
TPS7A1633
(LDO)

LP2985-33
(LDO)

TPD3E001
(ESD)USB

MSP430F5529
(MCU)

LP2985-33
(LDO)

LP2985-33
(LDO)DRV5053

Flux
Concentrator

TMP103
(Temp Sensor)

Display

3.3 V

3.3 V

Source of power 
can be

USB power or a
DC-24V

3.3 V can be
Generated from 
either USB or 
24-V DC input

24 V

AC Current Flowing in Wire Under Test (A) [RMS]

A
C

 C
u

rr
e

n
t 

M
e

a
s

u
re

d
 b

y
 H

a
ll

 S
e

n
s

o
r 

(A
) 

[R
M

S
]

0 2 4 6 8 10 12

0

2

4

6

8

10

12

D001

TI Designs
Contactless and Precise AC-Current Sensing Using a Hall
Sensor

TI Designs Design Features
TI Designs provide the foundation that you need This reference design for contactless and precise AC-
including methodology, testing and design files to current sensing using a Hall Sensor subsystem
quickly evaluate and customize the system. TI Designs enables AC current measurements while maintaining
help you accelerate your time to market. the insulation around the wire.

• Contactless Proximity Current Sensing for AC,Design Resources 3-Phase Input Currents
• Maximum Measured Error Less than 5% from 1-ATool Folder Containing Design FilesTIDA–00218

to 10-A RMSDRV5053 Product Folder
• Flux Concentrator as Described in This DesignMSP430F5529 Product Folder

Improves the Magnetic Flux Density by a Factor ofLP2985–33 Product Folder
6 (15 dB)TPS7A1633 Product Folder

• Only Single-Point Gain Correction at MaximumTMP103 Product Folder
Current Range — Second-Order Curve FitTPD3E001 Product Folder
Implemented In Firmware

• Maximum Current that Can Be Sensed Can Be
Adapted by Changing Flux Concentrator Design

Featured Applications
• Building Automation
• Circuit Breakers
• Electrical Panels
• Control Panel

ASK Our E2E Experts
WEBENCH® Calculator Tools

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

PowerPAD is a trademark of Texas Instruments.
SMBus is a trademark of Intel.
All other trademarks are the property of their respective owners.
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Key System Specifications
PARAMETER SPECIFICATION DETAILS

Contactless Hall Sensor based, with flux concentrator See Section 3.3, Section 3.4,Current sensing concentrating the flux and Section 3.5
In this design implementation, 500-mA to 10-A AC RMS, See Section 3.4, Section 5.2,Current sensing range however, the maximum current range is dependent on the flux and Section 5.3concentrator

Flux concentrator material 1010 Cold Rolled Steel (CRS) See Section 3.5
Input operating voltage USB powered or 12-V to 24-V DC powered See Section 4.1 and Section 4.2
Operating temperature –40 to 85°C
Cross talk across channels Negligible
Temperature effect on Hall See Section 5.4Sensor

See Section 3.8.1 andCalibration Single-point at the maximum current Section 5.1
Maximum measured error Less than 5% See Section 5.1
Operating maximum current with
this existing flux concentrator Approximately 13-A AC RMS See Section 5.1
design
Algorithm for current Second-order curve fit that determines current based on Hall See Section 5.1determination Sensor output voltage after gain correction
Output On-board display See Section 4.1

1 System Description
This reference design for contactless and precise AC-current sensing using a Hall Sensor subsystem
provides a solution knowing how much AC current is flowing through a wire without any physical
intervention. In some cases during a system debug, determining whether or not an AC current is flowing
through the wire is required. The reference design for a contactless AC-current sensing sub-system helps
use to do the following:
• Indicate overcurrent alarm conditions
• Determine the load characteristics by monitoring the sourced current
• Indicate alarm conditions when no current is flowing through the monitored wire
• Monitor all three phases of power for debug, data logging or both

The key subsystem challenge during the design process was determining the AC-current flow in a
contactless manner. This challenge implies that the plastic insulation around the AC wire is intact yet the
user can still determine the AC current flow.

In such a case, one option to determine the AC current flow is to find the magnetic flux around the AC
current wire. This method has one challenge that the user must overcome. Even with a high AC current of
10-A flowing through a wire, the magnetic flux generated at the surface is still low, such as 4 Gauss for an
18 gauge wire.

To overcome these challenges, a flux concentrator has been implemented in this subsystem design as
shown in Figure 8. The goal of the addition of the flux concentrator, which is non-contact, is to concentrate
the flux around the AC current-carrying wire, rather than letting it escape in air, and then direct that flux to
a Hall Sensor. Concentrating the magnetic flux using a flux concentrator was improved by more than 15
dB (see Section 3). When this improvement is achieved, then a Hall Sensor and analog output can be
used to indicate the strength of the AC current proportional to the Hall Sensor output voltage.

Key Requirements for the Flux Concentrator Design (see Section 3)
• High permeability material
• A design that ensure that the AC current wire is surrounded by this material
• Flexible design so that the ends of the clip can touch the Hall Sensor
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Key Requirements for the Hall Sensor
• Use of a through hole package because it provides more flexibility in conjunction with flux concentrator
• An analog output that indicates magnetic-flux concentration
TI's DRV5053 device met the above requirements and was selected for this design (see Section 3).

Key Requirements for the Microcontroller
• ADC input channels
• Enough memory and resources to perform lookup-table functionality as well as linear interpolation
TI's MSP430F5529 device met the above requirements (see Section 3).

1.1 DRV5053
The DRV5053 device is a chopper-stabilized Hall IC that offers a magnetic sensing solution with superior
sensitivity stability over temperature and integrated protection features. The 0- to 2-V analog output
responds linearly to the applied magnetic flux density and distinguishes the polarity of magnetic flux
direction. A wide operating voltage range from 2.5 to 38 V with reverse polarity protection up to –22 V
makes the device suitable for a wide range of industrial and consumer applications.

Internal protection functions are provided for reverse supply conditions, load dump, and output short circuit
or over current.

1.2 MSP430F5529
The Texas Instruments MSP430™ family of ultralow-power microcontrollers (MCU) consists of several
devices featuring different sets of peripherals targeted for various applications. The architecture, combined
with extensive low-power modes, is optimized to achieve extended battery life in portable measurement
applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators
that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from
low-power modes to active mode in 3.5 μs (typical).

The MSP430F5529, MSP430F5527, MSP430F5525, and MSP430F5521 devices are microcontroller
configurations with integrated USB and PHY supporting USB 2.0, four 16-bit timers, a high-performance
12-bit analog-to-digital converter (ADC), two universal serial communication interfaces (USCI), hardware
multiplier, DMA, real-time clock module with alarm capabilities, and 63 I/O pins. The MSP430F5528,
MSP430F5526, MSP430F5524, and MSP430F5522 include all of these peripherals but have 47 I/O pins.

The MSP430F5519, MSP430F5517, and MSP430F5515 devices are microcontroller configurations with
integrated USB and PHY supporting USB 2.0, four 16-bit timers, two universal serial communication
interfaces (USCI), hardware multiplier, DMA, real time clock module with alarm capabilities, and 63 I/O
pins. The MSP430F5514 and MSP430FF5513 include all of these peripherals but have 47 I/O pins.

Typical applications include analog and digital sensor systems, data loggers, and others that require
connectivity to various USB hosts.

1.3 LP2985–33
The LP2985 family of fixed-output, low-dropout regulators offers exceptional, cost-effective performance
for both portable and nonportable applications. Available in voltages of 1.8 V, 2.5 V, 2.8 V, 2.9 V, 3 V, 3.1
V, 3.3 V, 5 V, and 10 V, the family has an output tolerance of 1% for the A version (1.5% for the non-A
version) and is capable of delivering 150-mA continuous load current. Standard regulator features, such
as overcurrent and overtemperature protection, are included.

The LP2985 device has a host of features that makes the regulator an ideal candidate for a variety of
portable applications. These features include the following:

• Low dropout: A PNP pass element allows a typical dropout of 280 mV at 150-mA load current and 7
mV at 1-mA load.

• Low quiescent current: The use of a vertical PNP process allows for quiescent currents that are
considerably lower than those associated with traditional lateral PNP regulators

• Low dropout: A PNP pass element allows a typical dropout of 280 mV at 150-mA load current and 7
mV at 1-mA load.
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• Low quiescent current: The use of a vertical PNP process allows for quiescent currents that are
considerably lower than those associated with traditional lateral PNP regulators

• Shutdown: A shutdown feature is available, allowing the regulator to consume only 0.01 μA when the
ON/OFF pin is pulled low.

• Low-ESR-capacitor friendly: The regulator is stable with low-ESR capacitors, allowing the use of small,
inexpensive, ceramic capacitors in cost-sensitive applications.

• Low noise: A BYPASS pin allows for low-noise operation, with a typical output noise of 30 μVRMS,
with the use of a 10-nF bypass capacitor.

• Small packaging: For the most space-constrained needs, the regulator is available in the SOT–23
package.

1.4 TPS7A1633
The TPS7A16 family of ultralow power, low-dropout (LDO) voltage regulators offers the benefits of ultra-
low quiescent current, high input voltage, and miniaturized, high thermal-performance packaging. The
TPS7A16 family of devices is designed for continuous or sporadic (power backup) battery-powered
applications where ultra-low quiescent current is critical to extending system battery life. The TPS7A16
family offers an enable pin (EN) compatible with standard CMOS logic and an integrated open drain
active-high power good output (PG) with a user programmable delay. These pins are intended for use in
microcontroller-based, battery powered applications where power-rail sequencing is required. In addition,
the TPS7A16 is ideal for generating a low-voltage supply from multicell solutions ranging from high cell-
count power-tool packs to automotive applications; not only can this device supply a well-regulated voltage
rail, but it can also withstand and maintain regulation during voltage transients. These features translate to
simpler and more cost-effective, electrical surge-protection circuitry.

1.5 TMP103
The TMP103 device is a digital-output temperature sensor in a four-ball wafer chip-scale package
(WCSP). The TMP103 device is capable of reading temperatures to a resolution of 1°C. The TMP103
device features a two-wire interface that is compatible with both I2C and SMBus interfaces. In addition, the
interface supports multiple device access (MDA) commands that allow the master to communicate with
multiple devices on the bus simultaneously, eliminating the need to send individual commands to each
TMP103 device on the bus. Up to eight TMP103 devices can be tied together in parallel and easily read
by the host. The TMP103 device is especially ideal for space-constrained, power-sensitive applications
with multiple temperature measurement zones that must be monitored. The TMP103 device is specified
for operation over a temperature range of –40°C to 125°C.

1.6 TPD3E001
The TPD3E001 is a low-capacitance ±15-kV ESD-protection diode array designed to protect sensitive
electronics attached to communication lines. Each channel consists of a pair of diodes that steer ESD
current pulses to VCC or GND. The TPD3E001 device protects against ESD pulses up to ±15-kV human-
body model (HBM), ±8-kV contact discharge, and ±15-kV air-gap discharge, as specified in IEC
61000–4–2. This device has a 1.5-pF capacitance per channel, making it ideal for use in high-speed data
IO interfaces.

The TPD3E001 device is a triple-ESD structure designed for USB On-the-Go (OTG) and video
applications.

The TPD3E001 device is available in DRL, DRY, and thin QFN packages and is specified for –40°C to
85°C operation.
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2 Block Diagram

Figure 1. Contactless and Precise AC Current Sensing Using Hall Sensor Block Diagram

2.1 Highlighted Products
The reference design for contactless and precise AC-current sensing using a Hall Sensor features the
following devices:
• DRV5053

– 2.5-V to 38-V analog-bipolar, hall-effect sensor
• MSP430F5529

– 16-bit ultralow power microcontroller, 128-kB flash, 8-kB RAM, USB, 12-bit ADC, 2 USCIs, 32-bit
HW MPY

• LP2985–33
– Single output LDO, 150 mA, fixed (3.3 V), 1.5% tolerance, low quiescent current, low noise

• TPS7A1633
– 60-V, 5-µA IQ, low-dropout 100-mA linear regulator with enable and power good

• TMP103
– Digital temperature sensor with I2C and SMBUS expanded interface

• TPD3E001
– Low-capacitance 3-channel ±15KV ESD-protection array for high-speed data interfaces

For more information on each of these devices, see the respective product folders at www.ti.com or the
resources listed in Section 7.
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2.1.1 DRV5053

Figure 2. DRV5053 Functional Block Diagram

The DRV5053 features are as follows:
• Linear output Hall Sensor
• Superior temperature stability

– Sensitivity ±10% over temperature
• High sensitivity options:

– –11 mV/mT (OA)
– –23 mV/mT (PA)
– –45 mV/mT (RA)
– –90 mV/mT (VA)
– +23 mV/mT (CA)
– +45 mV/mT (EA)

• Supports a wide voltage range
– 2.5 to 38 V
– No external regulator required

• Wide operating temperature range
– TA = –40 to 125°C (Q)

• Amplified output stage
– 2.3-mA sink, 300 µA source

• Output voltage: 0.2 ~ 1.8 V
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– B = 0 mT, OUT = 1 V
• Fast power-on: 35 µs
• Small package and footprint

– Surface mount 3-Pin SOT–23 (DBZ)
• 2.92 mm × 2.37 mm

– Through-hole 3-pin SIP (LPG)
• 4 mm × 3.15 mm

• Protection features:
– Reverse supply protection (up to –22 V)
– Supports up to 40-V load dump
– Output short-circuit protection
– Output current limitation

2.1.2 MSP430F5529

Figure 3. MSP430F5529 Functional Block Diagram

The MSP430F5529 features are as follows:
• Low supply-voltage range: 3.6 V down to 1.8 V
• Ultralow-power consumption

– Active mode (AM): all system clocks active 290 µA/MHz at 8 MHz, 3, flash program execution
(Typical) 150 µA/MHz at 8 MHz, 3, RAM program execution (typical)

– Standby mode (LPM3): real-time clock with crystal, watchdog, and supply supervisor operational,
full RAM retention, Fast Wake-Up: 1.9 µA at 2.2 V, 2.1 µA at 3 (typical) low-power oscillator (VLO),
general-purpose counter, watchdog, and supply supervisor operational, full RAM retention, fast
wake up: 1.4 µA at 3 (typical)

– Off mode (LPM4): full RAM retention, supply supervisor operational, fast wake up: 1.1 µA at 3 V
(typical)

– Shutdown mode (LPM4.5): 0.18 µA at 3 (Typical)
• Wake up from standby mode in 3.5 µs (typical)
• 16-bit RISC architecture, extended memory, up to 25-MHz system clock
• Flexible power management system
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– Fully integrated LDO with programmable regulated core supply voltage
– Supply voltage supervision, monitoring, and brownout

• Unified clock system
– FLL control loop for frequency stabilization
– Low-power low-frequency internal clock source (VLO)
– Low-frequency trimmed internal reference source (REFO)
– 32-kHz watch crystals (XT1)
– High-frequency crystals up to 32 MHz (XT2)

• 16-bit timer TA0, Timer_A with five capture and compare registers
• 16-bit timer TA1, Timer_A with three capture and compare Registers
• 16-bit timer TA2, Timer_A with three capture and compare Registers
• 16-bit timer TB0, Timer_B with seven capture and compare shadow registers
• Two universal serial communication interfaces

– USCI_A0 and USCI_A1 each support:
• Enhanced UART supports auto-baudrate detection
• IrDA encoder and decoder
• Synchronous SPI

– USCI_B0 and USCI_B1 each support:
• I2C
• Synchronous SPI

• Full-speed universal serial bus (USB)
– Integrated USB-PHY
– Integrated 3.3-V and 1.8-V USB power system
– Integrated USB-PLL
– Eight input and eight output endpoints

• 12-Bit analog-to-digital converter (ADC) (MSP430F552x only) with internal reference, sample-and-hold,
and autoscan feature

• Comparator
• Hardware multiplier supports 32-bit operations
• Serial onboard programming, no external programming voltage needed
• Three-channel internal DMA
• Basic timer with real-time clock feature
• See the data sheet for a list of devices in this device family, SLAS590
• For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide,

SLAU208
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2.1.3 LP2985–33

Figure 4. LP2985 Functional Block Diagram

The LP295 features are as follows:
• Output tolerance of

– 1% (A grade)
– 1.5% (standard grade)

• Ultralow dropout, typically
– 280 mV at full load of 150 mA
– 7 mV at 1 mA

• Wide VIN range: 16 V maximum
• Low IQ: 850 μA at full load at 150 mA
• Shutdown current: 0.01 μA typical
• Low noise: 30 μVRMS with 10-nF bypass capacitor
• Stable with low-ESR capacitors, including ceramic
• Overcurrent and thermal protection
• High peak-current capability
• ESD protection exceeds JESD 22

– 2000-V human-body model (A114-A)
– 200-V machine model (A115-A)
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2.1.4 TPS7A1633

Figure 5. TPS7A1633 Functional Block Diagram

The TPS7A1633 features are as follows:
• Wide input voltage range: 3 to 60 V
• Ultralow quiescent current: 5 µA
• Quiescent current at shutdown: 1 µA
• Output current: 100 mA
• Low dropout voltage: 60 mV at 20 mA
• Accuracy: 2%
• Available in:

– Fixed output voltage: 3.3 V, 5 V
– Adjustable version from 1.2 to 18.5 V

• Power good with programmable delay
• Current-limit and thermal shutdown protections
• Stable with ceramic output capacitors: ≥ 2.2 µF
• Packages: high thermal performance MSOP–8 and SON–8 PowerPAD™
• Operating temperature range: –40°C to 125°C
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2.1.5 TMP103

Figure 6. TMP103 Pin Configuration

The TMP103 features are as follows:
• Multiple device access (MDA):

– Global read and write operations
• I2C- and SMBus™-compatible interface
• Resolution: 8 bits
• Accuracy: ±1°C typical (–10°C to 100°C)
• Low quiescent current:

– 3-μA active IQ current at 0.25Hz
– 1-μA shutdown current

• Supply range: 1.4 to 3.6 V
• Digital output
• Package: 4-Ball WCSP (DSBGA)
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2.1.6 TPD3E001

Figure 7. TPD3E001 Logic Block Diagram

The TPD3E001 features are as follows:
• 3-Channel ESD clamp array to enhance system-level ESD protection
• Exceeds IEC61000–4–2 (level–4) ESD protection requirements

– ±8-kV IEC 61000–4–2 contact discharge
– ±15-kV IEC 61000–4–2 air-gap discharge

• ±15-kV human-body model (HBM)
• 5.5-A peak pulse current (8/20-╦s Pulse)
• Low 1.5-pF input-output capacitance
• Low 1-nA (max) leakage current
• 0.9- to 5.5-V supply-voltage range
• Space saving DRY, DRL, and DRS package options
• Alternate 2-, 4-, and 6-channel options available: TPD2E001, TPD4E001, and TPD6E001
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3 System Design Theory

3.1 Magnetic Field
The magnetic field lines around a long wire carrying an electric current form concentric circles around the
wire. The direction of the magnetic field is perpendicular to the wire and the direction of the current flow
follows the right-hand rule. When the user wraps their right hand around the wire with their fingers curling
in the direction of the magnetic field, the direction of the pointing thumb is the direction of the current flow.
The magnetic field of an infinitely-long straight wire can be obtained by applying Ampere's law. The
expression for the magnetic field is shown in Equation 1.

where
• B = magnetic field
• I = current in Amperes
• R = radial distance in m
• µ = permeability in free space: 4π10–7 T.m/A (1)

As shown in Equation 1, the magnetic energy generated by a current-carrying wire is low even at 10 A for
an 18-AWG wire. The magnetic field is only 4 Gauss.

3.2 Permeability
Permeability is the degree of magnetization the material gains as a response to that field. Permeability
occurs when a magnetic field is applied to a material.

Using the information in Section 3.1 and this section, concentrating the magnetic flux from the AC current-
carrying wire is desirable such that a wider dynamic-range response can be obtained from the Hall Sensor
output that is indicative of the AC current.

3.3 Flux Concentrator
Multiple ferrite cores were shaped in a form as shown in Figure 8. The purpose of this form is to force the
AC current-carrying wire through the opening in the flux concentrator such that the flux concentrator
surrounds the AC current-carrying wire. Then, as the flux concentrator tapers it can direct the magnetic
flux through the through-hole package on the Hall Sensor DRV5053 device.

Figure 8. Flux Concentrator Concept
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3.4 AC Current Magnetic Flux With and Without Flux Concentrator
This section shows the improvement received by using a flux concentrator versus not using a flux
concentrator. The results were generated using the following steps:
• Use a space heater for a resistive load. Feed the current from the cord of the heater (AC line) through

the flux concentrator as shown in Figure 8.
• Use a space heater for a lower setting (the equivalent of 6.8-A was measured on the power meter) and

as shown in Figure 9.
The Hall Effect sensor measured 272 mVPP.

• To confirm if the flux concentrator had an effect, use the same current and remove the flux
concentrator. Place the hall effect sensor next to the cord.
Figure 10 shows the results. The peak-to-peak (pp) amplitude was measured at only 46 mV.

Figure 10. Without Flux ConcentratorFigure 9. With Flux Concentrator

The results confirmed that a first attempt at designing a flux concentrator resulted in an improved
magnetic flux of approximately 15 dB. This result can translate into a more accurate response for the Hall
Sensor DRV5053 device over a wide dynamic range of AC currents.
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3.5 Flux Concentrator Design
A detailed CAD drawing was generated such that a flux concentrator can be manufactured to given
tolerances as shown in Figure 11 and Figure 12. The flux concentrator was designed using 1010 CRS
material.

Dimensions are in Inches.

Figure 11. Flux Concentrator Drawing

Dimensions are in Inches.

Figure 12. Flux Concentrator Solder Pads for PCB

3.6 Low-Pass Filter on DRV5053 Analog Outputs
The output bandwidth of the DRV5053 device is 20 kHz. The AC current under measurement is 60 Hz. A
low-pass filter was included on the DRV5053 outputs so that the cutoff frequency is 225 Hz. The intent of
the low-pass filter is to filter the high frequency noise from the analog output lines of DRV5053 device
above 3 to 4 times the frequency of interest, which, in this case, is 60 Hz.

Figure 13. Low-Pass Filter on DRV5053 Analog Outputs
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3.7 DRV5053 Analog Lines Layout

Figure 14. DRV5053 Analog Output Layout

The design guidelines for the analog layout were followed for the DRV5053 analog output. As shown in
Figure 14, the analog output line was surrounded by ground pours with via stitching such that the noise
from any surrounding circuitry or other source can be isolated from the analog output lines.

The low-pass filter was placed closer to the MSP430 ADC input pins.

Figure 15. Flux Concentrator, Hall Sensor Placement With Respect to Input Power

The Hall Sensor was placed directly underneath the flux concentrator and away from the power and EP
section as shown in Figure 15.
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3.8 MSP430 ADC Resources
The MSP430F5529 device has an internal 12-bit successive approximation (SAR) analog-to-digital
converter (ADC). The internal ADC samples the DRV5053 device on each channel. Use to calculate the
ADC count value based on the actual voltage signal from the DRV5053 device.

ADC count = (3.3 V × sample) / 4095

The external reference voltage of the ADC is set to 3.3 V as shown in Figure 13. The value 4095 is used
because the internal ADC has 12-bits of accuracy, 212 = 4096.

3.8.1 Firmware Description
The three main clocks, ACLK, SMCLK, and MCLK, are referenced off of the external 24-MHz crystal. The
ACLK clock oscillates at 3 MHz, the SMCLK clock oscillates at 6 Mhz, and the MCLK clock oscillates at
24 MHz. An open-source TI library, IQMath, calculates the RMS value for the user in a time-efficient
matter. To download the IQMath library, go to www.ti.com/tool/msp430-iqmathlib.

A calibration sequence runs on startup and requires 2 s of data to find the average noise. The average
noise value is removed from each sample before adding it to the total run time.

When the ADC is configured with the respective buffers and a sampling rate of approximately 5940
samples per second, the calibration is complete. The main loop waits until the sample buffer completes a
full second of data (5940 samples). The ADC triggers an interrupt when a sample can be read. At this
time, the sample is squared and added to a running total. After 5940 samples are taken, the running total
is copied to another buffer. The previous total is cleared and the ADC is ready to receive new data. While
waiting for more ADC interrupts, RMS calculations can occur with the new buffer as shown in Equation 2.

(2)

Because the sum of squares are already calculated with the running total, only the divide and square root
must be calculated. Peak-to-peak values are stored during the sampling stage of ADC interrupt-service
routine and are updated every second along with the calculated RMS and current values.
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4 Hardware Overview

Figure 16. Hardware Description

4.1 USB Power
To set up the USB power, follow these steps:
• Install jumper J1 and J3.
• Ensure that the J4 jumper is installed between pins 1 and 2.

The default of the firmware is set to a value so that the threshold for the RMS-voltage readout from the
analog output of the DRV5053 device is 15 mV. This default value means that as long as the noise on
the lines is below 15 mV, the design will read 0 A of current.

• Pass current-carrying wire under test through the opening in the flux concentrator as shown in
Figure 21.

• Ensure that the plastic insulation on the AC wire is intact.
The MSP430 firmware performs a running average of the sample size. The sample frequency is
approximately 5940 samples per second. The display is updated about every second after the RMS
calculations are complete.
See Figure 17 for the display readout description.

Figure 17. Display Readout Description

4.2 24-V DC Power Source
To set up the 24-V DC power source, follow these steps:
• Install jumper J1 and J3.
• Ensure that the J4 jumper is installed between pins 2 and 3.
• See Section 4.1 for the remaining steps.
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5 Test Data

5.1 Maximum Measured Error

Figure 18. Power Source

A Kikusui PCR1000M power source was used to source the variable AC currents. The AC voltage was
kept low for safety reasons and to ensure that the power across resistor loads was kept low.

Figure 19. Power Meter

A Voltek PM1000+ power meter was made available if needed. However, for this test, the use of a current
probe was needed for data logging purposes. The corresponding AC peak-to-peak, RMS readings, and
the Hall voltage output was recorded across different settings.

Figure 20. Hardware Description
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A Clarostat decade box was used as a resistive load across different AC input-current settings.

Figure 21. Complete Setup

Figure 22. AC Current Probe Measurement and Hall Sensor Output Voltage

Measurements of the Hall Sensor output voltage were taken across different AC current settings as shown
in Figure 22 . Table 1 lists the RMS and pp values for the AC input current and the Hall Sensor output
voltage for each measurement.
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Table 1. Sensor Output Voltage Across Different AC input Currents
BOARD 5 BOARD 6 (1) BOARD 7

CURRENT FLOWING IN HALL SENSOR CURRENT FLOWING IN HALL SENSOR CURRENT FLOWING IN HALL SENSORTEMP. WIRE MEASUREMENT WIRE MEASUREMENT WIRE MEASUREMENT

°C pp (A) RMS (A) pp (mV) RMS (mV) pp (A) RMS (A) pp (mV) RMS (mV) pp (A) RMS (A) pp (mV) RMS (mV)

Room 0.66 0.2 14.1 2.53 0.66 0.2 16.6 3.42 0.69 0.2 14.1 2.92

Room 1.6 0.49 24.3 5.94 1.63 0.5 29.4 7.78 1.63 0.5 27.5 7

Room 2.34 0.75 32 9.26 2.34 0.75 39.7 11.77 2.37 0.75 35.8 10.88

Room 3.04 1 42.2 12.54 3.01 0.99 51.2 15.61 3.01 1 53 14.6

Room 6.02 2 85 26.2 6.14 2.04 115 33.8 6.08 2 96 29.9

Room 9.4 2.98 126 40.7 9.4 3.01 166 51.9 9.4 3.01 146 47.1

Room 12.3 4.01 174 57.5 12.3 4 224 71.7 12.3 3.99 205 65.3

Room 15 4.96 227 73.9 15 4.98 282 92.3 15.2 5 259 84.4

Room 21.8 6.98 330 109.3 21.8 6.99 429 138.4 21.8 6.99 371 124.5

Room 30.4 10.0 506 166.6 30.1 9.95 634 210.8 30.4 9.98 570 189.3

(1) Board 6 was used as the baseline for the curve fit and gain error correction.

As listed in Table 1, for this particular set of data collection, a maximum current of 10 A was used (limited
by the test equipment). The maximum current measured was not limited by the Hall Sensor capability (see
Section 5.2).

To calibrate the Hall Sensor across different systems, a single-point gain calibration is proposed.

In this setup, the gain calibration of 10 A was used across board 5 and board 7 for gain correction with
board 6 as the baseline. Figure 23 shows a second-order polynomial.

y = –0.0000554x2 + 0.0583711x + 0.0712513, R2 = 0.9997402

Figure 23. Hall Sensor Output Response Across Different Boards and Curve Fit
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Table 2. Measured Error of Board 5 After Gain Calibration and Curve Fit Equation
of Board 6 as Reference

BOARD 5
HALL SENSOR MEASUREMENT

GAIN CORRECTED HALL SENSOR REFERENCE CURRENT 2ND ORDER CURVE FIT TO ERROROUTPUT VOLTAGE (mV) FLOWING IN WIRE RMS (A) PREDICT CURRENT (A)
3.22 0.2 0.26 29.24%
7.55 0.49 0.51 3.67%
11.78 0.75 0.75 0.01%
15.95 1 0.99 1.5%
33.32 2 1.95 2.03%
51.76 2.98 2.94 1.21%
73.12 4.01 4.04 0.83%
93.98 4.96 5.07 2.17%
138.99 6.98 7.11 1.92%
211.86 10 9.95 0.49%

As shown in Table 2, the measured error on board 5 is only 2.17% from 1 A to 10 A with board 6 curve fit
equation and after gain calibration.

Table 3. Measured Error of Board 7 After Gain Calibration and Curve Fit Equation
of Board 6 as Reference

BOARD 7
HALL SENSOR MEASUREMENT

GAIN CORRECTED HALL REFERENCE CURRENT 2ND ORDER CURVE FIT TOSENSOR OUTPUT VOLTAGE ERRORFLOWING IN WIRE RMS (A) PREDICT CURRENT (A)(mV)
3.26 0.2 0.26 30.52%
7.82 0.49 0.52 4.85%

12.15 0.75 0.77 2.71%
16.31 1 1.01 0.64%
33.4 2 1.96 2.2%

52.61 2.98 2.99 0.71%
72.94 4.01 4.03 1.1%
94.27 4.96 5.08 1.63%
139.06 6.98 7.12 1.82%
211.44 10 9.94 0.44%

As shown in Table 3, the measured error on board 7 is only 2.2% from 1 A to 10 A using board 6 curve fit
equation and after gain calibration.

The equation used to calculate current from the RMS value was adjusted to allow for current
measurement down to 0.5 A.

In this setup, measurements were taken from 0.5 A to 10 A using board 7. Figure 24 shows a second-
order polynomial fit.

22 Contactless and Precise AC-Current Sensing Using a Hall Sensor TIDU522A–October 2014–Revised February 2015
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU522A


AC Current Flowing in Wire Under Test (A) [RMS]

A
C

 C
ur

re
nt

 M
ea

su
re

d 
by

 H
al

l S
en

so
r 

(A
) 

[R
M

S
]

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1.984, 2.003

3.01, 3.056

3.99, 4.075

5.02, 5.11

6.04, 6.12

6.99, 7.037

8.06, 8.114

9.03, 8.963

9.82, 9.699

D005

0.2, 0.272

0.501, 0.525

0.742, 0.762

0.987, 0.993

Current

www.ti.com Test Data

Figure 24. Hall Sensor Response to AC Current Flowing in a Wire from 0.5 A to 10 A

Table 4. Board 7 After Curve Fit from 0.5 A to 10 A

BOARD 7
HALL SENSOR MEASUREMENT

REFERENCE CURRENT FLOWING IN HALL SENSOR 2ND ORDER CURVE FIT ERRORWIRE (A) TO PREDICT CURRENT (A)
0.2 0.272 –36%

0.501 0.525 –5%
0.742 0.762 –3%
0.987 0.993 –1%
1.984 2.003 –1%
3.01 3.056 –2%
3.99 4.075 –2%
5.02 5.11 –2%
6.04 6.12 –1%
6.99 7.037 –1%
8.06 8.114 –1%
9.03 8.963 1%
9.82 9.699 1%

As listed in Table 4, the measured error on board 7 is within 5% of the actual AC current through the wire
from 1 A to 10 A.
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5.2 Maximum Current Range
To ensure that the Hall Sensor output is not saturated, putting the maximum current specification that the
system can sense based on the overall sensitivity specification of the Hall Sensor is important.

For the DRV5053 device the sensitivity is from –140 mV/mT to –35 mV/mT based on the device data
sheet.

To ensure that the output is not saturated at the maximum current across the device range, use the known
B field versus output voltage of the Hall Sensor data that was collected on a unit (referred here as
calibrated unit) as listed in Table 5 .

Table 5. Sensitivity Data Across Known B Field

MAGNETIC FIELD (B) MEASURED HALL SENSOR OUTPUT VOLTAGE SENSITIVITY
+0 mT 1.003 V

+0.55 mT 1.05 V
+1.15 mT 1.102 V –86.7 mV/mT
+1.75 mT 1.15 V –80 mV/mT
+2.37 mT 1.2 V –80.6 mV/mT
+2.98 mT 1.252 V –85.2 mV/mT
+4.5 mT 1.375 V –80.9 mV/mT
+6 mT 1.5 V –83.3 mV/mT

+7.53 mT 1.624 V –81 mV/mT
+9.03 mT 1.749 V –83.3 mV/mT

This particular unit was then soldered on board 7and, with the same setup (see Section 5.1) , data was
collected across different known currents as listed in Table 6.

Table 6. Output Voltage versus AC Current

BOARD 7 WITH CALIBRATED UNIT SOLDERED
TEMPERATURE CURRENT FLOWING IN WIRE HALL SENSOR MEASUREMENT

°C pp (A) RMS (A) pp (mV) RMS (mV)
Room 1.5 0.5 33.3 7.24
Room 3.04 1 58 14.5
Room 6.08 2.01 101 30.5
Room 9.4 2.99 152 47.8
Room 12.5 4.02 211 65.8
Room 15.2 5.01 262 84.9
Room 21.8 7 390 124.7
Room 30.4 10.01 582 191.9

As listed in Table 6, the pp range for the 10-A range is 582 mV. As listed in Table 5, this value
corresponds to approximately +7 mT in the mT range.

Assuming the worst case with a device that has sensitivity of –140mV/mT, then the overall mT range is
approximately +10 mT, assuming a total VOUT range of 1.4 V for the Hall Sensor (assuming a VOUT
common mode of 1.1 V and maximum pp of 1.8 V}.

Therefore, in a worst-case scenario with a device sensitivity of –140mV/mT, the maximum current that can
be sensed with this existing flux concentrator design is approximately 14 A before saturation.

However ,the flux concentrator design can easily be changed (either the material or design) to increase
the maximum current range if desired.
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5.3 Minimum Current Range
The minimum current of the system is determined by the noise of the Hall Sensor output under quiescent
conditions. As previously stated, a low-pass filter is included in this design to ensure that the high
frequencies can be filtered off. The peak-to-peak noise that was measured on the Hall Sensor output with
no current flowing in the wire was 1.73 mVRMS as shown in Figure 25. As listed in Table 1, the minimum
current-limit of 1.5 times the quiescent noise with no field ensures that no false triggers are generated and
that reliable current measurements occur at the low end of the range.

1.5 × 1.73 = 2.6-mVRMS (3)

Based on the second-order curve fit shown in Figure 23, the corresponding minimum current is 220 mA.

However, as described in Section 5.1, the accuracy at the low-end of the current is low.

Figure 25. Hall Sensor Output With No current Flowing
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5.4 Temperature Data

Figure 26. Input Referred Noise vs Ambient Temperature

As shown in Figure 26, a variation of approximately 3.4% occurs from –40°C to 125°C. If the system
requires better accuracy over temperature, the on-board temperature sensor, TMP103, can be used to
compensate for the variation of temperature versus input-referred noise as shown in Figure 27.

Figure 27. On-Board Temperature Sensor for temperature Compensation

5.5 Life-Time Stress Data (HTOL)
No measurable shift was observed during life time stress of the DRV5053 device.

6 Design Files

6.1 Schematics
The schematics are presented in the following order:
1. MSP430, Hall Sensor (see Figure 28)
2. Power Section, Display (see Figure 29)
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Figure 28. Schematic Section – MSP430, Hall Sensor
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Figure 29. Power Section, Display
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6.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA–00218. Table tbd shows the BOM for the Contactless and Precise AC
Current Sensing using Hall Sensor Reference Design.

Table 7. BOM
DESIGNATOR QUANTITY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER

!PCB1 1 Printed Circuit Board ISE4016 Any

C1 1 4.7µF CAP, CERM, 4.7µF, 10V, ±10%, X5R, 0805 0805 0805ZD475KAT2A AVX

C2, C24, C25, C26, C27,
C28, C29, C30, C31, C32, 11 1µF CAP, CERM, 1µF, 16V, ±10%, X7R, 0603 0603 C1608X7R1C105K TDK
C33

C3 1 2.2µF CAP, CERM, 2.2µF, 10V, ±10%, X5R, 0805 0805 C0805C225K8PACTU Kemet

C4 1 0.01 µF CAP, CERM, 0.01 µF, 16V, ±10%, X7R, 0402 0402 GRM155R71C103KA01D MuRata

C5 1 22µF CAP ALUM 22UF 10V 20% SMD E55 EEE–1AA220WR Panasonic - ECG

C6, C8, C19 3 2200pF CAP, CERM, 2200pF, 100V, ±5%, X7R, 0603 0603 06031C222JAT2A AVX

C7, C9 2 18pF CAP, CERM, 18pF, 50V, ±5%, C0G/NP0, 0603 0603 06035A180JAT2A AVX

C10, C12, C13 3 0.22µF CAP, CERM, 0.22µF, 10V, ±10%, X5R, 0402 0402 GRM155R61A224KE19D MuRata

C11, C34, C35, C36, C37 5 0.47µF CAP, CERM, 0.47µF, 10V, ±10%, X5R, 0402 0402 GRM155R61A474KE15D MuRata

C14, C18 2 10µF CAP, CERM, 10µF, 10V, ±10%, X5R, 0805 0805 C0805C106K8PACTU Kemet

C15, C16, C38 3 0.1 µF CAP, CERM, 0.1 µF, 25V, ±5%, X7R, 0603 0603 06033C104JAT2A AVX

C17 1 0.1 µF CAP, CERM, 0.1 µF, 16V, ±10%, X5R, 0402 0402 GRM155R61C104KA88D MuRata

C20 1 1000pF CAP, CERM, 1000pF, 2000V, ±10%, X7R, 1210 1210 C1210C102KGRACTU Kemet

C21 1 0.01 µF CAP, CERM, 0.01 µF, 50V, ±10%, C0G/NP0, 0402 0402 GCM155R71H103KA55D MuRata

C22, C23 2 10µF CAP, CERM, 10µF, 50V, ±10%, X7R, 1210 1210 GRM32ER71H106KA12L MuRata

ESD in 0402 Package with 10 pF Capacitance and
D1, D2, D3, D4, D5, D8 6 6 V Breakdown, 1 Channel, –40 to +125 °C, 2-pin DPY0002A TPD1E10B06DPYR Texas Instruments

X2SON (DPY), Green (RoHS & no Sb/Br)

D6 1 Green LED, Green, SMD 1.6x0.8x0.8mm LTST-C190GKT Lite-On

D7 1 7.5V Diode, Zener, 7.5V, 550mW, SMB SMB 1SMB5922BT3G ON Semiconductor

D9 1 40V Diode, Schottky, 40V, 0.25A, SOD–523 SOD–523 NSR0240V2T1G ON Semiconductor

D10 1 36V Diode, TVS, Bi, 36V, 400W, SMA SMA SMAJ36CA Littelfuse

J1, J3 2 Header, 100mil, 2x1, Tin plated, TH Header 2x1 90120–0122 Molex

Connector, Receptacle, Mini-USB Type B, R/A,J2 1 USB Mini Type B 1734035–2 TE ConnectivityTop Mount SMT

J4 1 Header, 100mil, 3x1, Tin plated, TH Header, 3 PIN, 100mil, Tin PEC03SAAN Sullins Connector Solutions

J5 1 Header (shrouded), 100 mil, 7x2, Gold plated, TH 7x2 Shrouded Header SBH11-PBPC-D07-ST-BK Sullins Connector Solutions

J6 1 2x1 Conn Term Block, 2POS, 5.08mm, TH 2POS Terminal Block 1715721 Phoenix Contact

J7 1 Power Jack, SMT 14.8x11x12.6mm PJ–002AH-SMT-TR CUI Inc.

L1, L2, L3 3 330 ohm 1.5A Ferrite Bead, 330 ohm @ 100MHz, SMD 0603 BLM18SG331TN1D MuRata

Inductor, Wirewound, Ferrite, , 0.3A, 0.45 ohm,L4 1 2.0x1.2x1.2mm SRF2012–361YA BournsSMD
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Table 7. BOM (continued)
DESIGNATOR QUANTITY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER

Q1 1 50V MOSFET, N-CH, 50V, 0.22A, SOT–23 SOT–23 BSS138 Fairchild Semiconductor

R1 1 0 RES, 0 ohm, 5%, 0.063W, 0402 0402 CRCW04020000Z0ED Vishay-Dale

R2, R4, R7 3 47.5k RES, 47.5k ohm, 1%, 0.1W, 0603 0603 CRCW060347K5FKEA Vishay-Dale

R3 1 200 RES, 200 ohm, 5%, 0.1W, 0603 0603 CRCW0603200RJNEA Vishay-Dale

R5 1 1.00Meg RES, 1.00Meg ohm, 1%, 0.063W, 0402 0402 CRCW04021M00FKED Vishay-Dale

R6 1 1.50k RES, 1.50k ohm, 1%, 0.063W, 0402 0402 CRCW04021K50FKED Vishay-Dale

R8, R9 2 0 RES, 0 ohm, 5%, 0.063W, 0402 0402 ERJ–2GE0R00X Panasonic

R10, R11, R12, R13 4 1.50k RES, 1.50 k, 1%, 0.063 W, 0402 0402 CRCW04021K50FKED Vishay-Dale

R14, R15 2 3.16k RES, 3.16k ohm, 1%, 0.1W, 0603 0603 CRCW06033K16FKEA Vishay-Dale

S1, S2, S3 3 Switch, Tactile, SPST-NO, 0.05A, 12V, SMT SW, SPST 6x6 mm 4–1437565–1 TE Connectivity

SH-J1, SH-J2 2 1x2 Shunt, 2mm, Gold plated, Black 2mm Shunt, Closed Top 2SN-BK-G Samtec

TP1, TP2, TP3 3 Red Test Point, Miniature, Red, TH Red Miniature Testpoint 5000 Keystone

TP4 1 Orange Test Point, Miniature, Orange, TH Orange Miniature Testpoint 5003 Keystone

TP5 1 Yellow Test Point, Miniature, Yellow, TH Yellow Miniature Testpoint 5004 Keystone

Micropower 150 mA Low-Noise Ultra Low-DropoutU1 1 MF05A LP2985AIM5–3.3/NOPB National SemiconductorRegulator, 5-pin SOT–23, Pb-Free

Low-Capacitance + / - 15 kV ESD-Protection Array
for High-Speed Data Interfaces, 3 Channels, –40U2 1 DRL0005A TPD3E001DRLR Texas Instrumentsto +85 °C, 5-pin SOT (DRL), Green (RoHS & no
Sb/Br)

U3 1 Mixed Signal MicroController, PN0080A PN0080A MSP430F5529IPN Texas Instruments

Analog Linear Hall –80 mV/mt–40 - 125°C,U4, U5, U6, U7 4 LPG0003A DRV5053VAQLPGRQ1 Texas InstrumentsLPG0003A

60-V, 5-µA IQ, 100-mA, Low-Dropout VOLTAGE
U8 1 REGULATOR With Enable and Power-Good, DGN0008C TPS7A1633QDGNRQ1 Texas Instruments

DGN0008C

U9 1 Module, 128x64-pixel graphics display LCD Module EA DOGM128W–6 Electronic Assembly

Low-Power, Digital Temperature Sensor with Two-U10 1 YFF0004AAAA TMP103AYFF Texas InstrumentsWire Interface in WCSP, YFF0004AAAA

Y1 1 Crystal, 24.000MHz, 18pF, SMD Xtal, 7.2x1.3x5.2mm ABMM–24.000MHZ-B2-T Abracon Corportation

Z1, Z2, Z3, Z4 4 TI Flux Concentrator Clip TI Flux Concentrator Clip Produkt Works

FID1, FID2, FID3, FID4, 0 Fiducial mark. There is nothing to buy or mount. Fiducial N/A N/AFID5, FID6
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6.3 Layer Plots
To download the layer plots, see the design files at TIDA–00218.

Figure 30. Layer Plot 1

Figure 31. Layer Plot 2

Figure 32. Layer Plot 3
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Figure 33. Layer Plot 4

Figure 34. Layer Plot 5

Figure 35. Layer Plot 6
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Figure 36. Layer Plot 7

Figure 37. Layer Plot 8

Figure 38. Layer Plot 9
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Figure 39. Layer Plot 10
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6.4 Altium Project
To download the Altium project files, see the design files at TIDA–00218.

Figure 40. All Layers

Figure 41. Top Layer

Figure 42. Ground Layer

Figure 43. Power Layer

35TIDU522A–October 2014–Revised February 2015 Contactless and Precise AC-Current Sensing Using a Hall Sensor
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/TIDA-00218
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU522A


Design Files www.ti.com

Figure 44. Bottom Layer
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6.5 Gerber Files
To download the Gerber files, see the design files at TIDA–00218

Figure 45. Fabrication Drawing
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6.6 Assembly Drawings

Figure 46. Assembly Drawing 1
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Figure 47. Assembly Drawing 2
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6.7 Software Files
To download the software files, see the design files at TIDA–00218

7 References
• DRV5053 Analog-Bipolar Hall Effect Sensor, SLIS153
• LP2985–33, 150-mA LOW-NOISE LOW-DROPOUT REGULATOR WITH SHUTDOWN, SLVS522
• Magnetic Field of Current, Magnetic Field of Current
• MSP430F5529, MIXED SIGNAL MICROCONTROLLER, SLAS590
• TMP103, Low-Power, Digital Temperature Sensor with Two-Wire Interface in WCSP, SBOS545
• TPD3E001, LOW-CAPACITANCE 3-CHANNEL ±15-kV ESD-PROTECTION ARRAY FOR HIGH-

SPEED DATA INTERFACES, SLLS683
• TPS7A1633, 60-V, 5-μA IQ100-mA, Low-Dropout Voltage Regulator with Enable and Power-Good,

SBVS171

40 Contactless and Precise AC-Current Sensing Using a Hall Sensor TIDU522A–October 2014–Revised February 2015
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/TIDA-00218
http://www.ti.com/lit/pdf/SLIS153
http://www.ti.com/lit/pdf/SLVS522
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magcur.html
http://www.ti.com/lit/pdf/SLAS590
http://www.ti.com/lit/pdf/SBOS545
http://www.ti.com/lit/pdf/SLLS683
http://www.ti.com/lit/pdf/SBVS171
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU522A


www.ti.com About the Author

8 About the Author
AJINDER PAL SINGH is a Systems Architect at Texas Instruments, where he is responsible for
developing reference design solutions for the industrial segment. Ajinder brings to this role his extensive
experience in high-speed digital, low-noise analog and RF system-level design expertise. Ajinder earned
his Master of Science in Electrical Engineering (MSEE) from Texas Tech University in Lubbock, TX.
Ajinder is a member of the Institute of Electrical and Electronics Engineers (IEEE).

MARK C. DAHLMAN, P.E. is an Analog Field Applications Engineer at Texas Instruments, Incorporated
where he supports analog products in the South Eastern United States region. Mark has 18+ years of
design and applications experience, specializing in power systems, power electronics, data conversion,
high speed interface, industrial interface, automotive systems, and audio systems. Mark earned his
Bachelor of Science in Electrical Engineering (BSEE) from Tennessee Technological University in 1996
and received his Professional Engineering License in 2003. Mark is a member of the Institute of Electrical
and Electronics Engineers (IEEE).

41TIDU522A–October 2014–Revised February 2015 Contactless and Precise AC-Current Sensing Using a Hall Sensor
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU522A


Revision History www.ti.com

Revision History

Changes from Original (October 2014) to A Revision .................................................................................................... Page

• Added "Control Panel" to Featured Applications ...................................................................................... 1
• Updated device status to production data ............................................................................................. 6

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

42 Revision History TIDU522A–October 2014–Revised February 2015
Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU522A


IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers (“Buyers”) who are developing systems that
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TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any
testing other than that specifically described in the published documentation for a particular reference design. TI may make
corrections, enhancements, improvements and other changes to its reference designs.
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reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
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REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR
COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE
FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO
OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE
LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN
ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.
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