This solution is designed for the inverter front-loading washing machine and based on MSP430F5418 (used for the main control system) and TMS320F28027F (used for motor control). This machine is designed to implement direct drive variable frequency (DDVF) motor control and whole washing process control. Additionally, the design detects basic failures such as filling failure, draining failure, and motor failure.
1 System Block Diagram

The hardware includes three parts: the main control board, the motor control board, and the user interface board. The main control board manages the washing process. This board gets feedback from various sensors (NTC, water pressure sensor, and so on) and controls the action of all electric components (door lock, heater, valve, pump, and motor) according to the washing logic.

The motor control board controls the DDVF motor and communicates with main control board by UART. This board receives commands from main control board and sends back the status of motor.

The user inference board is the human interface between the user and washing machine. This board reads the user's input and shows the status of the washing machine with LED lights. The user interface board is controlled by the main control board directly through matrix scanning.

Figure 2. System Block Diagram
2 Hardware

This section defines the interfaces of the main control board and the motor control board.

Figure 3. Main Control Board

Figure 4. Motor Control Board

Figure 5. System Connection
3 Software State Machine

This washing machine has the following states in its life cycle: Standby, Selection, Execution, Pause, BrownOut, Delay, End, Test, and Failure.

- **Standby**: When the washer is power on, it goes to Standby state. The door is unlocked.
- **Selection**: After the user selects a wash program by turning the knob, the machine goes to the Selection state. In this state, the user can choose the washing program and set the spin speed, washing temperature, and so on.
- **Execution**: Once the user presses the *Start* button, the machine moves to the Execution state, starting the washing program. The door is now locked.
- **Pause**: The machine switches to a Pause state when pressing the *Pause* button during the Execution state. The user can change the configuration of washing program.
- **BrownOut**: The machine moves to this state when the main line voltage is too high or too low. The washing program will resume when the voltage is in a normal range again.
- **Delay**: This state starts a countdown and goes to Execution automatically when the time expires.
- **End**: Once the washing program finishes, the display reads *END*. Changing the knob or pressing the button goes back to the Selection state.
- **Test**: Go to the Test state by pressing the *Speed* and *Temperature* buttons at the same time.
- **Failure**: If any failures occur, the washing program stops and displays a failure code.

![State Machine Diagram](Image)

Figure 6. State Machine
4 Motor Control Features

- **InstaSPIN™-FOC**
 In this solution, we use [TI InstaSPIN-FOC technology](https://www.ti.com) in the motor control. You can find the following is one of key performance of the InstaSPIN estimator for the sensorless PMSM control. Block the motor when the motor runs with a sensorless closed loop, and then release it. The motor can continue to run with the same direction and speed before the block.

- **Agitate Washing**
 The current of agitate washing is continued when motor change direction. The washing machine does not stop the motor and then restarting in the opposite direction; the machine changes the speed reference from positive to negative repeatedly during the close loop control.

5 Motor Control Test Data

Connect the system as described in [Section 2](#), and run the following tests.

5.1 **Startup Test without Load**

1. Keep the drum empty, close the door, and select the *Single Spin* program (the spin profile is preloaded in the software).
2. Press the *Start* button.
3. Observe the current when the motor starts to accelerate.

As [Figure 7](#) shows, the current changes smoothly when the motor starts to run and accelerate.

![Figure 7. Acceleration from Low Speed without Load](#)
5.2 **Startup Test with Load**

1. Put a light load in the drum, close the door, and select one washing program.
2. Press the *Start* button.
3. Test the current when the motor speed increases from 0 rpm.

Figure 8 displays a readout of a smooth start-up. However, when the load becomes too heavy, the vibration of current can be observed occasionally, which the software can improve.
5.3 **Agitation Test without Load**

1. Keep the drum empty, close the door, and select one washing program.
2. Press the *Start* button.
3. Test the current when the motor moves forward and backward.

Figure 9 displays the consistent current when the motor changes direction.

![Figure 9. Reversing without Load](image)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated