History:
The HPA470 / HPA602 EVMs were developed before we had a full understanding of the
CPU / GPU Core current requirements and before the high speed NextFet switches were
available. Based upon earlier available FETs and our understanding of the Core current
requirements provisions for 2 hi side and 2 low side FETs per phase were made and the
larger IHLP5050FD chokes were designed in.

Based upon the latest requirements of 48A peak electrical and 32A for thermal purposes
and the availability of these new higher speed NextFets:
 a) Only one hi side and low side MOSFET per phase is needed.
 b) Smaller IHLP4040DZ chokes can be used.
 c) The layout needs to be updated to accommodate the higher speed MOSFETs
 by having the input caps extremely closely coupled to the MOSFETs to
 reduce voltage overshoot and ringing noise. Also, a snubber needs to be added
 to reduce ~100Mhz ringing in noise sensitive applications.

A new layout PMP5783 is in the works to accommodate all the concerns listed in c)
above. For now testing on the existing HPA-470 was done to demonstrate that the single
set of FETs (per phase) and smaller chokes can meet the thermal requirements and all the
electrical requirements. On the existing EVM I was able to demonstrate the elimination
of ringing with the snubbers and the reduction of the peak Vds on the low side FETs by
increasing R17 & R19 from zero to 5.6 ohms to slow turn on of high side MOSFETs.
This came at a cost of increased losses as will be shown on Page 3. With the improved
layout less snubbering and less slowing of gate drive will be needed allowing a higher
efficiency.

See next page for best approach for layout which will be done in PMP5783.
For the choke the best part to use per the Vishay loss simulator is the
IHLP4040DZ-01 0.56uHy choke. However, the closest part we had in our lab was
IHLP4040DZ-11 0.47uHy choke. Based upon my simulations on Vishay’s loss calculator
the preferred part will save at 32A output an additional 350mW per phase or 700mW in
all compared with the part I tested with. This will correspond to about a 2% increase in
efficiency at the 32A load.
Proposed improved layout approach:

Q1 is the high side FET; Q2 is the low side FET; C1 and C2 are the input caps (ceramic size 1210); C8 and R6 is the snubber. Key is rotating Q1 and Q2 such that drain of high side FET and source of low side FET face same side where the input caps are to be placed. Snubber then should be placed as close to drain source of low side FET as feasible. Traces to gates are much less critical and can be on other layers and be signal trace (10 to 25 mils) width.
Output load line and conversion efficiency from the 12V input. Bias was always 5.00V and bias input power for gate drive is not included in calculations below. Based upon FETs used and 300kHz operation, 14mA will be needed off the 5V Bias for gate drive when switching at 300kHz.

Note: operation above 32A load (max thermal requirement) is with about 200 LFM airflow

Regulation, losses and efficiency (from 12V excluding bias power):

<table>
<thead>
<tr>
<th>Vin Volts</th>
<th>Iin mA</th>
<th>Vout1 mVolts</th>
<th>Iout1 A</th>
<th>Efficiency %</th>
<th>Losses in mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Snubber Added And Gate slowed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.11</td>
<td>1</td>
<td>997</td>
<td>0</td>
<td>N/A</td>
<td>12</td>
</tr>
<tr>
<td>12.11</td>
<td>99</td>
<td>995</td>
<td>1.01</td>
<td>83.8</td>
<td>194</td>
</tr>
<tr>
<td>12.08</td>
<td>489</td>
<td>987</td>
<td>5.01</td>
<td>83.7</td>
<td>962</td>
</tr>
<tr>
<td>12.06</td>
<td>920</td>
<td>978</td>
<td>10.00</td>
<td>88.1</td>
<td>1315</td>
</tr>
<tr>
<td>12.03</td>
<td>1359</td>
<td>970</td>
<td>15.00</td>
<td>89.0</td>
<td>1799</td>
</tr>
<tr>
<td>12.10</td>
<td>1793</td>
<td>962</td>
<td>20.00</td>
<td>88.7</td>
<td>2455</td>
</tr>
<tr>
<td>12.07</td>
<td>2338</td>
<td>952</td>
<td>26.00</td>
<td>87.7</td>
<td>3468</td>
</tr>
<tr>
<td>12.03</td>
<td>2908</td>
<td>943</td>
<td>32.01</td>
<td>86.3</td>
<td>4798</td>
</tr>
<tr>
<td>12.04</td>
<td>4438</td>
<td>916</td>
<td>48.01</td>
<td>82.3</td>
<td>9456</td>
</tr>
<tr>
<td>After Snubber Added And Gate slowed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.12</td>
<td>1</td>
<td>997</td>
<td>0</td>
<td>N/A</td>
<td>12</td>
</tr>
<tr>
<td>12.11</td>
<td>100.5</td>
<td>995</td>
<td>1.01</td>
<td>82.6</td>
<td>212</td>
</tr>
<tr>
<td>12.08</td>
<td>482</td>
<td>988</td>
<td>5.01</td>
<td>85.0</td>
<td>873</td>
</tr>
<tr>
<td>12.06</td>
<td>927</td>
<td>978</td>
<td>10.00</td>
<td>87.5</td>
<td>1400</td>
</tr>
<tr>
<td>12.03</td>
<td>1367</td>
<td>970</td>
<td>15.00</td>
<td>88.5</td>
<td>1895</td>
</tr>
<tr>
<td>12.10</td>
<td>1804</td>
<td>962</td>
<td>20.00</td>
<td>88.1</td>
<td>2588</td>
</tr>
<tr>
<td>12.06</td>
<td>2356</td>
<td>953</td>
<td>26.00</td>
<td>87.2</td>
<td>3635</td>
</tr>
<tr>
<td>12.03</td>
<td>2931</td>
<td>944</td>
<td>32.01</td>
<td>85.7</td>
<td>5042</td>
</tr>
<tr>
<td>12.07</td>
<td>3671</td>
<td>929.5</td>
<td>40.01</td>
<td>83.9</td>
<td>7120</td>
</tr>
<tr>
<td>12.04</td>
<td>4470</td>
<td>916</td>
<td>48.01</td>
<td>81.7</td>
<td>9842</td>
</tr>
</tbody>
</table>

At Thermal max of 32A the added losses due to snubbers and gate slowing are 244mW. At the 48A peak load the added losses due to snubbers and gate slowing are 386mW.

Load line is -1.7mV per A instead of target -1.9mV per A. This is probably due to actual resistance of choke being 11% less than value that was used to calculate load line.
Output ripple at full Electrical load of 48A:

Start up from CPU Enable (VR_ON):

Josh Mandelcorn page 4 of 9 July 13-16, 2010
Step load response using "on board" dynamic load:

Load dump response using same on board dynamic load:
Major waveforms: Before snubber added or high side gate drive slowed:

Q3 of phase 2:
13-Jul-10
16:22:15

Q6 of phase 1:
13-Jul-10
15:23:25

Such waveforms will have both System EMC Engineer and Reliability Engineer screaming !!!!
Now snubber was added, but not yet slowing of high side drive: First Q3

13-Jul-10
17:50:28
Reading Floppy Disk Drive

10 ns
5.0 V

10 ns
10.0 mV

PMP5800 TPS51621 driving 2 phases 25V FETs
300kHz setting, from HPA-470
12Vin 916mV out at 48A; 500MHz meas, system
Major waveform on Q6 (low side FET of phase 2)
channel 1 green: Vds of Q6 upon rise
channel 4 red: load current 10A/div
1500pF + 1 ohm snubbers added
Ringing damped, but
peak of 29.2V above 25V rating for CSD16321QF

And Q6:
13-Jul-10
17:52:13
Reading Floppy Disk Drive

10 ns
5.0 V

10 ns
10.0 mV

PMP5800 TPS51621 driving 2 phases 25V FETs
300kHz setting, from HPA-470
12Vin 916mV out at 48A; 500MHz meas, system
Major waveform on Q6 (low side FET of phase 2)
channel 1 green: Vds of Q6 upon rise
channel 4 red: load current 10A/div
1500pF + 1 ohm snubbers added
Ringing damped, but
peak of 29.2V above 25V rating for CSD16321QF

System EMC happy, but not Reliability!!!
Finally, the gate drive to the high side FETs were slowed with R17 and R19 increased to 5.6 ohms from zero. This change only slows turn on, not turn off of hi side FETs.

Q3:

Q6:

Now both System EMC and Reliability happy!!!
Thermal results:

Note; Q3 & Q6 are the low side FETs and Q1 & Q8 are the high side FETs:
All thermal runs / images are after snubbers added and gate drives to high side FETs slowed with R17 & R19 changed from zero to 5.6 ohms:

PMP5800 snu slo gate 12.05Vin 2.936Ain 944mV 32.09A
Full Thermal load, no airflow 23-25 deg. C ambient
Q3 hottest at 58; Q6 at 57; Q1 at 54; Q8 at 52; snubbers at 55&54;
L1 top at 51; L2 top at 49

Thermal summaries for these two runs shown below at full 48A load with and without airflow. See the full Thermal Report in .pdf form for PMP5800 to see the actual images:

PMP5800 snu slo gate 12.03Vin 4.481Ain 916mV 48.09A
Full electrical load, ~200 LFM airflow ave. 23-25 deg. C ambient
Q3 hottest at 63; Q6 at 61; Q1 at 54; Q8 at 54; snubbers at 54&53;
L1 top at 52; L2 top at 49

PMP5800 snu slo gate 12.04Vin 4.545Ain 919mV 48.09A
Full electrical load, no airflow 10 minutes run 23-25 deg. C ambient
Q3 hottest at 88; Q6 at 86; Q1 at 78; Q8 at 76; snubbers at 79&78;
L1 top at 70; L2 top at 67
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated