ABSTRACT

The DRV2605EVM-BT is a Bluetooth low energy controlled DRV2605 evaluation kit for prototyping and integrating haptics. This document briefly describes the output of the DRV2605EVM-BT.

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>June 2014</td>
<td>B. Burk, G. Ramachandran</td>
<td>First release</td>
</tr>
<tr>
<td>2.0</td>
<td>October 2014</td>
<td>B. Burk</td>
<td>Updated App Menu Screen</td>
</tr>
</tbody>
</table>

WARNING: EXPORT NOTICE

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from Disclosing party under this Agreement, or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. This provision shall survive termination or expiration of this Agreement.

According to our best knowledge of the state and end-use of this product or technology, and in compliance with the export control regulations of dual-use goods in force in the origin and exporting countries, this technology is classified as follows:

US ECCN: 3E991
EU ECCN: EAR99

And may require export or re-export license for shipping it in compliance with the applicable regulations of certain countries.
Contents

Bench Setup ... 3
iOS App Setup .. 3
Graphs .. 4
Haptic Waveforms .. 6
 Effect – Alert ... 6
 Effect – Buzz .. 7
 Effect – Strong Click .. 8
 Effect – Sharp Tick 100% ... 9
 Effect – Transition Ramp Down Short Smooth 1 – 100% .. 10
 Effect Sequence – Heart Beat .. 11

Figures

Lab Bench Setup .. 3
App – Menu Screen ... 3
App – Stock Waveforms ... 3
App – Waveform Sequencer ... 3
DRV2605EVM-BT Measurements with Low Pass Filter .. 4
Oscilloscope Labels .. 5
DRV2605 Alert Effect ... 6
DRV2605 Buzz 1 Effect ... 7
DRV2605 Strong Click Effect .. 8
DRV2605 Sharp Tick 100% Effect ... 9
DRV2605 Transition Ramp Down Short Smooth 1-100% .. 10
Heartbeat Waveform Control in iOS App ... 11
Heart Beat every 510ms .. 11
Heart Beat every 1ms .. 11

Tables

Document History .. 1
Table 1. Measurement Conditions ... 4
Bench Setup

The DRV2605EVM-BT was measured on the bench with the linear resonant actuator mounted to a 100g aluminum block as shown in the figure below. Below the metal block is a silicone gel block, which allows the metal block to vibrate without being interrupted by the solid table surface below.

![Lab Bench Setup](image)

The acceleration was measured using an accelerometer that converts peak voltage to acceleration equal to 57mVp = 1Gp.

iOS App Setup

The Haptic Bluetooth Kit iOS app was used to control the DRV2605. See the Haptic Bluetooth Kit User’s Guide for more information on connecting the app to the board.

![App – Menu Screen](image)

![App – Stock Waveforms](image)

![App – Waveform Sequencer](image)
Graphs

The graphs in this document show three measurements: output voltage, supply current, and acceleration.

Table 1. Measurement Conditions

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>V_{rms}</td>
</tr>
<tr>
<td>Supply Current</td>
<td>A</td>
</tr>
<tr>
<td>Acceleration</td>
<td>mV_p</td>
</tr>
</tbody>
</table>

- Output Voltage is the differential output between OUT+ and OUT-. In the oscilloscope plots a low pass filter was used so that the underlying waveform could be identified easily.

DRV2605EVM-BT Measurements with Low Pass Filter

- Supply Current – the supply current was measured using an inductive current sensor.

- Acceleration – the accelerometer was used to obtain a quantifiable measure of acceleration. The accelerometer converts 1G of peak acceleration to 57mV of peak voltage. This means that if the oscilloscope show 114mV at the peak of the acceleration waveform then the acceleration is equal to $2G = 114\text{mV}_p / 2$. G represents the unit of gravity.
Oscilloscope Labels
Haptic Waveforms

The sections below describe various waveforms and sequences that can be created using the DRV2605EVM-BT.

Effect – Alert

The alert waveform is a long buzz waveform used for alerting users. This is similar to a silent alert on a mobile phone.

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Acceleration</th>
<th>Supply Current (Avg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 Vrms</td>
<td>2.02 G</td>
<td>48.9 mA</td>
</tr>
</tbody>
</table>
Effect – Buzz

The buzz waveform is a short version of the alert. Notice the overdrive at the beginning of the output voltage waveform. This helps the actuator reach peak acceleration quick.

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Acceleration</th>
<th>Supply Current (Avg.)</th>
<th>Duration</th>
<th>Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.67 Vrms</td>
<td>1.98 G</td>
<td>55.2 mA</td>
<td>240 ms</td>
<td>3.68 uAh</td>
</tr>
</tbody>
</table>

DRV2605 Buzz 1 Effect
Effect – Strong Click

The strong click waveform can be used to create feedback when a button is pressed or an action is triggered in an end application.

Notice that the acceleration is not as high as the buzz. This is a result of the short duration waveform. This is perfectly acceptable for a click. The DRV2605 overdrive feature helps speed the startup time of the actuator by applying a higher voltage at the beginning.

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Acceleration</th>
<th>Supply Current (Avg.)</th>
<th>Duration</th>
<th>Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.05 Vrms</td>
<td>1.58 G</td>
<td>69.8 mA</td>
<td>60 ms</td>
<td>1.16 uAh</td>
</tr>
</tbody>
</table>

DRV2605 Strong Click Effect
Effect – Sharp Tick 100%

Sharp tick is similar to the Strong Click except the duration of the waveform is about half. This will result in a much sharp, but less powerful click.

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Acceleration</th>
<th>Supply Current (Avg.)</th>
<th>Duration</th>
<th>Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.98 Vrms</td>
<td>0.68 G</td>
<td>67.7 mA</td>
<td>25 ms</td>
<td>0.47 uAh</td>
</tr>
</tbody>
</table>

DRV2605 Sharp Tick 100% Effect
Effect – Transition Ramp Down Short Smooth 1 – 100 %

The waveform below shows a ramp down (also known as a transition).

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Acceleration</th>
<th>Supply Current (Avg.)</th>
<th>Duration</th>
<th>Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18 Vrms</td>
<td>1.55 G</td>
<td>35.1 mA</td>
<td>275 ms</td>
<td>2.68 uAh</td>
</tr>
</tbody>
</table>

DRV2605 Transition Ramp Down Short Smooth 1-100%
Effect Sequence – Heart Beat

The Heart Beat in the Stock Waveforms section of the iOS app is a sequence of effects. The Heart Beat effect is a combination of double click effects with different timing intervals depending on the beats per minute selected.

Heartbeat Waveform Control in iOS App

The graphs below show two different speeds of the heart beat effect. The image on the left shows a double click every 510 millisecond and the image on the right shows a double click every 1 second.

The DRV2605 can control the timing between effects and even allows the use of different timing within the same sequence. The image below shows the timing was changed between four double click effects.
Heart Beat Transition
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2014, Texas Instruments Incorporated