TI Designs – Precision: Verified Design

Low-Power Reference and Bipolar Voltage Conditioning Circuit Reference Design for Low-Power ADCs

TI Designs – Precision

TI Designs – Precision are analog solutions created by TI’s analog experts. Verified Designs offer the theory, component selection, simulation, complete PCB schematic & layout, bill of materials, and measured performance of useful circuits. Circuit modifications that help to meet alternate design goals are also discussed.

Circuit Description

This low-power reference and conditioning circuit attenuates and level-shifts a bipolar input voltage within the proper input range of a single-supply low-power 16-Bit ΔΣ ADC such as the one inside the MSP430 or other similar single-supply ADCs. Precision reference circuits are used to level-shift the input signal, provide the ADC reference voltage and to create a well-regulated supply voltage for the low-power analog circuitry. A low-power zero-drift op amp circuit is used to attenuate and level-shift the input signal.

Design Resources

- **Design Archive**
 - TINA-TI™
 - REF3330
 - REF3312
 - OPA317

- **Ask The Analog Experts**
 - WEBENCH® Design Center
 - TI Designs – Precision Library

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

TINA-TI is a trademark of Texas Instruments
WEBENCH is a registered trademark of Texas Instruments

Collin Wells, Janet Sun

TIDU246-April 2014-April 2014

Copyright © 2013, Texas Instruments Incorporated
1 Design Summary

The design requirements are as follows:

- Supply Voltage: +3.3 V
- Maximum Input Voltage: +/- 6 V
- Specified Input Voltage: +/- 5 V
- ADC Reference Voltage: 1.25 V

The goal for this design is to accurately condition a ±5 V bipolar input voltage into a voltage suitable for conversion by a low-voltage ADC with a 1.25 V reference voltage, \(V_{\text{REF}} \), and an input voltage range of \(\frac{V_{\text{REF}}}{2} \). The circuit should function with reduced performance over a wider input range of at least ±6V to allow for easier protection of over-voltage conditions. The specific design goals and performance metrics are summarized in Table 1. Figure 1 depicts the measured transfer function and accuracy results.

Table 1. Comparison of Design Goals, Simulation, and Measured Performance for ±5V Input

<table>
<thead>
<tr>
<th></th>
<th>Goal</th>
<th>Simulated</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Error (%FSR)</td>
<td>0.001</td>
<td>N/A</td>
<td>0.0005</td>
</tr>
<tr>
<td>Unadjusted Error (%FSR)</td>
<td>0.15</td>
<td>0.0439</td>
<td>0.0138</td>
</tr>
<tr>
<td>Operational Current Consumption (μA)</td>
<td>100</td>
<td>93.07</td>
<td>89.54</td>
</tr>
<tr>
<td>60 Hz Rejection (dB)</td>
<td>> 60</td>
<td>60</td>
<td>62</td>
</tr>
</tbody>
</table>

Figure 1: Measured Transfer Function Over the Full ±6V Input Range

Figure 2: Calibrated Error Voltage
2 Theory of Operation

Figure 3 depicts a simplified schematic for this design showing the MSP430 ADC inputs and full input conditioning circuitry. The ADC is configured for a bipolar measurement where final conversion result will be the differential voltage, \(V_{\text{DIFF}} \), between the voltage at the positive and negative ADC inputs, \(V_{A1+} \) and \(V_{A1-} \). The bipolar, GND referenced input signal must be level-shifted and attenuated by the op amp such that the output is biased to \(V_{\text{REF}}/2 \) and has a differential voltage that is within the \(\pm V_{\text{REF}}/2 \) input range of the ADC. The transfer function for the op-amp circuit simplifies to Equation 1 if the conditions in Equations 2 and 3 are met. The full transfer function for the input circuitry is shown in Appendix B.1 for reference. The \(V_{A1-} \) voltage is based on the resistor divider formed by \(R_6 \) and \(R_7 \) and will be set to \(V_{\text{REF}}/2 \) by setting \(R_6 \) equal to \(R_7 \) as shown in Equation 4.

![Simplified Circuit Schematic](image)

\[
V_{A1+} = \left(\frac{R_3}{R_2 + R_3} \right) V_{\text{REF}} + \left(\frac{R_2 \parallel R_3}{R_1} \right) V_{\text{IN}}
\]

\(\text{Given} \)

\[
R_4 = R_1
\]

\(\text{and} \)

\[
R_5 = R_2 \parallel R_3
\]

\[
V_{A1-} = \left(\frac{R_7}{R_6 + R_7} \right) V_{\text{REF}} = \frac{V_{\text{REF}}}{2}
\]
2.1 Op Amp Level-Shift Design

The ratio of \(R_2 \), \(R_3 \), and the \(V_{REF} \) voltage will determine the voltage on the output of the op amp when the differential input is 0 V. The components will be selected such that \(V_{OUT} \) is equal to \(V_{REF} / 2 \) voltage when \(V_{IN} \) is equal to 0 V as shown in Equations 5 – 7.

\[
V_{A1+} = \frac{V_{REF}}{2} = \left(\frac{R_2}{R_2 + R_3} \right) V_{REF}
\]

(5)

Given

\(V_{IN} = 0 \) V

and

\(R_2 = R_3 \)

(7)

The value of \(R_3 \) can be solved for by setting \(R_3 \) equal to \(R_2 \) in Equation 3 as shown in Equation 8.

\[
R_3 = \left(\frac{R_2 + R_3}{R_2} \right) = \frac{R_2^2}{2R_2} - \frac{R_3}{2}
\]

(8)

2.2 Differential Input Attenuator Design

\(V_{DIFF} \) is the difference between the two inputs as shown in Equation 9.

\[
V_{DIFF} = (V_{A1+} - V_{A1-}) = \left(\frac{R_2}{R_2 + R_3} \right) V_{REF} + \left(\frac{R_2}{R_2 + R_3} \right) V_{IN} - \frac{V_{REF}}{2}
\]

(9)

When the ratio of \(R_3 \) and \(R_2 \) equals the ratio of \(R_7 \) and \(R_6 \), Equation 9 simplifies to Equation 11.

If

\[
\left(\frac{R_3}{R_2 + R_3} \right) V_{REF} = \left(\frac{R_2}{R_2 + R_3} \right) V_{REF} = \frac{1}{2} V_{REF}
\]

(10)

then

\[
V_{DIFF} = \frac{R_2}{R_1} V_{IN}
\]

(11)

The ratio of \(R_1 \), \(R_2 \), and \(R_3 \) can be determined by setting \(V_{A1+} \) equal to the maximum \(V_{DIFF} \) voltage for a full-scale positive and/or negative input voltage \(V_{IN,MAX} \) as shown in Equation 12.

\[
V_{A1+} = V_{DIFF,MAX} = \left(\frac{R_2}{R_1} \right) V_{IN,MAX}
\]

(12)

Since \(R_2 \) equals \(R_3 \), Equation 12 simplifies to \(R_2/2 \) resulting in Equation 13.

\[
V_{DIFF,MAX} = \left(\frac{R_2}{2} \right) V_{IN,MAX}
\]

(13)

2.3 Input Filtering

Both inputs feature first-order low-pass anti-aliasing filters that limit the bandwidth and noise of the input signals applied to the ADC. The A1+ filter is formed by \(R_8 \) and \(C_1 \) and the equation for the -3dB cutoff frequency is shown in Equation 14.

\[
f_{-3dB_A1+} = \frac{1}{2 \pi \times R_8 \times C_1}
\]

(14)
The A1- input filter is formed by C₂ and the parallel combination of the R₆ and R₇ resistors as shown in Equation 15.

\[f_{-3\text{dB}, A1-} = \frac{1}{2 \cdot \pi \cdot \left(\frac{R_6}{2} \right) \cdot C_2} \]

(15)

3 Component Selection

3.1 Voltage References

The REF33xx series of precision low-power voltage references was selected for this design to pair well with the low power consumption of the MSP430 while achieving the target accuracy goals. The 16-bit converter in the MSP430F2013 accepts an external reference voltage from 1 V to 1.5 V with a typical reference input of 1.25 V as shown in Figure 4.

SD16_A, External Reference Input (MSP430F20x3)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_CC</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{REF}(3)}) Input voltage range</td>
<td>SD16REFON = 0</td>
<td>3 V</td>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{REF}(3)}) Input current</td>
<td>SD16REFON = 0</td>
<td>3 V</td>
<td>50</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

Figure 4: MSP430F2013 SD16_A External Voltage Reference Specifications

The REF3312 was selected to provide the desired 1.25 V reference voltage for the MSP430 ADC. The accuracy of the REF3312 output, shown in Figure 5, will directly affect the accuracy of the entire system and needs to be less than the desired unadjusted error goals. The REF3312 maximum ±0.15% initial accuracy specification is equal to the unadjusted error design goal of 0.15% indicating that most of the error budget in this design needs to be devoted to the reference accuracy.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>REF3312 (1.25V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT VOLTAGE</td>
<td>(V_{\text{OUT}})</td>
<td>(V_{\text{IN}} = 5\text{V})</td>
</tr>
<tr>
<td>NOISE</td>
<td>(f = 0.1\text{Hz to 10\text{Hz}})</td>
<td>35</td>
</tr>
</tbody>
</table>

Figure 5: REF3312 Output Accuracy Specifications

The +3.3 V system supply voltage that powers the MSP430 may also supply other devices and therefore may have regulation and noise issues. The REF3330 was selected to create an accurate and stable +3.0 V output that was used by the op amp, REF3312, and other low-power analog circuitry. The REF33xx series has a drop-output voltage of \(V_{\text{OUT}} + 200\text{mV}\) so as long as the input supply remains above +3.2 V the REF3330 will produce a regulated +3.0 V output. The output current for the REF33xx series is specified at +/-5 mA as shown in Figure 6 which is sufficient for REF3312 and a low-power op amp.
3.2 Op Amp

The OPA317 was selected because of the low offset voltage, low offset voltage drift, CMRR, and low power consumption. The important dc specifications for the OPA317 can be seen in Figure 7. The maximum offset of 100 μV will account for only 0.001% of the full-scale signal and the low-drift will reduce temperature drift effects. Therefore, as previously mentioned, most of the error in this design will be from the reference accuracy and passive component tolerances.

ELECTRICAL CHARACTERISTICS: \(V_S = +1.8 \) V to +5.5 V

At \(T_A = +25^\circ C \), \(R_S = 10 \) kΩ connected to mid-supply, \(V_{CM} = V_{REF} \) = mid-supply, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>OPA317, OPA2317, OPA4317</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>(V_S = +5) V *</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(T_A = -40^\circ C) to +125^\circ C * (V_S = +5) V *</td>
<td>±90 μV</td>
</tr>
<tr>
<td>(dV_{OS}dT)</td>
<td>vs temperature</td>
<td>±100 μV</td>
</tr>
<tr>
<td></td>
<td>(T_A = -40^\circ C) to +125^\circ C * (V_S = +5) V *</td>
<td></td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Common-mode voltage range</td>
<td>((V-) - 0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V+) + 0.1 * V</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>95</td>
</tr>
<tr>
<td>(T_A = -40^\circ C) to +125^\circ C * (V_S = +5) V *</td>
<td>108 dB</td>
<td></td>
</tr>
<tr>
<td>(V_S = +5) V *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_S)</td>
<td>Specified voltage range</td>
<td>1.8</td>
</tr>
<tr>
<td>(I_Q)</td>
<td>Quiescent current per amplifier</td>
<td>21</td>
</tr>
<tr>
<td>Turn-on time</td>
<td>(V_S = +5) V *</td>
<td>100 μs</td>
</tr>
</tbody>
</table>

Figure 7: OPA317 dc Specifications

3.3 Input Attenuation and Level Shifting

For this design, the bipolar \(±5 \) V input must be attenuated and level shifted so the differential voltage is within the input range of \(±V_{REF}/2 \), or \(±0.625 \) V. The accuracy of the op amp output and ADC input may degrade near the supply rails and \(V_{REF} \) voltage so the output will be designed to produce a 0.125 V to 1.125 V output, or \(±0.5 \) V for a \(±5 \) V input. Scaling the output this way also increases the allowable input range to \(±6 \) V and allows for some under/over-scale voltage measurement and protection.
Equation 13 can be solved to scale the ±5 V input to a ±0.5 V differential voltage as shown in Equations 16 - 18. \(R_1 \) and \(R_4 \) will dominate the input impedance for this design and were therefore selected to be 100 kΩ. Higher values can be selected to increase the input impedance at the expense of input noise.

\[
R_1 = R_4 = 100 \text{ kΩ}
\]

(16)

\[
0.5 \text{ V} = \left(\frac{R_3}{2 \times 100 \text{ kΩ}} \right) \times 5 \text{ V}
\]

(17)

\[
R_2 = R_3 = 20 \text{ kΩ}
\]

(18)

With the value for \(R_2 \) and \(R_3 \) selected, the value for \(R_5 \) can be calculated as shown in Equation 19.

\[
R_5 = \frac{R_2}{2} = 10 \text{ kΩ}
\]

(19)

In order for \(V_{A1-} \) to be equal to \(V_{REF}/2 \), \(R_6 \) needs to equal \(R_7 \). The two resistors will be selected to be 47 kΩ to conserve power without creating an impedance too weak to drive the ADC input.

\[
R_6 = R_7 = 47 \text{ kΩ}
\]

(20)

3.4 Input Filtering

The MSP430 ADC was configured to run from the 1.1 MHz SMCLK with an over-sampling rate (OSR) of 256 yielding a sample rate of roughly 4.3 kHz. The input filter cutoff frequency was set to 1 kHz to limit the input signal bandwidth as shown in Equation 21 and 22. \(R_8 \) was selected to be 1 kΩ to provide isolation from the capacitive load of the low-pass filter thereby reducing stability concerns.

\[
f_{\text{3dB, } A_{1-}} = \frac{1}{2 \pi R_8 C_1}
\]

(21)

\[
C_1 = \frac{1}{2 \pi \times 1 \text{ kΩ} \times 1 \text{ kHz}} = 159 \text{ nF}
\]

(22)

\(C_1 \) was reduced to 150 nF so it could be a standard value.

The \(A_1- \) input of the \(\Delta \Sigma \) converter is not buffered and therefore requires a large capacitor to supply the charge for the internal sampling capacitor. A 47 μf capacitor was selected resulting in the cutoff frequency shown in Equation 23. Applications that can't tolerate such a low frequency cutoff, and therefore long start-up time, should buffer the \(A_1- \) input with another OPA317 to properly drive the ADC input with a lower input capacitor.

\[
f_{\text{3dB, } A_{1-}} = \frac{1}{2 \pi \times \left(\frac{R_6}{2} \right) \times C_2} = 0.144 \text{ Hz}
\]

(23)

3.5 Passive Component Tolerances and Materials

Resistors \(R_1, R_2, R_3, R_4, R_5, R_6, \) and \(R_7 \) directly affect the accuracy of the circuit. To meet the unadjusted accuracy goals of 0.2%, the resistors were chosen to be 0.1%. As described in Reference 1, selecting 0.1% resistors for the construction of the difference amplifier circuit should provide a common-mode rejection (CMRR) of at least 60 dB.

Signal path capacitors should be C0G/NP0 dielectric material to minimize the signal distortion as well as prevent piezo-electric effects that are present with other ceramic capacitor dielectrics.
4 Simulation

The TINA-TI™ simulation circuit for this design can be seen in Figure 8. The dc transfer function results with the component values selected in Section 3 are shown in Figure 9.

![Simulation Circuit Schematic](image)

Figure 8: TINA-TI™ – Circuit Schematic
A more accurate representation of the circuit results can be obtained by performing a Monte-Carlo analysis on the circuit with the correct component tolerances. Figure 10 displays the histogram for the results with a +5V input and the other results can be found in Appendix B. Table 2 contains the results obtained by creating a histogram of the Monte-Carlo output voltage results obtained from a -5 V, 0 V, and +5 V input.
Table 2. Histogram Results of the Monte-Carlo Data

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Units</th>
<th>Input Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-5</td>
</tr>
<tr>
<td>Mean Value</td>
<td>mV</td>
<td>125.0224</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>μV</td>
<td>134.6068</td>
</tr>
<tr>
<td>Nominal Value</td>
<td>mV</td>
<td>125.0104</td>
</tr>
</tbody>
</table>

Using the mean (μ) and standard deviation (σ) from the Monte-Carlo simulation to represent the final production circuit results, a six sigma (-3σ to 3σ) or 99.7% prediction of full-scale error (%FSR) is calculated using Equation 24.

\[
\text{Percent Error (%FSR)} = \left(\frac{\mu \pm 3\sigma - \frac{V_{\text{OUT}}_\text{EXPECTED}}{V_{\text{OUT}}_\text{FULL}-\text{SCALE}}}{} \right) \times 100
\]

(24)

The maximum simulated error at the positive full-scale input of +5 V is ±0.0439% as shown in Equation 25. The maximum simulated error at the negative full-scale input of -5 V is ±0.0426%.

\[
\text{Percent Error (%FSR)} = \left(\frac{1125.0190 \pm (3 \times 0.1400637)}{1000} - 1125 \right) \times 100 = 0.0439 \%
\]

(25)

Performing a Monte-Carlo ac transfer simulation with the input terminals shorted together provides an accurate representation of the CMRR performance of the circuit. As shown in Figure 11, the low frequency results are dominated by the matching of the 0.1% passive components. The curves in Figure 11 have been adjusted for the gain of the circuit and show at least 60dB of CMRR for signal frequencies up to 5 kHz.

Figure 11: Circuit CMRR Variation over Frequency from Resistor Tolerance
4.1 Simulated Results Summary

The simulated performance is compared to the performance goals set in Section 0 in Table 3.

Table 3: Simulated Performance Result Summary

<table>
<thead>
<tr>
<th></th>
<th>Goal</th>
<th>Simulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Error (%FSR)</td>
<td>0.001</td>
<td>N/A</td>
</tr>
<tr>
<td>Unadjusted Error (%FSR)</td>
<td>0.15</td>
<td>0.0439</td>
</tr>
<tr>
<td>Operational Current Consumption (μA)</td>
<td>100</td>
<td>93.07</td>
</tr>
<tr>
<td>60 Hz Rejection (dB)</td>
<td>> 60</td>
<td>60</td>
</tr>
</tbody>
</table>

5 PCB Design

The PCB schematic and bill of materials can be found in Appendix A.

5.1 PCB Layout

For optimal performance of this design follow standard PCB layout guidelines, including proper decoupling close to all integrated circuits and adequate power and ground connections with large copper pours. The size of the PCB and connectors were selected to connect directly to the MSP430 LaunchPad.

![Altium PCB Layout](image-url)
6 Verification & Measured Performance

This section focuses only on the performance of the reference and input circuitry. It does not take the MSP430 ADC performance into consideration. Complete data with the MPS430F2013 ADC can be found in Appendix B.3.

6.1 DC Performance

The measured dc performance and calculated error of the circuit can be seen in Figure 13 and Figure 14 respectively. By applying a 2-point gain and offset calibration over the specified ±5V input range the calibrated error can be seen in Figure 15. The uncalibrated results show errors of 138 μV or 0.0138 %FSR. The calibrated results with a simple 2-point calibration show errors under 5μV or 0.0005 %FSR in the specified input range of ±5 V. Methods for 2-point calibration are explained in Reference 2.
6.2 AC Performance

The AC transfer function for the attenuation and level-shifting circuit can be seen in Figure 16.

The low-frequency ac CMRR performance was measured to be 62 dB as shown in Figure 17.
6.3 Measured Results Summary

Table 4. Comparison of Design Goals, Simulation, and Measured Performance

<table>
<thead>
<tr>
<th></th>
<th>Goal</th>
<th>Simulated</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Error (%FSR)</td>
<td>0.001</td>
<td>N/A</td>
<td>0.0005</td>
</tr>
<tr>
<td>Unadjusted Error (%FSR)</td>
<td>0.15</td>
<td>0.0439</td>
<td>0.0138</td>
</tr>
<tr>
<td>Operational Current Consumption (μA)</td>
<td>100</td>
<td>93.07</td>
<td>89.54</td>
</tr>
<tr>
<td>60 Hz Rejection (dB)</td>
<td>> 60</td>
<td>60</td>
<td>62</td>
</tr>
</tbody>
</table>

7 Modifications

The gain and reference levels of this circuit can be adjusted using the equations in Section 2. Table 5 lists other low-power amplifiers with different performance specifications that may have advantages in other circuits. Other similar ΔΣ ADCs may require a buffer for the V_{A_1} for proper conversion results. Higher sampling rate ΔΣ ADCs and SAR ADC topologies will likely require higher bandwidth amplifiers to properly drive the inputs.

Table 5. Alternate Low-Power Op Amps

<table>
<thead>
<tr>
<th>Op Amp</th>
<th>Supply Voltage (V)</th>
<th>Quiescent Current Typ/Max (μA)</th>
<th>Vos Typ/Max (μV)</th>
<th>Vos Drift (μV/°C)</th>
<th>CMRR Typ/Max (dB)</th>
<th>Gain-Bandwidth (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA317</td>
<td>1.8 – 5.5</td>
<td>21 / 35</td>
<td>20 / 100</td>
<td>0.05</td>
<td>95 / 108</td>
<td>300</td>
</tr>
<tr>
<td>OPA330</td>
<td>1.8 – 5.5</td>
<td>21 / 35</td>
<td>8 / 50</td>
<td>0.02</td>
<td>100 / 115</td>
<td>350</td>
</tr>
<tr>
<td>OPA333</td>
<td>1.8 – 5.5</td>
<td>17 / 25</td>
<td>2 / 10</td>
<td>0.02</td>
<td>106 / 130</td>
<td>350</td>
</tr>
<tr>
<td>OPA369</td>
<td>1.8 – 5.5</td>
<td>0.8 / 1.2</td>
<td>250 / 750</td>
<td>0.4</td>
<td>90 / 100</td>
<td>12</td>
</tr>
<tr>
<td>OPA379</td>
<td>1.8 – 5.5</td>
<td>2.9 / 5.5</td>
<td>400 / 1500</td>
<td>0.4</td>
<td>62 / 100</td>
<td>90</td>
</tr>
<tr>
<td>LPV511</td>
<td>2.7 - 12</td>
<td>0.88 / 1.2</td>
<td>200 / 3000</td>
<td>0.3</td>
<td>77 / 100</td>
<td>27</td>
</tr>
</tbody>
</table>
8 About the Author

Collin Wells is an applications engineer in the Precision Linear group at Texas Instruments where he supports industrial products and applications. Collin received his BSEE from the University of Texas, Dallas.

Janet Sun is an analog field application engineer in Beijing, China supporting industrial and other performance analog customers. She completed work on this system as well as several others during a 6-month rotation working with the precision amplifier team in Dallas.

9 Acknowledgements & References

2. Mock, Mike, 0-1A, Single-Supply, Low-Side, Current Sensing Solution, TIDU040
Appendix A.

A.1 Electrical Schematic

![Electrical Schematic Diagram]

Figure A-1: Electrical Schematic

A.2 Bill of Materials

![Bill of Materials Diagram]

Figure A-2: Bill of Materials
Appendix B.

B.1 Complete Transfer Function

The complete transfer function for the circuit topology featured in this design is shown in the equation below:

\[V_{\text{OUT}} = \left(\frac{R_2 \cdot R_3 \cdot R_1 + R_3 \cdot R_2 \cdot R_1}{R_2 \cdot R_4 \cdot R_1 + R_3 \cdot R_4 \cdot R_1 + R_4 \cdot R_3 \cdot R_1} \right) V_{\text{REF}} + \left(\frac{R_2 \cdot R_3 \cdot R_4 + R_3 \cdot R_2 \cdot R_4}{R_2 \cdot R_4 \cdot R_1 + R_3 \cdot R_4 \cdot R_1 + R_4 \cdot R_3 \cdot R_1} \right) V_{\text{IN}} \]

B.2 Simulated Monte-Carlo Results

![Figure 18: Histogram Transfer Function Results](image)

Figure 18: Histogram Transfer Function Results
Figure 19: Circuit Output Variation with a Negative Full-Scale +5 V dc Input

Figure 20: Circuit Output Variation with a 0 V dc Input
B.3 MSP430F2013 SD_16 Measured Results

The measured output code results using the MSP430F2013 SD_16 ΔΣ ADC are shown in Figure 22. The error codes and calibrated error codes are shown in Figure 23 and Figure 24, respectively. The uncalibrated error codes results in approximately 2.86 mV of error or 0.286 %FSR, while the calibrated results reduce the error to approximately 172 μV or 0.017 %FSR.
Figure 23: Un-calibrated Error Codes vs. Input Voltage

Figure 24: Calibrated Error Codes vs. Input Voltage
Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products. TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN, IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications using TI components, TI recommends necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

An application or a system in which TI components are used, including a reference design, is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use. Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated