PMP6023
TPS92210
Universal Input 0-10V Dimmable 25W LED Driver Reference Design

May, 2014
Universal Input 0-10V Dimmable 25W LED Driver

1 Introduction

This TPS92210 reference design presents the TPS92210 AC-DC controller driving a 50V string of LEDs at 500mA in an isolated flyback configuration with an isolated 0-10V dimmer interface. The 0-10V dimming ratio is approximately 9:1. This power supply is power factor corrected and has power factor up to 0.99. The TPS92210 is a natural power factor correction LED driver with advanced energy features to provide high efficiency control for LED lighting applications. The features of TPS92210 include Constant On-Time Enables Single Stage Power Factor Correction, Cascoded MOSFET for Fast and Easy Startup, Fully Integrated Current Control without Sense Resistor, Transformer Zero Energy Detection Enables Valley Switching Operation.

2 Description

This reference design provides a high-brightness LED driver based on the configured as an isolated flyback converter with nature power factor correction. This design is dimmable by 0-10V dimmers with a dimming ratio of 9:1. It is designed to operate with an input voltage in the range of 100VAC to 264VAC. This design is set up for a 500mA LED current with LED stack voltage range from 45 V to 55 V.

2.1 Flyback Power Supply Description

The TPS92210 has two control modes. They are constant-on time control and peak-current mode control. This design uses peak-current mode control to ensure proper operation over a wide range of input voltage and 9:1 LED current dimming range. At full load, the converter is operating in the Frequency Modulation mode with a switching frequency around 120KHz.

In order for the converter to operate with a relatively constant switching frequency over the input voltage range, the switching on time needs to be adjusted according to the input voltage. This on time adjustment is achieved by injecting a current to the OTM resistor R19 through PNP transistor Q4. The injection current is controlled by the Q4 base voltage which is the divided average input voltage. At low line, the Q4 base voltage is low which decreases the injection current and leads to shorter on time. At high line, the Q4 base voltage is high which increases the injection current and leads to longer on time.

At low dimming level, the converter goes from the Frequency Modulation (FM) mode to the Amplitude Modulation (AM) mode. In AM mode, the peak primary current is programmed by the PCL resistor R19. This peak current needs to be set just above the actual peak current during full load operation to ensure smooth transition from FM mode to AM mode.
2.2 **0-10V Dimmer Interface Daughter Board Description**

The 0-10V dimmer interface circuit is located on the daughter board. It has a separated ground which is isolated from both primary and secondary grounds of the flyback power supply. It is powered by a 24V bias supply from the transformer winding (9-10). The dimming interface circuit takes the 0-10V dimming signal from the dimmer and compares it to a sawtooth waveform generated by a Programmable Unijunction Transistor (PUT) based oscillator. The comparator output, which is a square wave, drives an opto coupler. The duty cycle of the square wave is proportional to the 0-10V dimming signal. The opto coupler transfers this square wave signal to the flyback power supply secondary side. It is averaged by a RC filter to generate the LED current reference voltage for the power supply secondary control.

The 0-10V dimmer interface daughter board also provides a 1.5 mA current source to power the dimmer.

2.3 **Features**

2.3.1 **Connector Description**

This section describes the connectors of the reference design board.

2.3.1.1 **J5**

This connector is for the AC input to the board. Use the screw down terminal to connect Line and Neutral to the circuit.

2.3.1.2 **J3 & J4**

Connect J3 to the LED anode and J4 to the LED cathode.

2.3.1.3 **TP1, TP2, TP3, TP4 on the daughter board**

TP1 is internally connected to the 24V bias supply
Connect TP2 to the 0-10V dimmer output negative
Connect TP3 to the 0-10V dimmer output positive
Connect TP4 to the 0-10V dimmer supply (For most dimmers this is the same as output positive)
Electrical Performance Specifications

Table 1: TPS92210 Universal Input 0-10V dimmable LED Driver Electrical Performance Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage range</td>
<td>Normal operation</td>
<td>100</td>
<td>120/230</td>
<td>264</td>
<td>VAC</td>
</tr>
<tr>
<td>Maximum input current</td>
<td>At 120VAC 60Hz input voltage</td>
<td>0.05</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Output Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage, VOUT</td>
<td></td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>V</td>
</tr>
<tr>
<td>Output load current, IOUT</td>
<td>Input voltage = 120V 60Hz, Load = 50V LED</td>
<td>480</td>
<td>500</td>
<td>520</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Input voltage = 230V 50Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current regulation</td>
<td>Input voltage = 120V 60Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td><±4</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Input voltage = 230V 50Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current ripple</td>
<td>Input voltage = 120V 60Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td><170</td>
<td>mApp</td>
</tr>
<tr>
<td></td>
<td>Input voltage = 230V 50Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td><200</td>
<td></td>
</tr>
<tr>
<td>Systems Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching frequency</td>
<td>Input voltage = 120V 60Hz, Load = 50V LED</td>
<td>120</td>
<td>120</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>Input voltage = 230V 50Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor</td>
<td>Input voltage = 120V 60Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input voltage = 230V 50Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>Input voltage = 120V 60Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td>86</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Input voltage = 230V 50Hz, Load = 50V LED</td>
<td></td>
<td></td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: TPS92210 Universal Input 0-10V Dimmable LED Driver Main Board Schematic
Figure 2: TPS92210 Universal Input 0-10V Dimmable LED Driver Daughter Board Schematic
Performance Data and Typical Characteristic Curves

Figures 3 through 13 present typical performance curves for TPS92210 Universal Input 0-10 V dimmable LED Driver

4.1 Efficiency

![Efficiency Graph]

Figure 3: Efficiency

4.2 Line Regulation

![Line Regulation Graph]

Figure 4: Line Regulation
4.3 Power Factor

Figure 5: Power Factor 60Hz

Figure 6: Power Factor 50Hz
4.4 *Dimming Curve*

![Graph showing LED Current vs. Dimming Voltage](image)

Figure 7: LED Current vs. Dimming Voltage
4.5 Start Up

Figure 8: Start Up Waveforms at 120Vac 60Hz Ch1: Rectified AC Input Ch4: LED current

Figure 9: Start Up Waveforms at 230Vac 50Hz Ch1: Rectified AC Input Ch4: LED current
4.6 Input Current

Figure 10: Input Current at 120V 60Hz Ch1: Input Voltage Ch4: Input Current

Figure 11: Input Current at 230V 50Hz Ch1: Input Voltage Ch4: Input Current
4.7 Switch Waveforms

Figure 12: Switch Node at 120V 60Hz Ch1: MOSFET Q6 Drain

Figure 13: Switch Node at 230V 50Hz Ch1: MOSFET Q6 Drain
4.8 EMI Performance

Figure 14: 120VAC Conducted EMI Scan
Figure 15: 230VAC Conducted EMI Scan
The following figures (Figure 16 through Figure 19) show the design of the printed circuit board.

Figure 16: Top Layer and Top Overlay Main Board (Top view)

Figure 17: Bottom Layer and Bottom Overlay Main Board (Bottom view)
Figure 18: Top Layer and Top Overlay Daughter Board (Top view)

Figure 19: Bottom Layer and Bottom Overlay Daughter Board (Bottom view)
6 Bill of Materials

Table 1: The components list of the Main Board according to the schematic shown in Figure 1

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>QTY</th>
<th>VALUE</th>
<th>DESCRIPTION</th>
<th>SIZE</th>
<th>MFR</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.1 µF</td>
<td>CAP FILM, 0.1 µF, 630VDC RADIAL</td>
<td>13 x 6mm</td>
<td>EPCOS</td>
<td>B32921C3104M</td>
</tr>
<tr>
<td>C2,C3</td>
<td>2</td>
<td>0.22 µF</td>
<td>CAP FILM, 0.22 µF, 630VDC RADIAL</td>
<td>18 x 7mm</td>
<td>EPCOS</td>
<td>B32922C3224K</td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>0.01 µF</td>
<td>CAP, CERM, 0.01 µF, 1000V, X7R, 10%</td>
<td>1808</td>
<td>Vishay</td>
<td>VJ1808Y103KXGAT</td>
</tr>
<tr>
<td>C5,C13</td>
<td>2</td>
<td>4700 pF</td>
<td>CAP, CERM, 4700pF, 500VAC, Y1, 20%</td>
<td>10mm</td>
<td>Vishay</td>
<td>VY1472M635Y5U63V0</td>
</tr>
<tr>
<td>C6,C7</td>
<td>2</td>
<td>1 µF</td>
<td>CAP, CERM, 1 µF, 100V, +/-10%, X7R</td>
<td>1206</td>
<td>MuRata</td>
<td>GRM31CR72A105KA01L</td>
</tr>
<tr>
<td>C8</td>
<td>1</td>
<td>1000 µF</td>
<td>CAP, Aluminum, 1000 µF, 63V, +/-20%</td>
<td>16 x 35mm</td>
<td>Panasonic</td>
<td>UPW1J02MHD6</td>
</tr>
<tr>
<td>C9</td>
<td>1</td>
<td>47 µF</td>
<td>CAP, Aluminum, 47 µF, 25V, +/-20%</td>
<td>5 x 11mm</td>
<td>Panasonic</td>
<td>EEU-EB1E470S</td>
</tr>
<tr>
<td>C10,C11</td>
<td>2</td>
<td>0.1 µF</td>
<td>CAP, CERM, 0.1 µF, 25V, +/-10%, X7R</td>
<td>0603</td>
<td>MuRata</td>
<td>GRM188R71E104KA01D</td>
</tr>
<tr>
<td>C12</td>
<td>1</td>
<td>2.2 µF</td>
<td>CAP, CERM, 2.2 µF, 16V, +/-10%, X7R</td>
<td>0805</td>
<td>TDK</td>
<td>C2012X7R1C225K</td>
</tr>
<tr>
<td>C14</td>
<td>1</td>
<td>1 µF</td>
<td>CAP, CERM, 1 µF, 25V, +/-10%, X5R</td>
<td>0805</td>
<td>MuRata</td>
<td>GRM216R61E105KA12D</td>
</tr>
<tr>
<td>C15</td>
<td>1</td>
<td>0.33 µF</td>
<td>CAP, CERM, 0.33 µF, 16V, +/-10%, X7R</td>
<td>0603</td>
<td>Kemet</td>
<td>C0603C344K4RACUT</td>
</tr>
<tr>
<td>C16,C17,C18</td>
<td>3</td>
<td>0.01 µF</td>
<td>CAP, CERM, 0.01 µF, 100V, +/-10%, X7R</td>
<td>0603</td>
<td>AVX</td>
<td>06031C103KAT2A</td>
</tr>
<tr>
<td>C19</td>
<td>1</td>
<td>10 µF</td>
<td>CAP, CERM, 10 µF, 35V, +/-20%, X7R</td>
<td>1210</td>
<td>Taiyo Yuden</td>
<td>GM5325AB7106MM-T</td>
</tr>
<tr>
<td>C20</td>
<td>1</td>
<td>330 pF</td>
<td>CAP, CERM, 330pF, 630V, +/-5%, C0G/NP0</td>
<td>1206</td>
<td>TDK</td>
<td>C3216C02J331J</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>16V</td>
<td>Diode, Zener, 16V, 500mW</td>
<td>SOD-123</td>
<td>On Semi</td>
<td>MMSZ4703T1G</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>12V</td>
<td>Diode, Zener, 12V, 500mA</td>
<td>SOD-123</td>
<td>On Semi</td>
<td>MMSZ4999T1G</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>800V</td>
<td>Diode, Bridge, 800V, 0.5A</td>
<td>4-SOC1</td>
<td>Fairchild</td>
<td>MB8S</td>
</tr>
<tr>
<td>D4</td>
<td>1</td>
<td>800V</td>
<td>Diode, Ultrafast, 800V, 1A</td>
<td>SMA</td>
<td>Vishay</td>
<td>US1K-E3/61T</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>600V</td>
<td>DIODE ULT FAST 600V 3A</td>
<td>SMB</td>
<td>ST</td>
<td>STTH1R04U</td>
</tr>
<tr>
<td>D6</td>
<td>1</td>
<td>100V</td>
<td>Diode, Small Signal, 100V, 200mA</td>
<td>SOT-23</td>
<td>Fairchild</td>
<td>MM8D1204</td>
</tr>
<tr>
<td>D7,D8</td>
<td>2</td>
<td>24V</td>
<td>Diode, Zener, 24V, 500mA</td>
<td>SOD-123</td>
<td>On Semi</td>
<td>MMSZ4709T1G</td>
</tr>
<tr>
<td>D9</td>
<td>1</td>
<td>100V</td>
<td>Diode, Fast, 100V, 200mA</td>
<td>SOD-123</td>
<td>Diodes</td>
<td>BAV19W-7-F</td>
</tr>
<tr>
<td>F1</td>
<td>1</td>
<td>3A</td>
<td>Fuse, 3A, 350VAC,</td>
<td>10.92mm x 8.76mm x 3.91mm</td>
<td>Littelfuse</td>
<td>047003.YXP</td>
</tr>
<tr>
<td>L1</td>
<td>1</td>
<td>22 mH</td>
<td>Common Mode Choke,</td>
<td>17 x 22mm</td>
<td>Taiyo Yuden</td>
<td>TLF14CB2230R4K1</td>
</tr>
<tr>
<td>L2</td>
<td>1</td>
<td>2.2 mH</td>
<td>INDUCTOR 2200UH 0.62A</td>
<td>13 x 16mm</td>
<td>Colicraft</td>
<td>RFS1317-225KL</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>950V</td>
<td>MOSFET, N-CH, 950V, 12A</td>
<td>TO-220FP</td>
<td>ST</td>
<td>STF15N95K5</td>
</tr>
<tr>
<td>Q2,Q3</td>
<td>2</td>
<td>40V</td>
<td>Transistor, NPN, 40V, 0.2A,</td>
<td>SOT-23</td>
<td>Fairchild</td>
<td>MMBT3904</td>
</tr>
<tr>
<td>Q4</td>
<td>1</td>
<td>40V</td>
<td>PNP Transistor</td>
<td>SOT-23</td>
<td>Diodes</td>
<td>MMBT3906-7-F</td>
</tr>
<tr>
<td>R1,R2,R22,R23</td>
<td>4</td>
<td>549k Ω</td>
<td>Resistor, Chip, 1/4W, 1%</td>
<td>1206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>4.99 Ω</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>1</td>
<td>10k Ω</td>
<td>Resistor, Chip, 1W, 5%</td>
<td>2512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>1</td>
<td>3.01 Ω</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>1</td>
<td>115 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>1</td>
<td>100 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>1</td>
<td>23.2 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: The components list of the Daughter Board according to the schematic shown in Figure 2

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>QTY</th>
<th>VALUE</th>
<th>DESCRIPTION</th>
<th>SIZE</th>
<th>MFR</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,C2</td>
<td>2</td>
<td>0.01 μF</td>
<td>CAP, CERM, 0.01μF, 100V, +10/%, X7R</td>
<td>0603</td>
<td>AVX</td>
<td>06031C103KAT2A</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>22 μF</td>
<td>CAP, CERM, 22μF, 6.3V, +20/%, X5R</td>
<td>0805</td>
<td>Murata</td>
<td>GRM21BR60J226ME39L</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>15V</td>
<td>Diode, Zener, 15V, 500mW</td>
<td>SOD-123</td>
<td>On Semi</td>
<td>MMSZ4702T1G</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>40V</td>
<td>Transistor, Programmable Unijunction 40V, 300mW</td>
<td>TO-92</td>
<td>On Semi</td>
<td>2N6027</td>
</tr>
<tr>
<td>Q2</td>
<td>1</td>
<td>40V</td>
<td>PNP Transistor</td>
<td>SOT-23</td>
<td>Diodes</td>
<td>MMBT3906-7-F</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>1.0 MΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>30.1 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>13.3 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>R4,R7,R8</td>
<td>1</td>
<td>10.0 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>1</td>
<td>143 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>1</td>
<td>4.75 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>1</td>
<td>200 kΩ</td>
<td>Resistor, Chip, 1/10W, 1%</td>
<td>0603</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>OptoCoupler</td>
<td>4-SMD</td>
<td>Fairchild</td>
<td>FOD817DS</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>1</td>
<td>Low Power Low Offset Voltage Dual Comparator</td>
<td>8-SOIC</td>
<td>Texas Instruments</td>
<td>LM393M</td>
<td></td>
</tr>
</tbody>
</table>
EVALUATION BOARD/KIT/MODULE (REF DESIGN) WARNINGS, RESTRICTIONS AND DISCLAIMER

For Feasibility Evaluation Only, in Laboratory/Development Environments. The REF DESIGN is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the REF DESIGN for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the REF DESIGN. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the REF DESIGN and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
3. Since the REF DESIGN is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the REF DESIGN will not result in any property damage, injury or death, even if the REF DESIGN should fail to perform as described or expected.

Certain Instructions. Exceeding the specified REF DESIGN ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the REF DESIGN and/or interface electronics. Please consult the REF DESIGN User’s Guide prior to connecting any load to the REF DESIGN output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the REF DESIGN schematic located in the REF DESIGN User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the REF DESIGN that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the REF DESIGN fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.

Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated