IXOLAR™ High Efficiency SolarBIT.

Description
IXOLAR™ SolarBITs are IXYS' product line of SolarBITs made of monocrystalline, high efficiency solar cells. The IXOLAR™ SolarBITs is an ideal for charging various battery powered and handheld consumer products such as mobile phones, cameras, PDAs, MP3-Players and toys. They are also suitable for industrial applications such as wireless sensors, portable instrumentation and for charging emergency backup batteries.

With a cell efficiency of typically 22% measured at a wafer level, SolarBITs give the ability to extend run time even in "low light" conditions and increase battery life and run time in a small footprint, which can be easily accommodated in the design of Portable Products. The design allows connecting SolarBITs flexibly in series and/or parallel to perfectly meet the application's power requirements.

IXOLAR™ products have a very good response over a wide wavelength range and therefore can be used in both indoor and outdoor applications.

Product and Ordering Information (Package Level)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Open Circuit Voltage [V]</th>
<th>Short Circuit Current [mA]</th>
<th>Typ. Voltage @ Pmpp [V]</th>
<th>Typ. Current @ Pmpp [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KXOB22-04X3</td>
<td>1.89</td>
<td>15</td>
<td>1.50</td>
<td>13.38</td>
</tr>
</tbody>
</table>

(parameters given are typical values)
Dimensions (L x W x H): 22 x 7 x 1.8 [mm]
SolarBITs Weight: 0.5 grams
SolarBITs are compliant to the RoHS Norm.

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cell Parameter</th>
<th>Typical Ratings *</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc</td>
<td>open circuit voltage</td>
<td>1.89</td>
<td>V</td>
</tr>
<tr>
<td>Jsc</td>
<td>short circuit current density (wafer level)</td>
<td>42.4</td>
<td>mA/cm²</td>
</tr>
<tr>
<td>Vmpp</td>
<td>voltage at max. power point</td>
<td>1.50</td>
<td>V</td>
</tr>
<tr>
<td>Jmpp</td>
<td>current density at max. power point (wafer level)</td>
<td>37.2</td>
<td>mA/cm²</td>
</tr>
<tr>
<td>Pmpp</td>
<td>maximum peak power (wafer level)</td>
<td>18.6</td>
<td>mW/cm²</td>
</tr>
<tr>
<td>FF</td>
<td>fill factor</td>
<td>> 65</td>
<td>%</td>
</tr>
<tr>
<td>η</td>
<td>solar cell efficiency (wafer level)</td>
<td>22</td>
<td>%</td>
</tr>
<tr>
<td>ΔVoc/ΔT</td>
<td>open circuit voltage temp. coefficient (wafer level)</td>
<td>-2.1</td>
<td>mV/K</td>
</tr>
<tr>
<td>ΔJsc/ΔT</td>
<td>short circuit current temp. coefficient (wafer level)</td>
<td>0.12</td>
<td>mA/(cm²K)</td>
</tr>
</tbody>
</table>

* All values measured at Standard Condition: 1 sun (= 100 mW/cm²), Air Mass 1.5, 25°C

Features
• Monocrystalline silicon technology
• High efficiency outdoor and indoor
• Long life and stable output
• Sealed Package
• High mechanical robustness
• Surface Mount Package
• Reflow Solderable

Applications
• Battery chargers for portables such as cell phones, PDAs, GPS-Systems, …
• "Green" electricity generation
• Power backup for UPS, Sensors, Wearables

Advantages
• Automatic Pick & Place Mounting
• One Product for Multiple Applications
• Flexible Integration into the Application
Typical SolarBIT Performance Data

Current-Voltage Characteristics

Short Circuit Current Density vs. Temperature

Open Circuit Voltage vs. Temperature

Open Circuit Voltage vs. Irradiance

External Quantum Efficiency
Package front-side and back-side view.

SolarBIT Pad Design. (Dimensions in millimeters)

SolarBIT PCB Layout Recommendation:
The PCB layout footprint should be equivalent to the layout of the SolarBIT but on the contact pads on the short end(s) it should be half a millimeter larger than the SolarBIT. For the KXOB22-04x3 one may use two pads of (6 x 2.5)mm size with 18mm spacing.

Moisture Sensitivity, Reflow Soldering and Washing Information
IXYS has characterized the moisture reflow sensitivity of the SolarBIT using IPC/JEDEC standard J-STD-020. Moisture uptake from atmospheric humidity occurs by diffusion. During the solder reflow process, in which the component is attached to the PCB, the whole body of the component is exposed to high process temperatures. The combination of moisture uptake and high reflow soldering temperatures may lead to moisture induced delamination and cracking of the component. To prevent this, this component must be handled in accordance with IPC/JEDEC standard J-STD-020 per the labeled moisture sensitivity level (MSL), level 1. IXYS does not recommend the use of chlorinated solvents.

Upon reflow soldering for surface mounting, we recommend to use low temperature solder paste like lead-free Sn-57Bi-1Ag-β composite paste. For instance, we recommend the lead-free solder paste LST5710 manufactured by Seoul Alloy Metal Co. Ltd, where it recommends 220±3°C peak temperatures at the reflow zone above 200°C for about 1 min.

Tube Carrier Packaging
SolarBiTs are shipped in 460 mm long clear PVC carrier tubes with antistatic coating. A tube contains 20 SolarBIT devices.
Background
Some basic information needs to be covered to better understand what to expect in terms of the SolarBITs performance with regards to solar cell type, lighting conditions in terms of power density, and general industry standards as they relate to battery charging.

Solar Cell Types
Keep in mind these cost and performance tradeoffs when comparing various solar cell materials:

Polycrystalline cells are commonly found in outdoor applications and have a spectral sensitivity range of 500nm to 1100nm. They're in the medium price range and typically offer a 13% power conversion efficiency.

Monocrystalline cells, such as the IXYS SolarMD, have a spectral sensitivity range from 300 nm (near-ultraviolet) to 1100 nm (near-infrared), which includes visible light (400 to 700 nm). Due to this wide spectral range, they can be used in both indoor and outdoor applications. Monocrystalline or single-crystalline material is the most expensive but it does not contain impurities, and as such the power conversion efficiency does not degrade over operating time. The power conversion efficiency of commercially available monocrystalline cells ranges from 15 to 22%. The surface of these cells is a homogenous dark blue or dark grey.

Finally, amorphous cells, which work in the spectral range of 300nm to 600nm, are used predominantly indoors in products such as solar powered calculators since they are not sensitive to the upper light spectrum and cannot take advantage of natural sunlight. They offer about 5% power conversion efficiency and are mostly used with ultra low power devices like clocks and electronic calculators. Amorphous cells, like polycrystalline cells, suffer from efficiency degradation.
SolarBit Description

SolarBITs are monocrystalline, high-efficiency solar cells in a surface mount package. They’re robust and can be used in harsh environments. SolarBITs have a very high (22%) power conversion efficiency, which means that 22% of the light energy is converted into electrical energy. They’re extremely useful in applications requiring solar power generation in a limited space.

Monocrystalline cells can be used in indoor and outdoor applications because they have a wide spectral sensitivity, 300 to 1100 nm. However, the output power of a solar cell is proportional (over a wide range) to the incoming light energy, and irradiance is generally much higher outdoors. The values in the data sheet are measured at “standard condition” of 1 sun, which is equal to 1000W per square meter sunlight irradiance at a defined light spectrum (air mass of 1.5) and 25°C cell temperature.
Relative Lighting Power Density

The figure above compares relative power density for various lighting conditions in units of Watts per square meter (W/m2). The reference standard condition is 1 Sun and is equal to 1000 Watts per square meter of sunlight irradiance at a constant 25°C cell temperature and at 1.5 Air Mass (Air Mass stands for a well defined light spectrum which appears if the sunlight goes through the earth's atmosphere at a defined angle).

As the chart clearly shows, the power density of typical indoor lighting is dramatically lower than that of sunlight. Not only is irradiance from indirect and artificial light lower; the spectrum is also narrower. In typical Office Space lighting with a spectrum produced from incandescent or halogen light bulbs, the power output may be roughly 100 times less than bright sunlight. It may be 200 to 500 times less with fluorescent lighting due to the further limited spectrum.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications using TI components, TI recommends using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated