Solar Dice
CC430F5147 & TPS62740
Agenda

• Solar Dice demo:
 – Description
 – Setup and getting started

• Implementation: powering a low power wireless sensor
 – Requirements of powering low power wireless sensors based on the example of the “Solar Dice”
 – Solar cell characteristics
 – Selecting the storage capacitor
 – Requirements for the DC-DC converter
 – System bench data and scope plots

• CC430 energy optimized software tuning

• Conclusion and Summary
Energy Harvesting: Solar dice
Demo description

The demo demonstrates a wireless communication (CC430) between a dice and a computer powered by solar cells and step-down DC-DC converter (TPS62740)

– without any batteries!

The dice transmits wirelessly its position to a computer. Energy is harvested from 6 solar panels and the position is determined by an acceleration sensor.

- Transmission of dice position to the computer
- For voltage control, ADC10 application is running
- CC430 is running in low power mode
- Lowest current consumption is 2.36uA
- Transmission minimum cycle time is ~ 1s
- RF protocol is ~ 50 bytes
- PV voltage is ~ 4V
- Working with PV low leakage 330uF capacitor
- Optimized firmware for low current application
Energy Harvesting: Solar Dice
TPS62740 + CC430F5147

• DC-DC TPS62740 spec digest:
 – Super low quiescent current: 360nA
 – Slew Rate Controlled Load Switch
 – 16 Pin-selectable output voltages between 1.8V – 3.3V
 – Up to 90% Efficiency
 – Up to 300mA Output Current

• MCU CC430F5147 + RF core features digest:
 – RF frequency 868MHz/915MHz
 – Data rate 250 kBaud, Deviation 127kHz
 – Filter BW 541kHz, 36bit data, 16bit CRC
 – RF Protocol length 50Byte total, RF Power level -1dBm
 – Software optimized protocol to reduce current consumption

• Accelerometer and Solar Cell digest:
 – Thin film Solar Panel Type Sanyo AM-5610 4.7V
 – Digital, triaxial acceleration sensor BMA250 for cube side location
Solar powered dice
Simplified system block diagram

Energy Harvesting CC430F5147 Solar cube
Portable wireless sensor module UHF

Humidity Sensor → Acceleration Sensor → Temp Sensor

MCU → Enable → SPI → I2C

RF UHF Front End

ADC

868MHz

typ: 4.7V

C_BUF

VDD: 2.1V

Control

TPS62740
Step-down Converter
Vin: 2.0 to 15V

System Power

CC430F5147

TPS62740

Texas Instruments
Implementation: Powering a low power wireless sensor

Requirements for powering low power wireless sensors

- Reduce RF Peak Power consumption
- Minimize RF transmission time
- Minimize time of CC430 active mode
- Energy optimized MCU startup
Solar dice with CC430 and TPS62740

Energy source:
Amorphous solar panel (Sanyo)
Effective size 18.6 x 17.6 mm (3.27cm²); 4.7V no load

High efficiency step down converter:
- Ensures proper start up of CC430
- Provides regulated and optimized operating point for CC430
- Handles peak currents
Panel **can** deliver average power, but **can’t** handle peak power during TX!
Energy Storage Capacitor
Principle

Capacitor C1

- **Vmin** = 2.1V (system supply voltage)
- **Vmax** ≈ 3.6 – 4.5V panel voltage (maximum output power)

Usable voltage range:
- 2.6V
- 3.6V
- 4.5V

Non extractable energy

Energy in storage cap ~ V^2:
- Vmin = 2.1V (system supply voltage)
- Vmax ≈ 3.6 – 4.5V panel voltage (maximum output power)

TPS62740 DC/DC
Start up

Optimum solar panel operating area

0V
Energy Storage Capacitor
Calculating available energy

\[dQ := C_1 \cdot dV \quad \quad dE := dQ \cdot V \]

\[E := \int_{V_1}^{V_2} C_1 \cdot V \, dV \]

\[E_{C1 _total} := \frac{1}{2} C_1 \cdot V_{\text{max}}^2 \]

\[E_{C1 _usable} := \frac{1}{2} C_1 \cdot \left(V_{\text{max _C1}}^2 - V_{\text{min _C1}}^2 \right) \]

Example:
Usable energy in buffer capacitor:
300uF @ 4V \(\rightarrow \) 1900uWs

Energy in storage cap \(\sim V^2 \)
Vmin = 2.1V (system supply voltage)
Vmax \(\sim 3.6 \text{ – 4.5V panel voltage} \)
(maximum ouput power)
Requirements for the DC/DC Converter TPS62740

- Proper system start up:
 - system start up only if sufficient energy is stored in storage capacitor
 - Provide fast and monotonic supply voltage ramp up
- High efficiency at light loads
- Provides a stable and optimum operating voltage for the system
- RF friendly behavior (frequency, VOUT ripple)

Check out for more:
- www.ti.com/dcs-control
Analysis: TX load profile

TX 17mA peak

2sec

Peak Power consumption @ 3.6V:
17mA * 3.6V = 51mW

Energy E(TX@ 3.6V VCC):
29uAs * 3.6V = 104uWs

Optimization @ 2.1V VCC:
Peak Power:
2.1V * 17mA = 36mW

Energy E (TX @ 2.1V VCC): 61uWs
η(DC/DC) ~ 90%: 68uWs
Getting the system started

Proper system start up:
- “Energy Optimized” SW coding
- SW optimized for available energy in buffer cap
- Fast + monotonic voltage ramp (DC/DC)
- Stable supply voltage for the system

Failing start up:
- Start up sequence too energy hungry
- Supply voltage breakdown
- Panel can not support energy
- Bigger buffer cap necessary → cost
Adaption to changing light conditions

Normal operation with sufficient light:
TX every 2 sec.

Panel provides more energy than needed

Less light \Rightarrow reduced energy from panel

SW controlled TX cycle adaption:
- TX cycles are reduced at lower light conditions
- TX only if Voltage @ buffer cap reached 3.8V
- Operating solar panel @ maximum power area
CC430
Energy optimized software tuning

Standard firmware is most of the time not optimized for energy harvesting applications. For solar applications follow special programming rules!

1. On startup go immediately to LPM3 mode (Low power mode)
2. Optimize the startup. Partition the tasks. This allows enough charge storage in the buffer capacitor.
3. Time your cycle for RX or TX (1 s in this example)
4. Control the usable energy with ADC module
5. Make extensive use of low power modes
6. Start your tasks only if you have enough energy
7. Power down peripherals immediately after use
8. Optimize the RF protocol (Demo ~ 50bytes)

Check out for more:
➤ www.ti.com/cc430
Start

Setup timer & activate interrupt
Toggle time 1s

Config Vcore, Ports, Radio Core

Go to LPM3 mode

Delay 5s

Init Radio

Go to LPM3 mode

Enable ADC & Reference voltage

Measure PV / VCC voltage

Disable ADC & Reference voltage

Timer interrupt?

Usable energy sufficient?

Enable Accelerator & Measure

Disable Accelerator

Enable Radio & Transmit cube pos.

Power down Radio

End

End

Solar Dice
CC430 energy optimized software tuning
Conclusions

- Know the system requirements and possible trade offs
- Analyze the load profile and detect energy peaks
- Optimize system operating points to reduce peak energy consumption by Software and Hardware
- Select the right Harvester
- DC/DC converter provides proper system start up and operating voltage
- The less components the lower your power consumption

... and read datasheets carefully 😊

Summary

- In combination with Solar module and TPS62740, the CC430 works without batteries
- CC430 firmware optimized protocol to reduce current consumption is important

Check out for more:

- www.ti.com/product/tps62740
- www.ti.com/cc430
- www.ti.com/dcs-control
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use. Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated