Test Data
For PMP10532
10/21/2014

TExAS INSTRUMENTS
Overview

The PMP10532 reference design is an isolated Fly-Buck power supply for industrial applications. It takes 24V nominal input and provides three isolated outputs: +5V@1A and +/-15V@200mA. The design is suitable for providing isolated power supply to MCU and control circuits, and positive/negative bias to Op Amps in PLC applications. The cross regulation of each output over line and load variation maintains about +/-5% tolerance, and the input voltage range of the supply is from 19V to 30V. The design features the LM5160 synchronous buck converter configured as a Fly-Buck regulator. The LM5160 has a wide Vin range of 4.5V to 65V and 1.5A output current capability with integrated switch FETs. It employs the Constant On-Time (COT) control scheme suitable for the Fly-Buck. With the benefit of primary side regulation, the Fly-Buck converter makes a compact and cost effective solution for multiple isolated output power supply without the opto-coupler feedback.

Power Specification

Nominal Vin: 24V
Vin Range: 19V – 30V
Outputs: Isolated +5V@1A,
Isolated ±15V@200mA
Output Power: 11W max
Switching Frequency: 250 kHz
Board Photo

Board Size: 75x50mm (Solution Size: 60x30mm)

Figure 1 Board front

Figure 2 Board back
Efficiency

The efficiency measurement was taken as all three outputs are loaded at the same percentage current in respect of their full load.

Figure 3 Total efficiency under balanced load
Cross Regulation

The regulation under balanced load condition was tested as all three outputs were loaded with the same percentage of current in respect of their full load at different input voltage condition. Since the +15V and -15V outputs are symmetrical, only the +15V output regulation are shown.

5V0 Regulation under Balanced Load

![5V0 Regulation under Balanced Load](image_url)

Figure 4 5V output regulation under balanced load
The regulation under unbalanced load was tested by sweeping different load current on the 5V output while the +/-15V output were loaded with 0A, 0.1A and 0.2A at 24V input. Since the +15V and -15V outputs are symmetrical, only the +15V output regulation are shown.

Figure 5 15V output regulation under balanced load

Figure 6 5V output regulation under unbalanced load
Figure 7 15V output regulation under unbalanced load
Start Up

The board was tested under no load and full load at 24V input. Ch1 (yellow) is the input voltage, Ch2 (green) is the 5V output, Ch3 (purple) is the +15V output, and Ch4 (magenta) is the -15V output.

Figure 8 Start up into no load at 24Vin
Figure 9 Start up into full load at 24Vin

Switching Waveforms

The primary side switch node voltage was measured at no load and full load condition at 24V input. Ch1 (yellow) is the switch node voltage.
Figure 10 Switching waveform at no load, 24Vin

Figure 11 Switching waveform at full load, 24Vin
The secondary side rectifier diodes’ voltage stress was checked at full load and 30V input. Ch1 (yellow) shows the voltage across the diode.

Figure 12 5V output diode anode (+) to cathode (-) voltage at full load, 30Vin
Figure 13 +15V output diode anode (+) to cathode (-) voltage at full load, 30Vin

Figure 14 -15V output diode cathode (-) to anode (+) voltage at full load, 30Vin
Load Transients

The load transient response was tested by adding load step on one output while no load on the other two outputs. The Vin was set at 24V. Ch1 (yellow) is the output voltage in AC mode, and Ch4 (magenta) is the output current.

Figure 15 5V output load transient
Figure 16 +15V output load transient

Figure 17 -15V output load transient
Output Voltage Ripples

The output ripples were measured directly at the output capacitors, as all outputs were fully loaded. The input voltage was set at 24V. In Figure 18, Ch1 (yellow) is the 5V output ripple in AC mode; in Figure 19, Ch1 (yellow) is the +15V output ripple, and Ch2 (green) is the -15V output ripple, both in AC mode.

![Figure 18 5V output ripple at full load, 24Vin](image-url)
Figure 19 +/-15V output ripples at full load, 24Vin
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated