-2: Bill of Materials 
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Appendix B.  

B.1 Percent Overshoot and AC Gain Peaking vs. Phase Margin 

Percent overshoot and ac gain peaking are related to phase margin (φm) via damping ratio (ζ).  
Equation (3) and Figure 18 depict the relationship between ζ and phase margin. 

 

 m ( )
180


atan 2 

1

4 
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(3)  

where  0.0 0.001 0.707
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Figure 18: Damping Ratio vs. Phase Margin 
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Percent overshoot and ac gain peaking relate to phase margin as shown by Equation(5), Equation (6), and 
Figure 19. 

 PO ( ) 100 exp
1  

1 
2













 

(5)  

 GP ( ) 20 log 2
Q ( )

2

4 Q ( )
2
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









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(6)  

where Q ( )
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Figure 19: PO and GP vs. Phase Margin 

Calculate percent overshoot and ac gain peaking (in dB) for 45° of phase margin as follows: 

 Given  0
 

(8)   
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(9) 

 45 Find ( ) 45 0.42
 

(10) 

 PO45 100 exp
 45

1 45
2


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


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

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(11) 

 GP45 20 log 2
Q 45 

2

4 Q 45 
2

 1













 2.35

 

(12) 

Repeat the calculations to determine percent overshoot and ac gain peaking for 60° of phase margin.   
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B.2 Phase Margin vs. Percent Overshoot 

After measuring the percent overshoot of a transient analysis, Equations 13 to 15 can be used to calculate 
the corresponding phase margin. 

 

 
 

 
(13)   

 

 

 

(14) 

 
 

 

(15) 

 

PO 23.321



ln
PO

100












2

ln
PO

100

















2



0.42

m
180


atan 2 

1

4 
4

 1 2 
2
























45
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Appendix C.  

All measured data values can be found in the design file archive.  If no data points exist for 100pF 
scenario, the amplifier does not require an isolation resistor for stable operation.  If no data points exist for 
1µF scenario, the isolation resistor required for stable operation is less than 1 Ω. 

C.1 OPA140 

 

Figure 20: OPA140, Riso vs. Cload 

C.2 OPA170 

 

Figure 21: OPA170, Riso vs. Cload 
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C.3 OPA171 

 

Figure 22: OPA171, Riso vs. Cload 

C.4 OPA172 

 

Figure 23: OPA172, Riso vs. Cload 
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C.5 OPA180 

 

Figure 24: OPA180, Riso vs. Cload 

C.6 OPA209 

 

Figure 25: OPA209, Riso vs. Cload 
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C.7 OPA320 

 

Figure 26: OPA320, Riso vs. Cload 

 

C.8 OPA340 

 

Figure 27: OPA340, Riso vs. Cload 
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C.9 OPA350 

 

Figure 28: OPA350, Riso vs. Cload 

 

C.10 OPA365 

 

Figure 29: OPA365, Riso vs. Cload 
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Appendix D. Passive Tolerance Simulations 

 

 

Figure 30: OPA192, Cload=100 nF+5%, Riso=4.87 Ω-1%, PM=44.94º 

 

Figure 31: OPA192, Cload=100 nF-5%, Riso=4.87 Ω+1%, PM=44.36º 
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Figure 32: OPA192, Cload=100 nF+5%, Riso=4.87 Ω+1%, PM=45.63º 
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