Abstract

TI design TIDA-00318 is suitable for low power wearable devices and incorporates a Qi-compliant wireless power receiver (bq51003) and low current 1 cell Li-Ion linear charger (bq25100). It features an ultra-small size (5 mm x 15 mm), capable of charging currents down to 10 mA and up to 250 mA with support of termination currents as low as 1 mA. The included schematic is designed for 135 mA charge current and 8 mA termination current application.

Figure 1. Board Photo

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>August 2014</td>
<td>Marco Hsieh</td>
<td>First release</td>
</tr>
</tbody>
</table>
WARNING: EXPORT NOTICE

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from Disclosing party under this Agreement, or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. This provision shall survive termination or expiration of this Agreement.

According to our best knowledge of the state and end-use of this product or technology, and in compliance with the export control regulations of dual-use goods in force in the origin and exporting countries, this technology is classified as follows:

US ECCN: 3E991
EU ECCN: EAR99

And may require export or re-export license for shipping it in compliance with the applicable regulations of certain countries.
Contents

Abstract ...1
Bench Set up ..4
 Receive Coil ...5
Block Diagram ...6
Charging Cycle Test ...6
 Battery ...7
 Temperature Measurement ...7
 4.2 V 250 mA Charge Cycle with 10 mA Charge Termination ..8
 4.2 V 135 mA Charge Cycle with 20 mA Charge Termination ..8
 4.2 V 60 mA Charge Cycle with 1 mA Charge Termination ..9
TIDA-00318 Operation Waveform ...10
 IBAT Load Transition from 0 mA to 100 mA ...10
 IBAT Load Transition from 100 mA to 0 mA ...11
References ..12

Figures

Figure 1. Board Photo ...1
Figure 2. Bench Setup ...4
Figure 3. Receiver Coil ..5
Figure 4. Block Diagram ...6
Figure 5. 110 mAh Li-Ion Battery Pack ...7
Figure 6. FLUKE 80TK Thermal Couple ..7
Figure 7. 4.2 V 250 mA Charge Cycle with 10 mA Charge Termination8
Figure 8. 4.2 V 135 mA Charge Cycle with 20 mA Charge Termination8
Figure 9. 4.2 V 60 mA Charge Cycle with 1 mA Charge Termination9
Figure 10. 4.2 V 60 mA Charge Cycle with 1 mA Charge Termination (2)9
Figure 11. IBAT Load Transition from 0 mA to 100 mA ..10
Figure 12. IBAT Load Transition from 100 mA to 0 mA ..11

Tables

Document History ..1
Table 1. Measurement Conditions ...6
Bench Set up

- TIDA-00318 was tested on a bench setup with wireless receiver coil TDK WR222230 and a 110 mAh Li-Ion battery as shown in the Figure 1. The test equipment is as follows:
 - Oscilloscope: Tektronix DPO3034, 300 MHz
 - Passive Voltage Probes (4) : Tektronix P6139B – 500 Mhz, 8 pF, 10 MΩ, 10x
 - Current Probe: Tektronix TCP202A Current Probe
 - Power Supply: HP E3681A
 - Electronic Load: Keithley Source Meter 2420
 - Keithley Multi-meter 2000 (5)
 - Lithium-Ion batteries (various capacities / chemistries)
 - FLUKE Thermal Couple : 80TK
 - Wireless Power Transmitter: TI bq500212AEVM-550 PWR550

Figure 2. Bench Setup
Receive Coil

- A TDK WR222230 was used as the receiver coil in this experiment. The shield diameter is 22 mm and the coil outer diameter is 17 mm.

![Figure 3. Receiver Coil](image-url)
Charging Cycle Test

- The charging cycle test in this document shows five measurements: battery voltage, battery current, input voltage, input current and device temperature.

Table 1. Measurement Conditions

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery voltage</td>
<td>V</td>
</tr>
<tr>
<td>Battery current</td>
<td>A</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V</td>
</tr>
<tr>
<td>Input current</td>
<td>A</td>
</tr>
<tr>
<td>Device temperature</td>
<td>°C</td>
</tr>
</tbody>
</table>
Battery

- The battery pack using in this experiment is a 110 mAh Li-Ion battery pack.

![110 mAh Li-Ion Battery Pack](image)

Figure 5. 110 mAh Li-Ion Battery Pack

Temperature Measurement

- Temperature measurements were made with a FLUKE 80TK thermal couple.

![FLUKE 80TK Thermal Couple](image)

Figure 6. FLUKE 80TK Thermal Couple
4.2 V 250 mA Charge Cycle with 10 mA Charge Termination

Figure 7. 4.2 V 250 mA Charge Cycle with 10 mA Charge Termination

4.2 V 135 mA Charge Cycle with 20 mA Charge Termination

Figure 8. 4.2 V 135 mA Charge Cycle with 20 mA Charge Termination
4.2 V 60 mA Charge Cycle with 1 mA Charge Termination

Figure 9. 4.2 V 60 mA Charge Cycle with 1 mA Charge Termination

Figure 10. 4.2 V 60 mA Charge Cycle with 1 mA Charge Termination (2)
TIDA-00318 Operation Waveform

IBAT Load Transition from 0 mA to 100 mA

$V_{BAT} = 3.8 \text{ V}$

Figure 11. IBAT Load Transition from 0 mA to 100 mA
IBAT Load Transition from 100 mA to 0 mA
VBAT = 3.8 V

Figure 12. IBAT Load Transition from 100 mA to 0 mA
References

1. Highly Integrated Wireless Receiver Qi (WPC v1.1) Compliant Power Supply (SLUSBC8)
2. bq2510x 250-mA Single-Input, Single Cell Li-Ion Battery Chargers (SLUSBV8)
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale provided at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications using TI components. To minimize the risks associated with Buyers’ products and applications using TI components, Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated