TEST REPORT OF MPPT CHARGE CONTROLLER

PMP 7605
CONTENTS

Contents

I. INTRODUCTION .. 3
II. DESCRIPTION ... 3
III. BLOCK DIAGRAM .. 3
IV. SPECIFICATIONS ... 4
V. BOARD LAYOUT AND ASSEMBLY ... 4
VI. TEST SETUP ... 5
VII. TEST DATA .. 5
a. 12V SYSTEM PERFORMANCE ... 5
b. 24V SYSTEM PERFORMANCE ... 6
c. PLOTS ... 6
VIII. WAVEFORMS .. 8
a. Switching Node Waveforms .. 8
b. Gate waveforms .. 9
c. MPP Acquisition ... 10
IX. SCHEMATIC ... 12
a. Power Stage .. 12
b. Controller and Bias Supply .. 13
X. BILL OF MATERIALS .. 14
XI. CONCLUSION .. 15
XII. APPENDIX .. 16
I. INTRODUCTION

The following document is a compilation of test results of the PMP7605 reference design, a 20A MPPT solar charge controller. The test results are taken with simulated solar panel input corresponding to 12V and 24V panels.

II. DESCRIPTION

The PMP7605 is developed around the MSP430F5132 controller IC. The design is targeted for small and medium power solar charger solutions. The present design is capable of operating with 12V/24V panels and 12V/24V batteries with up to 20A output current. However, it can be easily adapted to 48V systems by just changing the MOSFETs to 100V rated parts. Also, it is possible to increase the current to 40A by using TO-220 package version of the same MOSFETs used in the design. The design has an operating efficiency of above 97% at full load in a 24V system. For 12V systems the efficiency is above 96%. This efficiency figure includes the losses in battery reverse protection MOSFET and panel reverse flow protection MOSFET, which are part of the design. The high efficiency is the result of the low gate charge MOSFETs from TI used in the design, and the interleaved buck topology used. The interleaved buck topology reduces the component stresses by a great extent. Another feature is the relatively small sized components used, possible due to the high operating frequency (~200 KHz per stage). The design has built-in battery charge profiles for 12V and 24V Lead acid batteries. The circuit takes only under 10mA of standby current while operating from battery. There is also a provision to connect a load to the battery with overload and short circuit cut-off built in. The design presently uses ‘perturb and observe’ algorithm for MPP tracking. This gives fast acquisition of MPP operation. Software programmable alarms and indications are provided in hardware, but are left non-configured.

Surge protection and EMI filtering components are not present on this design, and has to be added depending upon required specification levels.

III. BLOCK DIAGRAM
IV. SPECIFICATIONS

Input Voltage Range: 15VDC - 44VDC
Output: 12V or 24V battery
Output Current: 20A max.
Board Form Factor: 130 mm x 84 mm x 22 mm
Expected efficiency: >95%

V. BOARD LAYOUT AND ASSEMBLY
VI. TEST SETUP

Input conditions:
Panel input: 15VDC to 22VDC for 12V system or 30VDC to 44VDC for 24V system
Set current limit to the short circuit current of panel when DC source is used instead of panel

Output:
Electronic load in CV mode to simulate battery or 12/24V battery

Equipment Used:
1. Current limited DC source simulating solar panel
2. Digital Oscilloscope
3. Multimeters
4. Electronic load

Procedure:
1. Connect appropriate battery or electronic load in CV mode to the BAT+ and BAT- terminals of the PMP7605 reference board, maintaining correct polarity.
2. Connect panel or current limited DC source to PANEL+ and PANEL- terminals, maintaining correct polarity.
3. Set the output voltage of DC source to slightly above the MPP voltage of the panel being simulated (if DC source is used instead of panel) and turn on.
4. Observe for gradual build-up of output current.

VII. TEST DATA

a. 12V SYSTEM PERFORMANCE

<table>
<thead>
<tr>
<th>Vi (V)</th>
<th>Ii (A)</th>
<th>Vo (V)</th>
<th>Io (A)</th>
<th>Pi (W)</th>
<th>Po (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.70</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>17.01</td>
<td>0.76</td>
<td>12.01</td>
<td>0.99</td>
<td>12.93</td>
<td>11.93</td>
<td>92.3</td>
</tr>
<tr>
<td>17.16</td>
<td>2.19</td>
<td>12.05</td>
<td>3.00</td>
<td>37.58</td>
<td>36.17</td>
<td>96.2</td>
</tr>
<tr>
<td>17.27</td>
<td>3.61</td>
<td>12.09</td>
<td>5.00</td>
<td>62.34</td>
<td>60.46</td>
<td>97.0</td>
</tr>
<tr>
<td>17.52</td>
<td>5.40</td>
<td>12.15</td>
<td>7.57</td>
<td>94.61</td>
<td>91.98</td>
<td>97.2</td>
</tr>
<tr>
<td>17.42</td>
<td>7.20</td>
<td>12.20</td>
<td>10.00</td>
<td>125.42</td>
<td>122.03</td>
<td>97.3</td>
</tr>
<tr>
<td>17.33</td>
<td>11.00</td>
<td>12.32</td>
<td>15.00</td>
<td>190.63</td>
<td>184.79</td>
<td>96.9</td>
</tr>
<tr>
<td>17.19</td>
<td>15.06</td>
<td>12.44</td>
<td>20.00</td>
<td>258.88</td>
<td>248.70</td>
<td>96.1</td>
</tr>
</tbody>
</table>
b. 24V SYSTEM PERFORMANCE

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31.50</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>31.40</td>
<td>0.43</td>
<td>24.00</td>
<td>0.51</td>
<td>13.50</td>
<td>12.14</td>
<td>89.9</td>
</tr>
<tr>
<td>31.44</td>
<td>0.84</td>
<td>24.01</td>
<td>1.03</td>
<td>26.41</td>
<td>24.73</td>
<td>93.6</td>
</tr>
<tr>
<td>31.36</td>
<td>2.40</td>
<td>24.05</td>
<td>3.03</td>
<td>75.26</td>
<td>72.96</td>
<td>96.9</td>
</tr>
<tr>
<td>31.34</td>
<td>3.97</td>
<td>24.09</td>
<td>5.04</td>
<td>124.42</td>
<td>121.52</td>
<td>97.7</td>
</tr>
<tr>
<td>31.29</td>
<td>5.92</td>
<td>24.15</td>
<td>7.51</td>
<td>185.24</td>
<td>181.40</td>
<td>97.9</td>
</tr>
<tr>
<td>31.23</td>
<td>7.93</td>
<td>24.20</td>
<td>10.02</td>
<td>247.65</td>
<td>242.52</td>
<td>97.9</td>
</tr>
<tr>
<td>31.10</td>
<td>11.92</td>
<td>24.32</td>
<td>14.91</td>
<td>370.71</td>
<td>362.55</td>
<td>97.8</td>
</tr>
</tbody>
</table>

Efficiency can be dependent on the type of inductor used. The following plots indicate efficiency change with inductor type:

![Efficiency Graph](chart.png)
12V System Efficiency

24V System Efficiency
VIII. WAVEFORMS

a. Switching Node Waveforms

12V System, 20A Load. Individual channel switch nodes show interleaved operation

12V System, 10A Load. Individual channel switch nodes show interleaved operation
24V System, 15A Load. Individual channel switch nodes show interleaved operation

b. Gate waveforms

12V System, 20A Load. Top and bottom gate waveforms show dead-time implementation
24V System, 15A Load. Top and bottom gate waveforms show dead-time implementation

c. MPP Acquisition

12V System, 20A Load. Red: Input voltage, Yellow: Output current
24V System, 15A Load. Red: Input voltage, Yellow: Output current

File | Vertical | Timebase | Trigger | Display | Cursors | Measure | Math | Analysis | Utilities | Help

LeCroy

Timebase: 0.005
Channel: CH1
Height: 10.0 V/div
Offset: -20.00 V/div

Rise: 2.09 s/div
Hold: 0.5 V/div
Scale: 25 mV/div
Phase: Positive

April 10th, 2013

TII - Reference Designs
IX. SCHEMATIC

a. Power Stage
b. Controller and Bias Supply
<table>
<thead>
<tr>
<th>Item Qty</th>
<th>Reference</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Size</th>
<th>1K Web Price</th>
<th>Total (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1, R2, R3</td>
<td>100uF</td>
<td>Capacitor, 50V, ±10%</td>
<td>C0605</td>
<td>Nichicon</td>
<td>UHE110MH03</td>
<td>18 x 20 mm</td>
<td>0.567</td>
<td>2.701</td>
</tr>
<tr>
<td>2</td>
<td>C4, C5, C6, C7</td>
<td>4.7uF</td>
<td>Capacitor, Ceramic Chip, 100V, X7R, ±10%</td>
<td>T0K</td>
<td>C4532S9751475M3306</td>
<td>012</td>
<td>0.553</td>
<td>2.100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C8, 8</td>
<td>1uF</td>
<td>Capacitor, Ceramic, 30V, X7R, 5%</td>
<td>Taiyo-Yuden</td>
<td>UMK325467100MM4</td>
<td>010</td>
<td>0.206</td>
<td>0.430</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C10, C11, C19, C20, C28, C29</td>
<td>0.1uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.003</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C12, C13, C16, C17, C18, C19, C22, C23, C24, C27, C30, C31, C34, C37, C38, C39, C40</td>
<td>8.2uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.005</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C14, C15, C22, C27, C40</td>
<td>1uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.018</td>
<td>0.089</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C16, C17, C18, C20, C22, C24, C41, C42</td>
<td>0.47uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.003</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C21, C24, C48, C49</td>
<td>100F</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.002</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C25, C26, C29, C30, C31, C34, C37, C38, C39, C40</td>
<td>0.47uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.003</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C27, C30, C34, C40</td>
<td>0.47uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.003</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C28, C32, C41, C42</td>
<td>0.47uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.003</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C29, C34, C40, C41, C42, C43, C44</td>
<td>0.47uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.003</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C30, C34, C40, C41, C42, C43, C44</td>
<td>0.47uF</td>
<td>Capacitor, Ceramic, 50V, X7R, 5%</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>0.003</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

X. BILL OF MATERIALS

(All non-TI parts’ costs (except Coilcraft) from DigiKey, TI parts from ti.com)
XI. CONCLUSION

The board is tested for the given specifications and found to meet them. Further optimization of software can be done depending on specific system requirements.
For Feasibility Evaluation Only, in Laboratory/Development Environments. The EVM is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

Certain Instructions. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated