Abstract

This design implements a complete control and drive solution for 3-phase brushless DC motors up to about 3 kW in power rating. The design includes analog circuits, digital processor, and software to spin BLDC motors without the need for position feedback from Hall effect sensors or quadrature encoder.

![Test set-up](image)

Figure 1 Test set-up

Equipment needed:

- DRV830x-HC-C2-KIT
- DRV8301 High-Current Motor Drive EVM
- controlCARD CC2803x ISO DIMM REV 1.3
- 3-phase Brushless DC (BLDC) motor
- InstaSPIN-BLDC software – InstaSPIN BLDC Example GUI
- Code Composer Studio V5.4
- Agilent 6674A DC Power Supply (0-60V, 0-35A)
- Coupling, cable, PC

Optional equipment

- Magtrol HD-705-6N Hysteresis Dynamometer (300W continuous, 1400W 15 min.)
- Magtrol M-TEST 5.0 Motor Testing Software
Operational set-up

EVM board and controlCARD Connections

Insert the TMS320F28035 controlCARD into the DIMM-100 connector on the DRV8301-HC-EVM board. Alignment ridges in the DIMM-100 socket prevent insertion of the controlCARD in an incorrect orientation. The side latches close to retain the controlCARD in the DIMM-100 connector.

Power Connections

The DRV8301-HC-EVM is capable of operation up to 60 Amps at 60V; the motor is rated for 36V and 30 Amps. The power supply is set up to 60V, but 24V is common. Connect the supply voltage (+) to screw terminal J25 on the EVM board. Connect the supply ground (-) to screw terminal J26 on the EVM board. Refer also to section 3.2 in the Hardware Guide for additional information on jumper settings.

Motor to EVM board connections

Connect the 3 motor phases to the EVM board at the “Motor” terminal block. AWG-8 size wire should be used to ensure sufficient current-carrying capability if the motor will have high current. Note that the motor will operate with any assignment of the three motor phases to the three drive outputs on the board. There are 3 equivalent arrangements (A-B-C, B-C-A, C-A-B) which will cause clockwise motion, and 3 equivalent arrangements (C-B-A, B-A-C, A-C-B) which will cause counterclockwise motion. Either arrangement is valid as long as the user is satisfied with the polarity convention. If the user wishes to reverse the rotation for a given command, any two phases can be swapped.

Code Composer Studio

Code Composer Studio (CCS) is executed from the Start Programs menu, or from the desktop icon. Following the procedure indicated in the MotorWare labs, import the example project InstaSPIN-BLDC Example GUI. See the directory structure in Figure 2. Configure the target to TMS320F28035. Build the project, and start a Debug session. See additional details in reference 3, the DRV830x-HC-C2-KIT How to Run Guide.

At this point, the red LED Dxxx on the controlCARD will begin blinking to indicate the program is loaded and running on the TMS320F28035 controlCARD. If not, check the connections, emulator, and program, and re-load and re-initialize the debug session as necessary.
Start the ControlSuite program by clicking on the icon. Select “English”, then “Development Tools”, then “Motor”, then DRV830x-HC-KIT...” and finally “InstaSPIN-BLDC Example GUI” as shown in Figure 2. Launch the InstaSPIN-BLDC GUI by clicking on the link in the right panel. This GUI is used to command motor states (enabled, duty cycle, speed, etc.).
On the InstaSPIN-BLDC graphical user interface, click to check the “Enable Motor” box on the Main tab. The motor should begin to rotate according to the setting for the motor speed control knob. Note that at relatively low commanded speeds (duty cycle < 0.20) there may be significant “cogging” as the motor switches from one magnet pole to the next.

The commanded duty cycle can be adjusted using the control knob on the main tab.
Figure 4 shows the motor voltages as oscilloscope traces as the motor rotates. Channel 1 is measuring test point TP12 (output A), channel 2 is measuring test point TP13 (output B), and channel 3 is measuring test point TP14 (output C). Note that the traces do not show the details of the pulse-width modulated (PWM) outputs, but the general characteristics of the waveforms can be seen.

Table 1 Phase relations during motor rotation

<table>
<thead>
<tr>
<th></th>
<th>Phase A</th>
<th>Phase B</th>
<th>Phase C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increasing</td>
<td>Mostly Low</td>
<td>Mostly High</td>
</tr>
<tr>
<td>2</td>
<td>Mostly High</td>
<td>Mostly Low</td>
<td>Decreasing</td>
</tr>
<tr>
<td>3</td>
<td>Mostly High</td>
<td>Increasing</td>
<td>Mostly Low</td>
</tr>
<tr>
<td>4</td>
<td>Decreasing</td>
<td>Mostly High</td>
<td>Mostly Low</td>
</tr>
<tr>
<td>5</td>
<td>Mostly Low</td>
<td>Mostly High</td>
<td>Increasing</td>
</tr>
<tr>
<td>6</td>
<td>Mostly Low</td>
<td>Decreasing</td>
<td>Mostly High</td>
</tr>
<tr>
<td>7</td>
<td>Increasing</td>
<td>Mostly Low</td>
<td>Mostly High</td>
</tr>
<tr>
<td>8</td>
<td>Mostly High</td>
<td>Mostly Low</td>
<td>Decreasing</td>
</tr>
<tr>
<td>9</td>
<td>Mostly High</td>
<td>Increasing</td>
<td>Mostly Low</td>
</tr>
<tr>
<td>10</td>
<td>Decreasing</td>
<td>Mostly High</td>
<td>Mostly Low</td>
</tr>
<tr>
<td>11</td>
<td>Mostly Low</td>
<td>Mostly High</td>
<td>Increasing</td>
</tr>
<tr>
<td>12</td>
<td>Mostly Low</td>
<td>Decreasing</td>
<td>Mostly High</td>
</tr>
</tbody>
</table>
The InstaSPIN-BLDC uses trapezoidal commutation which provides a simple and effective way to start spinning Brushless DC motors. For higher efficiency and performance, other InstaSPIN versions are available with sinusoidal commutation, see reference 5.

The InstaSPIN-BLDC GUI can also be set to Velocity control mode. In this mode, the software monitors the actual motor speed, and adjusts the commanded PWM duty cycle to maintain the selected speed. In this case, the main control knob is used to set the desired motor speed.

References:

2. DRV830x-HC-C2-KIT Hardware Reference Guide, Version 1.0 – August 2011, http://e2e.ti.com/cfs-file.ashx/__key/communityserver-discussions-components-files/312/1222.DRV830x_2D00_HC_2D00_C2_2D00_KIT_5F00_HWGuide.pdf
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated