TI Designs: Verified Design
Soft-Start Isolated Power Supply

TI Designs
TI Designs are analog solutions created by TI’s analog experts. Verified Designs offer theory, component selection, simulation, complete PCB schematic and layout, bill of materials and measured performance of useful circuits.

Circuit Description
This reference design demonstrates a Soft-Start Isolated Power Supply. It utilizes a TPS22965 Load-Switch and SN6501 Transformer Driver to slew-rate limit the ramp-up power on the primary supply, and utilizes a Transformer plus a full-wave rectifier to generate the isolated secondary power.

Design Resources

Design Archive
TPS22965
SN6501

All Design Files
Product Folder
Product Folder
1 Design Summary

This solution provides the following features:

- Operates with 3.3-V ± 10% and 5-V ± 10% Primary Supplies
- Low Quiescent Current (50 μA) of the Load Switch
- High Primary-Side Current Drive:
 - 350 mA (MAX) with 5-V supply
 - 150 mA (MAX) with 3.3-V supply
- Primary Side Rise Time = ~2 ms

2 Design Considerations

2.1 TPS22965

The TPS22965 is a single channel load switch that provides configurable rise time to minimize inrush current. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.8 V to 5.7 V and can support a maximum continuous current of 6 A. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. In the TPS22965, a 225-Ω on-chip load resistor is added for quick output discharge when switch is turned off.

2.2 SN6501-Q1

The SN6501 is a monolithic oscillator/power-driver, specifically designed for small form factor, isolated power supplies in isolated interface applications. The drives a low-profile, center-tapped transformer primary from a 3.3-V or 5-V DC power supply. The secondary can be wound to provide any isolated voltage based on transformer turns ratio.

2.3 Theory of Operation

The SN6501-Q1 transformer driver is a square-wave oscillator with two power FET output stages whose complementary output signals drive the primary of a center-tapped transformer, commonly used in isolated, push-pull, dc-to-dc converter designs.

To implement a soft-start function for the SN6501-Q1, you can use the TPS22965 load switch, whose output rise time is adjustable through the application of an external transition capacitor, CT. Figure 1 shows a 5V design where the output of the TPS22965 provides the input voltage for the SN6501-Q1.

Capacitor CT is chosen with 1nF yielding a ramp-up time at the load-switch output of approximately 2 ms. The output of the push-pull converter starts ramping when the SN6501 reaches its start-up voltage at about 1.6V. During power-down the converter output tracks the load-switch output over a ramp-down time of approximately 1 ms.
3 Measurements

3.1 Test Circuit

Figure 1: Soft-starting the SN6501-Q1 transformer driver with the TPS22965 load-switch

3.2 Power On (Enable TPS22965 “ON”)

Channel1 (YELLOW) = TPS22965 VOUT Voltage
Math1 (ORANGE) = SN6501-Q1 D1-D2 Voltage
Channel4 (GREEN) = Rectified VOUT Voltage

Figure 2: Soft-starting the SN6501-Q1 transformer driver with the TPS22965 load-switch
3.3 Power Off (Disable TPS22965 “ON”)

Channel1 (YELLOW) = TPS22965 VOUT Voltage
Math1 (ORANGE) = SN6501-Q1 D1-D2 Voltage
Channel4 (GREEN) = Rectified VOUT Voltage

Figure 3: SN6501-Q1 during soft turn-off
4 References

1. TPS22965 Datasheet, SLVSBJ0B
2. SN6501-Q1 Datasheet, SLLSEF3A

5 Appendix

5.1 Schematic

![Figure 4: Soft-start isolated power supply schematic](image-url)
5.2 Bill of Materials

Table 1: Soft-Start Isolated Power Supply Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Reference</th>
<th>Part</th>
<th>Footprint</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>U1</td>
<td>TPS22965DSG</td>
<td>WSON-8</td>
<td>Texas Instruments</td>
<td>TPS22965DSG</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>U2</td>
<td>SN6501DBV</td>
<td>SOT-23-5</td>
<td>Texas Instruments</td>
<td>SN6501DBV</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>T1</td>
<td>1:1.5</td>
<td>SMT</td>
<td>Coilcraft</td>
<td>DA2303-AL</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>D1, D2</td>
<td>MBR0520LT1G</td>
<td>SOD-123</td>
<td>ON Semiconductor</td>
<td>MBR0520LT1G</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>C1, C3</td>
<td>1.0µF</td>
<td></td>
<td>0805</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>C2</td>
<td>1.0nF</td>
<td></td>
<td>0805</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>C4</td>
<td>10µF</td>
<td></td>
<td>0805</td>
<td></td>
</tr>
</tbody>
</table>