Test Report
For PMP9456
04/22/2014
Overview

The reference design provides a Battery charging solution for 6V, 4.7AH Lead Acid battery with a simple charging algorithm implementation using DC/DC Buck converter LM46001. Such batteries are widely used in industrial and consumer applications such as Digital Weighing Scale. The design is done for 300mA of Constant current charging (and thereof Tapering of current) and the this can be changed by changing the Current sense Resistor (R2 and R3). The feedback is modified using very low cost discrete devices to achieve charging algorithm.

Power Specification

Vin range: 10V-50V
Nominal Vin: 12V
Output: 4V-7.6V (Depends on State of 6V, 4.7AH Lead Acid Battery)
Fsw: 500KHz

Board Photos

Power Board Front

Figure 1
Charging Algorithm implementation

Below the Zener Voltage(D1), the Feedback is locked by the current flowing in the current Sense Resistor R2 and R3 and hence Constant current Charging is maintained. Once the Zener Voltage is reached at the output, the Charging current starts to taper off as needed in the Charging Algorithm of Lead Acid Battery. Zener D1 Voltage decides the Point of Current Taper off while Resistance R1 decides the Ramp of Current tapering and both can be chosen according to the Need of algorithm.

Figure 2
Efficiency

The efficiency is measured at $V_{in} = 12V$

![Battery Charging current Vs Efficiency](image)

Figure 3

![Efficiency](image)

Figure 4
If the cost permits, the efficiency can further be improved to **88 to 90 percent** by adding external reference to feedback pin through TL431 shunt regulator or a Zener placed at the output. This will lower the losses on the Current Sense resistor R1 and R2.

This gives around 0.8V reference to FB (R1 and R5 potential divider) and for locking the feedback the rest 0.2V comes from the Drop across Current Sense resistor and hence can be changes accordingly.

Switch Node Waveform

Test condition: The input voltage was set at 12V, 24V and 48V, and the output is set at full load. The switching waveform is stable across the voltage range.

Ch2 – Vsw (switch node voltage).

![Switch Node Waveform](image)

Figure 4 Vin=12V
Figure 5 Vin=24V

Figure 6 Vin=48V
A Typical Application: Weighing Scale

Issues with such Solution

1. Close to 2W drop across LM7808(4V drop * 500mA-Thermal issues) coupled with 0.5W drop across current limiting resistance.

2. In the remote areas, 15V transformer (12V Transformer@ 220V AC goes down to 8-9V at 130-140VAC and hence charging is stopped) is supplied to cater Low AC power issues. This further increased the power loss and results in greater thermal issues.
3. Lead Acid Battery is never charged fully to it’s capacity because of current limited charging. No. of Charge Discharge cycle is reduced.

4. Fast charge will result in further power losses and thermal issues.

All of this will be taken care through PMP9456 reference design.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN, IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that have specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/Ts16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/Ts16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated