1 Introduction

The Medium Voltage Digital Motor Control (DMC) kit (DRV8312-C2-KIT, Figure 1), provides a great way to learn and experiment with digital control of medium voltage brushless motors to increase efficiency of operation. This document goes over the kit contents and hardware details, and explains the functions and locations of jumpers and connectors present on the board.

Figure 1. DRV8312-C2-KIT

WARNING

This EVM is meant to be operated in a lab environment only and is not considered by TI to be a finished end-product fit for general consumer use. It is the user’s responsibility to confirm that the voltages and isolation requirements are identified and understood, prior to energizing the board and or simulation. When energized, the EVM or components connected to the EVM should not be touched.
General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines

Always follow TI’s setup and application instructions, including use of all interface components within their recommended electrical rated voltage and power limits. Always use electrical safety precautions to help ensure your personal safety and those working around you. Contact TI’s Product Information Center http://support.ti.com for further information.

Save all warnings and instructions for future reference.

Failure to follow warnings and instructions may result in personal injury, property damage, or death due to electrical shock and burn hazards.

The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed circuit board assembly. It is intended strictly for use in development laboratory environments, solely for qualified professional users having training, expertise and knowledge of electrical safety risks in development and application of high voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas Instruments. If you are not suitable qualified, you should immediately stop from further use of the HV EVM.

1. Work Area Safety
 (a) Keep work area clean and orderly.
 (b) Qualified observer(s) must be present anytime circuits are energized.
 (c) Effective barriers and signage must be present in the area where the TI HV EVM and its interface electronics are energized, indicating operation of accessible high voltages may be present, for the purpose of protecting inadvertent access.
 (d) All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located within a protected Emergency Power Off EPO protected power strip.
 (e) Use stable and nonconductive work surface.
 (f) Use adequately insulated clamps and wires to attach measurement probes and instruments. No freehand testing whenever possible.

2. Electrical Safety
 As a precautionary measure, it is always a good engineering practice to assume that the entire EVM may have fully accessible and active high voltages.
 (a) De-energize the TI HV EVM and all its inputs, outputs and electrical loads before performing any electrical or other diagnostic measurements. Revalidate that TI HV EVM power has been safely de-energized.
 (b) With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring, measurement equipment connection, and other application needs, while still assuming the EVM circuit and measuring instruments are electrically live.
 (c) After EVM readiness is complete, energize the EVM as intended.

WARNING: WHILE THE EVM IS ENERGIZED, NEVER TOUCH THE EVM OR ITS ELECTRICAL CIRCUITS AS THEY COULD BE AT HIGH VOLTAGES CAPABLE OF CAUSING ELECTRICAL SHOCK HAZARD.

3. Personal Safety
 (a) Wear personal protective equipment (for example, latex gloves or safety glasses with side shields) or protect EVM in an adequate lucent plastic box with interlocks to protect from accidental touch.

Limitation for safe use:
EVMs are not to be used as all or part of a production unit.
2 Getting Familiar with the Kit

2.1 Kit Contents

The DRV830x Digital Motor Control Kit contains:

- F28035 controlCARD
- DRV8312 DMC board with slot for the controlCARD
- BLDC motor
- USB Cable
- 24V AC/DC supply with 2.5A of current
- USB Stick with CCStudio IDE, GUI, Quick Start Guide, and controlSUITE installer for further documentation

The DRV8312EVM board can accept any of the C2000 series controlCARDS, but we recommend using the CC28035 ISO DIMM control card with the onboard JTAG emulator shipped with the kit. The F28035 controlCARD has the source code already pre-flashed in memory to allow it to work out of the box with the Quick Start GUI.

![Figure 2. DRV8312-C-Kit Contents](image-url)
2.2 **Kit Features**

The kit has the following features:

- Three-Phase Power Stage, DRV8312 capable of driving 3-phase brushless DC motors and Permanent Magnet Synchronous Motors.
 - 52.5V DC max input voltage
 - 6.5A peak with a 3.5A max continuous output current per phase
 - Up to 500kHz driver switching frequency
- 24V switching power supply with onboard regulation for powering other analog and digital circuitry
- Isolated CAN and SPI communication
- Closed-loop digital control with feedback using the C2000’s on-chip PWM and ADC peripherals
- On-board isolated JTAG emulation through the SCI peripheral and the FTDI chip.
- JTAG connector for external emulators
- Quadrature Encoder Interface available for speed and position measurement
- Hall Sensor Interface for sensored three-phase motor control
- High precision low-side current sensing using the C2000’s high-performance ADC, Texas Instruments OPA365A high speed op-amps and Texas Instrument REF3025 high precision voltage reference chip
- Three PWM DAC’s generated by low pass filtering the PWM signals to observe the system variables on an oscilloscope to enable easy debug of control algorithms.
- Over current protection on the inverter stage, DRV8312
- Hardware Developer’s Package that includes schematics and bill of materials is available through controlSUITE.

The software available with the kit is pre-optimized for the motors that are available with the kit. The software is completely open source, and hence can be easily modified to tune and run a different motor. The following motors are available with the kit:

![Nema Size 17 BLDC Motor](image)

Figure 3. Kit Motors

2.3 **Warning Regarding Low Switching Frequencies on the DRV830x**

When the DRV8312 runs at a low switching frequency (e.g. less than 20 kHz with 47 nF bootstrap capacitor), the bootstrap capacitor voltage might not be able to maintain a proper voltage level for the high-side gate driver. A bootstrap capacitor under voltage protection circuit (BST_UVP) will start under this circumstance to prevent the potential failure of the high-side MOSFET.

In this circumstance, both the FAULT and OTW pins should pull low and the device should selfprotect itself. The motor’s inductance and the inverter’s bootstrap capacitance will allow the DRV8312 to run efficiently until approximately 10 kHz (with margin). Setting the PWM switching frequency below 10 kHz may cause issues on the inverter output and is not recommended. Please reference the datasheet.
3 Hardware Overview

Figure 4 illustrates a typical motor drive system running from either a laboratory power supply or the 24V supply delivered with the KIT. The DRV8312-C2-KIT’s motor control board has all the power and control blocks that constitute a typical motor drive system for a step motor or 2 brushed DC motors (Figure 6).

3.1 Macro Blocks

The motor control board is separated into functional groups that enable a complete motor drive system, these are referred to as macro blocks. Following is a list of the macro blocks present on the board and their functions:

- ISO controlCARD socket – Socket for a C2000 controlCARD with a built-in isolated XDS100 emulator.
- DC Bus Connection
 - J9 power entry jack - Connect the supplied +24V power supply here.
 - “PVDD/GND” Terminals – Connect an external lab supply here making sure to observe correct polarity.
- Aux-12V Control Power Entry – Connectors to optionally provide and external 12V supply for logic and gate drive power. The 12V supply can also be regulated on board from the DC bus depending on the setting of JP1. Set to position “VR1” to use on board regulator. Set to position “+12V” to use external regulator.
- DRV8312 – This module includes the DRV8312 Three Phase PWM Motor Driver as well as all of the necessary external passive components.
- Current Sense – Low-side shunt current sensing on each half-bridge.
- Reset Switch – Individual reset for each half-bridge. Reset can be forced manually from the 3-position switch or through a GPIO from the MCU. Setting switch in the down position, “RESET” will disable the half-bridge outputs. Setting the switch in the middle position will allow control through a GPIO on the MCU. Setting the switch in the up position, “NORMAL OP”, will disable control from the MCU and enable the half-bridge outputs.
- Mode Jumper “M1” – DRV8312 mode can be set to select between cycle-by-cycle current limit or latched over-current.
- Quadrature Encoder Connections – Connections are available for an optional shaft encoder to interface to the MCU’s QEP peripheral.
- Hall Effect Sensor Connections – Connections are available for optional Hall Effect Sensors.
Figure 5 illustrates the position of these macro blocks on the board. The use of a macro block approach, for different power stages enables easy debug and testing of one stage at a time. Banana jack connectors can be used to interconnect the power line of these power stages / blocks to construct a complete system. All the PWM’s and ADC signals which are the actuation and sense signals have designated test points on the board, which makes it easy for an application developer to try out new algorithms and strategies.
3.2 Powering the Board

The board is separated into two power domains*, the low voltage Controller Power domain that powers the controller and the logic circuit present on the board, and the medium voltage power delivery line that is used to carry the medium voltage and current like the DC power for the Inverter also referred to as DC Bus.

1. Controller Power comprises of the 12V, 5V and 3.3V that the board uses to power the controller and the logic and sensing circuit present on the board. This power can be sourced from two places, which is selected by Jumper JP1.
 • +12V DC control power entry: Connect an external bench supply with 1A current limit here
 • On board regulator, VR1: +12V is regulated from DC bus power via an on-board buck regulator.

2. DC Bus Power is the medium voltage line – up to 52.5V - that provides the voltage to the inverter stage to generate 3 phases to control the motor(s). Connect supplied 24V regulator to J9.

 NOTE: Do not apply power to board before you have verified these settings!

The kit ships with the control card inserted and the jumper and switch settings pre done for connecting with the GUI. However the user must ensure that these settings are valid on the board.

1. Make sure nothing is connected to the board, and no power is being supplied to the board.
2. Insert the Control card into the controlCARD connector if not already populated.
3. Make sure the following jumpers & connector settings are valid i.e.
 • JP1 is in the “VR1” position
 • M1 is in the “H” position
 • RSTA, RSTB and RSTC are in the middle “MCU” position

4. Make sure that the following switches are set as described below on the F28035 control card to enable boot from flash and connection to the SCI
 • SW3 is in the UP (OFF) position (towards top of control card)
 • SW2 on controlCARD, Position 1 = UP (ON), Position 2 = UP (ON)

5. Make sure that the following switches are set as described below on the F28035 control card to enable boot from flash and connection to the SCI
 • SW3 is in the UP (OFF) position (towards top of control card)
 • SW2 on controlCARD, Position 1 = UP (ON), Position 2 = UP (ON)

6. Connect a USB cable from computer to USB connector on control card
7. Connect the motor you want to spin to the “MOTOR” terminal block as shown below:

 ![Figure 6. DRV8312-EVM Motor Connections](image)

8. Connect the included power supply to J9.
3.3 **controlCARD Settings**

- LD1 – Turns on when controlCARD is powered on
- LD2 – controlled by GPIO-31
- LD3 – controlled by GPIO-34
- LD4 – USB-mini connection
- SW2 – controls the boot options of the F28035 device

<table>
<thead>
<tr>
<th>Position 1 (GPIO-34)</th>
<th>Position 2 (TDO)</th>
<th>Boot from</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Parallel I/O</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Wait mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>SCI</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(default) Get mode; the default get mode is boot from FLASH</td>
</tr>
</tbody>
</table>

- SW3 – TRSTn Control
 This switch is used to connect or disconnect the TRSTn pin that is used for the JTAG emulation. When JTAG connection is needed for the board the SW3 should be in ON position. For booting from FLASH or other boot options (no JTAG connection needed) this pin should be in the OFF position.

3.4 **GUI Connection**

The FTDI chip present on the board can be used as an isolated SCI for communicating with a HOST i.e. PC. The following jumper settings must be done to enable this connection.

As the GUI software is provided for F28035 control card only, F28035 settings are discussed below:
1. For F28035, put SW3 on the F28035 Control Card to UP position (towards top of card)
2. Connect a USB cable from J1 (on control card) to host PC.

NOTE: If you are going to boot from Flash & connecting using the GUI, you would need to do the Boot from Flash settings as described in the **Table 1.**
4 Hardware Resource Mapping

4.1 Resource Allocation

Table 2 lists the GPIO and ADC resource allocation for the board.

<table>
<thead>
<tr>
<th>J1 Pin no.</th>
<th>GPIO</th>
<th>Signal Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>GPIO-00</td>
<td>PWM_A</td>
<td>DRV Phase A PWM input</td>
</tr>
<tr>
<td>73</td>
<td>GPIO-01</td>
<td>RESET_A</td>
<td>DRV Phase A RESET(n) input</td>
</tr>
<tr>
<td>24</td>
<td>GPIO-02</td>
<td>PWM_B</td>
<td>DRV Phase B PWM input</td>
</tr>
<tr>
<td>74</td>
<td>GPIO-03</td>
<td>RESET_B</td>
<td>DRV Phase B RESET(n) input</td>
</tr>
<tr>
<td>25</td>
<td>GPIO-04</td>
<td>PWM_C</td>
<td>DRV Phase C PWM input</td>
</tr>
<tr>
<td>75</td>
<td>GPIO-05</td>
<td>RESET_C</td>
<td>DRV Phase C RESET(n) input</td>
</tr>
<tr>
<td>76</td>
<td>GPIO-07</td>
<td>STOP</td>
<td>Push button input</td>
</tr>
<tr>
<td>28</td>
<td>GPIO-08</td>
<td>DAC_PWM3</td>
<td>PWM DAC</td>
</tr>
<tr>
<td>78</td>
<td>GPIO-09</td>
<td>START</td>
<td>Push button input</td>
</tr>
<tr>
<td>29</td>
<td>GPIO-10</td>
<td>DAC_PWM1</td>
<td>PWM DAC</td>
</tr>
<tr>
<td>79</td>
<td>GPIO-11</td>
<td>DAC_PWM2</td>
<td>PWM DAC</td>
</tr>
<tr>
<td>33</td>
<td>GPIO-12</td>
<td>LED-1</td>
<td>User LED</td>
</tr>
<tr>
<td>83</td>
<td>GPIO-13</td>
<td>OTWn</td>
<td>Over-temperature warning</td>
</tr>
<tr>
<td>84</td>
<td>GPIO-14</td>
<td>FAULT(n)</td>
<td>Over-current fault</td>
</tr>
<tr>
<td>34</td>
<td>GPIO-15</td>
<td>LED-2</td>
<td>User LED</td>
</tr>
<tr>
<td>38</td>
<td>GPIO-16</td>
<td>SPI-SIMO</td>
<td>Isolated SPI Interface</td>
</tr>
<tr>
<td>88</td>
<td>GPIO-17</td>
<td>SPI-SOMI</td>
<td>Isolated SPI Interface</td>
</tr>
<tr>
<td>39</td>
<td>GPIO-18</td>
<td>SPI-CLK</td>
<td>Isolated SPI Interface</td>
</tr>
<tr>
<td>89</td>
<td>GPIO-19</td>
<td>SPI-STE</td>
<td>Isolated SPI Interface</td>
</tr>
<tr>
<td>40</td>
<td>GPIO-20</td>
<td>QEPA</td>
<td>Encoder A</td>
</tr>
<tr>
<td>90</td>
<td>GPIO-21</td>
<td>QEPB</td>
<td>Encoder B</td>
</tr>
<tr>
<td>41</td>
<td>GPIO-22</td>
<td>STATUS</td>
<td>User LED</td>
</tr>
<tr>
<td>91</td>
<td>GPIO-23</td>
<td>QEPI</td>
<td>Encoder Index</td>
</tr>
<tr>
<td>35</td>
<td>GPIO-24</td>
<td>CAP1</td>
<td>Hall input 1</td>
</tr>
<tr>
<td>85</td>
<td>GPIO-25</td>
<td>CAP2</td>
<td>Hall input 2</td>
</tr>
<tr>
<td>36</td>
<td>GPIO-26</td>
<td>CAP3</td>
<td>Hall input 3</td>
</tr>
<tr>
<td>44</td>
<td>GPIO-30</td>
<td>CAN-RX</td>
<td>Isolated CAN Interface</td>
</tr>
<tr>
<td>94</td>
<td>GPIO-31</td>
<td>CAN-TX</td>
<td>Isolated CAN Interface</td>
</tr>
<tr>
<td>59</td>
<td>ADC-A1</td>
<td>IA-FB</td>
<td>Current sense phase A</td>
</tr>
<tr>
<td>61</td>
<td>ADC-A2</td>
<td>I-TOTAL</td>
<td>DC Bus current sense</td>
</tr>
<tr>
<td>63</td>
<td>ADC-A3</td>
<td>IC-FB</td>
<td>Current sense phase C</td>
</tr>
<tr>
<td>67</td>
<td>ADC-A5</td>
<td>IC-FB</td>
<td>Current sense phase C</td>
</tr>
<tr>
<td>71</td>
<td>ADC-A7</td>
<td>ADC-Vhb2</td>
<td>Phase Voltage sense B</td>
</tr>
<tr>
<td>7</td>
<td>ADC-B0</td>
<td>TSI</td>
<td>Tach/Pot input</td>
</tr>
<tr>
<td>9</td>
<td>ADC-B1</td>
<td>IB-FB</td>
<td>Current sense phase B</td>
</tr>
<tr>
<td>11</td>
<td>ADC-B2</td>
<td>VDCBUS</td>
<td>DC Bus voltage sense</td>
</tr>
<tr>
<td>13</td>
<td>ADC-B3</td>
<td>IA-FB</td>
<td>Current sense phase A</td>
</tr>
<tr>
<td>15</td>
<td>ADC-B4</td>
<td>ADC-Vhb3</td>
<td>Phase Voltage sense C</td>
</tr>
<tr>
<td>17</td>
<td>ADC-B5</td>
<td>IB-FB</td>
<td>Current sense phase B</td>
</tr>
<tr>
<td>21</td>
<td>ADC-B7</td>
<td>ADC-Vhb1</td>
<td>Phase Voltage sense A</td>
</tr>
</tbody>
</table>
5 Schematic Disclaimer and Warnings

Texas Instruments provides the DRV8312_C2_KIT schematic drawings and other design files to help users develop DRV8312 & C2000 based reference design products. These design files can be found at www.ti.com/tool/TIDM-THREEPHASE_BLDC-LC. Application safety, safety of the Medium Voltage DMC kit and design integrity of such reference designs are solely responsibility of the user. Any reference designs generated off these schematics must take into account necessary product safety design requirements, including interface components and load motors in order to avoid user risks including potential for fire hazard, electrical shock hazard and personal injury, including considerations for anticipated agency certification compliance requirements. Such product safety design criteria shall include but not be limited to critical circuit creepages and clearances, component selection, ratings compatibility of controlled motor loads, and required protective means (ie output fusing) depending on the specific loads being controlled. TI accepts no responsibility for design integrity of any reference designs based on supplied schematic drawings and the schematics are strictly for development purposes.
ADDITIONAL TERMS AND CONDITIONS, WARNINGS, RESTRICTIONS, AND DISCLAIMERS FOR EVALUATION MODULES

Texas Instruments Incorporated (TI) markets, sells, and loans all evaluation boards, kits, and/or modules (EVMs) pursuant to, and user expressly acknowledges, represents, and agrees, and takes sole responsibility and risk with respect to, the following:

1. User agrees and acknowledges that EVMs are intended to be handled and used for feasibility evaluation only in laboratory and/or development environments. Notwithstanding the foregoing, in certain instances, TI makes certain EVMs available to users that do not handle and use EVMs solely for feasibility evaluation only in laboratory and/or development environments, but may use EVMs in a hobbyist environment. All EVMs made available to hobbyist users are FCC certified, as applicable. Hobbyist users acknowledge, agree, and shall comply with all applicable terms, conditions, warnings, and restrictions in this document and are subject to the disclaimer and indemnity provisions included in this document.

2. Unless otherwise indicated, EVMs are not finished products and not intended for consumer use. EVMs are intended solely for use by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

3. User agrees that EVMs shall not be used as, or incorporated into, all or any part of a finished product.

4. User agrees and acknowledges that certain EVMs may not be designed or manufactured by TI.

5. User must read the user's guide and all other documentation accompanying EVMs, including without limitation any warning or restriction notices, prior to handling and/or using EVMs. Such notices contain important safety information related to, for example, temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

6. User assumes all responsibility, obligation, and any corresponding liability for proper and safe handling and use of EVMs.

7. Should any EVM not meet the specifications indicated in the user's guide or other documentation accompanying such EVM, the EVM may be returned to TI within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. TI SHALL NOT BE LIABLE TO USER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE HANDLING OR USE OF ANY EVM.

8. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which EVMs might be or are used. TI currently deals with a variety of customers, and therefore TI’s arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services with respect to the handling or use of EVMs.

9. User assumes sole responsibility to determine whether EVMs may be subject to any applicable federal, state, or local laws and regulatory requirements (including but not limited to U.S. Food and Drug Administration regulations, if applicable) related to its handling and use of EVMs and, if applicable, compliance in all respects with such laws and regulations.

10. User has sole responsibility to ensure the safety of all activities to be conducted by it and its employees, affiliates, contractors or designees, with respect to handling and using EVMs. Further, user is responsible to ensure that any interfaces (electronic and/or mechanical) between EVMs and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

11. User shall employ reasonable safeguards to ensure that user’s use of EVMs will not result in any property damage, injury or death, even if EVMs should fail to perform as described or expected.

12. User shall be solely responsible for proper disposal and recycling of EVMs consistent with all applicable federal, state, and local requirements.

Certain Instructions. User shall operate EVMs within TI’s recommended specifications and environmental considerations per the user’s guide, accompanying documentation, and any other applicable requirements. Exceeding the specified ratings (including but not limited to input and output voltage, current, power, and environmental ranges) for EVMs may cause property damage, personal injury or death. If there are questions concerning these ratings, user should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the applicable EVM user’s guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using EVMs’ schematics located in the applicable EVM user’s guide. When placing measurement probes near EVMs during normal operation, please be aware that EVMs may become very warm. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use EVMs.

Agreement to Defend, Indemnify and Hold Harmless. User agrees to defend, indemnify, and hold TI, its directors, officers, employees, agents, representatives, affiliates, licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of, or in connection with, any handling and/or use of EVMs. User’s indemnity shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if EVMs fail to perform as described or expected.

Safety-Critical or Life-Critical Applications. If user intends to use EVMs in evaluations of safety critical applications (such as life support), and a failure of a TI product considered for purchase by user for use in user’s product would reasonably be expected to cause severe personal injury or death such as devices which are classified as FDA Class III or similar classification, then user must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
GENERAL STATEMENT FOR EVMs NOT INCLUDING A RADIO

For EVMs not including a radio and not subject to the U.S. Federal Communications Commission (FCC) or Industry Canada (IC) regulations, TI intends EVMs to be used only for engineering development, demonstration, or evaluation purposes. EVMs are not finished products typically fit for general consumer use. EVMs may nonetheless generate, use, or radiate radio frequency energy, but have not been tested for compliance with the limits of computing devices pursuant to part 15 of the FCC or the ICES-003 rules. Operation of such EVMs may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

GENERAL STATEMENT FOR EVMs INCLUDING A RADIO

User Power/Frequency Use Obligations: For EVMs including a radio, the radio included in such EVMs is intended for development and/or professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability in such EVMs and their development application(s) must comply with local laws governing radio spectrum allocation and power limits for such EVMs. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by TI unless the user has obtained appropriate experimental and/or development licenses from local regulatory authorities, which is the sole responsibility of the user, including its acceptable authorization.

U.S. FEDERAL COMMUNICATIONS COMMISSION COMPLIANCE

For EVMs Annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications could void the user’s authority to operate the equipment.

FCC INTERFERENCE STATEMENT FOR CLASS A EVM DEVICES

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at its own expense.

FCC INTERFERENCE STATEMENT FOR CLASS B EVM DEVICES

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

INDUSTRY CANADA COMPLIANCE (ENGLISH)

For EVMs Annotated as IC – INDUSTRY CANADA Compliant:

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

CONCERNING EVMs INCLUDING RADIO TRANSMITTERS

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

CONCERNING EVMs INCLUDING DETACHABLE ANTENNAS

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Canada Industry Canada Compliance (French)

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.

Important Notice for Users of EVMs Considered “Radio Frequency Products” in Japan

EVMs entering Japan are NOT certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If user uses EVMs in Japan, user is required by Radio Law of Japan to follow the instructions below with respect to EVMs:
1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan.
2. Use EVMs only after user obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after user obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless user gives the same notice above to the transferee. Please note that if user does not follow the instructions above, user will be subject to penalties of Radio Law of Japan.

http://www.tij.co.jp

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】本開発キットは技術基準適合証明を受けておりません。本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
- www.ti.com/audio

Amplifiers
- amplifier.ti.com

Data Converters
- dataconverter.ti.com
- www.dlp.com

DLP® Products
- dsp.ti.com

Clocks and Timers
- www.ti.com/clocks

Interface
- interface.ti.com

Logic
- logic.ti.com

Power Mgmt
- power.ti.com

Microcontrollers
- microcontroller.ti.com

RFID
- www.ti-rfid.com

OMAP Applications Processors
- www.ti.com/omap

Wireless Connectivity
- www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
- www.ti.com/automotive

Communications and Telecom
- www.ti.com/communications

Computers and Peripherals
- www.ti.com/computers

Consumer Electronics
- www.ti.com/consumer-apps

Energy and Lighting
- www.ti.com/energy

Industrial
- www.ti.com/industrial

Medical
- www.ti.com/medical

Security
- www.ti.com/security

Space, Avionics and Defense
- www.ti.com/space-avionics-defense

Video and Imaging
- www.ti.com/video

OMAP E2E Community
- e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated